图的着色问题 ppt课件
chap12 图的着色
点着色的应用
课程安排问题 某大学数学系要为这个夏季安排课程表。所要开设 的课程为:图论(GT), 统计学(S),线性代数(LA), 高等 微积分(AC), 几何学(G)和近世代数(MA)。现有10名 学生(如下所示)需要选修这些课程。根据这些信息, 确定开设这些课程所需要的最少时间段数,使得学 生选课不会发生冲突。(学生用Ai表示)
5
K可着色的图例
v1
1
v2
G
v3 v4
v5
2 3
S
:V(G) →S,满射 是正常3着色,G是3可着色的。
6
K色图
定义12.1.2 图G的正常k着色中最小的k称为G的色
数,记为(G),即(G)=min{k|G存在正常k着色}。
若(G) =k,则称G是k色图。 显然,含环的图不存在正常着色,而多重边与一条 边对正常着色是等价的。以后总设G为简单图。 问题:已知一个图G(p,q),如何求色数(G)?
又因k>0, 所以与(G)定义矛盾。结论成立。 注意此定理与定理12.1.2的区别。 定理12.1.2 若G是一个临界图,则(G) ≤(G)+1
21
Brooks 定理
定理12.1.5 若连通图G既不是奇回路,也不是完全 图,则(G) (G) . 例如,对Petersen图应用Brooks定理,可得: (G) (G) =3 . 此定理说明只有奇回路 或完全图这两类图的色 数才是(G) +1。
第一步:建图。 把每门课程做为图G的顶点,两顶点连线当且仅当 有某个学生同时选了这两门课程。
色给同一时 段的课程顶点染色,那么,问 题转化为在状态图中求点色数 问题。
MA
S
G
AC 选课状态图
LA
图论课件第七章图的着色
全着色:给每个顶点和每条边都 分配一个颜色,使得相邻顶点、 边都不同色
ቤተ መጻሕፍቲ ባይዱ
添加标题
添加标题
添加标题
添加标题
边着色:给每条边分配一个颜色, 使得相邻边不同色
部分着色:只给部分顶点和边分 配颜色,部分顶点和边不参与着 色
图的着色应用
图的着色概述
图的着色应用
旅行商问题
定义:旅行商问题是一个经典的组合优化问题,指的是给定一组城市和每 对城市之间的距离,要求找到访问每个城市一次并返回到原点的最短路径。
应用场景:旅行商问题在许多领域都有应用,如物流、运输、电路设计等。
图的着色在旅行商问题中的应用:通过给城市着色,可以将问题转化为图 的着色问题,从而利用图的着色算法来求解旅行商问题。
图的着色的应用案
06
例
地图着色问题
定义:地图着色问题是一个经典的组合优化问题,旨在为地图上的 国家或地区着色,使得相邻的国家或地区没有相同的颜色。
背景:地图着色问题在计算机科学、数学和地理学等领域都有广泛 的应用。
应用案例:地图着色问题可以应用于许多实际场景,如地图制作、 交通规划、网络设计等。
图的着色在排课问题中的应用:通过将排课问题转化为图的着色问题,可以运用图的着色算 法进行求解,从而得到最优的排课方案
图的着色算法在排课问题中的优势:通过将排课问题转化为图的着色问题,可以运用图的 着色算法进行求解,从而得到最优的排课方案,避免了传统排课方法的繁琐和主观性
图的着色在排课问题中的实际应用案例:以某高校为例,通过运用图的着色算法进行排课, 成功解决了该校的排课问题,提高了排课效率和教学质量
贪心策略:在图的着色问题中,贪心策略是选择与当前未着色顶点相邻的未使用颜色进行着色。
离散数学PPT课件10着色与对偶图(ppt文档)
不同颜色.
四. 图G的正常着色(简称着色):
1. 对G的每个结点指定一种颜色,使得相邻接的两个结点
着不同颜色. 如果G着色用了n种颜色,称G是 n-色的.
2.对G着色时,需要的最少颜色数,称为G的着色数,记作
x(G) .
3.对G着色方法:(下面介绍韦尔奇.鲍威尔法)
3.对G着色方法:(介绍韦尔奇.鲍威尔法 Welch.Powell) ⑴将G中的结点按照度数递减次序排序,(此排序可能不唯 一,因为可能有些结点的度数相同) ⑵用第一种颜色对第一个结点着色,并按照排序,对与前面 着色点不邻接的每一个点着上相同颜色. ⑶用另一种颜色对尚未着色的点, 重复执行⑵和⑶,直到
⑶当且仅当ek只是一个面Fi的边界时, vi*上有一个环ek* 与ek相交.
v3*
则称图G*是G的对偶图.
v5
F1 v1*
F3
可见G*中的结点数等于
F2 v2*
G中的面数.
二. 自对偶图:如果图G对偶图G*与G同构,则称G是自对偶
图. (如下图) 三.对偶图与平面图着色的关系:
对平面图面相邻面用不同颜 色的着色问题,可以归结到对 其对偶图的相邻接的结点着
有共同的学生在读, 就在两门课程之间连一直线.得到图:
结点度数递减排序:
A
B,C,D,G,A,E,F 对图正常着色后, 标有同一种颜色的 G
课,可以同时考试.安排考试日程: 周一: A 周二: B,F 周三:C,E 周四: D,G
F E
作业 P189 – 8.16 8.17
B C
D
所有结点都着上颜色为止.
B C
例如:结点排序:A,B,E,F,H,D,G,C A
图的着色问题
问题来源
图的着色
通常所说的着色问题是指下述两类问题: 通常所说的着色问题是指下述两类问题: 1.给定无环图G=(V,E),用m种颜色为图中 的每条边着色,要求每条边着一种颜色, 的每条边着色,要求每条边着一种颜色,并 使相邻两条边有着不同的颜色, 使相邻两条边有着不同的颜色,这个问题称 为图的边着色问题。 为图的边着色问题。 2.给定无向图G=(V,E),用m种颜色为图中 的每个顶点着色,要求每个顶点着一种颜色, 的每个顶点着色,要求每个顶点着一种颜色, 并使相邻两顶点之间有着不同的颜色, 并使相邻两顶点之间有着不同的颜色,这个 问题称为图的顶着色问题。 问题称为图的顶着色问题。
化简得
( a + bd )(b + aceg )(c + bdef )( d + aceg )(e + bcdf )( f + ceg )( g + bdf )
求极小覆盖法- 求极小覆盖法-布尔代数法
Step3:从中挑选所用极大独立集个数最小者, Step3:从中挑选所用极大独立集个数最小者, 即为X 即为X(G) 但上述子集的颜色数都不是X ),正确的应 但上述子集的颜色数都不是X(G),正确的应 该是X =3,该子集为: {b,d,f}中的 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色 涂颜色1 {a,e,g}中a,e,g涂颜色 涂颜色2 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的 涂颜色3 中的c {a,c,g}中的c涂颜色3。 由此可见, 由此可见,求色数其需要求极大独立集以 及一切若干极大独立集的和含所有顶点的子 对于大图, 集,对于大图,因为图计算量过大而成为实 际上难以凑效的算法,所以不是一个好算法, 际上难以凑效的算法,所以不是一个好算法, 一般我们采用贪心法等近似算法来求解 。
《图论》图的着色(课堂PPT)
19
6.2 色数多项式
a
a
a
b
cb
cb
c
a
a
a
b
cb
cb
c
PK3(3)=6
20
6.2 色数多项式
➢ 若干特殊图的 PG(k) 1) 零图: G=(V, E) ,n=|V|,|E|=0,PG(k)=kn 2) 树:根节点在 k 种颜色中任取,非根节点选取 与其父亲节点不同的颜色。 PG(k)=k(k-1)n-1 3) 完全图: PG(k)=k(k-1)(k-2)…(k-n+1) 4) 非连通图:设图G由不连通的G1和G2构成,则 由乘法原理:PG(k)=PG1(k)PG2(k)
6
6.1 色数
[临界图] G=(V, E),若对G的任一真子图H均有
(H)<(G),则称G为一个临界图。
➢ k 色临界图称为 k-临界图。
[性质]
① 任何 k 色图通过对边的反复删减测试最后可以得
到其 k-临界子图。
② 临界图是连通图。
证:设G1、G2为临界图G的两个连通分支,则
(G)=max{(G1), (G2)}。不妨设 (G)=(G1),而
① 在图G中任取一边 e; ② 在图G中去掉 e,得新图G1;
在图G中收缩 e 的两端点,得新图G2,由上述有 PG(k) = PG1(k) - PG2(k)
③ 继续分解G1和G2,直到最后全部为零图。 ④ 利用 n 阶零图的 P(k)=kn 构造图G的色数多项式。
① 若 n=2,则G为 K2,PG(k)=k(k1)=k2k。
② 若 n>2,则G除一个 K2 外其它为孤立点:
PG(k)=k(k1)kn-2=knkn-1。
四色问题 四色ppt课件
数学语言:将平面任意地细分为不相重叠的区域,每一个 区域总可以用1,2,3,4这四个数字之一来标记,而不会使相 邻的两个区域得到相同的数字。
(相邻区域,是指有一整段边界是公共的。如果两个区域 只相遇于一点或有限多点,就不叫相邻的。)
精选
1890年,在牛津大学就读的年仅29岁的赫伍德以自己的精确计算指出了 肯普在证明上的漏洞。不久,泰勒的证明也被人们否定了。
人们发现他们实际上证明了一个较弱的命题——五色定理。就是说对地图 着色,用五种颜色就够了。
后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。 于是,人们开始认识到,这个貌似容易的题目,其实是一个可 与费马猜想相媲美的难题。
精选
进入20世纪以来,科学家们对四色猜想的证明基本 上是按照肯普的想法在进行:
1913年美国伯克霍夫:肯普的想法+新的设想证明了某些大的构形可约 1939年美国数学家富兰克林证明了22国以下的地图都可以用四色着色 1950年 ,有人从22国推进到35国 1960年,有人又证明了39国以下的地图可以只用四种颜色着色 随后又推进到了50国
精选
“四色问题”的被证明仅解决了一个历时100多年 的难题,而且成为数学史上一系列新思维的起点。
————这种推进仍然十分缓慢。
高速数字计算机的发明,促使更多数学家对“四色问
题”的研究。从1936年就开始研究四色猜想的海克,公开宣称 四色猜想可用寻找可约图形的不可避免组来证明。
精选
对偶图:把每个国家的首都标出来,然后把相邻国家的首都
用一条越过边界的铁路连接起来,除首都(称为顶点)及铁路(称为弧或 边)外,擦掉其他所有的线,剩下的称为原图的对偶图。
选修课之四色问题课件
在学校或企业的时间表安排中,为避免同一时间段内的冲突,可以 将时间段视为节点,利用四色定理进行着色,从而合理安排各项活 动。
交通规划
在交通规划中,可以利用四色定理对交通网络进行划分和着色,以便 更有效地组织交通流,降低交通拥堵的风险。
05
课程总结与回顾
课程知识点总结
四色问题的提出与背景
四色学史上的一个著名 难题,其解决过程推动了数学理 论和方法的发展,尤其是图论和
组合数学领域。
实际应用
四色问题的解决方案在地图制作 、电路板设计、时间表安排等方 面有着广泛的应用,提高了这些
领域的效率和优化程度。
计算机科学价值
在证明四色问题的过程中,数学 家们开创了使用计算机辅助证明 数学定理的先河,对计算机科学
• 证明难点:四色问题的证明是数学史上的一个著名难题,难点在于如何找到一 种普遍适用的着色方法,以及如何严格证明该方法的正确性。
• 早期尝试:早期的研究者通过大量的实验和观察,提出了一些猜想和局部证明 ,但均未能给出完整的解决方案。
• 现代证明:借助计算机技术和高级数学理论,Appel和Haken在1976年提出 了一种基于计算机辅助的证明方法,被公认为是四色问题的首个完整证明。但 此方法涉及大量计算和复杂的数学理论,难以被一般人所理解。
相关定理与推论
介绍与四色问题相关的定理和推论, 如五色定理、六色定理等,拓展学生 的视野。
课程学习过程中的回顾与反思
1 2 3
学习方法的探索
回顾在学习过程中尝试的不同方法,如阅读教材 、听讲座、与同学讨论等,分析各种方法的优缺 点。
遇到的挑战与解决策略
反思在学习过程中遇到的挑战,如概念理解困难 、证明过程复杂等,并分享解决这些挑战的策略 。
图论课件第七章图的着色
平面图的着色问题是一个经典的图论问题,其目标是在满足相邻顶点颜色不同 的条件下,使用最少的颜色对平面图的顶点进行着色。
详细描述
平面图的着色问题可以使用欧拉公式和Kuratowski定理进行判断和求解。此外 ,也可以使用贪心算法、分治策略等算法进行求解。
树图的着色问题
总结词
树图的着色问题是一个经典的图论问 题,其目标是使用最少的颜色对树图 的顶点进行着色,使得任意两个相邻 的顶点颜色不同。
分支限界算法
总结词
分支限界算法是一种在搜索树中通过剪枝和 优先搜索来找到最优解的算法。
详细描述
在图的着色问题中,分支限界算法会构建一 个搜索树,每个节点代表一种可能的着色方 案。算法通过优先搜索那些更有可能产生最 优解的节点来加速搜索过程,同时通过剪枝 来排除那些不可能产生最优解的节点。分支 限界算法可以在较短的时间内找到最优解,
尤其适用于大规模图的着色问题。
03
图的着色问题的复 杂度
计算复杂度
确定图着色问题的计算复杂度为NP-完全,意味着该问题在多项式时间 内无法得到确定解,只能通过近似算法或启发式算法来寻找近似最优解 。
图着色问题具有指数时间复杂度,因为对于n个顶点的图,其可能的颜色 组合数量为n^k,其中k为每个顶点可用的颜色数。
02
图的着色算法
贪心算法
总结词
贪心算法是一种在每一步选择中都采取当前状态下最好或最优(即最有利)的选 择,从而希望导致结果是最好或最优的算法。
详细描述
贪心算法在图的着色问题中的应用是通过逐个对顶点进行着色,每次选择当前未 被着色的顶点中颜色数最少的颜色进行着色,直到所有顶点都被着色为止。这种 算法可以保证最小化使用的颜色数量,但并不保证得到最优解。
图论课件-图的顶点着色
AC
所以, (G) 4
7
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
注:对图的正常顶点着色,带来的是图的顶点集合的
一种划分方式。所以,对应的实际问题也是分类问题。 属于同一种颜色的顶点集合称为一个色组,它们彼此不 相邻接,所以又称为点独立集。用点色数种颜色对图G 正常着色,称为对图G的最优点着色。
若G1是非正则单图,则由数学归纳,G1是可Δ (G)顶点 正常着色的,从而,G是可Δ (G)正常顶点着色的。
(2) 容易证明:若G是1连通单图,最大度是Δ ,则
(G) (G)
15
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
(3) Δ (G)≥3
11
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
(1), (v3 )=3
v1
v6
v5
(2),C(v4)=3,C C(v4) 1, 2, 4,5, k 1
(1), (v4 )=1
v2
(2),C(v5)=1,C C(v5) 2,3, 4,5, k 2
v
块
块
块
G -v
17
1
0.5 n 0
0.5
1 2 1.5 t1 0.5 00
1 0.8
0.6 0.4 x 0.2
由于G本身2连通,所以G-xn的每个仅含有一个割点的块 中均有点与xn邻接。设分属于H1与H2中的点x1与x2,它们与 xn邻接。由于x1与x2分属于不同块,所以x1与x2不邻接。又 因为Δ ≥3,所以G-{x1, x2}连通。
第18节图的着色20页PPT
(G-v)≤(G)
由归纳假设G-v是(+1)—可着色的。 但在G中与v相邻的顶点最多有个,与v相邻的顶
点最多用去种颜色,剩下一种给顶点v着色即可. 6
集合与图论
色数的上界
定理3 (布鲁克斯定理) 如果G是一个连通图且不是 完全图也不是奇数长的圈,则G是(G)—可着色的.
对奇数长的圈C2n+1有(C2n+1)=3.
11
集合与图论 边着色的几个结果
定理1 如果p是不为1的奇数,则(Kp)=p. 如果p是偶数,则(Kp)=p-1.
证 (1)证明当p是奇数时,Kp是p边着
色的. 设p是奇数,把Kp的p个顶点安放在正p边形的顶
点上,对正p边形的p个边分别着p个不同色.
而平行于p边形的对角线的边着与这条边同一颜 色,这就得到Kp的一个p—边着色.
集合与图论
问题
问题1 有n项工作,每项工作需要一天的时间完成, 有些工作由于需要相同的人员或设备不能同时进行, 问至少需要几天才能完成所有的工作?
用图描述如下:
用顶点表示工作,如果两项工作需要相同的人员 或设备就用一条边连接对应的顶点。
工作的时间安排对应于这个图的点着色:着同一 种颜色的顶点对应的工作可以安排在同一天,所 需的最少天数正好是这个图的色数。
1
集合与图论
问题
问题2 设星期一有m位老师给n个班上 课,每位老师在同一课时只能给一个班上 课。问:
(1)这一天至少要安排多少节课?
(2)在节数不增加的情况下至少需要多少 教室?
2
集合与图论 图的顶点着色
定义1 图的一种(顶点)着色是指对图的每个顶点 指定一种颜色,使得没有两个相邻的顶点有同一颜色.
算法设计与分析课件--回溯法-图的m着色问题
4
5
C
C
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
X3=3
D
9
5.6 图的m着色问题
GCP示例
1
A
AA
A
A X1=1
2
3
X1=1
X1=1 X1=1
B
B
B
B X2=2
4
5
X2=2
C
X2=2
C
C X3=3
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
7
5.6 图的m着色问题
GCP示例
1
AA
A
2
3
X1=1
X1=1
B
B
X2=2
4
5
C
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
8
5.6 图的m着色问题
GCP示例
1
AA
A
A
2
3
X1=1
X1=1 X1=1
B
B
B
X2=2 X2=2
A
X1=1
2
3
B
X2=2 X2=3
4
5
C
X3=3
G
X3=2
n=5, m=3的GCP: 解形式(x1,x2, x3, x4, x5) xi =1(红色), 2(绿色), 3(蓝色)
D
X4=1
E
X5=3
F
H
X4=1
图的m着色问题
图的m着⾊问题问题给定⽆向连通图G和m种颜⾊,⽤这些颜⾊给图的顶点着⾊,每个顶点⼀种颜⾊。
如果要求G的每条边的两个顶点着不同颜⾊。
给出所有可能的着⾊⽅案;如果不存在,则回答“NO”。
解析利⽤回溯法。
涂的时候从颜⾊1开始到m,每当涂上⼀个⾊,要判断第c个点是否可以涂这个⾊,不可以的话就不再往下涂了,改试另⼀个颜⾊,可以的话就继续。
当c>n的时候即前n个点都涂完了,然后输出结果并cout++计数。
设计if(c>n){//如果涂的数⽬⼤于n,则表⽰已经成功涂完输出color数组;return;}for(int i=1;i<=m;i++){color[c]=i;if(点c可以涂){draw(c+1);}color[c]=0;//回溯}分析有n个点,最坏情况下,每个点需要检查每⼀个⼦节点,复杂度为O(mn),所以总的时间复杂度为O(nm^n)。
源码/*author: kekeproject name:图的m着⾊问题Time Complexity: O(nm^n)*/#include <bits/stdc++.h>using namespace std;#define ll long long#define db doubleconst int maxn = 1010;int n, m, f, t, sum, color[maxn];bool p[maxn][maxn];bool jud(int x) {for (int i = 1; i <= n; i++) {if (p[x][i] && color[x] == color[i]) return false;}return true;}void draw(int x) {if (x > n) {//如果涂⾊数⽬⼤于n,则表⽰已经完成全部涂⾊for (int i = 1; i <= n; i++) cout << color[i] << (i == n ? "\n" : "");++sum;return;}for (int i = 1; i <= m; i++) {color[x] = i;if (jud(x)) draw(x + 1);color[x] = 0;//回溯}}int main() {ios::sync_with_stdio(false);cout << fixed << setprecision(2);cin >> n >> m;while (cin >> f >> t) { //不断读取图的边,建图if (f == 0 && t == 0) break;p[f][t] = p[t][f] = true; //双向边}draw(1);cout << "总共有" << sum << "种涂⾊⽅案" << "\n";return0; // good job! }。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
PPT课件
3
顶点着色-基本概念
• 独立集:对图G=(V,E),设S是V的一个子集,若 中任意两个顶点在G中均不相邻,则称S为G的一 个独立集。
• 最大独立集:如果G不包含适合|S'|>|S|的独立 集S',则称S为G的最大独立集。
• 极大覆盖:设K是G的一个独立集,并且对于V-K 的任一顶点v,K+v都不是G的独立集,则称K是 G的一个极大覆盖。
先求图G的极小覆盖,
பைடு நூலகம்
化简得
(a bd)(b aceg)(c bdef )(d aceg)(e bcdf )( f ceg)(g bdf )
aceg bc deg bdef bdef bcdf
故G的极小覆盖为 {a,c,e, g},{b,c, d,e, g},{b, d,e, f },{b,c, d, f } 取其补集,得到G的所有 极大独立集: • Step2:求出一切若干极大独立集和所有{b,顶d,点f }的,{a子, f集},{a,c, g},{a,e, g}
但上述子集的颜色数都不是X(G),正确的应 该是X(G)=3,该子集为:给{b,d,f}中的 b,d,f涂颜色1,为{a,e,g}中a,e,g涂颜色2为 {a,c,g}中的c涂颜色3。
由此可见,求色数其需要求极大独立集以
及一切若干极大独立集的和含所有顶点的子
集,对于大图,因为图计算量过大而成为实
际上难以凑效的算法,所以不是一个好算法,
(ii)若G为偶图,则X(G)=2 (iii)对任意图G,有X(G)≤Δ+1(这里Δ表示为顶点 数最大值)
PPT课件
5
顶点着色-求顶色数的算法设计
我们由“每个同色顶点集合中的两两顶点不相邻”可以看出,同色顶 点集实际上是一个独立集,当我们用第1种颜色上色时,为了尽可 能扩大颜色1的顶点个数,逼近所用颜色数最少的目的,事实上就 是找出图G的一个极大独立集并给它涂上颜色1。用第2种颜色上色 时,同样选择另一个极大独立集涂色,...,当所有顶点涂色完毕, 所用的颜色数即为所选的极大独立集的个数。
问题来源
图的着色问题是由地图的着色问题引申而来的:用 m种颜色为地图着色,使得地图上的每一个区域 着一种颜色,且相邻区域颜色不同。
问题处理:如果把每一个区域收缩为一个顶点,把 相邻两个区域用一条边相连接,就可以把一个区 域图抽象为一个平面图。
例如,图12-1(a)所示的区域图可抽象为12-1(b) 所表示的平面图。19世纪50年代,英国学者提出 了任何地图都可以4中颜色来着色的4色猜想问题。 过了100多年,这个问题才由美国学者在计算机 上予以证明,这就是著名的四色定理。例如,在 图12-1中,区域用城市名表示,颜色用数字表示, 则图中表示了不同区域的不同着色问题 。
• 布尔恒等式
aa=a
•
a+a=a
• • 如:
(ab bc)(a bd) aba abbd abc+a abbcb=da
ab abd bcd bca bcd
ab bcd
PPT课件
7
求极小覆盖法-布尔代数法
• 例1:求图12-2G的顶色数 解: • Step1:求极大独立集
一般我们采用贪心法等近似算法来求解 。
PPT课件
9
穷举法-Welch Powell着色法
• I.将图G中的结点按度数的递减顺序进行排列
PPT课件
6
求极小覆盖法-布尔代数法
求极小覆盖的方法-布尔代数法:
对于每个顶点v,选择v或者选择v的所有邻 点。首先把“选择顶点v”这个指令记为符号v, 然后对给定的指令x和y,指令“x或y”和“x与y” 分别记为x+y(逻辑和)和x.y(逻辑积)。
• 例如,指令“选择a与b,或者选择b与c”记为 ab+bc。从形式上看,逻辑和与逻辑积类似与集 合的∪和∩,而且关于∪和∩成立的代数法则对 于这两个运算也成立。
当然,上述颜色数未必就是X(G),而且其和能够含所有顶点的极大 独立集个数未必唯一。于是我们必须从一切若干极大独立集的和 含所有顶点的子集中,挑选所用极大独立集个数最小者,其个数 即为所用的颜色数X(G)。
由此可以得算法步骤: Step1:求G图的所有极大独立集; Step2:求出一切若干极大独立集的和含所有顶点的子集; Step3:从中挑选所用极大独立集个数最小值,即为X(G)。
显然我们可以选用4种颜色给每个顶点涂色,或者选
用3种颜色分别给3个极大独立集涂色,例如为{b,d,f}中
的b、d、f涂颜色1,为{a,f}中的a涂颜色2,为{a,c,g} 中
的c和g涂颜色3,为{a,e,g}中的e涂颜色4。
PPT课件
8
求极小覆盖法-布尔代数法
Step3:从中挑选所用极大独立集个数最小者, 即为X(G)
• 极小覆盖:极大独立集的补集称为极小覆盖。 V的子集K是G的极小覆盖当且仅当:对于每个顶 点v或者v属于K,或者v的所有邻点属于K(但两 者不同时成立)。
PPT课件
4
顶点着色-基本概念
• K可着色:G的一个k顶点着色是指k种颜色1,2,…,k对于G各顶点的 一个分配,如果任意两个相邻顶点都分配到不同的颜色,则称着 色是正常的。换句话说,无环图G的一个正常k顶点着色是把V分成
PPT课件
1
问题来源
PPT课件
2
图的着色
• 通常所说的着色问题是指下述两类问题:
• 1.给定无环图G=(V,E),用m种颜色为图中
的每条边着色,要求每条边着一种颜色,并 使相邻两条边有着不同的颜色,这个问题称 为图的边着色问题。
• 2.给定无向图G=(V,E),用m种颜色为图中
的每个顶点着色,要求每个顶点着一种颜色, 并使相邻两顶点之间有着不同的颜色,这个 问题称为图的顶着色问题。
k个(可能有空的)独立集的一个分类(V1,V2,…,Vk)。当G有一个
正常k顶点着色时,就成G是k顶点可着色的。 • G的色数X(G)是指G为k可着色的k的最小值,若X(G)=k,则称G
是k色的。 • 事实上,如果我们将同色的顶点列入一个顶点子集,那么求X(G)
就转为求满足下列条件的最少子集数k: (1)两两子集中的顶点不同; (2)子集中的两两顶点不相邻。 显然有: (i)若G为平凡图,则X(G)=1;