利用轴对称进行设计试题与答案
七年级数学下册第五章生活中的轴对称5.4利用轴对称进行设计作业设计(新版)北师大版
七年级数学下册第五章生活中的轴对称5.4利用轴对称进行设计作业设计(新版)北师大版一.选择题(共5小题)1.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.(第1题图)A.1 B.2 C.3 D.42.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()(第2题图)A.3种B.4种C.5种D.6种3.我国每年都发行一套生肖邮票.下列生肖邮票中,动物的“脑袋”被设计成轴对称图案的是()A.B.C.D.4.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有()(第4题图)A.3种B.4种C.5种D.6种5.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分)是轴对称图形,其中涂法有()(第5题图)A.6种B.7种C.8种D.9种二.填空题(共6小题)6.在4×4的方格中有五个同样大小的正方形如图摆放,请你添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,这样的添法共有种.(第6题图)7.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有个.(第7题图)8.如图,阴影部分是由5个小正方形涂黑组成的一个直角图形,再将方格内空白的两个小正方形涂黑,得到新的图形(阴影部分)是轴对称图形,其中涂法有种.(第8题图)9.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有种.(第9题图)10.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC 成轴对称且也以格点为顶点的三角形,这样的三角形共有个.(第10题图)11.如图是4×4正方形网络,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.(第11题图)三.解答题(共4小题)12.(1)如图,阴影部分是由5个小正方形组成的一个图形,请用二种方法分别在如图方格内添涂黑二个小正方形,使它们成为轴对称图形.(2)共有种涂法.(第12题图)13.如图,方格纸上画有两条线段AB、CD,请再画1条线段EF,使图中的3条线段组成一个轴对称图形(找出符合条件的所有线段,并用E1F1、E2F2…表示).(第13题图)14.如图:在3×3网格中,已知线段AB、CD,以格点为端点画一条线段,使它与AB、CD 组成轴对称图形.(画出所有可能)(第14题图)15.我们规定,在平面直角坐标系中,将一个图形先关于y轴对称,再向下平移2个单位记为1次“R变换”.(1)画出△ABC经过1次“R变换”后的图形△A1B1C1;(2)若△ABC经过3次“R变换”后的图形为△A3B3C3,则顶点A3坐标为;(3)记点P(a,b)经过n次“R变换”后的点为P n,直接写出P n的坐标.(第15题图)参考答案一.1.D 2.C 3.D 4.C 5.D二.6.4 7.5 8.9 9.4 10.5 11.4三.12.解:(1)如答图.(2)共有3种涂法;(第12题答图)13.解:如答图,线段E1F1,线段E2F2,线段E3F3,线段E4F4,即为所求.(第13题答图)14.解:如答图,线段EF即为所求.(第14题答图)15.解:(1)如图,△A1B1C1即为所求;(第15题答图)(2)A3(﹣4,﹣1);(3)答案1:当n为偶数时,P n(a,b﹣2n),当n为奇数时,P n(﹣a,b﹣2n).。
利用轴对称设计图案--习题精选及答案(二)
利用轴对称设计图案习题精选(二) ★轴对称的性质1.下列图案中,对称轴的条数超过一条的是________。
2.下列说法中,正确说法的个数有()①对顶角是轴对称图形,其中一个角的平分线是它的一条对称轴;②等腰三角形至少有1条对称轴,至多有3条对称轴;③两个全等的三角形一定关于某直线对称;④两图形关于某直线对称,对称点一定在直线的两旁。
A.1B.2C.3D.43.画出图15-4-1中各图的对称轴.4.如图15-4-2,分别以直线L为对称轴,画出图形的另一半,先猜一猜,再试一试。
5.如图15-4-3,已知△ABC,直线MN,求作△A B C ''',使△A B C '''与△ABC 关于MN 对称,并指出它的对应点、对应线段和对应角。
★利用轴对称设计图案6.如图15-4-4,下列四个图形中,不是轴对称图形的是()7.正方形经过适当的剪拼,可得到不同的轴对称图案,如图15-4-5,将标号为A 、B 、C 、D 的正方形沿图中的虚线剪开后,得到标号为P 、Q 、M 、N 的四组图形,按照哪个正方形剪开后得到哪组图形的对应关系填空:A 与______对应;B 与______对应;C 与______对应;D 与______对应。
[学科综合]8.如图15-4-6,已知△ABC 和直线l ,求作△A B C ''',使△A B C '''与△ABC 关于直线l 轴对称,并指出其对称点.9.如图15-4-7,以虚线为对称轴画出图的另一半。
[创新思维](一)新型题10.观察图15-4-8中的10种图形,说出哪些图形可以放在一起形成轴对称(可以将图形上下放置或左右放置)。
(二)课本习题变式题11.(课本P57习题第2题变式题)在黑板上钉着20枚钉子(如图15-4-9),相邻的两个钉子间的距离(指上下左右)等于1cm,请从●号钉子开始到★号钉子为止绷上一跟19cm 长的线,使这根线通过所有钉子。
专题2.3 设计轴对称图案(备作业)八年级数学上册同步备课系列(苏科版)
第二章轴对称图形2.3 设计轴对称图案一、单选题(共8小题)1.长城是我国古代劳动人民创造的伟大奇迹,是中国悠久历史的见证,是中华民族的象征,被列为世界文化遗产.下列以长城为背景的标志设计中,不是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【知识点】利用轴对称设计图案2.下列有关“安全提示”的图案中,可以看作轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,本选项错误;B、不是轴对称图形,本选项错误;C、是轴对称图形,本选项正确;D、不是轴对称图形,本选项错误.故选:C.【知识点】利用轴对称设计图案3.如图,在2×2网格中放置了三枚棋子,在其他格点处再放置1枚棋子,使图形中的四枚棋子成为轴对称A.B.C.D.【解答】解:如图所示:使图形中的四枚棋子成为轴对称图形的概率是:=,故选:C.【知识点】利用轴对称设计图案、概率公式4.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④【解答】解:选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是:④.故选:D.【知识点】利用轴对称设计图案5.在由相同的小正方形组成的3×4的网格中,有3个小正方形已经涂黑,请你再涂黑一个小正方形,使涂黑的四个小正方形构成的图形为轴对称图形,则还需要涂黑的小正方形序号是()A.①或②B.③或⑥C.④或⑤D.③或⑨【解答】解:由图可知,当涂黑③或⑥时,涂黑的四个小正方形构成的图形为轴对称图形.故选:B.【知识点】利用轴对称设计图案6.如图的四个图形中,既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程A.1B.2C.3D.4【解答】解:图形①可以分别旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形②可以旋转90°得到,也可以经过轴对称,沿一条直线对折,能够完全重合;图形③可以旋转180°得到,不可以经过轴对称得到,故此选项错误;图形④可以旋转180°得到,也可以经过轴对称,沿一条直线对折,能够完全重合.故既可用旋转来分析整个图案的形成过程,又可用轴对称来分析整个图案的形成过程的图案有3个.故选:C.【知识点】利用轴对称设计图案、利用旋转设计图案7.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1B.2C.3D.4【解答】解:如图所示,共有4条线段.故选:D.【知识点】利用轴对称设计图案8.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.【解答】解:∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部分的图形仍然构成一个轴对称图形的概率是:.故选:B.【知识点】利用轴对称设计图案、概率公式二、填空题(共7小题)9.如图是3×3正方形网格,其中已有4个小方格涂成了黑色.移动其中一个黑色方块到其他无色位置,使得整个图形成为轴对称图形(包括黑色部分),你有种不同的移法.【解答】解:如图所示:有8种不同的移法,.故答案为;8.【知识点】利用轴对称设计图案10.如图,在4×4的正方形网格中有五个同样大小的正方形被涂黑,移动其中一个正方形到空白方格中,使其与其余四个被涂黑的正方形构成一个轴对称图形,共有种这样的移法.【解答】解:如图所示:故一共有13种画法.故答案是:13.【知识点】利用轴对称设计图案11.如图,在4×4的正方形网格中,每个小正方形的顶点称为格点,左上角阴影部分是一个以格点为顶点的正方形(简称格点正方形).若再作一个格点正方形,并涂上阴影,使这两个格点正方形无重叠面积,且组成的图形是轴对称图形,又是中心对称图形,则这个格点正方形的作法共有种.【解答】解:如图所示:这个格点正方形的作法共有4种.故答案为:4.【知识点】利用旋转设计图案、利用轴对称设计图案12.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字的格子内.【解答】解:如图所示,把阴影凃在图中标有数字3的格子内所组成的图形是轴对称图形,故答案为:3.【知识点】利用轴对称设计图案13.如图,在3×3正方形网格中,黑色部分的图形构成一个轴对称图形,若在其余网格中再涂黑一个小正方形,使黑色部分的图形仍然构成一个轴对称图形,则可涂黑的小正方形共有.【解答】解:如图所示:当在空白处1到4个数字位置涂黑时,使黑色部分的图形仍然构成一个轴对称图形.故答案为:4.【知识点】利用轴对称设计图案14.如图,是4×4正方形网格,其中已有4个小方格涂成了黑色,现在要从其余12个白色小方格中选出一个也涂成黑色,使整个黑色部分图形构成轴对称图形,这样的白色小方格有个.【解答】解:如图所示:1,2,3位置即为符合题意的答案.故答案为:3.【知识点】利用轴对称设计图案15.以图(1)(以O为圆心,半径为1的半圆作为“基本图形”,分别经历如下变换不能得到图(2)的有①只要向右平移1个单位;②先以直线AB为对称轴进行翻折,再向右平移1个单位;③先绕着点O旋转180°,再向右平移1个单位;④绕着OB的中点旋转180°即可.【解答】解:由图可知,图(1)先以直线AB为对称轴进行翻折,再向右平移1个单位,或先绕着点O旋转180°,再向右平移一个单位,或绕着OB的中点旋转180°即可得到图(2),只要向右平移1个单位不能得到图(2),符合题意.故答案为:①.【知识点】几何变换的类型、利用轴对称设计图案、利用旋转设计图案、利用平移设计图案三、解答题(共5小题)16.如图是一个4×4的正方形网格,每个小正方形的边长为1.请你在网格中以左上角的三角形为基本图形,通过平移、对称或旋转变换,设计一个精美图案,使其满足:①既是轴对称图形,又是以点O为对称中心的中心对称图形;②所作图案用阴影标识,且阴影部分的面积为4.【解答】解:如图所示;答案不唯一.【知识点】利用轴对称设计图案、利用旋转设计图案17.如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用三种方法分别在下图方格内添涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.【解答】解:如图所示:都是轴对称图形.【知识点】利用轴对称设计图案18.如图,每个小方格都是边长为1的正方形,在图中添加阴影,使阴影部分既是轴对称图形,又是中心对称图形,且阴影部分的面积是9,请在图①、②、③中各画出一幅图形,所画的三幅图形互不全等.【解答】解:如图所示:.【知识点】利用轴对称设计图案、利用旋转设计图案19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.【解答】解:如图所示:【知识点】利用轴对称设计图案20.如图是网格中由五个小正方形组成的图形,根据下列要求画图(涂上阴影)(1)图①中,添加一块小正方形,使之成为轴对称图形,且有两条对称轴;(2)图②中,添加一块小正方形,使之成为轴对称图形,且只有一条对称轴(画出一个即可)【解答】解:(1)如图①所示:即为所求;(2)如图②所示:即为所求.【知识点】利用轴对称设计图案。
初中数学鲁教版(五四制)七年级上册第二章 轴对称4 利用轴对称进行设计-章节测试习题
章节测试题1.【答题】过新年时,小刚家的窗户上贴着如图所示的美丽图案,它的对称轴有______条.【答案】8【分析】【解答】2.【答题】如图,把一个正方形纸片折叠三次后沿虚线剪断,则展开①后得到的是()A. B. C. D.【答案】C【分析】【解答】3.【题文】利用下图设计一个轴对称图案.【答案】略.【分析】【解答】4.【题文】如图,请你用三种方法分别在方格内填涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.【答案】略.【分析】【解答】5.【答题】如图,把三角形纸片ABC沿DE折叠,当点A落在四边形BCDE外部时,∠A与∠1,∠2之间的数量关系是()A. 2∠A=∠1+∠2B. 2∠A=∠1-∠2C. 3∠A=2∠1-∠2D. 3∠A=2(∠1-∠2)【答案】B【分析】【解答】6.【答题】把一张长方形纸片按如图①、图②所示的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A. B. C. D.【答案】C【分析】【解答】7.【答题】例1如图,在3×3正方形网格中,已有3个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得图案是轴对称图形的情况有()A. 6种B. 5种C. 4种D. 2种【答案】C【分析】此题考查轴对称图形问题,关键是根据题意涂黑一个小正方形.【解答】根据题意,涂黑每一个小正方形都会出现一种情况,共出现6种可能情况.其中,涂左上角和右下角的小正方形所得到的黑色图案是中心对称图形而不是轴对称图形,故一共有4种情形.8.【答题】例2 把一张长方形纸按如图所示方式折叠后,如果∠AOB′=20°,那么∠BOG的度数是______.【答案】80°【分析】根据轴对称的性质可得∠B′OG=∠BOG,再根据∠AOB′=20°可得出∠BOG的度数.本题考查轴对称的性质,在解答此类问题时要注意数形结合的应用.【解答】根据轴对称的性质得∠B′OG=∠BOG,由∠AOB′=20°可得∠B′OG+∠BOG=160°,∴.9.【答题】如图,把一张长方形纸片对折两次,然后沿图中虚线剪下一个角.为了得到一个正方形,剪切线与折痕所成的角的大小等于()A. 30°B. 45°C. 60°D. 90°【答案】B【分析】【解答】10.【答题】如图,小聪用一张面积为1的正方形纸片按如下方式操作:①将正方形纸片的四个角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;②在余下的纸片上依次重复以上操作.当完成第2019次操作时,余下纸片的面积为()A. 22019B.C.D.【答案】C【分析】【解答】11.【答题】如图是4×4正方形网格,其中已有3个小方格涂成黑色,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形,则有______种涂法.【答案】4【分析】【解答】12.【答题】将如图所示的正方形沿对角线对折,把对折后重合的两个小正方形内的单项式相乘,乘积是______(写出一个结论即可).【答案】-6ab2等(答案不唯一).【分析】【解答】13.【答题】2011年11月2日,即20111102,正好前后对称,因而被称为“完美对称日”.请你写出本世纪的一个“完美对称日”:______.【答案】20011002或20100102(答案不唯一).【分析】【解答】14.【题文】请你应用轴对称的知识画这三个图形,并涂上彩色.与同学比一比,看谁画得正确、漂亮.【答案】略.【分析】【解答】15.【题文】已知点阵内有一个图形和一条直线,试画出这个图形关于直线成轴对称的图形.【答案】略.【分析】【解答】16.【答题】一条线段的对称轴有______条,一个正三角形的对称轴有______条,一个圆的对称轴有______条.【答案】【分析】【解答】17.【题文】在半圆、长方形、等腰三角形、线段中选择两种以上,设计一个轴对称图形,并说明你的设计意图.【答案】【分析】【解答】18.【答题】小华将一张如图所示的矩形纸片沿对角线剪开,他利用所得的两个直角三角形进行图形变换,构成了下列四个图形,其中不是轴对称图形的是()A. B. C. D.【答案】A【分析】【解答】19.【答题】把一张长方形纸片按如图①、图②的方式从右向左连续对折两次后得到图③,再在图③中挖去一个如图所示的三角形小孔,则重新展开后得到的图形是()A. B.C.D.【答案】C【分析】【解答】20.【答题】如图所示,这个美丽的剪纸图案有______条对称轴.【答案】1【分析】【解答】。
文档:利用平移或轴对称在方格纸上设计简单的图案
利用平移或轴对称在方格纸上设计简单的图案
问题(1)导入请你在下面方格纸上继续画下去
过程讲解
1.读题,观图,理解题意
题中给出基本图形,要求连续平移基本图案得到新的图案。
2.找准基本图形
基本图形是由三角形组成的4角星。
3.观察基本图形平移的方向和距离
基本图形向右平移6格,如此反复;也可以向下平移6格,然后再依
次向右平移6格。
4.画图结果展示
问题(2)导入请你用轴对称或平移的方法,设计一个美丽的图案。
(教材
27页例题)
过程讲解
1.读题,理解题意
要求在方格纸上利用轴对称或平移设计美丽的图案,基本图形自行选择。
2.设计方法
(1)选好基本图形。
(2)确定设计图案的方式。
(3)利用轴对称设计,根据基本图形特点确定对称轴;利用平移设计,先确定平移的方向和格数。
3.设计图案展示
归纳总结
利用平移或轴对称设计图案,都要选准基本图形。
平移要确定好平移的格数和方向;轴对称要确定对称轴,连好关键点(或线段)。
误区警示慧眼识真知,错误巧规避!
【误区】判断:在设计图案时,一定要运用平移或轴对称的知识来设计。
(√)
错解分析并不是所有的图案都一定要运用平移或轴对称的知识来设计。
生活中有一些图案就想呈现出一种不和谐之美,这样的图案就不需要运用平移或轴对称的知识来设计。
错解改正×
温馨提示
平移和轴对称是设计图案的方式、方法,但是并不是所有的图案都要利用这些知识来设计。
初二数学上册:画轴对称图形经典例题(含答案)
初二数学上册:画轴对称图形经典例题(含答案)一、单选题1.下列剪纸图案中,能通过轴对称变换得到的有(C)2.下列说法错误的是(B)A.关于某直线对称的两个图形一定能完全重合B.全等的两个三角形一定关于某直线对称C.轴对称图形的对称轴至少有一条D.线段是轴对称图形3.如图是一个台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔.若一个球按图中所示的方向被击出(球可以经过多次反射),则该球最后将落入的球袋是(B)A.1号袋B.2号袋C.3号袋D.4号袋4.如图所示,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的办法有(C)A.3种B.4种C.5种D.6种解析:试题分析:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有以下几种:1处,3处,7处,6处,5处,选择的位置共有5处故选C.考点:利用轴对称设计图案点评:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.5.在如上图由5个小正方形组成的图形中,再补上一个小正方形,使它成为轴对称图形,你有几种不同的方法(C)A.2种B.3种C.4种D.5种6.小强将一张正方形纸片按如图所示对折两次,并在如图位置上剪去一个小正方形,然后把纸片展开,得到的图形应是(B)7.如图,直线l1与直线l2相交,∠α=60°,点P在∠α内(不在l1,l2上)。
小明用下面的方法作P的对称点:先以l1为对称轴作点P 关于l1的对称点P1,再以l2为对称轴作P1关于l2的对称点P2,然后再以l1为对称轴作P2关于l1的对称点P3,以l2为对称轴作P3关于l2的对称点P4,……,如此继续,得到一系列点P1,P2,P3,…,。
若与P重合,则n的最小值是(B)A.5B.6C.7D.8二、填空题8.轴对称变换不改图形的形状和大小解析:试题分析:根据轴对称图形的性质即可得到结果。
2022年北师七下《利用轴对称进行设计》同步练习(附答案)
北师大版数学七年级下册第五章生活中的轴对称利用轴对称进行设计同步检测题1.李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,图中各种作法中,符合要求的是( )2.如图,给出了一个轴对称图形的一半,其中虚线是这个图形的对称轴,请你猜测整个图形是( )A.三角形 B.长方形 C.五边形 D.六边形3. 过新年时,小华家的窗户上贴着如下图的美丽的剪纸图案,它的对称轴有( )A.0条 B.4条 C.8条 D.16条4.要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,图中的设计符合要求的有( )A.4个 B.3个 C.2个 D.1个5.如下图,在3×3的正方形网格中已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有( )A.3种 B.4种 C.5种 D.6种6.如图,在3×3方格图中,在其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,方法有( )A.1种 B.2种 C.3种 D.4种7. 如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有( )A.2个 B.3个 C.4个 D.5个8. 利用轴对称设计图案:对应点的连线与对称轴之间的关系为互相,对应点间的线段被对称轴,对称轴上任意一点和两个对应点之间的距离.9.求作与图形成轴对称的图形,先观察图形,并确定能代表图形的关键点,分别作出这些关键点关于对称轴的,根据图形连接这些对应点,即可得到与图形成轴对称的图形.10. 如图在2×2的正方形方格中,有一个以格点为顶点的△ABC,请你找出方格中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有个.11. 如图,在正方形方格中,阴影局部是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.12.如图,正三角形网格中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.13. 如图,将一个等腰三角形(底角大于60°)沿对称轴对折后,剪掉一个60°的角,展开后得到如图的形状,假设∠ABD=15°,那么∠A=.14. 有如的8张纸条,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,在网格中画出你拼出的图案(画出的两个图案不能全等).15. 明明在办手抄报的时候,他想用图形“○○、△△、=〞(两个圆、两个三角形、两条平行线)为构件,构思具有一定意义的图形,他在图中左边方框中已经设计好了一个,你还能构思出其他的图形吗?请你在图中的右框中画出一个与之不同的图形,并写出一两句贴切、诙谐的解说词.16. 有如下图的8张纸条,用每4张拼成一个正方形图案,拼成的正方形的每一行和每一列中,同色的小正方形仅为2个,且使每个正方形图案都是轴对称图形,画出你拼出的图案.(画出的两个图案不能全等)17. 正方形绿化场地拟种植两种不同颜色的花卉,要求种植的花卉能组成轴对称图形.下面是两种不同设计方案中的一局部,请把图1、图2补成轴对称图形,并画出一条对称轴(在你所设计的图案中用阴影局部和非阴影局部表示两种不同颜色的花卉).参考答案:1---7 CDCAC CC8. 垂直垂直平分相等9. 对称点10. 511. 312. 313. 30°14. 解:图1如:(答案不唯一) 图2如:(答案不唯一)15. 解:图略16. 解:图略17. 解:图略第四章三角形一、选择题1.以下长度的三条线段能组成三角形的是〔〕A. 5cm 2cm 3cmB. 5cm 2cm 2cmC. 5cm 2cm 4cmD. 5cm 12cm 6cm2.某同学把一块三角形的玻璃打碎成了3块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事方法是〔〕A. 带①去B. 带②去C. 带③去D. ①②③都带去3.不能判定两个三角形全等的条件是〔〕A. 三条边对应相等B. 两角及一边对应相等C. 两边及夹角对应相等D. 两边及一边的对角相等4.一个角的平分线的尺规作图的理论依据是〔〕A. SASB. SSSC. ASAD. AAS5.三角形两条边分别为3和7,那么第三边可以为〔〕A. 2B. 3C. 9D. 106.以下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定。
八年级数学上册《第十三章轴对称》练习题及答案
八年级数学上册《第十三章轴对称》练习题及答案学校:___________姓名:___________班级:___________一、单选题1.下列图形中,是轴对称图形的是()A.B.C.D.2.下列4个时刻中,是轴对称图形的有()A.3个B.2个C.1个D.0个3.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.下列图形均为表示医疗或救援的标识,其中既是轴对称图形又是中心对称图形的是()A.B.C.D.5.如图,△ABC 与A B C '''关于直线MN 对称,P 为MN 上任一点,下列结论中错误的是( )A .AA P '△是等腰三角形B .MN 垂直平分AA ',CC ' C .△ABC 与A B C '''面积相等D .直线AB 、A B ''的交点不一定在MN 上6.如图,在△ABC 纸片中,△ABC =90°,将其折叠,使得点C 与点A 重合,折痕为DE ,若AB =3cm ,AC =5cm ,则△ABE 的周长为( )A .4 cmB .6 cmC .7 cmD .8 cm7.如图,在平面直角坐标系中,△ABC 的顶点都在格点上,如果将△ABC 先沿x 轴翻折,再向右平移3个单位长度,得到△A ′B ′C ′,那么点B 的对应点B ′的坐标为( )A .(2,﹣3)B .(4,3)C .(﹣1,﹣3)D .(4,0)8.下列轴对称图形中,对称轴最多的是( )A .等腰三角形B .等边三角形C .正方形D .线段9.如图,ABC ∆中40A ∠=︒,E 是AC 边上的点,先将ABE ∆沿着BE 翻折,翻折后ABE ∆的AB 边交AC 于点D ,又将BCD ∆沿着BD 翻折,点C 恰好落在BE 上,此时82CDB ∠=︒,则原三角形的B 的度数为( )A .57︒B .60︒C .63︒D .70︒10.ABC ∆和A B C '''∆关于直线l 对称,若ABC ∆的周长为12cm ,则A B C '''∆的周长为( )A .24cmB .12cmC .6cmD .6cm11.如图,边长为a 的等边△ABC 中,BF 是AC 上中线且BF =b ,点D 在BF 上,连接AD ,在AD 的右侧作等边△ADE ,连接EF ,则△AEF 周长的最小值是( )A .12a 23+bB .12a +b C .a 12+b D .23a二、填空题12.线段是轴对称图形,它的一条对称轴是_______________,线段本身所在的直线也是它的一条对称轴. 13.如图,在平面直角坐标系中,等腰直角三角形△沿x 轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A 1(0,2)变换到点A 2(6,0),得到等腰直角三角形△;第二次滚动后点A 2变换到点A 3(6,0),得到等腰直角三角形△;第三次滚动后点A 3变换到点A 4(10),得到等腰直角三角形△;第四次滚动后点A 4变换到点A 5(0),得到等腰直角三角形△;依此规律…,则第2020个等腰直角三角形的面积是_____.14.轴对称图形的性质:(1)如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_____________. (2)类似地,轴对称图形的对称轴,是任何一对对应点所连线段的_______________.15.如图,将矩形ABCD沿AC折叠,使点B落在点B'处,B'C交AD于点E,若△1=25°,则△2的度数为_____.⨯的正方形网格中已有2个正方形涂黑,再选择一个正方形涂黑,使得3个涂黑的正方形16.如图,在34组成轴对称图形,选择的位置共有______处.三、解答题17.如图,在正方形ABCD中,E,F为边AB上的两个三等分点,点A关于DE的对称点为A',AA'的延长线交BC于点G.(1)求证:DE A F '∥;(2)求证:2A C A B '='.18.已知二次函数21312y x x =-+, (1)若把它的图象向右平移1个单位,向下平移3个单位,求所得图象的函数表达式.(2)若把它的图象绕它的顶点旋转180°,求所得图象的函数表达式.(3)若把它绕x 轴翻折,求所得图象的表达式.19.你设计的游戏一游戏规则:游戏背后的数学原理:游戏操作后同组学生的评价:20.数学活动课上,张老师组织同学们设计多姿多彩的几何图形, 下图都是由边长为1的小等边三角形构成的网格,每个网格图中有3个小等边三角形已涂上阴影,请同学们在余下的空白小等边三角形中选取一个涂上阴影,使得4个阴影小等边三角形组成一个轴对称图形或中心对称图形,请画出4种不同的设计图形.规定:凡通过旋转能重合的图形视为同一种图形)参考答案:1.C【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴对各选项一一进行分析即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、不是轴对称图形,故此选项不符合题意;C、是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项不符合题意;故选:C.【点睛】本题考查了轴对称图形的概念:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.解决轴对称图形的关键是寻找对称轴.2.B【分析】根据轴对称图形的概念分别对各个图形进行判断即可.【详解】解:第1个,不是轴对称图形,故本选项不合题意;第2个,是轴对称图形,故本选项符合题意;第3个,是轴对称图形,故本选项符合题意;第4个,不是轴对称图形,故本选项不合题意;故选:B.【点睛】本题考查轴对称图形,能根据轴对称的概念找出图形的对称轴是解决此题的关键.3.D【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【详解】解:A.不是中心对称图形,是轴对称图形,故此选项不合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.既是轴对称图形又是中心对称图形,故此选项符合题意;故选:D【点睛】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.4.B【分析】根据中心对称图形的定义(在平面内,把一个图形绕某点旋转180 ,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐项判断即可得.【详解】解:A、是轴对称图形,不是中心对称图形,则此项不符合题意;B、既是轴对称图形又是中心对称图形,则此项符合题意;C、是轴对称图形,不是中心对称图形,则此项不符合题意;D、既不是轴对称图形又不是中心对称图形,则此项不符合题意;故选:B.【点睛】本题考查了轴对称图形和中心对称图形,熟记定义是解题关键.5.D【分析】根据轴对称的性质即可解答.'''关于直线MN对称,P为MN上任意一点,【详解】解:由题意△ABC与A B C△对称轴上的任何一点到两个对应点之间的距离相等,'=,△PA PA△是等腰三角形,选项A正确,不符合题意;△AA P'△轴对称图形对应点所连的线段被对称轴垂直平分,△MN垂直平分AA',CC',选项B正确,不符合题意;△轴对称图形对应的角、线段都相等,△△ABC与A B C'''是全等三角形,面积也必然相等,选项C选项正确,不符合题意;△直线AB、A B''关于直线MN对称,因此交点一定在MN上.△选项D错误,符合题意.故选D.【点睛】本题考查轴对称的性质与运用,轴对称图形对应的角、线段都相等,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等.6.C【分析】先利用勾股定理求出BC,利用折叠得出AE=CE,然后△ABE的周长转化为AB+BC即可.【详解】解:△ABC纸片中,△△ABC=90°,AB=3cm,AC=5cm,△BC4=cm,△△DEC沿DE折叠得到△ADE,△AE=CE,△△ABE的周长=AB+BE+AE=AB+BE+CE=AB+BC=3+4=7cm.故选C.【点睛】本题考查勾股定理,折叠轴对称性质,三角形周长,掌握勾股定理,折叠轴对称性质,三角形周长是解题关键.7.A【分析】根据轴对称的性质和平移规律求得即可.【详解】解:由坐标系可得B(﹣1,3),将△ABC先沿x轴翻折得到B点对应点为(﹣1,﹣3),再向右平移3个单位长度,点B的对应点B'的坐标为(﹣1+3,﹣3),即(2,﹣3),故选:A.【点睛】此题考查了翻折变换的性质、坐标与图形的变化--对称和平移,解题的关键是掌握点的坐标的变化规律.8.C【分析】根据等腰三角形、等边三角形、正方形、线段的轴对称性质,依次解题.【详解】A、等腰三角形1条对称轴;B、等边三角形3条对称轴;C、正方形有4条对称轴;D、线段2条对称轴.故选:C.【点睛】本题考查轴对称图形的对称轴,是基础考点,难度较易,掌握相关知识是解题关键.9.C【分析】由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,依据△BDG是△BDF是外角,即可得到△DBA=△BDG﹣△A=82°﹣40°=42°,进而得到原三角形的△B为63°.【详解】解:如图,由折叠可得,△BDG=△BDC=82°,△ABE=△A'BE=△A'BG,△△BDG是△BDA是外角,△△DBA=△BDG﹣△A=82°﹣40°=42°,△△ABE=△DBE=21°,△△ABG=3×21°=63°,即原三角形的△B为63°,故选:C.【点睛】此题主要考查的是图形的折叠变换及三角形外角性质的应用,能够根据折叠的性质发现△FBE=△ABE=△ABG是解答此题的关键.10.B【分析】根据关于成轴对称的两个图形是全等形和全等三角形的性质填则可.【详解】△△ABC和△A′B′C′关于直线l对称,△△ABC△△A′B′C′,△△A′B′C′的周长为12,故填12.【点睛】本题考查轴对称的性质和全等三角形的性质,解题的关键是熟练掌握轴对称的性质和全等三角形的性质.11.B【分析】先证明点E在射线CE上运动,由AF为定值,所以当AE+E F最小时,△AEF周长的最小,作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的最小值为MF,根据等边三角形的判定和性质求出答案.【详解】解:△△ABC、△ADE都是等边三角形,△AB=AC,AD=AE,△BAC=△DAE=60°,△△BAD=△CAE,△△BAD△△CAE,△△ABD=△ACE,△AF=CF,△△ABD=△CBD=△ACE=30°,△点E在射线CE上运动(△ACE=30°),作点A关于直线CE的对称点M,连接FM交CE于E',此时AE+FE的值最小,此时AE+FE=MF,△CA=CM ,△ACM =60°,△△ACM 是等边三角形,△△ACM △△ACB ,△FM=FB=b ,△△AEF 周长的最小值是AF+AE+EF =AF+MF =12a +b ,故选:B .【点睛】此题考查了等边三角形的判定及性质,全等三角形的判定及性质,轴对称的性质,图形中的动点问题,正确掌握各知识点作轴对称图形解决问题是解题的关键.12.线段的垂直平分线【详解】分析:线段的对称轴为线段的中垂线.详解:线段是轴对称图形,它的一条对称轴是线段的垂直平分线,线段本身所在的直线也是它的一条对称轴.点睛:本题主要考查的是轴对称图形的对称轴,属于基础题型.这个题目的关键就是理解轴对称图形的性质.13.22020【分析】根据A 1(0,2)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,根据A 2(6,0)确定第1个等腰直角三角形(即等腰直角三角形△)的面积,…,同理,确定规律可得结论.【详解】△点A 1(0,2), △第1个等腰直角三角形的面积=1222⨯⨯=2, △A 2(6,0),△第2=△第2个等腰直角三角形的面积=12⨯=4=22,△A4(10,,△第3个等腰直角三角形的边长为10−6=4,△第3个等腰直角三角形的面积=1442⨯⨯=8=32,…则第2020个等腰直角三角形的面积是20202;故答案为:20202.【点睛】本题主要考查坐标与图形变化以及找规律,熟练掌握方法是关键.14.垂直平分线垂直平分线【解析】略15.50°【分析】根据折叠的性质可得△BCE的度数,再由矩形对边平行的性质即可求得△2的度数.【详解】由折叠的性质得:△ACE=△1=25°△△BCE=△1+△ACE=50°△四边形ABCD是矩形△AD△BC△△2=△BCE=50°故答案为:50°【点睛】本题考查了矩形的折叠,掌握矩形的性质及折叠的性质是关键.16.7【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【详解】解:选择一个正方形涂黑,使得3个涂黑的正方形组成轴对称图形,选择的位置有△下1;△下2;△中3;△中4;△上5;△上6;△上7.如图:选择的位置共有7处.故答案为:7.【点睛】掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.17.(1)见解析(2)见解析【分析】(1)设DE 与AG 的交点为O ,根据题意可得AE EF BF ==,AO A O '=,即可求证; (2)先证明ADE BAG ∆≅∆,可得AE BG =,DEA AGB ∠=∠,从而得到DEF A FB A GC ∠=∠='∠',再过点B 作BH AG ⊥,连接A D ',可得AO BH =,再由DE A F BH ∥∥,可得AO A O A H '==',从而得到45BA F ∠='︒,再根据四边形的性质可得135AA C ∠='︒,从而得到45CA G ∠='︒,可证得△A FB '∽△A GC ',从而得到A C CG A B BF='',再根据AE BG =,可得2GC BF =,即可求证. (1)证明:设DE 与AG 的交点为O ,E ,F 为边AB 上的两个三等分点,AE EF BF ∴==,AA DE '⊥,点A 关于DE 的对称点为A ',AO A O '∴=,//DE A F '∴;(2)解:AA DE '⊥,90AOE DAE ABG ∴∠=︒=∠=∠,90ADE DEA DEA EAO ∴∠+∠=︒=∠+∠,ADE EAO ∴∠=∠,在ADE ∆和BAG ∆中,90ADE EAOAD AB DAE ABG ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,()ADE BAG ASA ∴∆≅∆,AE BG ∴=,DEA AGB ∠=∠,A GC DEF '∴∠=∠,△DE A F '∥,DEF A FB A GC ∴∠=∠='∠',如图,过点B 作BH AG ⊥,连接A D ',ADE BAG ∆≅∆,DE AG ∴=,ΔΔADE BAG S S =, ∴1122DE AO AG BH ⨯⨯=⨯⨯,AO BH ∴=,BH AG ⊥,DE AG ⊥,A F AG '⊥,△DE A F BH ∥∥, ∴AO OA AHAE EF BF =''=,又AE EF BF ==,AO A O A H ='∴=',BH A H ∴=',45HBA BA H ∴∠=︒∠'=',45BA F ∴='∠︒,点A 关于DE 的对称点为A ',DA DA ∴=',DA DA DC '∴==,DAA DA A ∴∠='∠',DCA DA C ∠='∠',360ADC DAA DA A DA C DCA ∠+∠+∠+∠+∠=''︒'',236090AA C ∴∠=︒-'︒,135AA C ∴='∠︒,45CA G ∴='∠︒,CA G FA B ∴∠='∠',又A GC A FB ∠='∠',∴△A FB '∽△A GC ', ∴A C CG A B BF='', AE BG =,AB BC =,BE GC ∴=,2BE BF =,2GC BF ∴=, ∴2A C A B''=, 2A C A B ''∴=.【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,轴对称的性质,相似三角形的判定和性质等知识,求出45FA CA B G ∠'∠='=︒是解题的关键.18.(1)213422y x x =-+ (2)21382y x x =-+- (3)21312y x x =-+-【分析】(1)先将二次函数化为顶点式,然后根据平移规律即可得出答案.(2)将图象绕顶点旋转180︒,则顶点不变,开口向下,据此可直接得出答案.(3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,由此可得出答案. (1)2211731(3)222y x x x =-+=--,∴向右平移1个单位,向下平移3个单位得:2217113(13)3(4)2222y x x =----=--213422x x =-+.(2)2211731(3)222y x x x =-+=--, ∴二次函数顶点坐标为7(3,)2-,12a =, 将图象绕顶点旋转180︒,则顶点不变为7(3,)2-,开口向下12a =-, 217(3)22y x ∴=---=21382x x -+-. (3)将图象绕x 轴翻折,此时二次函数横坐标不变,纵坐标变为相反数,所以2211(31)3122y x x x x =--+=-+-.【点睛】本题考查二次函数的性质及函数平移翻折的规律,解题的关键是熟练掌握相关内容并能灵活运用.19.见解析【分析】先设计一个游戏规则,再利用整式的加减进行计算说明游戏背后的数学原理,最后得到同组学生的评价.【详解】解:游戏规则:组员把自己的年龄加上10,结果乘以10,再减去10,再减去自己的年龄,结果除以9,将自己计算的结果告诉组长,组长就知道你的实际年龄.游戏背后的数学原理:设自己的年龄为x ,根据题意可得:10(10)10109x x x +--=-, 这说明结果总比自己的年龄大小10, 所以组长只需要将计算结果加上10,就等于组员的年龄,游戏操作后同组学生的评价:这类游戏规则的设计使得计算的结果为常数或含有未知数的较为简单的代数式.【点睛】本题考查了列代数式及整式的加减,解决本题的关键得到相应的代数式,找到数学的联系.20.见解析【分析】根据轴对称图形的定义、中心对称图形的定义画出图形即可【详解】解:如下图所示:【点睛】本题考查利用轴对称设计图案,中心对称设计图案,解题的关键是理解题意,灵活运用所学知识解决问题.。
5.4 利用轴对称进行设计 北师大版数学七年级下册作业(含答案)
三十六 利用轴对称进行设计1.小芳画了一个正方形风筝图案,此图案以正方形的某条对角线所在直线为对称轴,则小芳画的图案可能是(C)2. (2021·郑州期末)如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字______的格子内.(C)A.1 B.2 C.3 D.43.已知∠AOB=45°,点P在∠AOB的内部.P′与P关于OA对称,P″与P关于OB对称,则O,P′,P″三点所构成的三角形是(C)A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形4.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有__4__个.5.四个单位正方形以边对边方式相连接而成,可以拼成如图的五种不同形状.用一片“L”形(图中第一个)分别于其余四个中的一片拼成轴对称图形,所有的可能共有__5__种.6. (易错警示题)在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有__13__种.7.如图,网格中每个小正方形的边长为1,点A,B,C在小正方形的顶点上.(1)在网格纸中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)再找一个格点D,使得以A,B,C,D为顶点的四边形是轴对称图形,并画出对称轴.【解析】见全解全析8.以给出的图形“○○,△△,===”(两个圆、两个三角形、两条平行线)为构件,设计一个构思独特且有意义的轴对称图形.举例:如图①是符合要求的一个图形,你还能构思出其他的图形吗?请在图②中画出与之不同的一个图形,并写出一两句贴切的解说词.解说词:两盏电灯.【解析】能;(答案不唯一)如图.解说词:两人相伴.。
北师大2013版利用轴对称进行设计
A
A'
B
做一做 观察下面的图案:
(1)它们是轴对称图形吗?如果是,找出 它们的对称轴。
(2)生活中这些图案可以代表什么含义? 与同伴进行交流。 (3)自己设计一个轴对称图形, 并说明你的设计意图。
1.如图,直线 是一个轴对称图 形的对称轴,画出这个轴对称图 形的另一半。
猜一猜,画一画
图中给出了一个图案的一半,其中 的虚线是这个图案的对称轴。 (1)你能猜出整个图案的形状吗? (2)你能画出这个图案的另一半吗?
已知对称轴 和一个点A , 要 画出点A关于对称轴的对应 点A' ,你能画吗?如何画?
(1)过点A作对称轴 的垂线,垂足为B;
(2)延长AB至A',使得BA'=AB.
加拿大
马尓代夫
பைடு நூலகம்
比利时
摩洛哥
苏丹
阿富汗
英国
尼日尔
谈一谈: 1.通过这节课你学到了哪些知识 点,能力方面有哪些提高?学到了哪些 数学思想方法? 2.有什么收获与不足? 3.你准备以后怎样学好数学这门
课?
请完成课后作业,并利用轴对
称设计一个自己喜欢的图案。
1.分别以虚线为对称轴画出下列各图 的另一半,并说明完成后的图案可能 代表什么含义。
(1)
(2)
2.利用一条线段、一个圆、 一个正三角形设计一个轴 对称图案,并说明你所要 表达的含义。
3.收集并欣赏生活中的轴对称 徽标(如商标),选择其中 的1-2个进行分析,并与同 伴交流。
1.画一个正方形,再任 意画一条直线,以这条 直线为对称轴,画出与 正方形成轴对称的图形。 先猜一猜,再画一画。
利用轴对称进行设计
1. 欣赏现实生活中的轴对称图形,体验在现实生活 中的广泛应用和丰富的文化价值。 2. 会利用轴对称设计美丽的图案.
图片欣赏 美丽的大自然
图片欣赏 美丽的大自然
图片欣赏
古今中外,有许多著名的建筑也是对称的,看一看这 些建筑的对称性,让我们来感受它们的奇妙和美丽。
图片欣赏
古今中外,有许多著名的建筑也是对称的,看一看这 些建筑的对称性,让我们来感受它们的奇妙和美丽。
4 利用轴对称进行设计
课前检测:
1. 如果一个图形沿一条直线折叠后,直线两 旁的部分能够互相__重_合_____,那么这个图 形叫做___轴_对__称__图_形_______,这条直线叫做 ___对__称_轴_______。 2. 轴对称的三个重要性质
对应点所连线段被对称轴垂直平分
对应线段相等
对应角相等
图片欣赏
古今中外,有许多著名的建筑也是对称的,看一看这 些建筑的对称性,让我们来感受它们的奇妙和美丽。
图片欣赏
古今中外,有许多著名的建筑也是对称的,看一看这 些建筑的对称性,让我们来感受它们的奇妙和美丽。
图片欣赏
图片欣赏
图片欣赏
轴对称变换艺术欣赏——服饰文化
奥运体育 法律公正 航海坚固
1、过点A作对称轴L的垂线A A´,使CA=C A´
2、过点A作对称轴L的垂线B B´,使DB=DB´
3、连接A´B´,线段A´B´就是关于直线 L 的对应线段
L
A´
A
B´
B
分别以虚线为对称轴画出下列各图的另一半, 并说明完成后的图形可能代表什么含义。
动手动脑,创新设计
示例:利用一条线段,一个圆,一个正三角形 设计一个轴对称图案。自主设计:给定两个圆两条线段两个三角形 ,展开联想,设计一幅轴对称的图案,并阐 述图案所表达的含义。
北师大版数学七年级下《利用轴对称设计图案》习题精选1
初中数学试卷
金戈铁骑整理制作
《利用轴对称设计图案》习题精选1
基础层次的解答题
1.作出下图关于直线的轴对称图形。
2.补全下列图形,使它成为轴对称图案。
3.请画出下列各图的对称轴,说说你是怎样画出来的,你可以用什么方法验证一下你找的对称轴是否正确。
4.如图,直线是一个轴对称图形的对称轴,你能猜出这些图案的形状吗?请画出这些图案的另一半,并验证你的猜想。
5.在图中画出所给图形关于直线的对称图形。
6.在黑板上钉着20枚钉子,相邻两个钉子间的距离(指上下左右)等于1cm,请从1号钉子开始到2号钉子为止绷上一根19cm长的线,使得这根线经过所有的钉子。
7.如图是轴对称图形,它有多少条对称轴?
参考答案
1,2,3,4,5略
6.
7.4
综合训练层次的解答题
1.根据下列语句,用三角板、圆规或直尺作图,不要求写作法:
(1)过点C作直线;
(2)作的高CD;
(3)以CD所在直线为对称轴,作与关于直线CD对称的
,并说明完成后的图形可能代表什么含义。
2.为了提高学生的“合作意识”,班长为班级“学习专栏”设计了报头图案,并用文字说明了图案的含义,如图,请你用最基本的几何图形(如直线、射线、线段、角、三角形、四边形、多边形、圆、弧等)中若干个,自己设计一个报头图案,并简要说明图案的含义。
3.如图,草原上有两个居民点,是一条公路,是一条河流.一汽车从P出发,把一批参加社会实践活动的学生送到公路上,再到河边去加水,最后回到Q.问:怎样安排两个停靠点R,S,可使行驶的路程最短?
参考答案
1,2落
3.如图。
秋苏科版八年级上2.3设计轴对称图案同步练习含答案
第二章 2.3 设计轴对称图案一.选择题(共5小题)1.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个2.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个3.)下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.4.如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有()A.4种B.5种C.6种D.7种5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A.2个B.3个C.4个D.5个二.填空题(共8小题)6.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有______种.7.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有______个.8.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有______个.9.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:______(填字母).10.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有______种.11.如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.这样的点D最多能找到______个.12.下面四个图形是标出了长宽之比的台球桌的俯视图,一个球从一个角落以45°角击出,在桌子边沿回弹若干次后,最终必将落入角落的一个球囊.图1中回弹次数为1次,图2中回弹次数为2次,图3中回弹次数为3次,图4中回弹次数为5次.若某台球桌长宽之比为5:4,按同样的方式击球,球在边沿回弹的次数为______次.13.请在下列2×2的方格中,各画出一个三角形,要求所画三角形是图中的三角形经过轴对称变换得到的图形,且所画的三角形的顶点与方格中的小正方形的顶点重合,并将所画的三角形涂上阴影.(注:所画的三角形不能重复)三.解答题(共5小题)14.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,每个网格中画有一个平行四边形,请分别在图1、图2中各画一条线段,各图均满足以下要求:(1)线段的一个端点为平行四边形的顶点,另一个端点在平行四边形一边的格点上(每个小正方形的顶点均为格点);(2)将平行四边形分割成两个图形,图1、图2中的分法各不相同,但都要求其中一个是轴对称图形.15.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.16.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)17.如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:1、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.2、设计的图形用斜线涂出,若形状相同,则视为一种.18.画图或作图:(1)如图1是4×4正方形网格,其中已有3个小方格被涂成了黑色.请从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形(只要画出一种图形),并回答符合条件的小方格共有______个.(2)如图2,点A、B是直线l同侧的两个点,在直线l上可以找到一个点P,使得PA+PB 最小.小玉画完符合题意的图形后,不小心将墨水弄脏了图形(如图3),直线l看不清了.请你帮助小玉补全图形,作出直线l.(尺规作图,保留痕迹,不要求写作法)参考答案一.选择题(共5小题)1.如图是4×4正方形网格,其中已有3个小正方形涂成了黑色,现在要从其余13个白色小方格中选出一个也涂成黑色的图形称为轴对称图形,这样的白色小方格有()A.2个B.3个C.4个D.5个【分析】根据轴对称图形的概念求解.【解答】解:如图所示,有4个位置使之成为轴对称图形.故选C.【点评】此题考查的是利用轴对称设计图案,解答此题关键是找对称轴,按对称轴的不同位置,可以有4种画法.2.如图,由4个小正方形组成的田字格中,△ABC的顶点都是小正方形的顶点,则田字格上画与△ABC成轴对称的三角形,且顶点都是小正方形的顶点,则这样的三角形(不包含△ABC本身)共有()A.1个B.3个C.2个D.4个【分析】根据轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:符合题意的有3个三角形.故选:B.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.3.下列选项中有一张纸片会与如图紧密拼凑成正方形纸片,且正方形上的黑色区域会形成一个轴对称图形,则此纸片为何?()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿着一条直线对折,直线两侧的图形能够完全重合,这个图形就是轴对称图形可得答案.【解答】解:如图所示:故选:A.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的概念.4.如图①是3×3正方形方格,现要将其中两个小方格涂黑,并且使得涂黑后的整个图案是轴对称图形(约定:绕正方形ABCD的中心旋转能重合的图案视为同一种,如图②中设计的四幅图只算一种图案),那么不同的图案共有()A.4种B.5种C.6种D.7种【分析】根据轴对称的定义,及题意要求画出所有图案后即可得出答案.【解答】解:得到的不同图案有:,共6种.故选C.【点评】本题考查了学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.5.如图,由4个小正方形组成的田字格,△ABC的顶点都是小正方形的顶点,在田字格上能画出与△ABC成轴对称,且顶点都在小正方形顶点上的三角形的个数共有()A.2个B.3个C.4个D.5个【分析】因为顶点都在小正方形上,故可分别以大正方形的两条对角线AB、EF及MN、CH为对称轴进行寻找.【解答】解:分别以大正方形的两条对角线AB、EF及MN、CH为对称轴,作轴对称图形:则△ABM、△ANB、△EHF、△EFC都是符合题意的三角形.故选C.【点评】此题考查了利用轴对称涉及图案的知识,关键是根据要求顶点在格点上寻找对称轴,有一定难度,注意不要漏解.二.填空题(共8小题)6.如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图,在2×2方格纸中,有一个以格点为顶点的△ABC,请你找出方格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有5个.【分析】根据轴对称图形的定义:如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形进行画图即可.【解答】解:如图:与△ABC成轴对称且也以格点为顶点的三角形有△ABD、△BCD、△FBE、△HCE,△AFG,共5个.故答案为:5.【点评】本题考查轴对称图形的定义,以及利用轴对称设计图案,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.8.如图的2×5的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有4个.【分析】直接利用轴对称图形的性质结合题意得出答案.【解答】解:如图所示:都是符合题意的图形.故答案为:4.【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.9.如图是4×4正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:c,h,k,m(填字母).【分析】直接利用轴对称图形的性质分析得出即可.【解答】解:如图所示:现在要从其余13个白色小方格中选出一个也涂成黑色的图形,使黑色部分成为轴对称图形,这样的白色小方格有:c,h,k,m(填字母).故答案为:c,h,k,m.【点评】此题主要考查了利用轴对称设计图案,正确利用轴对称图形的性质得出是解题关键.10.在如图的方格纸上画有2条线段,若再画1条线段,使图中的三条线段组成一个轴对称图形,则这条线段的画法最多有4种.【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故答案为:4.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.11.如图,点A、B、C都在方格纸的格点上,请你再找一个格点D,使点A、B、C、D组成一个轴对称图形.这样的点D最多能找到2个.【分析】利用轴对称图形的性质,分别得出符合题意的图形即可.【解答】解:如图所示:符合题意有2个点.故答案为:2.【点评】本题考查了利用轴对称设计图案,正确掌握轴对称图形的性质是解题关键.12.下面四个图形是标出了长宽之比的台球桌的俯视图,一个球从一个角落以45°角击出,在桌子边沿回弹若干次后,最终必将落入角落的一个球囊.图1中回弹次数为1次,图2中回弹次数为2次,图3中回弹次数为3次,图4中回弹次数为5次.若某台球桌长宽之比为5:4,按同样的方式击球,球在边沿回弹的次数为7次.【分析】根据题意画出图形,然后即可作出判断.【解答】解:根据图形可得总共反射了7次.故答案为7.【点评】本题考查轴对称的知识,难度不大,注意画出图形会使问题比较简单直观.13.请在下列2×2的方格中,各画出一个三角形,要求所画三角形是图中的三角形经过轴对称变换得到的图形,且所画的三角形的顶点与方格中的小正方形的顶点重合,并将所画的三角形涂上阴影.(注:所画的三角形不能重复)【分析】可分别选择不同的直线当对称轴,得到相关图形即可.【解答】解:所设计图案如下所示:【点评】本题考查利用轴对称设计图案,注意掌握轴对称的特点,选择不同的直线当对称轴是解决本题的突破点.三.解答题(共5小题)14.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,每个网格中画有一个平行四边形,请分别在图1、图2中各画一条线段,各图均满足以下要求:(1)线段的一个端点为平行四边形的顶点,另一个端点在平行四边形一边的格点上(每个小正方形的顶点均为格点);(2)将平行四边形分割成两个图形,图1、图2中的分法各不相同,但都要求其中一个是轴对称图形.【分析】根据勾股定理可得平行四边形的一边长为5,根据网格可得另一边长为6,因此可以截出一个等腰三角形,也可截出一个菱形.【解答】解:如图1所示:△ABC是等腰三角形,是轴对称图形;如图2所示:四边形ABCD是菱形,是轴对称图形.【点评】此题主要考查了利用轴对称设计图案,关键是正确掌握轴对称图形的定义:一个图形沿一条直线折叠,直线两旁的部分能完全重合.15.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.【分析】要补成轴对称图形,关键是找出对称轴,不同的对称轴有不同的轴对称图形,所以此题首先要找出对称轴,再思考怎么画轴对称图形.【解答】解:.【点评】做这类题的关键是找对称轴.而且这是一道开放题,答案不唯一.16.观察设计(1)观察如图的①~④中阴影部分构成的图案,请写出这四个图案都具有的两个共同特征;(2)借助如图之⑤的网格,请设计一个新的图案,使该图案同时具有你在解答(1)中所写出的两个共同特征.(注意:新图案与如图的①~④的图案不能重合)【分析】(1)利用已知图形的特征分别得出其共同的特征;(2)利用(1)所写的特征画出符合题意的图形即可.【解答】解:(1)答案不唯一,例如,所给的四个图案具有的共同特征可以是:①都是轴对称图形;②面积都等于四个小正方形的面积之和;③都是直线型图案;④图案中不含钝角等等.只要写出两个即可.(2)答案不唯一,只要设计的图案同时具有所给出的两个共同特征,均正确,例如,同时具备特征①、②的部分图案如图:【点评】此题主要考查了利用轴对称设计图案,正确把握图形的特征是解题关键.17.如图1为L形的一种三格骨牌,它是由三个全等的正方形连接而成.请以L形的三格骨牌为基本图形,在图2和图3中各设计1个轴对称图形.要求如下:1、每个图形由3个L形三格骨牌组成,骨牌的顶点都在小正方形的顶点上.2、设计的图形用斜线涂出,若形状相同,则视为一种.【分析】可以利用轴对称设计一个图案,再利用平移设计一个图案即可.【解答】解:如图所示:.【点评】此题主要考查了利用轴对称设计图案,利用平移设计图案,关键是正确理解题目要求.18.画图或作图:(1)如图1是4×4正方形网格,其中已有3个小方格被涂成了黑色.请从其余13个白色小方格中选出一个涂成黑色,使整个涂成黑色的图形成为轴对称图形(只要画出一种图形),并回答符合条件的小方格共有3个.(2)如图2,点A、B是直线l同侧的两个点,在直线l上可以找到一个点P,使得PA+PB 最小.小玉画完符合题意的图形后,不小心将墨水弄脏了图形(如图3),直线l看不清了.请你帮助小玉补全图形,作出直线l.(尺规作图,保留痕迹,不要求写作法)【分析】(1)根据轴对称图形的定义:沿着一直线折叠后直线两旁的部分能完全重合进行添图.(2)首先画出A、B所在直线的交点P,再延长AP使AP=CP,然后再作AC的垂直平分线即可得到l.【解答】解:(1)如图:,共3个,故答案为:3;(4)如图所示:.【点评】此题主要考查了利用轴对称图形设计图案,关键是掌握对称轴是对称点连线的垂直平分线.。
5.4 利用轴对称进行设计
5.4 利用轴对称进行设计一.选择题(共7小题)1.(2020秋•青田县期末)如图,点A、B、C都在方格纸的“格点”上,请找出“格点”D,使点A、B、C、D组成一个轴对称图形,这样的点D共有()个.A.1B.2C.3D.42.(2020秋•鼓楼区校级月考)如图是由三个小正方形组成的图形,如果在图中补一个同样大小的正方形,使得补后的图形为轴对称图形,这样的补法有()种.A.2B.3C.4D.53.(2020秋•镇江期中)如图是4×4的正方形网格,其中已有3个小方格涂成了黑色.现在要从其余13个白色小方格中选出一个也涂成黑色,与原来3个黑色方格组成的图形成为轴对称图形,则符合要求的白色小正方格有()A.1个B.2个C.3个D.4个4.(2020春•抚州期末)如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个B.8个C.9个D.10个5.(2019秋•海伦市期末)如图,在3×3的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中最多能画出()个格点三角形与△ABC成轴对称.A.6个B.5个C.4个D.3个6.(2020春•岱岳区期末)如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的有几个()A.2B.3C.4D.5 7.(2020•南昌县模拟)如图所示的方格纸,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个被涂黑的图案构成一个轴对称图形,那么涂法共有()种.A.6B.5C.4D.3二.填空题(共11小题)8.(2020秋•松江区期末)如图,在2×2的正方形的网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形,在图中最多能画出个不同的格点三角形与△ABC成轴对称.9.(2020秋•朝阳区校级期中)认真观察下面4个图中阴影部分构成的图案,回答下列问题:请写出这四个图案都具有的两个共同特征.特征1:;特征2:.10.(2020秋•垦利区期中)如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.11.(2020春•章丘区期末)如图,在4×4的正方形网格中,已有4个小方格涂成了灰色,现在要从其余白色小方格中选出一个也涂成灰色,使整个灰色部分的图形构成轴对称图形,这样的白色小方格个.12.(2020春•青岛期末)如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色部分构成一个轴对称图形,则有种不同的涂法.13.(2020•德州)如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.14.(2019秋•开鲁县期末)如图,在正方形网格中有两个小正方形被涂黑,再涂黑一个图中其余的小正方形,使得整个被涂黑的图案构成一个轴对称图形,那么涂法共有种.15.(2019秋•浦东新区期末)如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字的格子内.16.(2020•新宾县二模)如图,是4×4正方形网格,其中已有三个小方格涂成黑色,在剩下的13个白色小方格中随意选一个涂成黑色,使得黑色小方格组成的图形为轴对称图形的涂法有种17.(2020秋•泰兴市期中)如图,在4×4的正方形网格中,有5个小正方形已被涂黑(图中阴影部分),若在其余网格中再涂黑一个小正方形,使它与5个已被涂黑的小正方形组成的新图形是一个轴对称图形,则可涂黑的小正方形共有个.18.(2020•运城模拟)如图,正三角形网络中,已有两个小正三角形被涂黑,再将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有种.三.解答题(共14小题)19.(2019秋•建邺区校级期中)如图,网格中的△ABC和△DEF是轴对称图形.(1)利用网格线,作出△ABC和△DEF的对称轴l;(2)结合所画图形,在直线l上找点G,使GA+GC最小;(3)如果每个小正方形的边长为1,则△ABC的面积为;(4)在图中到EF、BC的距离相等的格点有个.20.(2020秋•宝应县期末)图1、图2、图3都是3×3的正方形网格,每个小正方形的顶点称为格点,A、B、C均为格点.在给定的网格中,按下列要求画图:(1)在图1中,画一条不与AB重合的线段MN,使MN与AB关于某条直线对称,且M、N为格点;(2)在图2中,画一条不与AC重合的线段PQ,使PQ与AC关于某条直线对称,且P、Q为格点;(3)在图3中,画一个△DEF,使△DEF与△ABC关于某条直线对称,且D、E、F为格点,符合条件的三角形共有个.21.(2020秋•巩义市期末)如图,方格纸中每个小正方形的边长都为1.在方格纸内将△ABC经过一次轴对称变换后得到△A'B'C',图中标出了点C的对应点C'.(1)在给定方格纸中画出变换后的△A'B'C';(2)画出AC边上的中线BD和BC边上的高线AE;(3)求△A'B'C'的面积.22.(2020秋•达孜区期末)作图题作出△ABC关于直线L称轴对称的图形.23.(2020秋•武昌区期末)如图,△ABC的顶点A、B、C都在小正方形的顶点上,利用网格线按下列要求画图.(1)画△A1B1C1,使它与△ABC关于直线l成轴对称;(2)在直线l上找一点P,使点P到点A、B的距离之和最短;(3)在直线l上找一点Q,使点Q到边AC、BC的距离相等.24.(2020秋•鞍山期末)如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点M.(1)在给出图上画出一个格点△MB1C1,并使它与△ABC全等且A与M是对应点;(2)以点M所在的水平直线为对称轴,画出△ABC的轴对称图形△A2B2C2.25.(2020秋•松山区期末)如图,在边长为1的小正方形网格中,点A,B,C均落在格点上.(1)求△ABC的面积?(2)画出△ABC关于直线l的轴对称图形△A1B1C1.(3)判断△A1B1C1的形状,并说明理由.26.(2020秋•肇源县期末)如图,在正方形网格上的一个△ABC,且每个小正方形的边长为1(其中点A,B,C均在网格上).(1)作△ABC关于直线MN的轴对称图形△A′B′C′;(2)在MN上画出点P,使得P A+PC最小;(3)求出△ABC的面积.27.(2020秋•乌苏市期末)如图,在边长为1的小正方形组成的网格中(我们把组成网格的小正方形的顶点称为格点),△ABC在直线l的左侧,其三个顶点A,B,C分别在网格的格点上.(1)请你在所给的网格中画出△A1B1C1,使△A1B1C1和△ABC关于直线l对称;(2)在直线l上找一点P,使得P A+PB最小,请画出点P;(用虚线保留画图痕迹)(3)在(1)的条件下,结合你所画的图形,求出△A1B1C1的面积.28.(2020秋•定西期末)如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A′B′C′.(2)若网格中最小正方形的边长为1,求△ABC的面积.29.(2020秋•梁园区期末)如图1是3×3的正方形方格,将其中两个方格涂黑,并且使涂黑后的整个图案是轴对称图形,(要求:绕正方形ABCD的中心旋转能重合的图案都视为同一种图案,例如图2中的两幅图就视为同一种图案),请在图3中的四幅图中完成你的设计.30.(2020秋•鼓楼区校级月考)如图的3×3的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中画出所有与△ABC成轴对称的格点三角形.31.(2020秋•苍南县期中)在下面三个2×2的方格中,各作出一个与图中三角形成轴对称的图形,且所画图形的顶点与方格中小正方形的顶点重合,并给所画图形涂上阴影(所画的三个图形不能重复).32.(2020秋•灌云县期中)在4×4的方格中,有五个同样大小的正方形如图摆放,移动其中一个正方形到空格方格中,与其余四个正方形组成的新图形是一个轴对称图形,请在空白图中设计三种方案.。
最新苏科版八年级数学上册 设计轴对称图案(含解析)
2.3 设计轴对称图案一.选择题(共10小题)1.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是()A.B.C.D.2.如图2,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④3.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半4.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1 B.2 C.3 D.45.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种6.下列各图,均是圆与等边三角形的组合,则不是轴对称图形的是()A.B.C.D.7.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④8.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个9.(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.210.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个二.填空题(共6小题)11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有种.12.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有种.13.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有种.14.如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有种.15.如图是3×3正方形网格,其中已有3个小方格涂成了黑色,现在要从其余6个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有个.16.在4×4的方格中有四个同样大小的正方形如图摆放,再添涂一个空白正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形,这样的添涂方法共有种.三.解答题(共4小题)17.有三个3×3的正方形网格,网格中每个小正方形的边长均为1.请在图①、图②、图③中各画出一个面积为2,形状不同的四边形,要求顶点均在正方形的格点处,且四边形为轴对称图形.18.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.20.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.答案与解析一.选择题(共10小题)1.窗棂是中国传统木构建筑的框架结构设计,窗棂上雕刻有线槽和各种花纹,构成种类繁多的优美图案.下列表示我国古代窗棂样式结构图案中,不是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、是中心对称图形,不是轴对称图形,故此选项符合题意;B、是轴对称图形,故此选项不合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意;故选:A.【点评】此题主要考查了轴对称图形的概念.利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.2.如图2,在4×4正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A.①B.②C.③D.④【分析】根据轴对称图形的概念求解.【解答】解:有3个使之成为轴对称图形分别为:②,③,④.故选:A.【点评】此题主要考查了轴对称变换,正确把握轴对称图形的性质是解题关键.3.如图,若将直角坐标系中“鱼“形图案的每个“顶点”的纵坐标保持不变,横坐标都乘以﹣1,得到一组新的点,再依次连接这些点,所得图案与原图案的关系为()A.重合B.关于x轴对称C.关于y轴对称D.宽度不变,高度变为原来的一半【分析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【解答】解:图案的每个“顶点”的纵坐标保持不变,横坐标分别乘﹣1,则对应点的横坐标互为相反数,纵坐标相同,所以,所得图案与原图案关于y轴对称.故选:C.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.4.如图,方格纸上有2条线段,请你再画1条线段,使图中的3条线段组成一个轴对称图形,最多能画()条线段.A.1 B.2 C.3 D.4【分析】根据轴对称的性质画出所有线段即可.【解答】解:如图所示,共有4条线段.故选:D.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.5.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答.【解答】解:如图所示:,共5种,故选:C.【点评】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.6.下列各图,均是圆与等边三角形的组合,则不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项正确;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选:B.【点评】本题考查了利用轴对称设计图案,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.如图,在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是()A.①B.②C.③D.④【分析】根据轴对称图形的特点进行判断即可.【解答】解:选择标有序号①②③④中的一个小正方形涂黑,不能与图中阴影部分构成轴对称图形的是:④.故选:D.【点评】本题考查的是利用轴对称设计图案,轴对称图形是要寻找对称轴,沿对称轴对折后与两部分完全重合.8.小军同学在网格纸上将某些图形进行平移操作,他发现平移前后的两个图形所组成的图形可以是轴对称图形.如图所示,现在他将正方形ABCD从当前位置开始进行一次平移操作,平移后的正方形顶点也在格点上,则使平移前后的两个正方形组成轴对称图形的平移方向有()A.3个B.4个C.5个D.无数个【分析】直接利用平移的性质结合轴对称图形的性质得出答案.【解答】解:如图所示:正方形ABCD可以向上、下、向右以及沿AC所在直线,沿BD所在直线平移,所组成的两个正方形组成轴对称图形.故选:C.【点评】此题主要考查了利用轴对称设计图案以及平移的性质,正确掌握轴对称图形的性质是解题关键.9.(2019•河北)如图,在小正三角形组成的网格中,已有6个小正三角形涂黑,还需涂黑n个小正三角形,使它们与原来涂黑的小正三角形组成的新图案恰有三条对称轴,则n的最小值为()A.10 B.6 C.3 D.2【分析】由等边三角形有三条对称轴可得答案.【解答】解:如图所示,n的最小值为3,故选:C.【点评】本题主要考查利用轴对称设计图案,解题的关键是掌握常见图形的性质和轴对称图形的性质.10.如图所示,钻石型网格(由边长都为1个单位长度的等边三角形组成),其中已经涂黑了3个小三角形(阴影部分表示),请你再只涂黑一个小三角形,使它与阴影部分合起来所构成的完整图形是一个轴对称图形.满足题意的涂色方式有几种.()A.1个B.2个C.3个D.4个【分析】对称轴的位置不同,结果不同,根据轴对称的性质进行作图即可.【解答】解:如图所示,满足题意的涂色方式有3种,故选:C.【点评】本题主要考查了利用轴对称设计图案以及等边三角形的性质,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.二.填空题(共6小题)11.如图,在3×3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使涂黑部分构成一个轴对称图形的方法有 5 种.【分析】根据轴对称图形的定义即可解决问题;【解答】解:如图有5种方法:故答案为5.【点评】本题考查利用轴对称设计图案,解题的关键是理解轴对称图形的定义,属于中考常考题型.12.如图是由9个小等边三角形构成的图形,其中已有两个被涂黑,若再涂黑一个,则整个被涂黑的图案构成轴对称图形的方法有 3 种.【分析】根据轴对称的概念作答.如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.【解答】解:如图所示:将图中其余小正三角形涂黑一个,使整个被涂黑的图案构成一个轴对称图形的方法有3种.故答案为:3.【点评】本题考查了利用轴对称设计图案的知识,关键是掌握好轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.13.在4×4的方格中有五个同样大小的正方形(阴影)如图摆放,移动标号为①的正方形到空白方格中,使其与其余四个正方形组成的新图形是一个轴对称图形,这样的移法有 3 种.【分析】根据轴对称图形的性质进行作图即可.【解答】解:如图所示,新图形是一个轴对称图形.故答案为:3.【点评】本题主要考查了利用轴对称变换进行作图,利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.14.如图①是3×3的小方格构成的正方形ABCD,若将其中的两个小方格涂黑,使得涂黑后的整个ABCD图案(含阴影)是轴对称图形,且规定沿正方形ABCD对称轴翻折能重合的图案都视为同一种,比如图②中四幅图就视为同一种,则得到不同的图案共有6 种.【分析】根据轴对称的定义及题意要求画出所有图案后即可得出答案.【解答】解:得到的不同图案有:共6种.故答案为:6.【点评】本题考查了利用轴对称设计图案,培养学生实际操作能力,用到了图形的旋转及轴对称的知识,需要灵活掌握.15.如图是3×3正方形网格,其中已有3个小方格涂成了黑色,现在要从其余6个白色小方格中选出一个也涂成黑色的图形成为轴对称图形,这样的白色小方格有 2 个.【分析】利用轴对称图形的性质,分别得出符合题意的答案.【解答】解:如图所示:一个涂成黑色的图形成为轴对称图形.故答案为:2.【点评】此题主要考查了利用轴对称设计图案,正确把握轴对称图形的性质是解题关键.16.在4×4的方格中有四个同样大小的正方形如图摆放,再添涂一个空白正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形,这样的添涂方法共有 4 种.【分析】根据题意再添加一个正方形,使它与原来的四个正方形组成的新图形是一个轴对称图形即可.【解答】解:如图所示:故答案为:4.【点评】本题考查的是利用轴对称设计图案,熟知轴对称的性质是解答此题的关键.三.解答题(共4小题)17.有三个3×3的正方形网格,网格中每个小正方形的边长均为1.请在图①、图②、图③中各画出一个面积为2,形状不同的四边形,要求顶点均在正方形的格点处,且四边形为轴对称图形.【分析】本题可以选择画长为2宽为1的长方形、上底为1下底为3的等腰梯形及边长为的正方形.【解答】解:所画图形如下:【点评】此题考查了在正方形组成的网格中画一定面积的轴对称四边形,对于此类题目要熟悉掌握几种常见的轴对称图形,然后结合题意要求的面积进行设计作图.18.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.【分析】如图,在四个图形中分别将两个小正方形涂黑,并使阴影部分成为轴对称图形.【解答】解:如图所示:【点评】本题考查了轴对称的性质和图案设计,熟练掌握轴对称的定义是关键,涂黑二个小正方形后,以是否沿一条直线折叠后能重合,作为依据,能则组成轴对称图形,反之则不能.19.如图,下列4×4网格图都是由16个相间小正方形组成,每个网格图中有4个小正方形已涂上阴影,在空白小正方形中,选取2个涂上阴影,使6个阴影小正方形组成个轴对称图形,请设计出四种方案.【分析】直接利用轴对称图形的定义分析得出答案.【解答】解:如图所示:【点评】此题主要考查了利用轴对称设计图案,正确掌握轴对称图形的定义是解题关键.20.如图,在相同小正方形组成的网格纸上,有三个黑色方块,请你用三种不同的方法分别在图①、图②、图③上再选一个小正方形方块涂黑,使得四个黑色方块组成轴对称图形.【分析】直接利用轴对称图形的性质得出符合题意的答案.【解答】解:如图所示:.【点评】此题主要考查了轴对称变换,正确把握定义是解题关键.。
轴对称 (习题及答案)
轴对称(习题)例题示范例1:已知:如图,AE 平分∠FAC ,EF ⊥AF ,EG ⊥AC ,垂足分别为点F ,G ,DE 是BC 的垂直平分线.求证:BF =CG .【思路分析】读题标注:1从条件出发,看到角平分线考虑“角平分线上的点到角两边的距离相等”,结合题目其他条件,EF ⊥AF ,EG ⊥AC ,可得EF =EG ;2看到垂直平分线考虑“垂直平分线上的点到线段两端点的距离相等”,因此连接BE ,CE (如图所示),得到BE =CE ;3题目所求为BF =CG ,证明△BEF ≌△CEG 即可.【过程书写】证明:如图,连接BE ,CE∵AE 平分∠FAC ,EF ⊥AF ,EG ⊥AC∴EF =EG∵DE 是BC 的垂直平分线∴BE =CE∵EF ⊥AF ,EG ⊥AC∴∠BFE =∠CGE =90°在Rt △BEF 和Rt △CEG 中BE CE EF EG =⎧⎨=⎩(已证)(已证)∴Rt △BEF ≌Rt △CEG (HL )∴BF =CG (全等三角形对应边相等)过程规划:1.辅助线描述2.为全等准备两个条件①EF =EG ②BE =CE 3.证明Rt △BEF ≌Rt △CEG 4.根据全等性质得结论BF =CG巩固练习1.下列是轴对称图形的是()A.B.C.D.2.一个风筝的设计图如图所示,其主体部分(四边形ABCD)关于线段BD所在的直线对称,AC与BD相交于点O,且AB≠AD,则下列判断错误的是()A.△ABD≌△CBDB.△ABC≌△ADCC.△AOB≌△COBD.△AOD≌△COD3.已知:如图,在Rt△ABC中,∠C=90°,点E在AC边上,将△ABC沿BE折叠,点C恰好落在AB边上的点D处.若∠A=30°,则∠BED=_______.第3题图第4题图4.已知:如图,∠AOB=40°,若CD是OA的垂直平分线,则∠ACB=__________.5.如图,在Rt△ABC中,∠C=90°.BD平分∠ABC,交AC于点D,DE垂直平分AB,垂足为点E.若DE+BD=3cm,则AC=__________cm.6.已知:如图,在△ABC中,AB=AC,DE垂直平分AB,交AC于点E,垂足为点D.若BE+CE=12,BC=8,则△ABC的周长为___________.7.作图题:利用网格线,作出△ABC关于直线DE对称的图形△A1B1C1.8.已知:如图,P为∠ABC内一点,请在AB,BC边上各取一点M,N,使△PMN的周长最小.9.已知:如图,CD垂直平分线段AB,E是CD上一点,分别连接AC,BC,AE,BE.求证:∠CAE=∠CBE.10.已知:如图,在△ABC中,∠ABC的平分线与∠ACB的平分线相交于点O.OD⊥AB,OE⊥AC,垂足分别为点D,E.求证:OD=OE.11.已知:如图,在锐角三角形ABC中,AD,CE分别是BC,AB边上的高,垂足分别为点D,E,AD与CE相交于点O,连接OB,∠OBC=∠OBA.求证:OA=OC.思考小结1.轴对称的思考层次:1全等变换:对应边__________、对应角__________.2对应点:对应点所连线段被对称轴_________________;对称轴上的点到对应点的距离_____________.3应用:奶站问题等.如图,在直线l上找一点P,使得在直线同侧的点A,B到点P的距离之和AP+BP最小.【参考答案】巩固练习1.B2.B3.60°4.80°5.36.327.作图略8.作点P关于BA的对称点O1,作点P关于BC的对称点O2,连接O1O2,分别交BA,BC于点M,N,此时△PMN的周长最小.9.证明略提示:利用线段垂直平分线上的点到这条线段两个端点的距离相等,得出AC=BC,AE=BE,再证明△CAE≌△CBE 10.证明略提示:过点O作OF⊥BC于点F,角平分线上的点到角两边的距离相等可得结论11.证明略提示:利用角平分线上的点到这个角的两边的距离相等,得出OD=OE,再证明△COD≌△AOE思考小结1.①相等、相等②垂直平分;相等③作点A关于街道的对称点A1,连接A1B交街道于点P,则点P即为满足条件的点。
利用轴对称设计图案 习题精选及答案(一)
利用轴对称设计图案习题精选(一)一、选择题1.下列命题中,正确的是( )A.两个全等的三角形合在一起是一个轴对称图形B.等腰三角形的对称轴是底边上的中线C.等腰三角形底边上的高就是底边的垂直平分线D.一条线段可以看做以它的垂直平分线为轴的轴对称图形2.下列说法中,正确的是( )A.两个全等三角形,一定是轴对称的B.两个轴对称的三角形,一定是全等的C.三角形的一条中线把三角形分成以中线为轴对称的两个图形D.三角形的一条高把三角形分成以高线为轴对称的两个图形3.在直线、线段、角、两条平行直线、两条相交直线这些图形中,是轴对称图形的有( )A.5个B.4个C.3个D.2个4.如图15—4—6,△ABC和△A'B'C'关于直线l对称,下列结论中:①△ABC △A'B'C';②∠BAC'=∠B'AC;③l垂直平分CC';④直线BC和B'C',的交点不一定在l上.正确的有( )A.4个B.3个C.2个D.1个图15—4—6二、填空题1.已知线段AB,直线CD⊥AB于O,OA=OB,若点M在直线CD上,则MA=;若NA=NB,则点N在.2.△ABC中,AC的垂直平分线交AC于E,交BC于D,△ABD的周长为12cm,AC=5cm,则△ABC的周长为.3.如图15—4—7,A是直线MN外一点,按照下列作图语句画图并填空.图15—4—7①作点A关于直线MN的对称点A'.②在MN上任取一点B,连结AB和A'B,那么线段AB关于直线MN的对称线段是.③在直线A、B和直线MN外任取一点C',作点C'关于直线MN的对称点C,连结AC、BC、A'C'、BC',那么△ABC与△A'B'C'关于直线MN .三、解答题1.图15—4—8中直线l是对称轴,画出图形关于l对称的另一半,想像一下整个图形的形状.(1) (2) (3) (4) (5) (6)图15—4—82.图15—4—9中各图是只有一条对称轴的图形,请你涂黑图形的一部分,使它成为具有两条对称轴的图形.下面各图是只有一条对称轴的图形,请你涂黑图形的一部分,使它成为具有两条对称轴的图形.图15—4—9 图15—4—103.已知:如图15—4—10,△ABC和直线MN,其中点C在MN上,求作△A'B'C',使它与△ABC关于直线MN 对称.答案一、1.D 2.B 3.A 4.B二、1.MB,CD上2.1.7cm 3.①略②A'B ③轴对称三、1.图略,(1)砝码(2)一棵树(3)正六边形(4)房子(5)飞机(6)圆环2.图略3.图略。
利用轴对称设计美妙图案
利用轴对称设计美妙图案
房延华
数学不仅是思维科学,也是试验科学.下面采撷几例,请同学们和我一起在动手中欣赏数学的对称美和简洁美.
一、拼图
例1 已知每个网格中小正方形的边长都是1,请你在图2中以图1为基本图案,借助轴对称拼成一个完整的花边图案.
分析:设计图案问题一般具有开放性,可以根据自己想象设计出美丽的图案. 解:答案不唯一,提供如图3所示的两种图案.
二、图案设计
例2 图4为7×6的正方形网格,点A ,B ,C 在格点(小正方形的顶点)上.在图4中确定格点D ,并画出一个以A ,B ,C ,D 为顶点的四边形,使其为轴对称图形.
图4 分析:作图时,只需要找出这个图形的关键点和对称轴,利用对称轴图形的性质得出点D 的位置即可.
解:图5所示图案供参考:
①
②
图
2
图
3
图1
例3 某住宅小区拟栽种12棵风景树,若想栽成6行,每行4棵,且6行树所处位置连成线后能组成精美的轴对称图案,请你仿照图6在图7所示的方框中再设计两种不同的栽树方案.
分析:12棵树栽成6行(将行看成是线段,将树看成是线段上的点),每行都是4棵,因此每行必须与另外两行相交,且在交点处栽树,我们可以借鉴图6中的图案(在三角形的基础上设计出的轴对称图形)进行设计.
解:如图8所示.
A
B D A B C
D
C 图5 图
6 图
7 图8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
姓 名
学 号
封
区
教师填写 内容 考试类型 考试【 】 考查【 】 张媛 审 批
绝密★启用前
利用轴对称进行设计
测试时间:20分钟
一、选择题
1.以下图案不是轴对称图形的是( )
2.一矩形纸片按图①②所示的方式对折两次后,再按③中的虚线裁剪,则④中的纸片展开铺平后的图形是( )
3.如图所示,将矩形纸片先沿虚线AB 按箭头方向向右对折,接着将对折后的纸片沿虚线CD 向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的图形是( )
4.将下面图形补成关于直线l 对称的图形,正确的是( )
二、解答题
5.由两个全等的小正方形组成的图形如图,请你在图中补画两个小正方形,使补画后的图形为轴对称图形.
6.用两个全等的三角形可以拼出各种不同的图形.已画出其中一个三角形(如图),请你分别补画出另一个与其全等的三角形,使每个图形分别成为不同的轴对称图形(所画三角形可与原三角形有重叠的部分,至少设计四种).
7.如图①,在网格中有两个全等的图形(阴影部分),用这两个图形拼成轴对称图形,试分别在图②③中画出两种不同的拼法.
8.正方形按下列要求割成4块:
(1)分割后的整个图形必须是轴对称图形;
(2)所分得的4块图形是全等图形.
请你按照上述两个要求,分别在图①②③的正方形中画出3种不同的分割方法.(不写画法)
横线以内不许答题
参考答案
一、选择题
1.答案
D 由轴对称图形的定义知选D. 2.答案 D 动手剪一剪.
3.答案 D 按要求折叠,剪纸即可.
4.答案 D
二、解答题
5.解析 如图所示.(仅供参考)
6.解析 如图所示(仅供参考).
7解析 如图(仅供参考).
8.解析 如图.。