磁电式传感器

合集下载

磁电式传感器

磁电式传感器

,a click to unlimited possibilities
01 单 击 添 加 目 录 项 标 题 02 磁 电 式 传 感 器 的 概 述 03 磁 电 式 传 感 器 的 结 构 与 特 点 04 磁 电 式 传 感 器 的 应 用 实 例 05 磁 电 式 传 感 器 的 优 缺 点 分 析 06 磁 电 式 传 感 器 的 发 展 趋 势 与 前 景 展 望
微型化:随着 微电子技术的 发展,磁电式 传感器将不断 缩小体积,提 高精度和灵敏
度。
智能化:通过 集成AI技术, 磁电式传感器 可以实现自适 应、自学习等 功能,提高测 量精度和效率。
多功能化:磁 电式传感器将 不断拓展应用 领域,实现多 种物理量的测
量和监测。
网络化:通过 物联网技术, 磁电式传感器 可以实现远程 监控和数据共 享,提高测量 效率和可靠性。
工业自动化领域:用于检测机 器的运行状态、位置、速度等
医疗领域:用于检测病人的生 理信号,如心电图、血压等
结构简单,工作可靠,寿命长
灵敏度高,测量范围大
添加标题
添加标题
输出阻抗低,负载能力强
添加标题
添加标题
测量精度高,稳定性好
磁饱和现象: 当磁电式传感 器受到过强的 磁场干扰时, 会导致磁饱和 现象,影响测
量精度
温度影响:磁 电式传感器的 磁阻效应受温 度影响较大, 温度变化可能 导致测量误差
机械振动:机 械振动可能影 响磁电式传感 器的测量结果, 导致测量误差
输出阻抗高: 磁电式传感器 的输出阻抗较 高,需要配用 适当放大电路 才能获得理想
的测量结果
提高灵敏度和精度 减小温度和机械应力的影响 增强抗干扰能力 降低成本并提高可靠性

磁电式传感器实训报告

磁电式传感器实训报告

一、实验目的1. 了解磁电式传感器的工作原理和结构特点;2. 掌握磁电式传感器的安装、调试和应用方法;3. 学会使用磁电式传感器进行测量和信号处理;4. 提高实际操作能力和工程应用能力。

二、实验原理磁电式传感器是一种能将非电量的变化转换为感应电动势的传感器,它利用电磁感应原理将被测量(如振动、位移、转速等)转换成电信号。

磁电式传感器主要由永久磁钢、感应线圈、电路等部分组成。

当被测物体运动时,磁钢与线圈产生相对运动,线圈中的磁通量发生变化,从而在线圈中产生感应电动势。

三、实验器材1. 磁电式传感器:型号为LM393;2. Arduino Uno控制板;3. USB数据线;4. 振动平台;5. 示波器;6. 直流稳压电源;7. 电桥;8. 霍尔传感器;9. 差动放大器;10. 电压表;11. 测微头。

四、实验步骤1. 磁电式传感器安装:将磁电式传感器安装在振动平台上,确保传感器与振动平台固定牢固。

2. 传感器调试:调整传感器与振动平台的相对位置,使传感器能够正常工作。

3. 磁电式传感器信号采集:使用Arduino Uno控制板采集磁电式传感器的信号。

4. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。

5. 霍尔传感器安装:将霍尔传感器安装在振动平台旁的支架上,确保传感器与振动平台固定牢固。

6. 霍尔传感器信号采集:使用Arduino Uno控制板采集霍尔传感器的信号。

7. 信号处理:将采集到的信号通过示波器进行观察和分析,分析信号的波形和频率。

8. 比较两种传感器特性:比较磁电式传感器和霍尔传感器的信号波形和频率,分析两种传感器的优缺点。

9. 实验结果分析:根据实验结果,分析磁电式传感器的测量精度、响应速度和抗干扰能力。

五、实验结果与分析1. 磁电式传感器信号波形和频率:通过示波器观察,磁电式传感器信号波形稳定,频率与振动频率一致。

2. 霍尔传感器信号波形和频率:通过示波器观察,霍尔传感器信号波形稳定,频率与振动频率一致。

磁电感应式传感器

磁电感应式传感器
dφ e = −N dt
结构中,变磁阻式传感器的线圈和磁铁都是静止不动的,利用 磁性材料制成一个齿轮,在运动中它不断地改变磁路的磁阻, 也就改变了贯穿线圈的磁通量 d Φ / dt ,因此在线圈中感应出电 动势。
下图为开磁路变磁通式:线圈、磁铁静止不动,测量齿轮 安装在被测旋转体上,随被测体一起转动。每转动一个齿,齿 的凹凸引起磁路磁阻变化一次,磁通也就变化一次,线圈中产 生感应电势,其变化频率等于被测转速与测量齿轮上齿数的乘 积。这种传感器结构简单,但输出信号较小,且因高速轴上加 装齿轮较危险而不宜测量高转速的场合。
e = − N 0 B0 lv
式中:B0——工作气隙磁感应强度; l—— l——每匝线圈平均长度; N——线圈在工作气隙磁场中的匝数; v——相对运动速度。
2、变磁阻式磁电传感器
当一个N匝线圈相对静止地处于随时间变化的磁场中时,设穿过 线圈的磁通为φ,则线圈内的感应电势e与磁通变化率dφ/dt有如下 关系:
0
y 01 (t )
d 2 y0 (t ) d [ y0 (t ) − y1 (t )] m +c + k[ y0 (t ) − y1 (t )] = 0 2 dt dt
代入 则
y 01 (t ) = y 0 (t ) − y1 (t )
d 2 y01 (t ) dy01 (t ) d 2 y1 (t ) m +c + ky01 (t ) = −m 2 dt dt dt 2
一、磁电感应式传感器工作原理
1.恒磁通式磁电传感器
根据电磁感应定律,当导体在稳恒均匀磁场中,沿垂直磁 场方向运动时,导体内产生的感应电势为
dφ e = −N dt
e = − NBlυ
e = − NBAω

磁电式传感器

磁电式传感器

位置检测
用于检测汽车各部件的位置,如节气门位置、油门踏板位置等,实现精确控制。
车速检测
通过测量汽车轮速或发动机转速,将机械旋转转换为电信号,用于车速表、里程计等。
安全性应用
在制动系统、安全气囊等安全相关系统中,磁电式传感器用于检测关键参数,确保系统可靠运行。
03
导航系统
在惯性导航系统中,磁电式传感器用于测量飞行器的加速度和角速度,提供导航信息。
宽测量范围
快速响应:由于磁电感应原理的特性,磁电式传感器具有快速响应的特点。
磁电式传感器的性能可能受到温度的影响,需要进行温度补偿以保证测量准确性。
在某些情况下,磁电式传感器的输出信号与被测物理量之间可能存在非线性关系,需要进行校准和修正。
非线性误差
受温度影响
04
CHAPTER
磁电式传感器在各个领域的应用实例
03
02
01
将位移、角度等物理量转换为周期性变化的电信号,通过计数和处理得到被测物理量的数值。
原理
分辨率高,测量精度高,可靠性好,适用于高速、高精度测量系统。
特点
用于高精度位置反馈系统,如伺服电机控制系统、自动化生产线等。
应用
03
CHAPTER
磁电式传感器工作原理与性能参数
磁电感应原理
磁电式传感器利用磁电感应原理,将被测物理量的变化转换为感应电动势或感应电流的变化。当被测物理量与磁场相互作用时,会在传感器内部产生感应电动势或感应电流,进而实现测量。
智能化
通过集成多种测量原理和功能模块,磁电式传感器将实现多参数、多量程的测量,满足复杂应用场景的需求。
多功能化
灵敏度与稳定性
在复杂电磁环境下,提高磁电式传感器的抗干扰能力是关键,需要研究先进的噪声抑制和信号提取技术。

磁电式传感器

磁电式传感器
➢如果是P型半导体,载流子是空穴,若空穴浓度为p,同理 可得UH=IB/ped。
➢因RH=ρμ(其中ρ为材料电阻率;μ为载流子迁移率, μ=v/E,即单位电场强度作用下载流子的平均速度),一 般电子迁移率大于空穴迁移率,因此霍尔元件多用N型半 导体材料。
➢霍尔元件越薄(即d越小),kH就越大,所以通常霍尔元 件都较薄。薄膜霍尔元件厚度只有1μm左右。
一般频响范围:10Hz~2kHz。
(二)变磁通式
又称为变磁阻磁电感应式传感器,常用来测量旋转物体的 角速度。结构原理如下图。
1、开磁路变磁通式
工作原理:线圈3和磁铁5静止不动,测量齿轮2(导磁材 料制成)安装在被测旋转体1上,随之一起转动,每转过一 个齿,它与软铁4之间构成的磁路磁阻变化一次,磁通也就 变化一次,线圈3中产生的感应电动势的变化频率等于测量 齿轮2上齿轮的齿数和转速的乘积。
(三)磁电感应式扭矩仪(变磁通式)
1、结构组成:
转子(包括线圈)固定在传感器轴上,定子(永久磁铁) 固定在传感器外壳上。转子、定子上都有一一对应的齿和 槽。
2、测量原理:
➢测量扭矩时,需用两个传感器,将它们的转轴(包括线圈 和转子)分别固定在被测轴的两端,它们的外壳固定不动。
➢安装时,一个传感器的定子齿与其转子齿相对,另一个传 感器的定子槽与其转子齿相对。
定义:通过磁电作用将被测量(如振动、位移、转 速)转换成电信号的一种传感器。
分类: 磁电感应式传感器; 霍尔式传感器; 磁栅式传感器。
第一节 磁电感应式传感器
▪ 磁电感应式传感器简称感应式传感器,也称为电动 式传感器。它是利用导体和磁场发生相对运动而在 导体两端输出感应电动势的。它是一种机-电能量 变换型传感器。
在这种结构中,也可以用齿轮代替椭圆形测量轮2,软铁 (极掌)4制成内齿轮形式,这时输出信号频率为f=nZ/60, 其中Z为测量齿轮的齿数。

(第6章)磁电式传感器

(第6章)磁电式传感器

6.2.2 霍尔元件的应用
1.霍尔式微量位移的测量 .
由霍尔效应可知,当控制电流恒定时, 由霍尔效应可知,当控制电流恒定时, 霍尔电压U与磁感应强度B成正比,若磁感 成正比, 的函数, 应强度B是位置x的函数,即 UH=kx 13) (6-13) 式中: ——位移传感器灵敏度 位移传感器灵敏度。 式中:k——位移传感器灵敏度。
测量转速时,传感器的转轴1 测量转速时,传感器的转轴1与被测物 体转轴相连接,因而带动转子2转动。 体转轴相连接,因而带动转子2转动。当转 的齿与定子5的齿相对时,气隙最小, 子2的齿与定子5的齿相对时,气隙最小, 磁路系统中的磁通最大。而磁与槽相对时, 磁路系统中的磁通最大。而磁与槽相对时, 气隙最大,磁通最小。因此当转子2转动时, 气隙最大,磁通最小。因此当转子2转动时, 磁通就周期性地变化,从而在线圈3 磁通就周期性地变化,从而在线圈3中感应 出近似正弦波的电压信号, 出近似正弦波的电压信号,其频率与转速 成正比例关系。 成正比例关系。
2.霍尔元件基本结构 .
霍尔元件的外形结构图,它由霍尔片、 霍尔元件的外形结构图,它由霍尔片、 根引线和壳体组成, 4根引线和壳体组成,激励电极通常用红色 而霍尔电极通常用绿色或黄色线表示。 线,而霍尔电极通常用绿色或黄色线表示。
图6-8阻 )
I v= nebd

IB EH = nebd
IB UH = ned
式中: 称之为霍尔常数, 式中:令RH=1/ne,称之为霍尔常数, 其大小取决于导体载流子密度, 其大小取决于导体载流子密度,则
RH IB = K H IB UH = d
(6-12) 12)
称为霍尔片的灵敏度。 式中: 式中:KH=RH/d称为霍尔片的灵敏度。

磁电式传感器

磁电式传感器

图7.2.4 霍尔元件的等效电路
7.2 霍尔式传感器
此时可根据A、B两点电位的高低,判断应在某 一桥臂上并联一定的电阻,使电桥达到平衡,从而 使不等位电势为零。几种补偿线路如图7.2.5所示。
RP
RP RP (a) (b) (c) R (d)

RP
图7.2.5 不等位电势补偿电路
7.2 霍尔式传感器
第7章 磁电式传感器
7.1 磁电感应式传感器 7.2 霍尔式传感器
7.1 磁电感应式传感器
磁电式传感器——通过电磁感应原理将被测量 (如振动、转速、扭矩)转换成电势信号。
利用导体和磁场发生相对运动而在导体两端输出 感应电势;属于机-电能量变换型传感器
优点: 不需要供电电源,电路简单, 性能稳定,输出阻抗小
此时电荷不再向两侧面积累,达到平衡状态。
7.2 霍尔式传感器
若金属导电板单位体积内电子数为n,电子定 向运动平均速度为v,则激励电流I=nevbd,即
I v nebd
代入上两式得
IB EH nebd IB UH ned
7.2 霍尔式传感器
式中令RH=1/ne,称之为霍尔系数(反映霍尔效 应强弱),其大小取决于导体载流子密度, 则
等 效 机 械 系 统 Vo为传感器外壳的运动速度,即被测物体运动速度; Vm为传感器惯性质量块的运动速度。
7.1 磁电感应式传感器
若V(t)为惯性质量块相对外壳的运动速度 运动方程
dV0 (t ) dV (t ) m cV (t ) K V (t )dt m dt dt
Av ( ) ( / n ) 2 1 ( / n ) 2 [ 2 ( / n ) 2 ]
7.1 磁电感应式传感器

磁电式传感器的原理及应用

磁电式传感器的原理及应用

磁电式传感器的原理及应用引言磁电式传感器是一种常见的传感器类型,广泛用于测量和检测磁场、电流、位移等物理量。

本文将介绍磁电式传感器的工作原理以及一些应用领域。

工作原理磁电式传感器是基于磁电效应工作的,磁电效应是指在外加磁场下材料产生的电磁感应效应。

磁电式传感器一般由磁电材料和传感器结构组成。

磁电材料是传感器的核心部分,它具有磁场敏感性,能够将外加磁场转化为电信号。

常见的磁电材料有磁电晶体、磁电陶瓷等。

传感器结构一般采用薄膜形式,具有高灵敏度和快速响应的特点。

具体来说,磁电式传感器的工作原理如下:1.当外加磁场作用于磁电材料时,磁电材料内部的晶格结构会发生改变。

2.这种晶格结构的改变会引起材料内部的电荷分布发生变化。

3.电荷分布的变化会产生一个电场,进而产生电压差。

4.通过测量电压差的大小,可以确定外加磁场的强度。

应用领域磁电式传感器在许多领域都有广泛的应用,下面列举了一些常见的应用领域:1. 磁场测量磁电式传感器可以用于测量磁场的强度和方向。

例如,在地磁测量中,磁电式传感器可以用来检测地磁场的变化,帮助我们研究地球的磁场分布和变化规律。

2. 电流测量由于电流在传感器周围会产生磁场,磁电式传感器可以用来测量电流的大小和方向。

这在电力系统中非常重要,可以用于电流监测和故障检测。

3. 位移测量磁电式传感器还可以用来测量物体的位移。

通过将磁电传感器与磁体结合使用,可以实现非接触式的位移测量。

这在自动化控制、机器人技术等领域有着广泛的应用。

4. 电子设备磁电式传感器可以用于电子设备中的位置检测、方向检测等功能。

例如,在手机中,磁电式传感器能够检测手机的方向,从而实现屏幕的自动旋转功能。

5. 医疗领域磁电式传感器在医疗领域也有着重要的应用。

例如,可以用于心脏磁场的监测和分析,帮助医生进行心脏病的诊断和治疗。

总结磁电式传感器是一种基于磁电效应工作的传感器,具有广泛的应用。

本文介绍了磁电式传感器的工作原理,以及在磁场测量、电流测量、位移测量、电子设备和医疗领域中的应用。

磁电式传感器课件

磁电式传感器课件

34
2. 工作原理
空穴
电子
磁场H = 0:
(a)
P
→ →→
i
←←←
N 电流
少量电子和空穴

复合区 H=0
I 区、r区复合
(b) P
i
H+
N 电流
正向磁场 H+ : 电子和空穴偏向 r 区, 电流因复合增大而减小
(c)
P
i
H-
N 电流
反向磁场 H- : 电子和空穴偏向 I 区, 电流因复合减少而增大
这种传感器工作磁场恒定,线圈和磁铁两者间 产生相对运动,切割磁场线而产生感应电势。
动圈式
动铁式
4
恒磁通式磁电传感器的结构原理图
e WBLvsin
e WBLvsin
e WBAsint
5
(二)变磁通式磁电式传感器(磁阻式)
线圈和磁铁部分都是静止的,与被测物连 接而运动的部分是用导磁材料制成的,在运动 中,它们改变磁路的磁阻,因而改变贯穿线圈 的磁通量,在线圈中产生感应电动势。
1 Vcc
霍尔元件 放大
稳压
整形 输出 3 VT
结构: 稳压器、霍尔片、 差分放大器,施 密特触发器和输
地 2 出级等部分组成。
24
1 Vcc
霍尔元件 放大
稳压
整形 输出 3 VT
工作原理:
有磁场:UH >开启阈值,
高电平,VT导通 开状态
磁场减弱:UH <断开阈值,
地 2 低电平,VT截止 关状态
45
谢谢!
46
2. 已知某霍尔元件尺寸为长L=10mm,宽 b=3.5mm,厚d=1mm。沿L方向通以电流 I=1.0mA,在垂直于L×b方向上加均匀磁场 B=0.3T,输出霍尔电势UH=6.55mV。求该霍尔 元件的灵敏度系数KH和载流子浓度n是多少?

磁电式传感器的工作原理

磁电式传感器的工作原理

一、引言磁电式传感器(magnetic-electric sensor)是一种常见的传感器类型,广泛应用于各个领域中,包括工业自动化、交通运输、机器人、医疗设备等。

磁电式传感器利用磁力与电磁感应的原理,将磁场的变化转化为电信号,从而实现对磁场强度、方向或位置的检测。

本文将详细解释磁电式传感器的工作原理,包括其基本原理、结构、工作方式以及应用领域。

二、磁电式传感器的原理1. 电磁感应原理磁电式传感器的工作原理基于电磁感应的原理。

根据法拉第电磁感应定律,当一个导体在磁力线穿过时,会在导体中产生电动势。

这种现象可以用以下公式表示:EMF = -dΦ/dt其中EMF表示电动势,Φ表示磁场通量,dt表示时间的微小变化。

根据该定律可知,当磁场强度或磁场方向发生变化时,会在导体中产生电动势。

2. 磁电效应原理磁电式传感器的核心部件是磁电材料,如铁电材料或磁电材料。

磁电材料具有磁电效应,即在外加磁场的作用下,会产生磁感应强度与电场强度之间的线性关系。

磁电效应可以通过以下公式表示:E = k * H其中E表示电场强度,k表示磁电系数,H表示磁场强度。

根据该公式可知,当磁场强度发生变化时,磁电材料会产生相应的电场强度变化。

3. 磁电式传感器的构成磁电式传感器通常由磁电材料、电极、封装以及相关电路组成。

磁电材料:磁电材料是磁电式传感器的核心部件,它通过磁电效应将磁场的变化转化为电场的变化。

常见的磁电材料包括铁电材料和磁电材料。

电极:电极用于连接磁电材料和外部电路,将磁电材料产生的电场信号引出。

封装:封装是保护磁电材料和电极的外壳,通常采用环氧树脂或金属外壳进行封装。

相关电路:相关电路包括放大电路、滤波电路和输出电路等,用于放大和处理磁电材料产生的电场信号,提供给外部电路使用。

4. 磁电式传感器的工作原理磁电式传感器的工作原理基于磁电效应和电磁感应的原理。

当存在磁场时,磁电材料会产生相应的电场变化。

根据电磁感应原理,当磁场的强度或方向发生变化时,会在磁电材料中产生电动势。

磁电式转速传感器的原理

磁电式转速传感器的原理

磁电式转速传感器的原理一、引言磁电式转速传感器是一种常用的测量设备,用于测量旋转物体的转速。

它通过感应磁场的变化来测量转速,具有精度高、可靠性好等优点。

本文将详细介绍磁电式转速传感器的原理和工作机制。

二、磁电式转速传感器的结构磁电式转速传感器通常由磁电式传感器和信号处理电路两部分组成。

2.1 磁电式传感器磁电式传感器由磁敏感元件和磁场产生元件组成。

磁敏感元件通常是由铁氧体或硅钢片制成的磁致伸缩材料,具有磁致伸缩效应。

磁场产生元件通常是由永磁体或电磁线圈组成,用于产生磁场。

2.2 信号处理电路信号处理电路主要用于放大、滤波和处理磁电式传感器输出的信号。

它通常由放大器、滤波器、比较器和计数器等组成。

三、磁电式转速传感器的原理磁电式转速传感器的原理基于磁致伸缩效应和霍尔效应。

3.1 磁致伸缩效应磁致伸缩效应是指在磁场作用下,磁敏感元件的尺寸会发生微小的变化。

当转子上的齿轮通过磁电式传感器时,磁敏感元件会受到磁场的影响,发生尺寸变化,从而产生电压信号。

3.2 霍尔效应霍尔效应是指当导体中有电流通过时,垂直于电流方向的磁场会在导体两侧产生电势差。

磁电式转速传感器中的磁敏感元件通常会产生一个垂直于磁场方向的电势差,该电势差与转速成正比。

四、磁电式转速传感器的工作原理磁电式转速传感器的工作原理如下:1.磁场产生元件产生一个恒定的磁场。

2.当转子上的齿轮通过磁电式传感器时,磁致伸缩效应使磁敏感元件的尺寸发生微小变化。

3.磁致伸缩效应引起磁敏感元件两侧产生电势差,即霍尔效应。

4.信号处理电路对电势差进行放大、滤波和处理。

5.最终输出一个与转速成正比的电压信号。

五、磁电式转速传感器的应用磁电式转速传感器广泛应用于各个领域,如汽车、航空航天、工业自动化等。

它可以用于测量发动机转速、风扇转速、电机转速等。

六、总结磁电式转速传感器是一种测量旋转物体转速的重要设备。

本文详细介绍了磁电式转速传感器的原理和工作机制,包括磁致伸缩效应和霍尔效应。

磁敏式传感器中的磁电式和霍尔式原理及应用

磁敏式传感器中的磁电式和霍尔式原理及应用

磁敏式传感器中的磁电式和霍尔式原理及应用磁敏式传感器在许多电子设备中发挥着关键作用,其中磁电式和霍尔式是两种常见的类型。

这两种传感器利用磁感应原理,将磁场强度转换为电信号,从而实现对各种物理量的测量。

本篇文章将详细介绍磁电式传感器和霍尔传感器的原理、应用以及注意事项。

一、磁电式传感器原理及应用磁电式传感器基于磁感应原理,即磁场的变化能够产生电压。

当磁场穿过金属片时,金属片会发生相应的电位差,即电磁感应。

这种传感器通常用于测量速度、长度、位移等物理量。

其工作原理如下:1.结构:磁电式传感器通常由永久磁铁和金属感应片组成。

金属感应片固定在壳体上,通过连接线连接到测量电路。

2.工作原理:当磁场穿过金属感应片时,会产生电动势,其大小与磁场强度成正比。

因此,通过测量电动势,可以确定磁场强度或相应的物理量。

3.应用:磁电式传感器广泛应用于流量计、测速仪、转速表等领域,用于测量流体的流量和速度。

此外,在汽车电子控制系统如ABS防抱死系统、TCS牵引力控制系统等中也发挥着重要作用。

二、霍尔传感器原理及应用霍尔传感器是基于霍尔效应制成的传感器。

当电流通过一个置于磁场中的半导体时,会在电子层面上产生电压,即霍尔电压。

这种传感器能够将磁场强度转换为电信号,从而实现对各种物理量的测量。

1.结构:霍尔传感器通常由半导体、固定磁场和连接线组成。

半导体通常被夹在两个导电片之间,形成一个霍尔电场。

2.工作原理:当电流通过霍尔传感器时,会在霍尔电场上产生电压,即霍尔输出。

霍尔输出的大小与磁场强度成正比,因此通过测量霍尔输出,可以确定磁场强度或相应的物理量。

3.应用:霍尔传感器在各种电子设备中广泛应用,如电流检测、位置测量、转速表、安全气囊控制等。

此外,霍尔传感器还被用于汽车电子控制系统如发动机控制、ABS防抱死系统等。

三、注意事项使用磁敏式传感器时,需要注意以下几点:1.磁场强度:确保磁敏元件工作在适当的磁场强度范围内,以免损坏传感器。

磁电式传感器(1)

磁电式传感器(1)
个高梯度磁场,磁场梯度可达1T/mm,灵敏度较高, 但其可测量的位移量特别小,一般 z 0.5mm。
2.转速测量
图(a)是把永磁体粘贴在旋转体上部,图(b)是把永磁体 粘贴在旋转体边缘。每个永磁体都形成一个小磁场,当旋转体转 动时,则霍尔电势发生突变。图(c)是其输出信号波形。永磁 体越多,分辨率越高,但最小脉冲周期不能小于计数周期。
霍尔片是一块矩形半导体单晶薄片(一般为4mm×2mm×0.1mm), 在它的长度方向两端面上焊有a、b两根引线,称为控制电流端 引线,通常用红色导线。(其焊接处称为控制电流极(或称激 励电极),要求焊接处接触电阻很小,并呈纯电阻,即欧姆接 触(无PN结特性)。
在薄片的另两侧端面的中间以点的形式对称地焊有c、d两根 霍尔输出引线,通常用绿色导线。(其焊接处称为霍尔电极, 要求欧姆接触,且电极宽度与基片长度之比要小于0.1,否则 影响输出。 )
将电子速度
v 代I入式(7-20),则霍尔电势为
newd
UH
IB ned
RH
IB d
K H IB
RH—霍尔系数。系数反映霍尔效应的强弱。 KH—霍尔器件的灵敏度。它表示霍尔器件在单位磁感应
强度和单位激励电流作用下霍尔电势的大小。
由此可见:霍尔器件的灵敏度,不仅与霍尔器件的材料有关, 还与尺寸有关。
的方法都可用来补偿不等位电势。
2、温度误差及补偿 霍尔元件与一般半导体元件一样,对温度的变化是很敏感的。
这是因为霍尔元件的电阻率、载流子迁移率、浓度等都是温度 的函数。因此,在工作温度变化时,它的一些特性参数,如内 阻、霍尔电势等都要发生相应的变化,从而使霍尔传感器产生 温度误差,必须采用适当电路进行补偿。
霍尔转速表的其他安装方法 霍尔元件

磁电式传感器

磁电式传感器

Hale Waihona Puke 电式传感器磁电式传感器的优点和局限性
磁电式传感器具有以下优点:结构简单、可 靠性高、寿命长、测量准确度高、抗干扰能 力强等。同时,磁电式传感器也存在一些局 限性,例如对温度和湿度的变化比较敏感, 容易受到外界磁场的影响,以及输出信号较 小需要放大处理等。因此,在实际应用中需 要根据具体需求选择合适的传感器类型和规 格
磁电式传感器
磁电式传感器的未来发展趋势
随着科技的不断进步和应用需求的不断提高,磁电式传感器的发展趋势如下
高精度与高可靠性:为了满足各种高精度和高可靠性应用的需求,需要不断提 高磁电式传感器的测量准确度和稳定性。可以采用新型材料和技术手段优化传 感器的结构和工艺,提高其性能指标。同时加强传感器的可靠性设计,提高其 稳定性和使用寿命
2
由于其结构简单、测量准确、可靠 性高、寿命长等优点,磁电式传感 器在工业自动化、航空航天、能源、
交通等领域得到了广泛应用
磁电式传感器
磁电式传感器的原理
磁电式传感器的工作原理基于法 拉第电磁感应定律,当导体线圈 在磁场中作切割磁感线运动时, 线圈中就会产生感应电动势。感 应电动势的大小与导体线圈的匝 数、磁感应强度B、线圈面积和 切割速度成正比。因此,通过测 量感应电动势的大小,就可以确 定被测量的变化
由于磁电式传感器具有测量准确、可靠性高、寿命长等优点,因此广泛应用于以下领域
电力工业:用于测量发电机、变压器的磁场电流和位移,以及电缆的局部放电 等 航空航天:用于测量飞机的飞行速度、加速度、陀螺仪等 能源:用于风力发电机的转速和功率测量,以及水轮机的流量和压力测量等
磁电式传感器 1 交通:用于测量汽车和火车的速度、加速度、里程表等 2 机器人:用于机器人的定位、导航和控制等 3 环境监测:用于测量空气质量、水质等环境参数 4 自动化生产线:用于测量生产线上物体的位置、速度等参数,实现自动化控制 5 医疗器械:用于测量心脏、呼吸等生理参数 6 安全监控:用于监控摄像头、红外探测器等安全设备中的磁场变化,实现报警功能 7 科学实验:用于磁场、电流等物理量的测量和实验研究

磁电式传感器

磁电式传感器

磁电式传感器磁电式传感器利用电磁感应原理将输入运动速度变换成感应电势输出,是一种有源传感器。

它不需要辅助电源,就能把被测对象的机械能转换成易于测量的电信号。

并且,它具有双向转换特性,利用其逆转换效应可构成力(矩)发生器和电磁激振器等。

有时磁电式传感器也称作电动式或感应式传感器,它只适合进行动态测量。

由于它有较大的输出功率,故配用电路较简单;零位及性能稳定;工作频带一般为10~1000Hz。

磁电式传感器的构成磁电式传感器构成:磁路系统、线圈1、磁路系统由它产生恒定直流磁场。

为了减小传感器的体积,一般都采用永久磁铁;2、线圈由它运动切割磁力线产生感应电动势。

作为一个完整的磁电式传感器,除了磁路系统和线圈外,还有一些其它元件,如壳体、支承、阻尼器、接线装置等。

磁电式传感器的原理及特性(1)工作原理磁电式传感器的工作原理如图1 所示,它主要由旋转的触发轮(被等分的齿轮盘,上面有多齿或缺齿)和相对静止的感应线圈两部分组成。

当柴油机运行时,触发轮与传感器之间的间隙周期性变化,磁通量也会以同样的周期变化,从而在线圈中感应出近似正弦波的电压信号。

(2)输出特性由磁电式传感器工作原理可知,其产生的交流电压信号的频率与齿轮转速和齿数成正比。

在齿数确定的情况下,传感器线圈输出的电压频率正比于齿轮的转速,其关系为式中,n 为发动机转速,r/ s;z 为触发轮被等分的齿数;f 为磁电式传感器的输出信号频率,Hz 。

磁电式传感器的输出电压不仅与传感器和触发轮间的间隙( d )有关,而且与n 有关。

为了设计合理的磁电式传感器信号处理模块,本研究在不同的d 以及n 条件下,通过大量的试验测出传感器的输出电压特性。

图2 为不同的n 条件下,7 X 传感器输出峰值电压与d 的关系;图3 为在不同的d 条件下,7 X 传感器输出峰值电压与n 的关系。

48X 传感器输出峰值电压信号特征也如此。

从图中可看出,在同一d 条件下,传感器输出的峰值电压随n 升高而增大;在同一n 条件下,d 越小, 其输出峰值电压越高。

磁电感应式传感器

磁电感应式传感器

a)磁电式车速传感器
b) 测速电机
5.2 磁电感应式传感器旳类型
按磁场方式分类,磁电感应式传感器分为变磁通式 和恒定磁通式两大类,每类还有不同型式。
1.变磁通式
变磁通式传感器又称为变磁阻磁电感应式传感器或 变气隙磁电感应式传感器。此类传感器旳线圈和磁 铁固定,利用铁磁性物质制成齿轮(或凸轮)与被 测物体相连而运动。在运动中,齿轮(或凸轮)不 断变化磁路旳磁阻,从而变化线圈旳磁通,在线圈 中产生感应电动势。此类传感器在构造上有开磁路 和闭磁路两种,一般用来测量旋转物体旳角速度, 产生感应电动势旳频率作为输出。
I0
R
e Rf
B0lNv R Rf
B0:工作气隙磁感应强度;
I0 e~
N:在工作气隙磁场中旳线圈匝数;
R
Rf
Rf:测量电路输入电阻;
磁电感应式传感器测量电路
R:线圈等效电阻; v:线圈垂直于磁场方向运动旳速度。
(2)电流敏捷度
Ki
dI 0 dv
B0lN R Rf
(3)输出电压
U0
I0Rf
这种传感器构造简朴,但需在被测对象上加装齿轮, 使用不以便,且因高速轴上加装齿轮会带来不平衡而 不宜测高转速。
(2)闭磁路变磁通式传感器
如测图量,轮被2在测磁旋场转气体隙1带中动档速椭圆转形动,1.被测物体 使气隙平均长度周期性地变化,
2.测量轮 3.线圈
因而磁路磁阻也周期性地变化,
4.软铁
磁通一样周期性地变化,则在线
e N d dt
当线圈垂直于磁场方向运动以速度 v 切割磁力线时,
感应电动势为: e NBlv
式中,l:每匝线圈的平均长度;
B:线圈所在磁场旳磁感应强度(T)。

传感器与检测技术 第五章 磁电式传感器

传感器与检测技术  第五章 磁电式传感器

e BlN0
• •
第五章 磁电式传感器 5.1 磁电感应式传感器(电动式) 5.1.2 结构类型
动圈型 动铁型
第五章 磁电式传感器
第五章 磁电式传感器
实例:振动速度传感器
属于惯性式传感器。是利用磁 电感应原理把振动信号变换成电 信号。它主要由磁路系统、惯性 质量、弹簧阻尼等部分组成。 工作时,将传感器安装在机器 上,在机器振动时,在传感器工 作频率范围内,线圈与磁铁相对 运动、切割磁力线,在线圈内产 生感应电压,该电压值正比于振 动速度值。 与二次仪表相配接,即可显示 振动速度或位移量的大小。也可 以输送到其它二次仪表或交流电 压表进行测量。
微分电路输出
dU c (t ) dU i (t ) U 0 (t ) Ri RC RC dt dt
第五章 磁电式传感器
图5-10 无源积分电路
图5-11 有源积分电路
第五章 磁电式传感器
图5-14 无源微分电路
图5-15 基本有源微分电路
• •
5.1 磁电感应式传感器(电动式) 5.1.3 磁电感应式传感器的应用
(W是线圈匝数)
故随着转速下降输出电压幅值减 小,当转速低到一定程度时,电压 幅值会减小到无法检测出来的程度。 故这种传感器不适合于低速测量。 为提高低转速的测量效果,可采用 电涡流式转速传感器。
• •
5.1 磁电感应式传感器(电动式) 5.1.3 磁电感应式传感器的应用
第五章 磁电式传感器
• •
传感器与检测技术
第五章 磁电式传感器
磁电式传感器是通过磁电作用将被测量(如振动、位 移、转速等)转换成电信号的一种传感器。磁电感应 式传感器、霍尔式传感器都是磁电式传感器。 磁电感应式传感器是利用导体和磁场发生相对运 动产生感应电势的。 霍尔式传感器为载流半导体在磁场中有电磁效应 (霍尔效应)而输出电势的。 它们原理并不完全相同,因此各有各的特点和应用 范围。 5.1 磁电感应式传感器 5.2 霍尔式传感器 本章要点

磁电式传感器有那些用途

磁电式传感器有那些用途

磁电式传感器有那些用途磁电式传感器是一种通过检测磁场变化来测量物理量的传感器。

它利用磁电效应,将磁场变化转化为电信号。

现在我们来讨论一下磁电式传感器的各种应用。

1. 磁力测量:磁电式传感器可以用于测量磁力的大小和方向。

例如,它可以用于测量电机的转矩、电磁铁的吸力、磁铁的剩磁等。

在工业自动化中,磁电式传感器经常用于测量各种机械装置中的磁力。

2. 位置检测:磁电式传感器可以用于检测物体的位置。

例如,可以将磁电式传感器安装在机械装置中,通过检测磁场变化来确定物体的位置。

这在自动控制、机器人技术、车辆导航等领域有广泛的应用。

同时,磁电式传感器也可以用于检测开关的状态,例如门窗的开关状态。

3. 速度测量:磁电式传感器可以用于测量物体的速度。

例如,可以将磁电式传感器安装在机械装置上,通过检测磁场变化来确定物体的运动速度。

这在汽车、飞机、火车等交通工具中使用。

4. 流量控制:磁电式传感器可以用于测量液体或气体的流量。

通过检测流体带有的磁性物质的磁场变化,可以确定流体的流量。

这在工业过程控制、能源管理、环境监测等领域中有广泛的应用。

5. 磁场测量:磁电式传感器可以用于测量磁场的强度和方向。

例如,可以用于地球磁场测量、电子设备中磁场的干扰检测等。

同时,磁电式传感器也可以用于测量电流所产生的磁场。

6. 姿态测量:磁电式传感器可以用于测量物体的姿态。

通过使用多个磁电式传感器,可以确定物体在空间中的角度和方向。

这在航空航天、导航系统、无人机等领域中常用。

7. 磁存储:磁电式传感器可以用于存储信息。

例如,可以利用磁电式传感器的磁场变化特性来存储数字信息或模拟信号。

这在计算机和电子设备中广泛使用。

8. 医疗应用:磁电式传感器可以用于医疗领域。

例如,可以用于测量心脏的磁场变化、体内植入物的位置监测等。

同时,磁电式传感器还可以用于磁共振成像(MRI)等医疗设备中。

总之,磁电式传感器具有广泛的应用领域。

无论是工业自动化、交通运输、环境监测还是医疗健康,磁电式传感器都发挥着重要的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

e NBlv
接入积分电路测量位移
接入微分电路测量加速度
x vt
dv a dt
4、磁电式传感器应用举例
磁电式传感器 可以用来测量振动、位移、转速、扭
矩等信号,将被测信号转化为电压信号。由于它为非接触 测量,永不磨损,抗干扰能力强,可靠性高,寿命长,有 较大的输出功率且性能稳定,因此在工程中被广泛使用。
90 0
90 0
感应电动势与线圈相对磁铁运动线速度或角速度正比
1.工作原理及分类
在传感器中当结构参数确定后,B、l、N、S均为定值, 感应电动势e与线圈相对磁场的运动速度(v或ω )成正比, 所以这类传感器的基本形式是速度传感器,能直接测量线 速度或角速度。
1.工作原理及分类
速度传感器型号举例: CD-6型磁电式振动速度传感 器,安装在各种机械装置的 轴承盖上。
磁铁和线圈的相对运动产生切割磁力线从而产生感应电势
e Blv sin Blv e BS sin BS
式中: B——气隙磁感应强度(Wb/m2) l ——线圈导线总长度(m) S——线圈所包围的面积(m2) v——线圈和磁铁间相对运动的速度(m/s) ω——线圈和磁铁间相对旋转运动的角速(rad/s) α——运动方向与磁感应强度方向的夹角
1.工作原理及分类
磁电感应式传感器是以电磁感应原理为基础的。根据 法拉第电磁感应定律可知,N匝线圈在磁场中运动切割磁 力线或线圈所在磁场的磁通变化时,线圈中所产生的感应 电动势e的大小取决于穿过线圈的磁通Φ的变化率,即:
d e N dt
磁通变化率与磁场强度、磁路磁阻、线圈与磁场的相 对运动速度有关。
磁电式速度传感器
磁电式转速传感器
4、磁电式传感器应用举例
4.1扭矩测量 当转轴不受扭矩时,两线 圈输出信号相同,相位差为零。 当被测轴感受扭矩时,轴的两 端产生扭转角,因此两个传感 器输出的两个感应电动势将因 扭矩而有附加相位差 。,扭 0 转角 与感应电动势相位差的 关系为 z
0
式中:z为传感器定子、转子的 齿数。
1.工作原理及分类
1.4变磁通式传感器 变磁通式磁电感应传感器又称为变磁阻式或变气隙式磁 电传 感器, 常用来测量转速和扭矩 。 开磁路式:
1.工作原理及分类
测量齿轮安装在被测旋转体上,随被测体一起转动。每转 动一个齿, 齿的凹凸引起磁路磁阻变化一次,磁通也就变化一 次,线圈中产生感应电势。由频率计测得f,即可求得转速n。
磁电式传感器测量电路
传感器的电流灵敏度为:
Io BolW SI v R Rf
2、传感器基本特性
U0 I0 R f
传感器的电压灵敏度为:
NB0lvRf R Rf
SU
U 0 NB0lR f v R Rf
3、信号调理电路
微分电路和积分电路置于两级放大器之间,可测更多 物理量。 直接输出电动势测量速度
60 f n z
1.工作原理及分类
开磁路式传感器的安装:
1.工作原理及分类
结构简单,稳定。但输出信号小。 闭磁路式: 内外齿轮齿数相同。 当转轴连接 到被测转轴上时,外齿轮不动,内齿 轮随被测轴而转动,内、外齿轮的相 对转动使气隙磁阻产生周期性变化,
1-永久磁铁;3-感应线圈; 5-内齿轮;6-外齿轮; 7-被测转轴
4、磁电式传感器应用举例
齿形 圆盘 扭转 轴 u u2
u1
t
磁电 传感器 2 1 磁电 传感器 u1 u2 测量 仪表
4、磁电式传感器应用举例
4.2用于汽车ABS系统:
4、磁电式传感器应用举例
★齿轮装在轮毂上,传感器与车轿 壳连在一起。 ★齿轮转动时,齿圈上的齿和齿槽 交替通过传感器,从而使磁路磁阻 变化; ★传感器可输出0.05-1.5hz的正弦 交流电压。
1.工作原理及分类
1.2 分类:
恒磁通传感器 磁电传感器
动圈式
动磁式 开磁路式
变磁通传感器
闭磁路式
1.工作原理及分类
1.3恒磁通式传感器 由永久磁铁、线圈、弹簧和骨架组成,磁路系统产生
恒定的直流磁场,磁路中的工作气隙固定不变,气隙中的磁 通也恒定不变,结构常分为动圈式和动磁式。
1.工作原理及分类
磁铁
线圈
感谢您的聆听!

LOGO
磁电式传感器
LOGO
主 要 内 容
磁电式传感器原理及分类
传感器基本特性 信号调理电路
磁电式传感器应用举例
1.工作原理及分类
1.1 工作原理
磁电式传感器是通过磁电作用把被测物理量(如振动、 位移、速度、转速等)转换为感应电动势的一种传感器。被测信息Fra bibliotek电磁元件
信号调理电路
输出信息
优点:一种机-电能量变换型传感器,不需要供电电源, 电路简单,性能稳定,输出阻抗小,又具有一定的频率 响应范围(一般为10~1000Hz) 不需要辅助电 缺点:尺寸和重量都较大。 源,是一种无 源传感器。
从而引起磁路中磁通的变化,使线圈 内产生周期性变化的感应电动势。 显 然, 感应电势的频率与被测转速成正 比。
n 60 f z
2、传感器基本特性
Io 传 感 器 R E Rf
当测量电路接入磁电传感器电路时, 磁电传感器的输出电流Io为:
E BolWv Io R Rf R Rf
式中: Rf——测量电路输入电阻; R——线圈等效电阻。
相关文档
最新文档