金属学论文
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Hefei University
论文题目:镍基超合金的合成方法及其新发展课程名称:金属学热处理
专业班级:15级粉体材料科学与工程(1)班
姓名:胡叶莲
学号:1503011007
镍基超合金的合成方法及其新发展
摘要:镍基合金是30年代后期开始研制的,英国于1941年首先生产出镍基合金Nimonic75(Ni-20Cr-0.4Ti);为了提高潜变强度又添加Al,研制出Nimonic 80(Ni-20Cr- 2.5Ti-1.3Al);而美国于40年代中期,俄罗斯于40年代后期,中国于50年代中期也先后开发出镍基合金。镍基合金的发展包括两个方面,即合金成分的改良和生产技术的革新。镍基合金一般以Ni含量超过30wt%之合金称之,常见产品之Ni含量都超过50wt%,由于具有超群的高温机械强度与耐蚀性质,与铁基和钴基合金合称为超合金(Superalloy),一般是应用在540℃以上的高温环境,并依其使用场合,选用不同合金设计,多用于特殊耐蚀环境、高温腐蚀环境、需具备高温机械强度之设备。常应用于航天、能源、石化工业或特殊电子/光电等领域。
关键词:性能应用新发展
正文:
一、镍基合金的性能
1、高温(瞬时)强度
镍基合金室温下就具有较高的拉伸强度(TS=1200-1600,YS=900-1300MPa),且具有较好的延展性。包含利用以离子与共价键结,在常温下具有高熔点、高强度之γ'或γ''等析出相,搭配滑移系统多而具延展性之沃斯田铁相基地,以复合材料之概念得到兼具强度塑性之优异机械性质。
2、潜变强度
潜变为材料在高温(T/Tm>0.5)恒荷载作用下,缓慢地産生塑性变形的现象,为材料合金由于具有最佳的抗高温潜变能力,而被广泛的使用在各种高温环境,作为承力件应用。
潜变变形可分为三个阶段,在初步潜变(Primary Creep)阶段,变形速率相对较大,但是随着应变的增加发生加工硬化而减慢。当变形速率达到某一个最小值并接近常数,此时称为第二阶段潜变,或稳态阶段潜变(Secondary or Steady-StateCreep),这是由于加工硬化和动态回复达
到平衡的结果,在工程材料设计上所要求之潜变应变率就是指这一阶段的应变率。在第三阶段(Tertiary Creep),由于颈缩现象,应变率随着应变增大而呈指数性的增长,最后达到破坏。
3、耐腐蚀性
镍基合金在强还原性腐蚀环境,复杂的混合酸环境,含有卤素离子的溶液中都具有很好的耐蚀性,镍基耐蚀合金可以Hastelloy合金为代表,Ni元素在晶体学上能容纳较多的合金,来增进抵抗腐蚀环境的能力;且Ni本身就具有一定的抗腐性,如对抗Cl离子的应力腐蚀与苛性碱腐蚀具有绝佳抵抗能力。而镍基合金中添加的钝化多种元素可与基材相形成固溶体,提升了材料的腐蚀电位及热力学稳定性。
二、镍基合金的生产技术
传统之镍基合金的生产流程为镍原料→镍合金铸锭(熔炼)→二次精炼→加工→成品→下游
镍基合金之成分组成以Ni-Cr-Fe为主,其它元素的添加如Cu、Si、Mn、Al、Ti、Nb、W、C等。一般从文献可了解这些元素对超合金材料的影响,但若要重组或添加新的合金成份,并了解其在微组织之交互作用,近来已有以材料性质模拟软件,可进行合金系统热力学与动力学的计算,协助提供高性价比之方向,可提高合金设计的效率。而合金设计的实现则须由熔炼技术来完成,镍基合金熔炼主要区分为一般品级的电炉 (Electric Arc Furnace,EAF)+电渣重熔精炼(Electro-Alag Remelting,EAR)及高品级的真空感应熔炼(Vacuum Induction Melting,VIM)+电渣重熔精炼产品。为了熔炼时获得更纯净化的合金钢液,减低气体含量与有害元素含量;同时由于部分合金中有易氧化元素如Al、Ti等存在,以非真空方式冶炼难以控制;更是为了获得更好的热塑性,镍基合金通常采用真空感应炉熔炼,甚至用真空感应熔炼加真空自耗炉或电渣炉重熔方式进行生产。
镍基合金在加工方面常采用锻造、轧制等方式型,对于热塑性差的合金甚至采用挤压开胚后轧制或用软钢(或不锈钢)包套直接挤压技术。一般变形的目的是为了破碎铸造组织,优化微观组织结构。镍基合金在高温时较高之变形阻抗与热
延性的不稳定,增加了镍基合金制程上的困难度。一般镍基合金强度高,冷、热加工不易,以C-276为例,高温变形阻抗约为不锈钢之2.4倍;且冷加工之高硬化率使得其强度可至不锈钢的2倍。而热加工时除需考虑高温变形阻抗外,还需考虑不同温度下热延性之不同变形阻或夹杂物出现之区域)的发生与否,而不纯区则会伤害合金之高温机械性质,
三、镍基合金的应用
1、镍基合金在激光熔覆再制造中的应用
激光熔覆技术是一种先进的表面工程技术,与其他常用的表面工程技术相比,具有涂层结合性能好、热影响区小、可控性高等独特优势,已成为了一种重要的再制造技术,并在矿山、冶金、化工、能源等领域关键零件的再制造中得到了成功的应用。镍基合金粉末因具有很好的耐磨性、耐蚀性、抗热疲劳性等特点,是在再制造工程中应用十分广泛的表面强化涂层材料。
激光熔覆能在普通金属基材上制备出高性能的合金表面,且不会影响基体性质,能节约贵重稀有金属材料,经济效益很高。其基本原理是在移动激光束作用下,将金属或陶瓷粉末与基体表面迅速熔化,依靠自激冷却形成稀释率极低、与基体材料呈冶金结合的高性能表面涂层,从而显著改善基体表面耐磨、耐蚀、耐热等特性。
2、镍基合金在碳钢与不锈钢焊接中的应用
过去通常采用309型焊接材料焊接碳钢和不锈钢异种钢接头,这种接头在长时间高温作用下,会造成碳的迁移,严重影响接头的力学性能。采用镍基合金焊接材料,减少了高温下碳的迁移,可防止增碳层、脱碳层及脆化过渡层的形成,保证长时间高温工作条件下接头的性能。采用文中工艺参数,利用镍基合金进行异种钢接头焊接,得到的焊接接头外观成型良好。对焊接接头、进行100%射线检测,没有发现气孔、未焊透及未熔合等焊接缺陷,焊接接头力学性能满足使用要求。
四、镍基合金的新发展
1、新型镍基合金在超临界多种离子共存环境下的腐蚀行为