第二章回归分析基本方法

合集下载

气象统计分析与预报方法:08-第二章-回归分析4

气象统计分析与预报方法:08-第二章-回归分析4

▪ 感谢阅读
End Of Curve Estimation
➢非线性回归 2
多项式回归
yi 0 1xi 2 xi2 ... p xip ei
可化为线性的曲线回归 初等函数变换
一般的非线性回归
yi f ( xi , ) ei
用Gauss-Newton 法确定系数向量
感谢阅读
▪ 感谢阅读
▪ 感谢阅读
2.20 162.00 5.09
.79
10.00 12.00 2.48 2.30
8.10 19.00 2.94 2.09
Let Y2=ln(Y), X2=ln(X) Then Y2=ln(b)+b1* ln(X)
14.80 7.90 2.07 2.69
5.5
2.80 178.00 5.18 1.03
参数设置 因变量 自变量
Models (Selection)
中文含义
线性 二次曲线 复合函数 生长曲线 对数函数 三次曲线 S--曲线 指数函数 倒数函数 幂函数 逻辑斯谛函数
其它例子: 1)Y=b0+b1t+b2t2 令:X1=t; X2=t2 则化为线性二元回归方程: Y= b0+b1X1+b2X2 2)Y=a X-b exp(-cX) 取对数:ln(Y)=ln(a)-b*ln(X)-c*X
3.00 135.00
200
11.40
8.90
4.80 6.80 10.20
61.60 39.80 10.00
Example 2:power
100
Observed
Cu b i c
0
P ow er
2
4
6
8

一元线性回归分析

一元线性回归分析

C=α+βy + µ
其中, µ是随机误差项。 是随机误差项。 其中, 是随机误差项 根据该方程, 的值, 根据该方程,每给定一个收入 y 的值,消 并不是唯一确定的, 费C并不是唯一确定的,而是有许多值, 并不是唯一确定的 而是有许多值, 他们的概率分布与µ的概率分布相同 的概率分布相同。 他们的概率分布与 的概率分布相同。 线性回归模型的特征: 线性回归模型的特征: 有随机误差项! 有随机误差项!
21


一、严格地说,只有通过了线性关系的检验,才 严格地说,只有通过了线性关系的检验, 能进行回归参数显著性的检验。 能进行回归参数显著性的检验。 有些教科书在介绍回归参数的检验时没有考虑线 性关系的检验,这是不正确的。 性关系的检验,这是不正确的。因为当变量之间 的关系没有通过线性检验时, 的关系没有通过线性检验时,进行回归参数显著 性的检验是没有意义的。 性的检验是没有意义的。 在一元线性回归分析中, 二、在一元线性回归分析中,即只有一个解释变 量时,这两种检验是统一的。 量时,这两种检验是统一的。但在多元回归分析 这两种检验的意义是不同的。 中,这两种检验的意义是不同的。 为了说明该问题, 为了说明该问题,我们在本章中依然把两种检验 分开论述。 分开论述。
13
为了达到上述目的, 为了达到上述目的,我们直观上会采 用以下准则: 用以下准则: 选择这样的SRF,使得: 选择这样的 ,使得:
残差和∑ ε i = ∑ ( yi − yi )尽可能小! ˆ
但这个直观上的准则是否是一个很好 的准则呢?我们通过以下图示说明: 的准则呢?我们通过以下图示说明:
14
12
ˆx i + ε i yi = α + β ˆ ˆ 即:y i = y i + ε i ˆ ∴ ε i = yi − yi

第二章2.2一元线性回归分析

第二章2.2一元线性回归分析

ˆ β1 ~ N ( β1 ,
∑x
σ2
2 i
)
ˆ β 0 ~ N (β 0 ,
∑ n∑ x
X i2
2 i
σ 2)
22
随机误差项u的方差σ 随机误差项 的方差σ2的估计 的方差
σ2又称为总体方差 总体方差。 总体方差
23
由于随机项ui不可观测,只能利用残差ei (ui的 估计)的样本方差,来估计ui的总体方差σ2 。 样本方差? 样本方差? 可以证明,σ2的最小二乘估计量 最小二乘估计量为: 可以证明 最小二乘估计量
= β1 + P lim(∑ xi µ i / n) P lim(∑ xi2 / n)
xi µ i
2 i
∑x
)
样本协方差? 样本协方差?
Cov ( X , µ ) 0 = β1 + = β1 + = β1 Q Q
21
四、参数估计量的抽样分布及随机项方 差的估计
ˆ ˆ 、 1、参数估计量 β 0 和 β 1 的概率分布
Yi = β0 + β1 X i + ui
i=1
Y为被解释变量,X为解释变量,β0与β1为待估 待估 参数, 随机项。 参数 u为随机项。 随机项
2
回归分析的主要目的是要通过样本回归函数 回归分析的主要目的 (模型)SRF尽可能准确地估计总体回归函数 (模型)PRF。 估计方法有多种,其中最广泛使用的是普通最 普通最 估计方法 小二乘法(ordinary least squares, OLS)。 小二乘法 为保证参数估计量具有良好的性质,通常对模 型提出若干基本假设。 实际这些假设与所采用的估计方法紧密相关。
2
1 X2 = + n ∑ x2 i

第二章简单线性回归模型

第二章简单线性回归模型
2586
4000
2037 2210 2325 2419 2522 2665 2799 2887 2913 3038 3167 3310 3510
2754
4500
2277 2388 2526 2681 2887 3050 3189 3353 3534 3710 3834
3039
5000 5500
2469 2924 2889 3338 3090 3650 3156 3802 3300 4087 3321 4298 3654 4312 3842 4413 4074 4165
Yi 与 E(Yi Xi )不应有偏差。若偏
差u i 存在,说明还有其他影响因素。
Xi
X
u i实际代表了排除在模型以外的所有因素对 Y 的影
响。 u i
◆性质 是其期望为 0 有一定分布的随机变量
重要性:随机扰动项的性质决定着计量经济分析结19
果的性质和计量经济方法的选择
引入随机扰动项 u i 的原因
特点:
●总体相关系数只反映总体两个变量 X 和 Y 的线性相关程度 ●对于特定的总体来说,X 和 Y 的数值是既定的,总体相关系
数 是客观存在的特定数值。
●总体的两个变量 X 和 Y的全部数值通常不可能直接观测,所
以总体相关系数一般是未知的。
7
X和Y的样本线性相关系数:
如果只知道 X 和 Y 的样本观测值,则X和Y的样本线性
计量经济学
第二章 一元线性回归模型
1
未来我国旅游需求将快速增长,根据中国政府所制定的 远景目标,到2020年,中国入境旅游人数将达到2.1亿人 次;国际旅游外汇收入580亿美元,国内旅游收入2500亿 美元。到2020年,中国旅游业总收入将超过3000亿美元, 相当于国内生产总值的8%至11%。

第二章:双变量线性回归分析

第二章:双变量线性回归分析

第⼆章:双变量线性回归分析第三部分初计量经济(13周)经典单⽅程计量经济模型:⼀元线形回归模型经典单⽅程计量经济模型:多元线形回归模型经典单⽅程计量经济模型:放宽基本假定模型第⼀章⼀元线性回归(双变量)(1)回归分析的基本概念(2)前提建设(3)参数估计:OLS的参数估计ML的参数估计(4)统计检验(5)预测(6)时间案例与操作(7)思考与作业§1 经典正态线性回归模型(CNLRM)1、⼀个例⼦注 x 表⽰收⼊,y 表⽰⽀出。

5010015020050100150200250300XYY vs. X5010015020050100150200250300XY 1Y1 vs. X条件分布:以X 取定值为条件的Y 的条件分布条件概率:给定X 的Y 的概率,记为P(Y|X)。

例如,P(Y=55|X=80)=1/5;P (Y=150|X=260)=1/7。

条件期望(conditional Expectation ):给定X 的Y 的期望值,记为E(Y|X)。

例如,E(Y|X=80)=55×1/5+60×1/5+65×1/5+70×1/5+75×1/5=65总体回归曲线(Popular Regression Curve )(总体回归曲线的⼏何意义):当解释变量给定值时因变量的条件期望值的轨迹。

总结总体:总体函数:总体⽅程:样本:样本函数:样本⽅程:2、总体回归函数(PRF)E(Y|X i)=f(X i)当PRF的函数形式为线性函数,则有,E(Y|X i)=β1+β2X i其中β1和β2为未知⽽固定的参数,称为回归系数。

β1和β2也分别称为截距和斜率系数。

上述⽅程也称为线性总体回归函数。

3、PRF的随机设定将个别的Y I围绕其期望值的离差(Deviation)表述如下:u i=Y i-E(Y|X i)或Y i=E(Y|X i)+u i其中u i是⼀个不可观测的可正可负的随机变量,称为随机扰动项或随机误差项。

第2章多元回归分析

第2章多元回归分析
第二章 多元回归分析:估计
y = b0 + b1x1 + b2x2 + . . . bkxk + u
1
Multiple Regression Analysis
y = b0 + b1x1 + b2x2 + . . . bkxk + u
1. Estimation
2
Parallels with Simple Regression
fIrno mthethgeefniersrtalocrdaeser cwointhd iktioinnd, ewpeencdanengtevt akriab1 les,
lwineeasreeeqkueasttiiomnastienskbˆ0,1bˆu1,n k n,obˆwk
tynˆheryebiˆf0orbeˆb,0ˆ1mx1ibnˆ1ixmi1 izebˆtkhxekbˆskuxmik of
The STATA command
Use [path]wage1.dta (insheet using [path]wage1.raw/wage1.txt) Reg wage educ exper tenure Reg lwage educ exper tenure
7
A “Partialling Out” Interpretation
8
“Partialling Out” continued
Previous equation implies that regressing y on x1 and x2 gives same effect of x1 as regressing y on residuals from a regression of x1 on x2

第二章 一元线性回归

第二章 一元线性回归

n ei 0 i 1 n xe 0 i i i 1
经整理后,得正规方程组
n n ˆ ˆ n ( x ) 0 i 1 yi i 1 i 1 n n n ( x ) ˆ ( x 2 ) ˆ xy i 0 i 1 i i i 1 i 1 i 1
y ˆ i 0 1xi ˆi 之间残差的平方和最小。 使观测值 y i 和拟合值 y
ei y i y ˆi
n
称为yi的残差
ˆ , ˆ ) ˆ ˆ x )2 Q( ( y i 0 1i 0 1
i 1
min ( yi 0 1 xi ) 2
i
xi x
2 ( x x ) i i 1 n
yi
2 .3 最小二乘估计的性质
二、无偏性
ˆ ) E ( 1
i 1 n
n
xi x
2 ( x x ) j j 1 n
其中用到
E ( yi )
( x x) 0 (xi x) xi (xi x)2
二、用统计软件计算
1.例2.1 用Excel软件计算
什么是P 值?(P-value)
• P 值即显著性概率值 ,Significence Probability Value

是当原假设为真时所得到的样本观察结果或更极端情况 出现的概率。
P值与t值: P t t值 P值



它是用此样本拒绝原假设所犯弃真错误的真实概率,被 称为观察到的(或实测的)显著性水平。P值也可以理解为 在零假设正确的情况下,利用观测数据得到与零假设相 一致的结果的概率。
2 .1 一元线性回归模型

第二章 一元线性回归模型 知识点

第二章 一元线性回归模型 知识点

第二章一元线性回归模型一、知识点列表二、关键词1、回归分析基本概念关键词:回归分析在计量经济学中,回归分析方法是研究某一变量关于另一(些)变量间数量依赖关系的一种方法,即通过后者观测值或预设值来估计或预测前者的(总体)均值。

回归的主要作用是用来描述自变量与因变量之间的数量关系,还能够基于自变量的取值变化对因变量的取值变化进行预测,也能够用来揭示自变量与因变量之间的因果关系关键词:解释变量、被解释变量影响被解释变量的因素或因子记为解释变量,结果变量被称为被解释变量。

2、回归模型的设定关键词:随机误差项(随机干扰项)不包含在模型中的解释变量和其他一些随机因素对被解释变量的总影响称为随机误差项。

产生随机误差项的原因主要有:(1)变量选择上的误差;(2)模型设定上的误差;(3)样本数据误差;(4)其他原因造成的误差。

关键词:残差项(residual )通过样本数据对回归模型中参数估计后,得到样本回归模型。

通过样本回归模型计算得到的样本估计值与样本实际值之差,称为残差项。

也可以认为残差项是随机误差项的估计值。

3、一元线性回归模型中对随机干扰项的假设 关键词:线性回归模型经典假设线性回归模型经典假设有5个,分别为:(1)回归模型的正确设立;(2)解释变量是确定性变量,并能够从样本中重复抽样取得;(3)解释变量的抽取随着样本容量的无限增加,其样本方差趋于非零有限常数;(4)给定被解释变量,随机误差项具有零均值,同方差和无序列相关性。

(5)随机误差项服从零均值、同方差的正态分布。

前四个假设也称为高斯马尔科夫假设。

4、最小二乘估计量的统计性质关键词:普通最小二乘法(Ordinary Least Squares ,OLS )普通最小二乘法是通过构造合适的样本回归函数,从而使得样本回归线上的点与真实的样本观测值点的“总体误差”最小,即:被解释变量的估计值与实际观测值之差的平方和最小。

ββ==---∑∑∑nn n222i i 01ii=111ˆˆmin =min ()=min ()i i i i u y y y x关键词:无偏性由于未知参数的估计量是一个随机变量,对于不同的样本有不同的估计量。

第二章回归分析ppt课件

第二章回归分析ppt课件

U和Q的相对大小反映了因子x对y的影响程度, 在n固定的情况下,如果回归
方差所占y方差的比重越大,剩余方差所占的比重越小,就表明回归的效果
越好, 即:x的变化对y的变化起主要作用, 利用回归方程所估计出的ŷ也会
越接近观测值y。
ŷ的方差占y的方差的比重(U/(U+Q))可作为衡量回归模型效果的标准:
ŷ
y -y
ŷ -y
y
x
syy
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
y)2
1 n
n t 1
( yt
yt )2
“回归平方和”与“剩余平方和”
对上式两边分别乘以n,研究各变量的离差平方和的关系。为避免过多数学符
号,等号左边仍采用方差的记号syy。
n
n
syy ( yt y)2 ( yt yt )2 U Q
回忆前文所讲, y的第i个观测值yi服从怎样的分布?
yi ~ N (β0 +βxi , σ2)
e=yi- (β0 +βxi ) 服从N(0, σ2)
于是, yi (0 xi ) 服从标准正态分布N (0,1)
0.4
在95%的置信概率下:
因为定理: 若有z ~ N (, 2 ), 则有 z ~ N (0,1)
通过方差分析可知,可用“回归平方和”U与“剩余平方和”Q的比值来衡 量回归效果的好坏。可以证明,假设总体的回归系数为0的条件下,统计 量:
U
F=
1 Q
注意Q的自由度为n-2, 即:残差e的方差的无 偏估计为:Q/(n-2)
n2 服从分子自由度为1,分母自由度为n - 2的F分布
上式可以用相关系数的平方来表示:

第二章回归分析中的几个基本概念

第二章回归分析中的几个基本概念

第二章回归分析中的几个基本概念第一节回归的含义“回归”(Regression)一词最初是由英国生物学家兼统计学家F.Galton(F·高尔顿)在一篇著名的遗传学论文中引入的(1877年)。

他在研究中发现,具有较高身躯的双亲,或具有较矮身躯的双亲尔,其子女的身高表现为退回(即回归)到人的平均身高趋势。

这一回归定律后来被统计学家K·Pearson通过上千个家庭成员身高的实际调查数据进一步得到证实,从而产生了“回归”这一名称。

然而,现代意义上的“回归”比其原始含义要广得多。

一般来说,现代意义上的回归分析是研究一个变量(也称为explained variable或因变量dependent variable)对另一个或多个变量(也称为解释变量explanatory variable或自变量independent variable )的依赖关系,其目的在于通过解释变量的给定值来预测被解释变量的平均值或某个特定值。

具体而言,回归分析所要解决的问题主要有:(1)确定因变量与自变量之间的回归模型,并依据样本观测值对回归模型中的参数进行估计,给出回归方程。

(2)对回归方程中的参数和方程本身进行显著性检验。

(3)评价自变量对因变量的贡献并对其重要性进行判别。

(4)利用所求得的回归方程,并根据自变量的给定值对因变量进行预测,对自变量进行控制。

第二节统计关系与回归分析一、变量之间的统计关系现象之间的相互联系一般可以分为两种不同的类型:一类为变量间的关系是确定的,称为函数关系;而另一类变量之间的关系是不确定的,称为统计关系。

变量之间的函数关系表达的是变量之间在数量上的确定性关系,即一个或几个变量在数量上的变动就会引起另一个变量在数量上的确定性变动,它们之间的关系可以用函数关系y f x=准确地加以描述,这里x可以是一个向量。

当知道了变量x的值,就可以计算出一()个确切的y值来。

变量之间统计关系,是指一个或几个变量在数量上的变动会引起另一个变量数量上发生变动,但变动的结果不是惟一确定的,亦即变量之间的关系不是一一对应的,因而不能用函数关系进行表达。

计量经济学(2012B)(第二章多元线性回归)详解

计量经济学(2012B)(第二章多元线性回归)详解

2 2i
n
n
2 i
i ( yi ˆ1x1i ˆ2 x2i )
i 1
i 1
n
i yi
n
(
y
ˆ x
ˆ x
) y
i1
i
1 1i
2 2i
i
i 1
n
y 2

n
x
y
ˆ
n
x
y )
i1
i
1 i1 1i i
2 i1 2 i i
TSS ESS
2.5 单个回归参数的置信区间 与显著性检验
一、置信区间
H (4)
的拒绝域为:
0
F F (2, n 3)
(5) 推断:若
F F (2, n 3)
,则拒绝 H , 0
认为回归参数整体显著;
H 若 F F (2, n 3)
,则接受

0
认为回归参数整体上不显著。
回归结果的综合表示
yˆi 0.0905 0.426x1i 0.0084x2i
Sˆj : 或 t:
模型的估计效果. (5) 拟合优度与F 检验中的 F 统计量的关系是什么?这两个
量在评价二元线性回归模型的估计效果上有何区别? (6) 试比较一元线性回归与二元线性回归的回归误差,哪
个拟合的效果更好?
应用:
(1)预测当累计饲料投入为 20磅时,鸡的平均
重量是多少? yˆ 5.2415 f
(磅)
(2)对于二元线性回归方程,求饲料投入的边际生产率?
(0.1527) (0.0439)
(0.5928) (9.6989)
(0.0027) (3.1550)
R2 0.9855, R2 0.9831 , F 408.9551

第二章 回归分析与相关分析(2)

第二章 回归分析与相关分析(2)

第二章 回归分析与相关分析§3 多元线性回归分析在现实地理系统中,任何事物的变化都是多种因素影响的结果,一因多果、一果多因的情况比比皆是。

为了处理一果多因的因果关系问题,我们需要掌握多元线性回归知识。

本节着重讲述二元线性回归分析。

至于三元以上,基本原理可以依此类推。

1 基本模型二元线性回归模型可以表为2211x b x b a y ++=, (3-1)式中a 、b 1、b 2为待定的偏回归参数(partial regression coefficient )。

理论上的预测模型为i i i x b x b a y2211ˆ++=. (3-2) 原则上讲,式(3-2)中的参数a 、b 1、b 2与式(3-1)中的a 、b 1、b 2是有区别的:式(3-1)的是真实的系数值,式(3-2)的是计算的系数值。

但为了方便起见,我们不作符号上的区分。

实测数据的模型可以表作d yd x b x b a y i i i i i ±=±++=ˆ2211, (3-3) 从而i i i i i i x b x b a y yy d 2211ˆ---=-=. (3-4) 令min )(12221112→---==∑∑==ni i i i n i i x b x b a y d S . (3-5)为求极值,分别对a 、b 1、b 2求偏导,并令其为零,可得0)(22211=---=∂∂∑ii i i x b x b a y a S, (3-6) 0)(2122111=---=∂∂∑i ii i i x x b x b a y b S, (3-7)0)(2222111=---=∂∂∑i ii i i x x b x b a y b S. (3-8) 上面三式可以化为正规方程形式⎪⎪⎩⎪⎪⎨⎧=++=++=++∑∑∑∑∑∑∑∑∑∑∑i i i i i ii i i i i i i i i y x x b x x b x a y x x x b x b x a y x b x b an 22222112121221112211. (3-9) 根据线性代数的有关原理,可令∑∑∑∑∑∑∑∑∑=222122121121iiiiiiiiiii i i x x x y x xx x y x xx y A , ∑∑∑∑∑∑∑∑=2222211121ii iiiiiii i i x y x xx x y x x x y nB ,∑∑∑∑∑∑∑∑=iiiiii iiii i yx x x x yx x x yx n B 2212121112, ∑∑∑∑∑∑∑∑=222122121121iiiiiiii i i xx x xx x x x x x nC .借助Cramer 法则容易得到C Aa =,C B b 11=,CB b 12=. (3-10) 2 回归结果的检验检验的类型与一元线性回归相似,包括相关系数检验、标准误差检验、F 检验、t 检验和DW 检验。

计量经济学 第二章 一元线性回归模型

计量经济学 第二章 一元线性回归模型

计量经济学第二章一元线性回归模型第二章一元线性回归模型第一节一元线性回归模型及其古典假定第二节参数估计第三节最小二乘估计量的统计特性第四节统计显著性检验第五节预测与控制第一节回归模型的一般描述(1)确定性关系或函数关系:变量之间有唯一确定性的函数关系。

其一般表现形式为:一、回归模型的一般形式变量间的关系经济变量之间的关系,大体可分为两类:(2.1)(2)统计关系或相关关系:变量之间为非确定性依赖关系。

其一般表现形式为:(2.2)例如:函数关系:圆面积S =统计依赖关系/统计相关关系:若x和y之间确有因果关系,则称(2.2)为总体回归模型,x(一个或几个)为自变量(或解释变量或外生变量),y为因变量(或被解释变量或内生变量),u为随机项,是没有包含在模型中的自变量和其他一些随机因素对y的总影响。

一般说来,随机项来自以下几个方面:1、变量的省略。

由于人们认识的局限不能穷尽所有的影响因素或由于受时间、费用、数据质量等制约而没有引入模型之中的对被解释变量有一定影响的自变量。

2、统计误差。

数据搜集中由于计量、计算、记录等导致的登记误差;或由样本信息推断总体信息时产生的代表性误差。

3、模型的设定误差。

如在模型构造时,非线性关系用线性模型描述了;复杂关系用简单模型描述了;此非线性关系用彼非线性模型描述了等等。

4、随机误差。

被解释变量还受一些不可控制的众多的、细小的偶然因素的影响。

若相互依赖的变量间没有因果关系,则称其有相关关系。

对变量间统计关系的分析主要是通过相关分析、方差分析或回归分析(regression analysis)来完成的。

他们各有特点、职责和分析范围。

相关分析和方差分析本身虽然可以独立的进行某些方面的数量分析,但在大多数情况下,则是和回归分析结合在一起,进行综合分析,作为回归分析方法的补充。

回归分析(regression analysis)是研究一个变量关于另一个(些)变量的具体依赖关系的计算方法和理论。

第二章 一元线性回归分析基础

第二章 一元线性回归分析基础

加,消费增加,但消费的增长低于收入的增长,即消
费对收入的弹性小于1。它的数学表述为
Y X
0
Y X
1,
Y X
Y X
其中Y为消费额,X为收入。
该线性方程描述了消费与收入之间的确定关系,即给定 一个收入值,可以根据方程得到一个唯一确定的消费值。 但实际上消费与收入间的关系不是准确实现的。
原因:入随机误差项,将变量之间的关系用一个线性 随机方程来描述,用随机数学的方法来估计方程中的 参数,这就是线性回归模型的特征,也就是线性计量 经济学模型的特征。
二、一元线性回归模型
单方程线性回归模型的一般形式为
Yi 1 2 X2i 3 X3i k Xki ui ,i 1,2, ,n 其中Y为被解释变量,X 2 ,X 3 , ,X n 为解释变量。
化。
如果误差项的方差不同,那么与其对应的观测值Yi的可 靠程度也不相同。这会使参数的检验和利用模型进行预 测复杂化。而满足同方差假设,将使检验和预测简化。
假设3 表示不同的误差项之间互相独立,同时,不同的 被解释变量在统计上也是互相独立的。即
Cov(Yi, Yj)= E(Yi-E(Yi)) (Yj-E(Yj))= E(uiuj)=0, i≠j 假假设设4,自通动常满X足i为,确即定性变量,即非随机变量,此时,该
也可以用显函数形式表示为 Y f ( X1,X 2 , ,X n )
其中最简单的形式为一元线性函数关系。
例如 当某种商品单价P固定不变,其销售收入y与销售 的商品数量x之间的关系为一元线性关系,即y = Px
如果用x,y构成的直角坐标图来表示,上式所表示的 函数关系为一条经过坐标原点的直线,所有可能的点 都在这条直线上。
Cov(ui, Xi)= E(ui-E(ui)) (Xi-E(Xi))=0,i=1,2, ……,n 假设5 随机误差项服从零均值,同方差的正态分布。即

第二章回归分析中的几个基本概念

第二章回归分析中的几个基本概念

第二章回归分析中的几个基本概念1. 回归模型(Regression Model):回归模型是回归分析的基础,用来描述两个或多个变量之间的关系。

回归模型通常包括一个或多个自变量和一个或多个因变量。

常用的回归模型有线性回归模型和非线性回归模型。

线性回归模型是最简单的回归模型,其中自变量和因变量之间的关系可以用一条直线来表示。

线性回归模型的表达式为:Y=β0+β1*X1+β2*X2+...+βn*Xn+ε其中,Y表示因变量,X1、X2、…、Xn表示自变量,β0、β1、β2、…、βn表示回归系数,ε表示误差项。

2. 回归系数(Regression Coefficients):回归系数是回归模型中自变量的系数,用来描述自变量对因变量的影响程度。

回归系数可以通过最小二乘法估计得到,最小二乘法试图找到一组系数,使得模型的预测值和实际观测值的误差平方和最小。

回归系数的符号表示了自变量与因变量之间的方向关系。

如果回归系数为正,表示自变量的增加会使因变量增加,即存在正向关系;如果回归系数为负,表示自变量的增加会使因变量减少,即存在负向关系。

3. 拟合优度(Goodness-of-fit):拟合优度是用来评估回归模型对样本数据的拟合程度。

通常使用R方(R-squared)来度量拟合优度。

R 方的取值范围在0到1之间,越接近1表示模型对数据的拟合程度越好。

R方的解释是,回归模型中自变量的变异能够解释因变量的变异的比例。

例如,如果R方为0.8,表示模型中自变量解释了因变量80%的变异,剩下的20%可能由其他未考虑的因素引起。

4. 显著性检验(Significance Test):显著性检验用于判断回归模型中自变量的系数是否显著不为零,即自变量是否对因变量有显著影响。

常用的方法是计算t值和p值进行检验。

t值是回归系数除以其标准误得到的统计量。

p值是t值对应的双侧检验的概率。

如果p值小于给定的显著性水平(通常是0.05),则可以拒绝原假设,即认为回归系数显著不为零,即自变量对因变量有显著影响。

第二章 回归分析概要3(一元统计检验)

第二章 回归分析概要3(一元统计检验)

第二章 回归分析概要第三节 一元线性回归模型的统计检验根据第一章第二节里,我们讲过的计量经济学模型检验规则可知,在利用OLS 法估计了一元线性回归模型的参数,并确定了样本回归线后,首先要根据经济理论及实际问题中X 和Y 的对应关系,对回归系数的符号、大小及相互关系进行直观判断,如果上述检验通过的话,还须对估计值进行统计学检验。

回归分析是要通过样本所估计的参数来代替总体的真实参数,或者说是用样本回归线来替代总体回归线。

尽管,从统计性质上已知,如果有足够多的重复抽样,参数的估计值的期望(均值)就等于总体的参数真值,但是,在一次抽样中,估计值不一定就等于该真值。

那么,在一次抽样中,参数的估计值与真值的差异有多大,是否显著,这就需要进一步进行统计检验,主要包括拟合优度检验、变量的显著性检验以及参数检验的置信区间估计。

一、拟合优度检验拟合优度检验,顾名思义,是检验模型对样本观测值的拟合程度(即回归直线对观测值的拟合程度)。

显然,若样本观测值离回归直线越近,则拟合优度越好,X 对Y 的解释程度越强;反之,则拟合优度差,X 对Y 的解释程度弱。

(参看课本44页图3.2.3)因为样本值太多,分别考察每一个离差是不切实际的,又为了克服绝对值符号在计算上带来的不便,因此,常使用离差平方和来考察总离差(推导过程课本44页)。

被解释变量的总离差平方和TSS可解释平方和(回归平方和)ESS 残差平方和RSS 因此,显然,ESS 在TSS 的构成中所占比例越大,RSS 在TSS 中所占的比例就越小,说明回归参数估计值的显著性越强,即样本回归线与真实回归线的拟合优度就越好。

因此,可以用ESS 在TSS 中所占的比例表示样本回归线与总体回归线的拟合程度。

二、变量的显著性检验 1. 相关系数的检验样本相关系数定义公式:)ˆ()ˆ(t t t t y y y y y y -+-=-RSS ESS TSS uRSS y yESS y y TSS t t t +==-=-=∑∑∑222)ˆ()ˆ()(100,01)()ˆ(22222≤≤∴≤≤≤≤-=--==∑∑R TSS ESS TSS RSS TSSRSS R y y y y TSS ESS R t t样本相关系数的性质:(1) r 的取值介于-1和1之间。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、随机扰动项

? i ? Yi ? E(Y | Xi )
称? i为观察值Yi围绕它的期望值 E(Y|Xi)的离差
(deviation ),是一个不可观测的随机变量,又称 为随机干扰项 (stochastic disturbance )或随机误 差项(stochastic error )。
(*)
第二章 回归分析的基本方法
回归分析概述 线性回归模型及假定 线性回归模型的参数估计
§2.1 回归分析概述
一、变量间的关系及回归分析的基本概念 二、一元总体回归函数 三、随机扰动项 四、一元样本回归函数、变量间的关系及回归分析的基本概念
1、变量间的关系 经济变量之间的关系,大体可分为两类:
正相关 线性相关 不相关 相关系数:
统计依赖关系
负相关 ? 1 ? ? XY ? 1
正相关 非线性相关 不相关
负相关
有因果关系 回归分析 无因果关系 相关分析
▲注意:
①不线性相关并不意味着不相关; ②有相关关系并不意味着一定有因果关系; ③回归分析 /相关分析 研究一个变量对另一个 (些)变量的统计依赖关系,但它们并不意味着一定 有因果关系。 ④相关分析 对称地对待任何(两个)变量,两个 变量都被看作是随机的。 回归分析对变量的处理方法 存在不对称性,即区分应变量(被解释变量)和自变 量(解释变量):前者是随机变量,后者不是。
回归分析构成计量经济学的方法论基础,其主要内容包括: (1)根据样本观察值对经济计量模型参数进行估计,求得回 归方程;
(2)对回归方程、参数估计值进行显著性检验; (3)利用回归方程进行分析、评价及预测。
二、一元总体回归函数
回归分析关心的是根据解释变量的已知或 给定值,考察被解释变量的总体均值,即当解 释变量取某个确定值时,与之统计相关的被解 释变量所有可能出现的对应值的平均值。
(1)确定性关系 或函数关系 :研究的是 确定现象非随机变量间的关系。
(2)统计依赖 或相关关系: 研究的是非确 定现象随机变量间的关系。
例如: 函数关系:
圆面积 ? f ?? ,半径 ?? ? ?半径 2
统计依赖关系 /统计相关关系:
农作物产量? f ?气温, 降雨量, 阳光, 施肥量?
对变量间统计依赖关系的考察主要是通过相关分析(correlation analysis)或回归分析(regression analysis)来完成的:
? 概念:
在给定解释变量 Xi条件下被解释变量 Yi的期望 轨迹称为一元总体回归线 (population regression line),或更一般地称为 一元总体回归曲线 (population regression curve )。
相应的函数:
E(Y | Xi ) ? f (Xi )
称为(双变量) 一元总体回归函数 (population regression function , PRF)。
由于方程中引入了随机项,成为计量经济模型,因此 也称为一元样本回归模型(sample regression model)。
▼回归分析的主要目的 :根据样本回归函数 SRF,估计 总体回归函数PRF。
即,根据
Yi ? Y?i ? ei ? ??0 ? ??1 Xi ? ei
估计
Yi ? E(Y | Xi ) ? ? i ? ? 0 ? ? 1 Xi ? ? i
样本散点图近似于一条直线,画一条直线以尽好地拟合该 散点图,由于样本取自总体,可以该线近似地代表总体回归线。 该线称为一元样本回归线(sample regression lines)。
记样本回归线的函数形式为:
Y?i ? f ( Xi ) ? ??0 ? ??1 Xi
称为一元样本回归函数(sample regression function, SRF)。
? 含义:
回归函数( PRF)说明被解释变量 Y的平均状 态(总体条件期望)随解释变量 X变化的规律。
? 函数形式:
可以是线性或非线性的。
E(Y | Xi ) ? ? 0 ? ? 1 Xi
为一线性函数。 其中,?0,?1是未知参数,称为
回归系数 (regression coefficients )。 。
2、回归分析的基本概念
回归分析(regression analysis)是研究一个变量关于另一个 (些)变量的具体依赖关系的计算方法和理论。
其用意:在于通过后者的已知或设定值,去估计和(或)预 测前者的(总体)均值。
这里:前一个变量被称为被解释变量(Explained Variable ) 或应变量(Dependent Variable ),后一个(些)变量被称为解 释变量(Explanatory Variable )或自变量(Independent Variable )。
产生并设计随机误差项的主要原因: 1)理论的含糊性; 2)数据的欠缺; 3)节省原则。
四、一元样本回归函数(SRF)
总体的信息往往无法掌握,现实的情况只能是在 一次观测中得到总体的一个样本。
问题:能从一次抽样中获得总体的近似的信息吗? 如果可以,如何从抽样中获得总体的近似信息?
该样本的散点图(scatter diagram) :
(*)式称为一元总体回归函数 (方程) PRF的随 机设定形式。表明被解释变量除了受解释变量的系统 性影响外,还受其他因素的随机性影响 。
由于方程中引入了随机项,成为计量经济学模型, 因此也称为 一元总体回归模型 。
随机误差项主要包括下列因素的影响: 1)在解释变量中被忽略的因素的影响; 2)变量观测值的观测误差的影响; 3)模型关系的设定误差的影响; 4)其它随机因素的影响。
注意: 这里将样本回归线 看成总体回归线 的近似替代

样本回归函数的随机形式 /样本回归模型 :
同样地,样本回归函数也有如下的随机形式:
Yi ? Y?i ? ??i ? ??0 ? ??1 Xi ? ei
式中,ei 称为(样本)残差(或剩余)项(residual),代表
了其他影响Yi 的随机因素的集合,可看成是? i 的估计量??i 。
注意:这里PRF可能永 远无法知道。
§2.2 线性回归模型
相关文档
最新文档