基准电压源设计
晶体管基准电压源设计_概述及解释说明
晶体管基准电压源设计概述及解释说明1. 引言1.1 概述晶体管基准电压源在现代电路设计中起着至关重要的作用。
随着微电子技术的快速发展,各种集成电路的性能要求越来越高,特别是对于低功耗、高精度和长期稳定性等方面有更高的要求。
而晶体管基准电压源则可为这些集成电路提供一个无需外部供电、具备稳定、可靠且精确的参考电压信号。
1.2 文章结构本文主要介绍了晶体管基准电压源的设计原理以及关键要素,并提供了一套设计方法论用于指导工程师们进行实际电路设计。
同时,通过实验验证和结果分析,将进一步验证该设计方法论的有效性和可行性。
最后,我们将总结研究结果并展望晶体管基准电压源在未来发展中可能面临的问题和改进方向。
1.3 目的本文旨在全面介绍晶体管基准电压源的设计概述、原理解释以及关键要素,以及针对其设计过程提出一套科学合理的方法论。
通过本文的阐述和实验验证,希望能够为读者提供一个清晰的理解晶体管基准电压源设计的框架,并且为今后的研究与实践工作提供有益的参考和指导。
我们相信通过深入了解晶体管基准电压源的原理和设计方法,将有助于推动该领域的发展并应用于更广泛的电路设计中。
2. 正文:2.1 晶体管基准电压源的重要性晶体管基准电压源在电子工程中具有重要作用。
它是一种能够提供稳定和精确的电压参考的电路。
在很多应用中,如模拟集成电路、精密测量仪器和传感器等领域,稳定的参考电压是至关重要的。
晶体管基准电压源可以通过建立合适的偏置和放大机制来产生一个具有稳定性和温度系数良好性能的参考电压,从而保证整个系统的可靠运行。
2.2 晶体管基准电压源的原理解释晶体管基准电压源利用了晶体管特性和偏置技术来实现稳定可靠的参考电压。
通常使用两个相互串联或并联连接的二极管作为温度补偿元件,这样可以消除温度对参考电压产生的影响。
通过适当选择偏置点,并利用晶体管工作在其线性区域,就可以获得一个与温度变化无关且高稳定性的基准电压。
2.3 设计晶体管基准电压源的关键要素设计晶体管基准电压源需要考虑一些关键要素。
低功耗带隙基准电压源电路设计
低功耗带隙基准电压源电路设计蒋本福【摘要】文章提出一种三层self-cascode管子工作在亚阈值区的低功耗带隙基准电压源电路.该电路具有电路结构简单、功耗低、温度系数小、线性度小和面积小等特点.采用CSMC 0.18μm的标准CMOS工艺,华大九天Aether软件验证平台进行仿真.仿真结果表明,在tt工艺角下电路的启动时间为6.64μs,稳定输出的基准电压Vref为567 mV;当温度在-40℃~125℃范围内时,tt工艺角下基准电压Vref的温度系数TC为18.8 ppm/℃;电源电压在1.2 V~1.8 V范围内时,tt工艺角下基准电压Vref的线性度为2620 ppm/V;在10 Hz~1 kHz带宽范围内,tt工艺角下基准电压Vref的电源抑制比(PSRR)为51 dB;版图核心面积为0.00195 mm2.【期刊名称】《微型机与应用》【年(卷),期】2017(036)003【总页数】3页(P39-41)【关键词】Aether软件;功耗;温度系数;线性度;面积【作者】蒋本福【作者单位】吉林大学珠海学院,广东珠海519000【正文语种】中文【中图分类】TN432在模拟IC和混合IC中,带隙基准电压是不可缺少的电路模块。
传统的低压、低功耗带隙基准电路是基于垂直双极晶体管,在文献[1-2]中分别提出了多种设计方法。
然而,这些方法都需要几百兆欧姆的电阻实现低功耗运行,占用较大芯片面积,浪费资源。
参考文献[3]也提出了由几个工作在亚阈值区的MOS管组成的电路,虽然保证了低功耗,但是也出现了温度补偿不够等问题。
为了实现低温漂带隙基准电压电路,高阶温度补偿技术[5]必须得到广泛应用,以减小带隙电压的温度系数。
因此本文提出在低功耗的带隙基准基础上增加高阶温度补偿电路来实现低温漂基准电压电路。
电路原理图如图1所示,主要由启动电路[4]、电流产生电路[5]和self-cascode[4-5]自偏置电路三部分组成。
超高精度带隙基准源的设计
摘要基准电压源是模拟电路设计中广泛采用的一个关键的基本模块。
所谓基准电压源就是能提供高稳定度基准量的电源,这种基准源与电源、工艺参数和温度的关系很小,但是它的温度稳定性以及抗噪性能影响着整个电路系统的精度和性能。
本文的目的便是设计一种高精度的CMOS带隙基准电压源。
本文首先介绍了基准电压源的国内外发展现状及趋势。
然后详细介绍了带隙基准电压源的基本结构及基本原理,并对不同的带隙基准源结构进行了比较。
接着对如何提高带隙基准的电源抑制比以及带隙基准电压源的温度补偿原理进行了分析,还总结了目前提高带隙基准电压源温度特性的各种方法。
在此基础上运用曲率校正、内部负反馈电路、RC滤波器、快速启动电路,设计出了具有良好的温度特性和高电源抑制比的带隙基准电压源电路。
最后应用HSPICE仿真工具对本文中设计的带隙基准电压源电路进行了完整模拟仿真并分析了结果。
模拟和仿真结果表明,电路实现了良好的温度特性和高电源抑制比,0℃~100℃温度范围内,基准电压温度系数大约为11.2ppm/℃,在1Hz到10MHz频率范围内平均电源抑制比(PSRR)可达到-80dB,启动时间为700s 。
关键词: 带隙基准电压源;温度系数;电源抑制比;AbstractV oltage reference is the vital basic module which is widely adopted in analog circuits. It can supply a voltage with high stability. The power supply, technics parameter rand temperature has lesser effete to this voltage. Its temperature stability and antinoise capability influence the precision and performance of the whole system. The purpose of this article is to design a high precision CMOS bandgap voltage reference.In this article, the present situation and developmental trend of voltage reference studies both at home and abroad are presented. The structure and principle of voltage reference are analyzed in detail, and then the different structures of bandgap voltage reference are compared. By analyzing the power supply rejection ratio (PSRR) and the principle of temperature compensation, the method of improving the temperature characteristic is summarized. The design of a bandgap voltage reference circuit with high power supply rejection ratio and good temperature characteristic is completed by applying curvature emendation, inside negative feedback technology, RC filter and fast start-up circuit. At last, the circuits have been simulated with HSPICE simulation tools.The simulation results show that,the circuit with good temperature characteristic and high power supply rejection ratio, and at the temperature range of 0℃to 100℃, the temperature coefficient(TC) is about 11.2ppm/℃. In the frequency range of 1Hz to 10MHz, the average power supply rejection ratio is more than -80dB and it has a turn-on time less than 700s .Key Words: bandgap voltage reference; temperature coefficient; power supply rejection ratio;目录1. 绪论 (1)1.1 国内外研究现状与发展趋势 (1)1.2 课题研究的目的意义 (2)1.3 本文的主要内容 (2)2. 基准电压源的原理与电路 (3)2.1 基准电压源的结构 (3)2.1.1直接采用电阻和管分压的基准电压源 (3)2.1.2有源器件与电阻串联组成的基准电压源 (4)2.1.3带隙基准电压源 (6)2.2 带隙基准电压源的基本原理 (6)2.2.1与绝对温度成正比的电压 (7)2.2.2负温度系数电压V BE (7)2.3 带隙基准源的几种结构 (8)2.4 V BE的温度特性 (11)2.5 带隙基准源的曲率校正方法 (13)2.5.1线性补偿 (13)2.5.2高阶补偿 (13)本章小结 (17)3. 高精度CMOS带隙基准源的电路设计与仿真 (18)3.1 高精度CMOS带隙基准电压源设计思路 (18)3.2 核心电路 (19)3.3 提高电源抑制比电路 (20)3.3.1负反馈回路 (21)3.3.2 RC滤波器 (22)3.4 快速启动电路及快速启动电路的控制电路 (23)3.4.1快速启动电路的控制电路 (23)3.4.2快速启动电路 (24)3.5 CMOS带隙基准电压源的温度补偿原理 (24)3.6 高精度CMOS带隙基准电压源的电路仿真 (27)3.6.1仿真工具的介绍 (27)3.6.2 核心电路的仿真结果 (27)3.6.3 电源抑制比电路的仿真结果 (28)3.6.4 快速启动电路的仿真结果 (28)3.6.5 整体电路的仿真结果 (29)本章小结 (30)结论 (32)致谢 (33)参考文献 (34)1.绪论基准电压源(Reference V oltage)是指在模拟电路或混合信号电路中用作电压基准的具有相对较高精度和稳定度的参考电压源。
宽温度范围高精度基准电压源设计
收稿日期:2021-01-15基金项目:陕西省自然科学基础研究计划项目(2020JM -583)通信作者:唐威,教授,博士,研究方向为集成电路设计㊂E-mail :tangwei @xupt .edu .cn电子元件与材料Electronic Components and Materials第40卷Vol .40第4期No .44月Apr2021年2021宽温度范围高精度基准电压源设计师洋洋,唐㊀威,刘㊀伟(西安邮电大学电子工程学院,陕西西安㊀710121)摘㊀要:针对传统Brokaw 型带隙基准电压源温度系数较高的问题,采用高阶曲率补偿方法,利用PN 结反向饱和电流随温度敏感变化的原理,通过将与基准电压温度系数呈相反趋势的补偿电流注入到基准核心部分,对基准输出电压进行温度补偿,实现了宽温度范围内基准电压源的高精度输出㊂电路基于0.18μm BCD 工艺设计㊂仿真结果表明,在3.3V 电源电压下,基准输出电压为1.978V ,在-40~+150ħ温度范围内,基准电压的温度系数为5.82ˑ10-6/ħ,低频时电源抑制比(PSRR )为79.4dB ㊂关键词:带隙基准;高精度;宽温度范围;曲率补偿中图分类号:TN 432文献标识码:ADOI :10.14106/j .cnki .1001-2028.2021.1736引用格式:师洋洋,唐威,刘伟.宽温度范围高精度基准电压源设计[J ].电子元件与材料,2021,40(4):387-392.Reference format :SHI Yangyang ,TANG Wei ,LIU Wei.Design of a wide -temperature -range and high -precision voltage reference [J ].Electronic Components and Materials ,2021,40(4):387-392.Design of a wide -temperature -range and high -precision voltage referenceSHI Yangyang ,TANG Wei ,LIU Wei(School of Electronic Engineering,Xi an University of Post and Telecommunications,Xi an㊀710121,China)Abstract :A high -order curvature compensation method was used to solve the problem of high temperature coefficient of the traditional Brokaw bandgap reference.Since the reverse saturation current of PN junction changes sensitively with temperature and its trend with temperature is opposite to the reference voltage ,it was inputed into the core part of the reference as the compensation current ,and the temperature compensation of the output voltage was realized.As a result ,a high precision output of the reference was obtained over a wide temperature range.The circuit was designed based on 0.18μm BCD process.The simulation results show that the output voltage is 1.978V under 3.3V supply voltage.The temperature coefficient of thereference voltage is 5.82ˑ10-6/ħin the temperature range of -40~+150ħ.The PSRR is 79.4dB at low frequency.Key words :bandgap reference ;high precision ;wide -temperature rage ;curvature compensated㊀㊀带隙基准电压源因具有较低温度系数和较高电源抑制比的特点,被广泛用于DC -DC ㊁模数转换器(ADC )以及低压差线性稳压器(LDO )等数模混合集成电路中[1-2]㊂传统的带隙基准电压源是通过将双极型晶体管具有负温度系数的基极-发射极电压(V BE )与正温度系数(PTAT )的电压(ΔV BE )以适当的权重相加,从而得到零温度系数的输出电压值㊂然而,传统的带隙基准电压源仅对温度特性曲线进行一阶补偿,难以满足现代高精度系统的要求㊂为了得到低温漂的基准电压源,需要进行高阶补偿[3-5]㊂对此,许多文献提出了不同的补偿方法来降低温度系数㊂文献[6]采用分段补偿技术,通过在电路中加入两个不同的曲率补偿电路,在低温段和高温段分别实现对基准电压的曲率补偿,但这种电路较复杂,且电源抑制比(PSRR )较低;文献[7]利用MOS 管工作在亚阈值区时漏电流和栅源电压的非线性特性,通过引入与基电子元件与材料准电压温度系数成相反趋势的高阶补偿电流对基准电压进行曲率补偿;虽然文献[7]在宽温度范围内降低了温度系数,但是由于使用了较多的三极管,导致占用的面积较大㊂本文设计的带隙基准电压源基于Brokaw 基本结构,利用PN 结的反向饱和电流随温度敏感变化的原理,在高温段进行了曲率补偿,使其在-40~+150ħ的宽温度范围内表现出5.82ˑ10-6/ħ的低温漂特性㊂1㊀传统Brokaw 型带隙基准电压源图1是传统的Brokaw 型带隙基准结构㊂图中,运算放大器的输出端与Q 1㊁Q 2的基极相连,为Q 1㊁Q 2提供基极电流㊂由于运算放大器的电压钳位作用使得电阻R 3和R 4上的电压降相等,若R 3=R 4,则流过R 3和R 4两条支路的电流相等,此时三极管Q 1和Q 2的基极-发射极电压差为:ΔV BE =V BE1-V BE2=V T ln I S2I S1æèçöø÷=V T ln N (1)于是流过电阻R 1的电流为:I =ΔV BE R 1=V T ln N R 1(2)则流过电阻R 2的电流为2I ㊂该电流作用在R 2上,可以产生一个具有正温度系数的电压,将该电压与Q 2的基极-发射极电压V BE 相加,便可得到输出电压V REF的表达式为:V REF =V ΒΕ2+2R 2R 1V Τln N(3)通过改变R 1㊁R 2的大小,可以获得一个与温度无关的基准电压㊂由文献[8]可知,三极管的基极-发射极电压V BE随温度变化并不是线性的,它可以表示为[9]:V BE (T )=V G0-T T 0(V G0-V BE0)-(η-α)V T ln(T T 0)(4)式中:T 为热力学温度;T 0是参考温度;V G 0是在温度为T 0时的发射结电压;η是与工艺有关但与温度无关的常数;α的值与集电极电流I C 的温度特性有关(当I C 与温度成正比时,α=0;当I C 与温度无关时,α=1)㊂图1㊀传统Brokaw 型带隙基准电压源Fig .1㊀Conventional Brokaw -type bandgap voltage reference式(4)中的V T ln (T /T 0)体现出非线性项,式(3)只能实现一阶温度补偿,获得近似零温度系数的基准电压㊂因此,要得到高精度的基准输出电压,必须对V BE 的非线性分量进行高阶补偿㊂2㊀宽温度范围高精度基准电压源设计本文设计的宽温度范围高精度基准电压源整体电路如图2所示,包含启动电路㊁偏置电路㊁带隙基准核心电路和曲率补偿电路㊂2.1㊀带隙基准核心电路图2中的Q 3㊁Q 4和R 5~R 9以及运算放大器(M 16~M 23)组成一阶带隙基准电压源㊂其中,Q 3和Q 4发射极结面积之比为1ʒ8,R 5=R 6㊂利用运放的 虚短 特性,钳位A 点和B 点电压,使得V A =V B ㊂假设Q 3和Q 4的集电极电流为I 1,则:I 1=ΔV BE R 8=V T ln8R 8(5)由KCL 有流过R 9和R trim 的电流为2I 1,所以有:V C =V E4-V R8=2I 1(R 9+R trim )=V E3(6)因此Q 3基极电压为:V B3=V C +V BE3=2I 1(R 9+R trim )+V BE3(7)于是带隙基准电压可表示为:㊃883㊃师洋洋,等:宽温度范围高精度基准电压源设计V REF =2(R 9+R trim )R 8V T ln8+V BE3(8)然后通过电阻升压网络可得到基准输出电压V OUT :V OUT =V REF R 3+R 4R 4æèçöø÷=2(R 9+R trim )R 8V T ln8+V BE3éëêêùûúúR 3+R 4R 4(9)为了产生零温度系数的带隙基准电压,对V OUT 关于温度T 求偏导,即: V OUT T= V T T2(R 9+R trim )(R 3+R 4)ln8R 8R 4+V BE3 TR 3+R 4R 4(10)由式(10)可看出,通过调节电阻R 3㊁R 4㊁R 8和R 9的比值即可得到理想的零温度系数的基准输出电压V OUT ,然后通过分压网络可得到多个零温度系数电压值,分别为电路中需要的模块提供参考㊂其中,R trim 的作用是为了解决实际生产中的偏差失配问题加入的修调电阻,减少误差㊂式(9)是在理想条件下得到的基准输出电压值㊂图2中,由于三极管Q 3㊁Q 4存在来自于R 3的基极电流,这就导致R 3和R 4上的电流不一致,使V OUT 在V REF 的基础上产生一定的温差,并且精度㊁电源抑制比等参数也会受到影响[10]㊂因此,式(9)的表述并不准确,本文通过在Q 3㊁Q 4的基极加入电阻R 7来消除基极电流带来的误差[11]㊂首先假设三极管Q 3和Q 4的基极电流为I b ,则加入电阻R 7后带隙基准电压可表示为:VᶄREF =2(ΔV BE -I b R 7)R 8(R 9+R trim )+V BE3㊀㊀㊀㊀㊀㊀㊀=2(R 9+R trim )R 8ΔV BE +V BE3-2I b R 7R 8(R 9+R trim )=V REF -2I b R 7R 8(R 9+R trim )㊀㊀㊀㊀㊀㊀(11)式(11)第二项多项式中I b 随温度变化,使得V ᶄREF在V REF 基础上多了一个随温度变化的微小变量,从而导致基准输出电压V OUT 的温度特性也发生了一定的变化㊂由于Q 3和Q 4从R 3抽取了两份基极电流,因此基准输出电压可表示为:VᶄOUT=VᶄREF R 3+R 4R 4æèçöø÷+2I b R 3㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀=V REF -2I b R 7R 8(R 9+R trim )éëêêùûúúR 3+R 4R 4æèçöø÷+2I b R 3=V OUT -2I bR 7R 8(R 9+R trim )R 3+R 4R 4æèçöø÷+2I b R 3(12)图2㊀宽温度范围高精度基准电压源整体电路Fig .2㊀The complete circuit diagram of the voltage reference withwide -temperature -range and high -precision㊀㊀由式(11)可以看出,对于带隙基准电压V ᶄREF 来讲,即使加入了R 7仍然可以通过调节R 8和R 9的比值来得到一个零温度系数的基准电压㊂对于基准输出电压V ᶄOUT 来讲,通过调节R 7(R 9+R trim )(R 3+R 4)R 8R 4的值,使之等于R 3,即可将式(12)的后两项消除,从而㊃983㊃电子元件与材料可得到R7的值为:R7=R3R4R8(R3+R4)(R9+R trim)(13)2.2㊀曲率补偿电路曲率补偿电路由M28-M30和Q5构成㊂I S由BE结短接的NPN晶体管Q5形成,补偿电流I COMP1和I COMP2通过M28-M30电流镜结构分别注入到A点和B点,对PTAT电流进行补偿㊂IS可以表示为:I S(Τ)=CΤγexp(-qV G0kΤ)(14)式中:C是与PN结的结面积及掺杂浓度有关的常数;γ在一定温度范围内也是常数;VG0为绝对零度时PN 结材料的导带底和价带顶电势差,对于给定的PN结材料,V G0为定值;q为电子的电荷量;k为玻尔兹曼常数;T为热力学温度㊂令λ=qV G0k,并用泰勒展开式e xʈ1+x+x22+x36展开,则I S可以表示为:I SʈC(Tγ-λTγ-1+λ2Tλ-22-λ3Tλ-36)(15)图2中,M28㊁M29和M30的宽长比为1ʒ8ʒ1,于是补偿电流I COMP1和I COMP2为:I COMP1=C(Tγ-λTγ-1+λ2Tλ-22-λ3Tλ-36)=I S㊀(16)I COMP2=8C(Tγ-λTγ-1+λ2Tλ-22-λ3Tλ-36)=8I S(17)经过一阶补偿和曲率补偿后的带隙基准电压可以表示成:V REF=V BE3+2R9+R trim()R8V Tln8+R9+R trim()I COMP1+I COMP2()=V BE3+2ln8R9+R trim()R8V T+R9+Rtrim()I COMP1+I COMP2()=V BE3+2ln8R9+R trim()R8KTq+R9+Rtrim()I COMP1+I COMP2()(18)将式(18)代入式(9)可得到基准输出电压V OUT的表达式为:V OUT=R3+R4R4æèçöø÷V BE3+2ln8R9+R trim()R8KTq+éëêê㊀㊀㊀㊀R9+R trim()I COMP1+I COMP2()ùûúú(19)令K0=R3+R4R4K1=2K ln8(R3+R4)(R9+R trim)qR4R8K2=(R3+R4)(R9+R trim)(C+8C)R4ìîíïïïïïïïï(20)结合式(16)~(17)和式(19)~(20)可得基准输出电压为:V OUT=K0V BE3(T)+K1T+K2(Tγ-λTγ-1+λ2Tλ-22-λ3Tλ-36)(21)式中:K0为负温度系数电压V BE3的系数;K1为一阶温度补偿系数;K2为高阶曲率补偿系数㊂其中一阶温度补偿系数K1主要与R8和R9的比值相关,而高阶曲率补偿系数K2主要与PN结面积相关㊂2.3㊀偏置电路图2中,偏置电路由电流源(M1~M9㊁Q1㊁Q2和R1)和电流偏置(M10~M15)组成㊂正常工作时,电流源产生与电源电压无关的PTAT电流后,经过电流镜成比例复制给电流偏置部分,为M16管提供偏置电压㊂令M1~M5的宽长比相等,Q1和Q2流过的集电极电流相同,假设该电流为I PTAT,Q1和Q2发射极结面积比为8ʒ1,忽略它们的基极电流,于是有:ΔV BE=V T ln I PTAT8IS2æèçöø÷-V T lnI PTATI S2æèçöø÷=V T ln8(22)I PTAT=ΔV BER1=V T ln8R1(23)通过M1~M4㊁M10㊁M12和M15电流镜结构将IPTAT按比例精确复制,产生偏置电流和M16偏置电压㊂2.4㊀启动电路带隙基准电路中,电路存在 简并 偏置点,当电源上电时,所有的晶体管均传输零电流,于是它们㊃093㊃师洋洋,等:宽温度范围高精度基准电压源设计可以无限期地保持关断,因此需要设计启动电路㊂启动电路仅应在上电时提供启动功能,当基准核心电路建立稳定后保持关闭或低功耗状态,如图2所示,M 24~M 27和C 1构成启动电路㊂当电源刚开始上电的时候,并且提供有效的使能信号EN 1,EN 1和EN 2互为反向信号,启动电路开始工作㊂EN 1为低电平时,EN 2为高电平,M 25关闭,M 26的栅端没有电荷,栅电压为0,M 23管关闭,因此Q 3基极没有电流注入;随着电源电压逐渐上升,EN 1为高,EN 2为低,M 25管导通,M 26栅端电压被抬高,从而将M 23管的栅端电压拉低,M 23管导通,开始从电源汲取电流,并注入基准核心电路,使基准核心电路开始工作;同时,M 25管的漏电流逐渐增大并对电容C 1充电,M 26栅端的电压逐渐升高,当基准核心电路正常工作时,M 23的漏端电压升高,使M 27管导通㊂从而将M 26栅端电压拉低,M 26管关断,启动电路关闭㊂3 电路仿真验证基准电压源电路采用0.18μm BCD 工艺设计,并使用Spectre 工具进行仿真验证㊂仿真条件为:V DD =3.3V ,温度范围为-40~+150ħ㊂图3和图4分别是补偿前与补偿后的基准输出电压温度特性的仿真结果㊂从图中可以看出,没有进行高阶补偿的温度系数为17.52ˑ10-6/ħ,补偿后的温度系数为5.82ˑ10-6/ħ,补偿后温度系数降低了11.7ˑ10-6/ħ,精度提高了66.8%㊂图3㊀补偿前的基准输出电压温度特性Fig .3㊀Temperature characteristics of the reference outputvoltage before compensation图5是在V DD =3.3V ,不同工艺角下基准输出电压随温度变化的仿真结果㊂从图5可以看出,在TT工艺角下基准电压源有最佳温度系数值5.82ˑ10-6/ħ,在SS 工艺角下有最差温度系数值14.6ˑ10-6/ħ㊂图6是当V DD =3.3V ,温度为27ħ时,在TT ㊁SS ㊁FF 三种工艺角下,基准电压源的电源抑制比(PSRR )仿真结果㊂从图6可以看出,低频时,TT 工艺角下的PSRR 为79.4dB ,在10kHz 时电源抑制比也有58.9dB㊂图4㊀补偿后的基准输出电压温度特性Fig .4㊀Temperature characteristics of the reference outputvoltage aftercompensation图5㊀基准电压源在不同工艺角下的温度特性Fig .5㊀Simulation results for different processcorners图6㊀基准电压源的电源抑制比曲线Fig .6㊀PSRR curves of the voltage reference表1为本文与部分参考文献带隙基准源的性能比较㊂从表1可看出,本文设计的基准电压源的温度系数优于文献[7-8],低频下的PSRR 也优于文献[6-8],且本文设计的基准电压源具有可调节的多值输出电压㊂㊃193㊃电子元件与材料表1㊀本文与其他文献带隙基准源的性能参数对比Tab.1㊀Performance parameters comparison of bandgapreference source of this paper and other literatures参数文献[6]文献[7]文献[8]本文工艺(μm)0.180.180.250.18电源电压(V) 3.3 5.0 4.5 3.3温度范围(ħ)-40~+125-40~+150-40~+150-40~+150温度系数(10-6/ħ) 3.02 6.9410 5.82 PSRR(dB)5777.47079.4基准输出电压(V)1.241 1.229 1.214 1.978是否多值输出否否否是4㊀版图设计版图的匹配性决定了基准电压源精度的误差大小㊂由式(9)和式(10)可知,电阻比值的大小直接影响着基准输出电压的精度和温漂特性㊂因此本文设计将基准电压源中的所有电阻放置在同一区域,并采用叉指法以减少工艺刻蚀造成的误差㊂此外,对于电流源电路和带隙核心电路中使用的三极管部分的版图,本文设计由8个并联的NPN三极管分别构成Q1㊁Q4,分布在Q2和Q3周围,使Q1和Q2㊁Q3和Q4均形成对称性匹配㊂图7为基准电压源的版图㊂其中,运算放大器㊁偏置电路和电阻都分别进行了合理的布局㊂图7㊀基准电压源版图Fig.7㊀Layout of the reference voltage source5㊀结论本文在传统的Brokaw型带隙基准电压源的基础上,设计了一种宽温度范围高精度的基准电压源㊂利用PN结反向饱和电流随温度敏感变化的原理在高温段产生与基准电压温度系数呈相反趋势的补偿电流,对传统的一阶补偿的带隙基准电压源进行曲率补偿,提升了基准输出电压的精度和温漂特性,并采用电阻分压网络输出多个不同的零温度系数电压值㊂仿真结果表明,在3.3V电源电压下,-40~+150ħ温度范围内,TT工艺角下,基准电压源温度系数为5.82ˑ10-6/ħ;低频时PSRR为79.4dB,通过合理的版图设计,可以应用到数模混合芯片中㊂参考文献:[1]Kostanyan H T,Hayrapetyan A K,Petrosyan A S,et al.5V widesupply voltage bandgap reference for automotive applications[C]//39th International Conference on Electronics and Nanotechnology (ELNANO).NY,USA:IEEE,2019:229-232.[2]Abbasi M U,Raikos G,Saraswat R,et al.A high PSRR ultra-lowpower1.2V curvature corrected bandgap reference for wearable EEG application[C]//13th International New Circuits and Systems Conference(NEWCAS).NY,USA:IEEE,2015:1-4. [3]Hu J L,Sun J,Bai Y B,et al.A novel1.03ppm/ħwide-temperature-range curvature-compensated bandgap voltage reference[C]//2nd International Conference on Circuits System and Simulation(ICCSS).NY,USA:IEEE,2018:22-26.[4]An J H,Wu C J,Xu D C.A wide temperature range4.6ppm/ħpiecewise curvature-compensated bandgap reference with no amplifiers[C]//International Conference on IC Design and Technology(ICICDT).NY,USA:IEEE,2019:1-4.[5]王永顺,崔玉旺,赵永瑞,等.宽温度范围高精度带隙基准电压源的设计[J].固体电子学研究与进展,2016,36(1):54-59. [6]张东亮,曾以成,陈星燕,等.曲率补偿低温漂带隙基准电压源设计[J].电子元件与材料,2015,34(11):85-88. [7]李树镇,冯全源.一种CMOS高阶曲率补偿的带隙基准源电路的设计[J].哈尔滨工业大学学报,2017,49(10):95-99. [8]张龙,冯全源,王丹.一种带曲率补偿的低功耗带隙基准源设计[J].电子元件与材料,2014,33(9):58-61.[9]Wang Y F,Sun J,Ye W X.A high-order temperature compensatedCMOS bandgap reference[C]//3rd International Conference on Cloud Computing and Internet of Things(CCIOT).NY,USA: IEEE,2018:325-328.[10]Zhu G Q,Yang Y T,Zhang Q D.A4.6-ppm/ħhigh-ordercurvature compensated bandgap reference for BMIC[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2019,66: 1492-1496.[11]杨宁,史仪凯,袁小庆,等.高精度㊁低功耗带隙基准源及其电流源设计[J].传感技术学报,2014,27(1):58-63.㊃293㊃。
带隙基准电压源设计解析
0 引言基准电压是集成电路设计中的一个重要部分,特别是在高精度电压比较器、数据采集系统以及A/D和 D/A转换器等中,基准电压随温度和电源电压波动而产生的变化将直接影响到整个系统的性能。
因此,在高精度的应用场合,拥有一个具有低温度系数、高电源电压抑制的基准电压是整个系统设计的前提。
传统带隙基准由于仅对晶体管基一射极电压进行一阶的温度补偿,忽略了曲率系数的影响,产生的基准电压和温度仍然有较大的相干性,所以输出电压温度特性一般在20 ppm/℃以上,无法满足高精度的需要。
基于以上的要求,在此设计一种适合高精度应用场合的基准电压源。
在传统带隙基准的基础上利用工作在亚阈值区MOS管电流的指数特性,提出一种新型二阶曲率补偿方法。
同时,为了尽可能减少电源电压波动对基准电压的影响,在设计中除了对带隙电路的镜相电流源采用cascode结构外还增加了高增益反馈回路。
在此,对电路原理进行了详细的阐述,并针对版图设计中应该的注意问题进行了说明,最后给出了后仿真结果。
l 电路设计1.1 传统带隙基准分析通常带隙基准电压是通过PTAT电压和CTAT电压相加来获得的。
由于双极型晶体管的基一射极电压Vbe呈负温度系数,而偏置在相同电流下不同面积的双极型晶体管的基一射极电压之差呈正温度系数,在两者温度系数相同的情况下将二者相加就得到一个与温度无关的基准电压。
传统带隙电路结构如图1所示,其中Q2的发射极面积为Q1和Q3的m倍,流过Q1~Q3的电流相等,运算放大器工作在反馈状态,以A,B两点为输入,驱动Q1和Q2的电流源,使A,B两点稳定在近似相等的电压上。
假设流过Q1的电流为J,有:由于式(5)中的第一项具有负温度系数,第二项具有正温度系数,通过调整m值使两项具有大小相同而方向相反的温度系数,从而得到一个与温度无关的电压。
理想情况下,输出电压与电源无关。
然而,标准工艺下晶体管基一射极电压Vbe随温度的变化并非是纯线性的,而且由于器件的非理想性,输出电压也会受到电源电压波动的影响。
基于Cadence的基准电压源设计与仿真
之 差来实现。由于耗尽型晶体管在电路中一般不用,所以这种方 法 在 大 多 数 CMOS电路中也是不用的。虽然这种方法实现的基准 十 分 稳 定 ,但 由 于 增 强 型 和 耗 尽 型 器 件 的 阈 值 电 压 的 灵 敏 度 ,从 而很难准确地确定基准的实际值。(3)用 一 个 PTAT (与绝对温度 成 比 例 )电路的正温度相关性抵消一个p n 结的负温度相关性。 这 种 方 法 是 双 极 性 和 双 CMOS技术来说现在最常用的方法。一般 地将这种方法实现的电压基准称为带隙基3; V qi
(5)
已知
管 (或基极一发射极结)的电压的差异来实现的。
输出电压公式为:
V^ = Vbe + K V t
(1)
V B E 的温度系数约为-2mV/oC,V T 的温度系数约为0. 085mV/
〇C。对 上 式 求 导 得 :
The Design and Simulation of reference Voltage Source based on Cadence
Qian Xiang
(School of electronics and technology, Wuxi Professional College of Science and Technology,Wuxi Jiangsu, 214028)
〇引言
基 准 电 压 源 是 模 拟 电 路 中 的 重 要 组 成 部 分 ,它要 求 与 电 源 和 温 度 的 关 系 尽 量 小 。在 集 成 电 路 中 实 现 电 压 基 准 基 本 采 用 以 下 三 种 方 法 :(1)利用稳压二极管在反偏时的击穿来实现。但是稳压 二极管的击穿电压一般大于目前电路中的电源,所以这种方法不 再 经常使用。(2 )利用增强型晶体管和耗尽型晶体管的阈值电压
高性能带隙基准电压源的设计
m a a e n h p h sa s l r tm p r t r o f c e t h c a e h h p m o e s b e Th a e ar e U n g me tc i a ma e e e au e c e i n i h m k st e c i r t l . e p p rc ris O t l i w a t e cr u ts u a e wi h M C0 5 m CM O S p o e s s i lt n r s lss o t a h ee e c o t g h i i i lt t t e CS c m h .u r c se .S mu a i e u t h w h tt e r f r n e v l e o a
“ a ua r 工具计算出在该温度时, C l l o” c t 带隙基准电压源有最小的温漂系数。 关键词:带隙基准电压源 ;P T A A;温漂系数 ;电源抑制比
中 图分 类 号: N42 T 0 文献标 识码 : A
Hi h-pe f r a e ba d g p o t g e e e e de i g _ ro m nc n a v la e r f r nc sgn _ 。
e
0 引言
基准 电压是集成电路设计中的一个重要部 分’
一种低功耗低温度系数基准电压源的设计
一种低功耗低温度系数基准电压源的设计低功耗低温度系数基准电压源的设计是指在一定温度范围内,能够提供稳定的电压输出并且功耗较低的电路设计。
这种电压源在很多电子系统中都有广泛应用,例如模拟电路精度校准、温度传感器和精密仪器等。
设计低功耗低温度系数基准电压源时,需要考虑多种因素:1.温度系数(TC):电压源的输出应该在一定范围内尽可能稳定,温度系数越小越好,以降低温度变化对输出的影响。
2.稳定性:电压源的输出应该具有高稳定性,能够在不同负载条件下保持输出电压恒定。
3.电源噪声:输出电压应该尽可能不受电源噪声的影响,以保证高精度的电压输出。
下面介绍一种常见的低功耗低温度系数基准电压源的设计:温度补偿电路。
温度补偿电路的基本原理是利用两个具有不同温度系数的二极管来抵消温度变化对电压输出的影响。
该电路主要有以下几个部分组成:1.稳流源:由电源提供稳定电流给二极管,保持电流恒定。
2.电压参考源:采用稳定的参考源,如精密电阻电压分压法,获取一个稳定的基准电压。
3.温度感应电阻:放置于二极管的外部环境,实时感应环境温度的变化,并通过差动放大器将其电压信息输出。
4.温度补偿电阻:根据温度感应电阻输出的电压变化来产生一个与环境温度变化正相关的电压,作为补偿电流,输入到稳流源。
5.输出端:输出电压通过一个运算放大器,使其增益为1,来保持其随温度变化的稳定性。
上述电路设计中,温度感应电阻和温度补偿电阻的选取是关键。
对于温度感应电阻,常用的有PTC热敏电阻和NTC热敏电阻,其具有不同的温度系数,可以根据具体需求选择相应的电阻。
温度补偿电阻的选择要根据温度感应电阻和温度系数之间的关系来确定。
一般情况下,温度感应电阻的温度系数应该与稳定电流源的温度系数相同,并且温度感应电阻的阻值要尽可能小,以提高系统的响应速度。
此外,在设计过程中还需要考虑输入电源电压的稳定性、放大器的放大系数、截止频率等。
对于功耗问题,可以通过选择低功耗的元件和合理的电压参考源来降低功耗。
电压基准源的设计与仿真
浅析电压基准源的设计与仿真[摘要]基准电压源广泛应用于电源调节器、a/d和d/a转换器、数据采集系统,以及各种测量设备中。
近年来,随着微电子技术的迅速发展,低压低功耗已成为当今电路设计的重要标准之一。
比如,在一些使用电池的系统中,要求电源电压在3 v以下。
因此,作为电源调节器、a/d和d/a转换器等电路核心功能模块之一的电压基准源,必然要求在低电源电压下工作。
[关键词]基准电压源 a/d 转换器基准电压源广泛应用于电源调节器、a/d和d/a转换器、数据采集系统,以及各种测量设备中。
近年来,随着微电子技术的迅速发展,低压低功耗已成为当今电路设计的重要标准之一。
比如,在一些使用电池的系统中,要求电源电压在3 v以下。
因此,作为电源调节器、a/d和d/a转换器等电路核心功能模块之一的电压基准源,必然要求在低电源电压下工作。
用于高速高精度adc的片内电压基准源不仅要满足adc精度和采样速率的要求,并应具有较低的温度系数和较高的电源抑制比,此外,随着低功耗和便携的要求,adc也在朝着低压方向发展,相应的基准源也要满足低电源电压的要求。
一、电压基准源影响的建模分析在pipelined adc系统中,基准源的主要作用是为子adc提供比较电平,同时为mdac提供残差电压。
差分基准电压源发生偏移会导致子adc比较电平和mdac残差电压发生变化。
而通过引入冗余位矫正技术可大大减小差分基准电压源所引起的比较电平变化对系统指标造成的影响,但是,mdac残差电压变化的影响却无法消除,系统的转移特性曲线仍将会发生变化,从而造成系统指标下降。
其中基准电压源的偏移主要来源于温度和电源电压的影响。
下面分析基准电压源温度漂移特性对dnl的影响。
一般情况下,实际相邻输出与理想相邻输出之间的偏差可以表示为:对于首级精度为3.5位的12位adc,在-40℃~85℃的温度范围内,对温度要求最严格的比较器一般要求基准电压源的最大温漂不超过(7/8)vdiff。
一种带隙基准电压源设计
aV
T
流、 电压 模 块 。 以 也 要 求 这 些 值 更 加 精 准 。 别 是 与 温 度 关 所 特
系 很 小 的 电 压 、 电流 基 准 在 许 多 电路 应 用 中 是 必 不 可 少 的 ,
=
盟T l 一 盟 a n
… I T。 aT
() 5
一
因 为 大 多 数 工 艺 参 数 是 随 着 温 度 变 化 的 . 中对 折 叠 插 值 型 文 AD C系 统 中 的 基 准 源 单 元 展 开 了 专 门 的 研 究 【 通 过 P p e 1 ] , si c
Ab t a t T ev l g ee e c s r vd d h g - r c s n v l g rte oh r u ci n l d l so f r n e cr u t y tm. s r c : h o t e r fr n ei o i e i h p e ii o t ef t e n t a a p o a o h f o mo u e fr e e c i i s se e c
仿 真 。 计 一 款 基 于 带 隙 电压 参 考 源 。 设
一种工作在亚阈值区的CMOS基准电压源设计
De s i g n o f CM OS p r o c e s s r e f e r e n c e v o l t a g e i n s u b t h r e s h o l d r e g i o n
Wa n g Y u a n f a , We i Q u a n ,F u X i n g h l l a
f o r Mi c r o - Na n o — El e c t r o n i c s a n d S o f t w a r e ,Gu i z h o u Un i v e r s i t y ,Gu i y a n g 5 5 0 0 2 5,C h i n a)
基 准 电 压 源 和 电 流 源 电 路 是 模 拟 和 混 合 信 号 集 成
电路 的基 本单 元模块 , 广泛 应用 在模 数转换 器( A DC ) 、 数 模转 换 器( DA C ) 、 L DO、 DC— D C、 P L L、 D R AM 存 储 器 、 闪 存
Ab s t r a c t : T h i s p a p e r p r e s e n t s a C MOS v o l t a g e r e f e r e n c e c i r c u i t o p e r a t i n g a t a l o w s u p p l y v o l t a g e .T h e r e f e r e n c e c i r c u i t i s a c o mb i n a t i o n o f n MOS t r a n s i s t o r s o p e r a t i n g i n s u b t h r e s h o l d r e g i o n a n d s e l f -c a s c o d e c o n f i g u r a t i o n t r a n s i s t o r s .I n o r d e r t o e n s u r e t h e s t a b i l i t y o f t h e r e f e r e n ( ’ e c u r r e n t ,t w o n e g a t i v e f e e d b a c k l o o p s a r e u s e d f o r t h e c u r r e n t g e n e r a t i n g c i r c u i t .T h e c i r c u i t s a r e d e s i g n e d a l l ( [s i mu l a t e d i n a s t a n d a r d 0. 5 I , z m C MOS p r o c e s s b y u s i பைடு நூலகம் g s p e c t r e i n C a d e n c e .T h e o u t p u t v o l t a g e i s 1 . 5 2 V a t 2 7 o C a n d t h e
一种带隙基准电路电压源设计
一种带隙基准电路电压源设计摘要:针对传统带隙基准源仅采用一阶温度补偿技术导致温度系数较差的问题就需要采用高阶曲率补偿电路。
曲率补偿的方法是通过在基准源输出电压上叠加一个温度的指数函数,从而实现高阶补偿的目的。
电路基于tsmc0.18um工艺,Candence行仿真。
测试结果表明,温度由-40℃变化到125℃时,使用高阶温度补偿后带隙基准电压的温度漂移系数为6.60ppm/℃电源抑制比62.81dB。
关键词:带隙基准电路、曲率补偿引言基准源是模拟电路或者数模混合信号集成电路的重要组成部分,基准源的建立要求是与电源、工艺和温度无关的电压源或者电流源,基准源在整个电路或者系统中通过对基准电压比来处理输入信号,此时基准的性能会直接影响电路或者系统的性能。
所以基准源应该具有的抗干扰能力,此时就要降低基准源的温度系数,同时保证有较大的抑制比。
一般的带隙基准电路只采用一阶温度补偿的策略来实现基准源的设计,但是要降低温度系数,就要采用高阶温度补偿策略。
把一阶线性电流引人三极管的集电极,利用三级管基极-发射极电压的叠加得到产生一个具有高阶温度系数补偿电流,然后将高阶温度系数补偿电流产生的电压与一阶温度补偿电流产生的电压叠加实现多阶温度补偿,此外可以调整电阻的阻值来控制正带隙电压的温度特性,利用电路中的运放与负反馈来提高电路的电源电压抑制比。
1.电路设计已知带隙基准是由正温度系数电压(PTAT)与负温度系数电压(CTAT)按照一定比例组合产生与温度无关的基准电压(Vref)。
传统基准源设计由pnp三极管Q1与Q2的VBE之差产生了PTAT电压,再通过R1将PTAT电压转化为电流输出,然后利用运放出入端V+、V-相同输出电压为0V,运放将R1产生的PTAT电流通过Q5、Q6的电流镜拷贝输出,R2作为负载和Q3一起将PTAT电流转化为电压输出,电路所有的三极管都为二极管连接方式。
1-1传统带隙基准源1.1研究方案带隙基准电压源的基本原理就是用具有正温度系数的PTAT电压与具有负温度系数的VBE 电压相叠加,从而形成低温度系数的输出电压。
高性能带隙基准电压源的研究与设计共3篇
高性能带隙基准电压源的研究与设计共3篇高性能带隙基准电压源的研究与设计1随着电子技术的不断发展,高性能带隙基准电压源的需求也越来越高,它在微电子领域和精密测量领域起到了举足轻重的作用。
因此,研究和设计高性能带隙基准电压源成为了当前热门的研究方向。
带隙基准电压的产生依靠于半导体的特性,其原理是利用半导体能带隙在两个不同的浓度的 pn 结中产生的不同的内建电压,将其采样并放大得到一个固定值的电压。
而带隙基准电压源作为一种重要的基础电路,可用于各种高精度的测量和仪器设备,例如温度计、电阻计、信号发生器等。
在高性能带隙基准电压源的研究中,首先需要考虑的是选择合适的半导体材料和器件。
当前,广泛应用的基准电压源大多采用硅和锗作为半导体材料,其次是氮化物和碳化物半导体。
而器件方面,常见的有温度补偿电阻、放大器、限流器等。
其次,在电路设计中,需要考虑到稳定性、精度和温度漂移等因素。
为了达到高可靠性和高精度的电路设计,通常采用多级放大、温度补偿和特殊的电路结构等技术手段。
例如,采用超微型技术可以有效提高器件的可靠性和精度,而微电子加工技术则可以制作出高度集成化的基准电压源,提高整个系统的稳定性和精度。
此外,高性能带隙基准电压源的应用范围广泛,除了在离线检测和测量设备中起到的作用,也广泛应用于无线通信和医疗设备中。
在医疗领域,基准电压源作为精密测量的基础,能够有效提高诊断和治疗的准确性和安全性。
综上所述,高性能带隙基准电压源的研究与设计是一项重要的课题,其应用领域广泛,发展前景广阔。
在未来的研究中,需要更加注重器件制造技术、电路设计和应用场景等方面的综合发展,为各种高精度仪器和设备的发展提供更加可靠和精确的基础支持。
高性能带隙基准电压源的研究与设计2随着微电子技术的发展,在电子系统中,高性能带隙基准电压源已经成为不可或缺的一部分。
它被广泛应用于模拟/数字转换器、电压控制振荡器、敏感分析仪器等高精度电路中。
高性能带隙基准电压源的设计涉及多个方面,例如带隙参考源、增益调节电路、降噪电路等。
高性能带隙基准电压源的研究与设计
The first voltage reference without an error amplifier based on 0.4μm BCD process is applied to an active power factor correction controller chip. Due to the high supply voltage of the chip, the reference is required to operate over a voltage range of 9.7V to 20V and achieves a perfect PSRR performance. Simulations show that, a temperature coefficient of 10.8ppm/℃ from -40℃ to 125℃, a PSRR up to -108dB within 1KHz and a line regulation of 2.52μV/V can be achieved.
Keywords: Bandgap Reference Temperature Coefficient PSRR Temperature Compensation
西安电子科技大学
学位论文独创性(或创新性)声明
秉承学校严谨的学风和优良的科学道德,本人声明所呈交的论文是我个人在 导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标 注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成 果;也不包含为获得西安电子科技大学或其它教育机构的学位或证书而使用过的 材料。与我一同工作的同志对本研究所做的任何贡献均已在论文中做了明确的说 明并表示了谢意。
基准电压源的设计与选用(一)
基准电压是许多控制或应用电路所必需的,而且电路的控制精度或性能指标在很大程度上取决于基准电压的好坏。
对基准电压的基本要求是:在电源电压和环境温度变化时其电压值应保持恒定不变。
通常我们选用稳压二极管作为基准电压源,这是最简单、也是最传统的方法,按照所基准电压是许多控制或应用电路所必需的,而且电路的控制精度或性能指标在很大程度上取决于基准电压的好坏。
对基准电压的基本要求是:在电源电压和环境温度变化时其电压值应保持恒定不变。
通常我们选用稳压二极管作为基准电压源,这是最简单、也是最传统的方法,按照所需电压值选一个对应型号的稳压管当然可以,但选得是否合适、是否最佳,却大有讲究。
最基本的电压基准源电路如图1(a)、稳压管的击穿特性如图1(b)所示。
由图1(b)可见,不同稳压值的击穿特性并不相同,4V以下稳压管的击穿特性非常“软”(动态电阻可高达100Ω以上),其端电压随通过电流的不同、变化很大;而6V以上的特性就非常“硬”、尤以8V左右的特性最硬(动态电阻约4~15Ω),击穿电压越高动态电阻也越大,例如30V稳压管的动态电阻约为50~100Ω。
环境温度变化时稳压管的击穿特性还会产生漂移。
6V以下的稳压管具有负温度系数、温度升高时稳压值减小。
击穿电压越低则负温度系数越大,例如3V 稳压管的温度系数约为-1.5mV/℃;6V以上为正温度系数、温度升高时稳压值增大,击穿电压越高的温度系数越大,例如30V稳压管的温度系数约为33mV/℃;而6V左右稳压管的温度系数最小、且在正负之间变化。
因而在允许情况下应尽可能选用击穿特性较硬、温度系数最小的6V稳压管。
这类稳压管的另一个缺点是同一型号管子其击穿电压的离散性很大,例如2CW1为7~8.5V、2CW5 为11.5~14V,要想挑出合适电压值的管子是非常困难的。
但如果对稳压值要求不高、电路又比较简单的场合,选用普通稳压管还是合适的。
如需要很低的基准电压,要求不高、而又不希望增加成本时,也可利用二极管的正向特性做为约0.7V的稳压管使用。
低压基准电压源电路的仿真分析毕业设计
低压基准电压源电路的仿真分析毕业设计摘要参考电压源电路是模拟集成电路及电气电子设备的基本组成单元。
一个应用广泛的基本电路。
我们所说的参考电压源,就是能够提供高稳定性的基准电源的电路,它们之间的参考电压和电源,工艺参数,温度的变化关系是非常小的。
然而,它的温度稳定性和抗噪声性能够影响到整个电路系统。
该系统的精度在很大程度上取决于内部或外部的基准精度。
如果没有一个满足要求的参考电路,它不就能正确和有效的实现系统设定的性能。
本文的目的是基于双极晶体管基准源的TL431可调稳压器集成电路的仿真与分析。
本文首先介绍了基准电压源的国内外发展现状以及趋势。
然后详细介绍基准电压源电路的基本结构以及基本的原理,并对几种不同的双极型基准电压源电路做以简单的介绍。
其次对电路仿真软件进行介绍,最后运用电路仿真软件specture对TL431串联集成稳压基准电路进行仿真并详细分析其结果。
仿真分析的类型主要有直流工作点分析,交流分析,傅里叶分析,噪声分析,噪声系数分析,失真分析,直流扫描分析,灵敏度分析,参数扫描分析,温度扫描分析等。
仿真分析结果显示,基准电压源电路具有较高的稳定性,电压源的直流输出电平比较稳定,而且这个直流电平对电源电压和温度不敏感。
关键词:基准电压源,TL431,仿真分析,Specture,温度系数AbstractThe reference voltage source is a basic module of the very wide range of applications in the design of analog integrated circuits. What we call the reference voltage source is able to power provide high stability of the baseline power to the circuit, this relationship between the picture reference and the power, process parameters and temperature is very small, however, its import temperature stability and resistance to noise performance of with the accuracy and performance of the entire circuit system. The accuracy of the system to a large extent depends on the begin is accuracy of the internal or external reference, there is no one to meet the requirements of the is reference circuit, it can not correct and effective system of pre-set performance. The purpose of this paper is based on bipolar transistors reference TL431 adjustable voltage regulator IC is simulation and analysis.At the beginning of this article, first introduced the development status and trends of the reference voltage source at home and abroad. And then details the basic structure of the reference voltage source circuit and the basic principle, and several different bipolar voltage reference circuit with a simple introduction. Second, the circuit simulation software mulisim .Finally, the circuit simulation software specture TL431 series integrated voltage regulator reference circuit simulation and detailed analysis of the results. Simulation analysis of the main types of DC operating point analysis, AC analysis, Fourier analysis, noise analysis, noise figure, distortion analysis, DC sweep analysis, sensitivity analysis, Parameter Sweep analysis, temperature scanning.Simulation and analysis of simulation results show that the voltage reference circuit has a high stability of the DC voltage source output level is relatively stable, and the DC level is not sensitive to the supply voltage and temperature.Keywords:reference voltage source ,the TL431 ,simulation ,Specture ,temperature coefficient目录1. 绪论 (4)1.1 国内外研究现状与发展趋势 (5)1.2 课题研究的目的意义 (6)1.3 本文的主要内容 (7)2. 基准电压源电路和偏置的电流源电路 (7)2.1基准电压源的结构 (7)2.1.1 直接采用电阻和管分压的基准电压源 (7)2.1.2有源器件与电阻串联所组成的基准电压源 (8)2.1.3双极型三管能隙基准源 (10)2.1.4 双极型二管能隙基准源 (12)2.2V的温度特性 (14)BE2.3 对温度不敏感的偏置 (14)2.4 对电源不敏感的偏置 (18)本章小结 (20)3. 高精度可调式精密稳压集成电路TL431的工作原理与运用 (21)3.1精密稳压器TL431的内部结构 (21)3.2 TL431的工作原理与参数 (22)3.2.1 TL431的具体工作原理 (22)3.2.2 TL431的特点和参数 (26)3.3 TL431的典型运用电路 (26)3.3.1 基准电压源电路 (26)3.3.2 恒流源电路 (27)3.3.3 电压比较器电路 (28)3.3.4电压监视器电路 (29)3.4 TL431应用所注意的事项 (30)本章小结 (30)4. 高精度可调式精密稳压电路TL431的仿真 (31)4.1 Candence以及Specture仿真器的介绍 (31)4.2 整体电路的仿真 (32)4.2.1 直流特性仿真 (32)4.2.2瞬态特性仿真 (34)4.2.3温度特性的仿真 (34)4.2.4 电源抑制比仿真 (35)4.2.5开环电压增益仿真 (36)4.2.6 应用电路的仿真 (37)本章小结 (38)结论 (39)致谢 (40)参考文献 (41)1. 绪 论基准电压源(Reference Voltage )是指在模拟电路、混合信号电路中用作电压基准的参考电压源,它具有很多的优点,典型的是相对较高的精度和稳定度。
LDO稳压器高精度电压基准源的分析与设计
LDO稳压器高精度电压基准源的分析与设计LDO稳压器是一种线性稳压器件,其主要功能是在输入电压变化的情况下稳定输出电压。
在很多应用中,需要使用高精度的电压基准源,以确保系统的稳定性和可靠性。
本文将对LDO稳压器高精度电压基准源的分析与设计进行详细讨论。
一、LDO稳压器的基本原理1.输入部分:输入电压经过低通滤波器(包括电容和电感等元件)减少高频噪声,并经过差分放大器的差模输入端。
差分放大器通过放大输入电压与参考电压之间的差值,并产生控制信号。
2.控制部分:控制信号经过放大后驱动功率晶体管的基极,由功率晶体管控制输出电压的大小。
3.输出部分:输出电压通过低通滤波器进一步去除噪声,并输出给负载。
二、高精度电压基准源的要求在很多应用中,需要使用高精度的电压基准源来提供稳定的参考电压。
高精度电压基准源的主要要求如下:1.电压稳定性:电压基准源必须具有高稳定性,即在输入电压变化的情况下,输出电压的变化极小。
2.温度稳定性:电压基准源应具有良好的温度特性,即在不同温度下,输出电压的变化较小。
3.噪声抑制:电压基准源应具有较好的噪声抑制能力,避免将噪声传导到输出端。
三、LDO稳压器高精度电压基准源的设计为了设计一个高精度的LDO稳压器电压基准源,需要考虑以下几个方面:1.参考电压源:选择合适的参考电压源是设计高精度电压基准源的关键。
通常使用基于温度补偿的电流源或电压源作为参考电压。
2.温度补偿:为了提高电压基准源的温度稳定性,可以采用温度补偿电路。
该电路可以根据温度的变化自动调整参考电压的大小。
3.噪声抑制:为了降低电压基准源的噪声水平,可以采用滤波电路和抑制电容等方法。
滤波电路可以减小输入电压的高频噪声,而抑制电容则可以降低输出电压的噪声。
4.反馈控制:为了保持输出电压的稳定,需要设计一个反馈控制电路。
该电路可以将输出电压与参考电压进行比较,并调整差分放大器的放大倍数,以实现稳定的输出电压。
在设计过程中,还需要考虑其他因素,如功耗、成本和尺寸等。
基于N型工艺的基准电压源设计
摘 要 :针 对 传 统 互 补 型 带 隙 基 准 电 压 源 在 只 有 N 型有 源 器件 工 艺 中 的局 限 性 , 用运 放 反 馈 的 闲 环 控 制 方 法 来 产 生 采
基 准 电 压 . 计 了一 种 可 以集 成 于只 有 N 型有 源 器件 和 无 源 元件 工 艺 中的 基 准 电 压 源 产 生 电 路 。 只存 在 N型 M0 设 为 S
L h n - i IZ o g q u
( h i F re i i itn n e T c n l yI s tt , h n s a4 0 1 C ia T eA r oc a o Mane a c e h oo t ue C a g h 10 4, hn ) Av t n g n i
Ab t a t sr c :A i d o e e ai g b n h r ot g ic i i e in d i tg a i gwi n y n tp ci e d v c n a sv k n f n rt e c mak v l e c r u t s d sg e e rt t o l — e a t e i e a d p s ie g n a n n h y v c mp n n s p o e s b sn p a ft e f e b c ls d l o o to t o o g n r t e c ma k v l g a e n o o e t r c s y u i g 0 - mp o d a k co e ・ p c nr l meh d t e e a e b n h r o t e b s d o h o o a t e t d t n lc mp e n r y e b n g p b n h r k v l g o r e i ny n t p c ie d v c e h o o y I p vd sa h r i o a o lme t y t p a d a e c ma o t e s u c n o l - e a t e ie tc n l g . t r i e a i a a y v o
带隙基准电压源电路设计
带隙基准电压源电路设计英文回答:Bandgap Voltage Reference Circuit Design.Bandgap voltage reference circuits are a critical component in many electronic systems, providing a stableand accurate voltage reference against which other circuits can be calibrated. They are particularly useful in applications where low power consumption, a wide operating temperature range, and high accuracy are required.The design of a bandgap voltage reference circuit typically involves the following steps:Choosing a suitable bandgap voltage: The bandgap voltage is the voltage difference between the base and emitter of a bipolar junction transistor (BJT) operating in the forward-active region. It is typically around 1.2 V at room temperature and has a positive temperature coefficient,meaning that it increases with increasing temperature.Designing a temperature-compensated circuit: The temperature dependence of the bandgap voltage can be compensated by using a combination of BJTs, resistors, and capacitors. The goal is to create a circuit that has a constant output voltage over a wide temperature range.Adding additional features: Depending on the specific application, additional features such as low-power operation, low noise, or voltage trimming may be required. These features can be implemented using additionalcircuitry or by carefully choosing the components used in the design.中文回答:带隙基准电压源电路设计。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= 5.269mV)等
音频或视频
10%绝对基准电压误差
= 声级的1dB误差
与分辨率相比较
基准电压源的1ppm误差相当于20位精度 15ppm相当于16位精度 244ppm相当于12位精度(1/4000)
绝对误差一般通过校准消除
因此重要的是基准电压变化
基准电压源和规格问题
广泛的基础设施和产品基础
模拟放大器将传感器输出转换为4-20mA信号 数据转换器通过4-20mA线路传输信号 HART编码算法现可提供更强的功能
典型4-20mA信号传输器件
AD693将低电平传感器输入转换为4-20mA输出,由环路电源驱动
;同时提供传感器驱动信号
典型4-20mA信号传输器件
无商用器件
跟踪基准电压源具有匹配的正负输出
负基准电压源可以利用运算放大器实现 完整的基准电压源封装内置跟踪功能,性能更好
负基准电压源设计
标准反相运算放大器电路
改进的电路不需要精密 电阻匹配
跟踪基准电压源
高性能跟踪基准电压源AD588利用精密调整电阻实现出色的匹配
跟踪基准电压源
使用四通道运算放大器的多路输出跟踪基准电压源设计 10V、7.5V、5V、2.5V – 其它电压可以设置 需要使用精密电阻
反相运算放大器电路对传感器很有用
电流流向虚拟地,因此传感器上无电压变化 通常比让电流流经电阻更快
用于电源电流检测的高端和低端
光电二极管等效电路
入射 光 光 电流 RSH(T) 100kW 100GW CJ
理想 二极管
注:温度每升高10°C,RSH减半
电流电压转换器(简图)
ISC = 30pA (0.001 fc) R = 1000MW
XFET基准电压源
与带隙基准电压源相似,但使用结型场效应管器件 采用3V电源时,设计输出低至2V
高级带隙/CMOS设计
允许对输出值和温度系数分别进行调整,精度更高
基准电压源比较
电流检测和电流源
电流是所有电现象的源泉
电流的流动使灯泡发光,使电机转动 某些传感器输出电流
移动系统设计可以采用快速唤醒/关断方法来将功耗降至最低
检查基准电压源的动态开启以确保精度
系统级校准
希望所有器件使用一个共同基准
共同基准的校准涉及整个系统 在单个基准上付出较多成本以获得更好的漂移和噪声性能 利用缓冲放大器将基准电平分布于整个系统 务必不要让放大器影响性能
全球领先的高性能信号处理解决方案供应商
设计基础
基准电压源 电流检测和电流源
主讲人:David Kress
议程
基准电压源
系统设计中的用途 基准电压源的类型 规格和用法 典型应用
电流源
应用 产生电流源和驱动的电路
电流检测
电机和电磁阀控制 光电二极管 远程检测 工业信号
外部调整元件不匹配
外部电阻与内部电阻的温度系数不同 时间漂移特性不确定
基准电压源调整
将调整范围减至最小以保持漂移性能
0.5%调整范围将其对基准电压性能的影响降至最小,但需要使用高品质
元件 用DigiTrim DAC电位计代替电阻调整器可降低成本、提高稳定性并提供 数字编程能力
AD421
16位DAC通过数字命令驱动环路电流
高级4-20mA信号传输器件
AD5755四通道16位DAC通过数字命令驱动环路电流,并且动态控制电源使用 – 实现新的HART连接
ADI中国地区技术支持热线:4006 100 006
ADI中国地区技术支持信箱:china.support@
传感器驱动器
电桥和电阻需要精确驱动来产生精确输出
数据转换器基准电压源
输入与基准电压源成比例,因此数字输出码与全“1”码成比例
设置跳变点
跳变点比较器的基准侧
基准电压源精度要求
绝对精度
仪表测量需要非常高的绝对精度 固定输出电平的传感器也需要,如热电偶(J型,100C
基准电压源与稳压器
将电源用作基准电压源是很诱人的想法
简化配线 成本较低
可能适合低端消费电子/8位系统 最大问题是噪声
较好的开关电源具有>10mV
p-p噪声 低噪声线性稳压器具有200μV p-p输出噪声 基准电压源具有<1μV至5μV p-p输出噪声
其次是瞬态效应
基准电压源的目标用途
提供给定电平的精确电压输出 所有其它规格都是导致输出与上述精确电压偏离的因素
主要规格有噪声和漂移(温漂和长期漂移)
无法补偿或限制 高噪声会限制最终分辨率
– 高频噪声可利用缓冲器滤除 – 低频噪声则难
以滤除 在关键应用中可以补偿温漂 迟滞误差会因为温度周期而偏移 长期漂移可能需要定期校准
基准电压误差分析和补偿
输出负载
基准电压源显示输出随负载变化而变化
- 通常没有像运算放大器那么好
的输出阻抗 动态负载一般需要缓冲 SAR型ADC在高频时会产生基准电压源无法跟踪的严重动态负载
输入电压变化
新型基准电压源是LDO(低压差)–
其输出非常接近输入 压差较低时,电源抑制性能一般会下降
传感器和ADC使用共同基准
如果基准电压偏移,相对精度和校准将保持不变 许多新型ADC利用内部基准电压驱动传感器 最大程度地减少器件数量
固定和可调基准电压源
固定基准电压源具有完全平衡的器件,温度和时间漂移性能良好
作为一个完整的器件进行测试和认证
可调基准电压源应用广泛
校准和补偿系统变化 匹配其它系统
通过4-20mA输出提供工业控制信号
4mA电源相当于零输出,20mA相当于满量程 随着时间推移已大为扩展,包括控制信号
经典带隙温度传感器
+VIN R R
"BROKAW CELL"
+ VBANDGAP = 1.205V
I2 @ I1
Q2 不适用 VN
Q1
A
VBE (Q1) VPTAT = 2 R1 R1 kT ln(N) R2 q
远程负载检测可提高精度
当负载离基准电压源有一定距离且阻抗较低时,压降会影响精度
远程负载检测可消除压降误差 也称为“开尔文连接”
传感器和转换器使用共同基准电压源驱动
使用共同基准电压源可使测量结果成比例,消除基准漂移问题 在低精度系统中,可以使用电源
必须是低噪声电源
内置基准电压源以驱动传感器的ADC更佳
电源上的瞬态负载可能产生100mV的瞬态电压,从而破坏数据转换测量
结果
基准电压源的结构
齐纳二极管或嵌入式齐纳基准电压源
– 与正向二极管串联使用,温度系数接近零 6.8V标称输出,在低压系统中不稳定
原始半导体基准电压源
带隙基准电压源
使用两个不同电流密度的正向二极管产生零温度系数输出 1.2V标称输出,非常适合低压系统
主要性能特点
顺从电压范围 - 它可以驱动的外部电压 输出阻抗 - 需要很高以保持电流恒定
电桥电路中使用的传感器电阻 涵盖非常宽的动态范围
低电阻传感器由电流源驱动更好
应变计 电子秤称重传感器 压力传感器 120W、350W、3500W 350W - 3500W 350W - 3500W
相对湿度
电阻温度测量器(RTD) 热敏电阻
100kW - 10MW
100W、1000W 100W - 10MW
由DAC驱动的电流源
具有20V顺从电压的简单吸电流设计 负载电流公式:
双极性电流源
Howland电路产生源电流和吸电流输出 负载电流公式:
更高功率电流源
电流用作输出信号
模拟转电子信号处理
传感器 (输入)
放大器
转换器
数字处理器
执行器 (输出)
放大器
转换器
电子信号处理中的基准电压源
传感器驱动 基准电压 输入
传感器 (输入)
放大器
转换器
数字处理器
接地基 准
基准电压 输入
转换器
执行器 (输出)
放大器
基准电压源的用途
与其它系统进行比较的标准
系统输入和输出的等效性
出阻抗等特性 任何放大器精度问题都会产生不利影响
设置高精度基准电平(CN0169)
负基准电压源和跟踪基准电压源
测试设备或特殊传感器驱动器偶尔需要负基准电压源
用于电平转换以适应ADC输入范围或创建虚拟地,比负电源更精确
– 没有足够的需求 使用反向运算放大器的简单设计需要精密电阻 更好的负基准电压源可以利用某些正基准电压源直接实现
电流比电压更难测量
直流电流只能通过电阻测量,电阻会耗用一些电压 交流电流可以利用互感器测量,但它仍会干扰电平
产生电流也需要一些技巧
一般用于驱动传感器 常用于测试仪器 允许通过一对导线传输信号和电源
电流检测技术
电流检测需要一个压降
让电流通过一个精密电阻 压降可能会降低被检测对象上的信号 如何降低或避免
_
UT = 30mV
+
灵敏度:1mV / pA
光电二极管放大器的设计选择
光电二极管放大器的设计结果
高端与低端电流检测
+
-
高端与低端电流检测
高压环境下的高端电流检测
四线电阻测量
小值电阻或远程检测需要这种技术
相连引脚上的压降会加到传感器 的信号上 需要精密电流源以获得最高精度
RTD是常见的高精度温度传感器,需要精密电阻测量