排桩+预应力锚索 基坑支护 3附图--总平面图

合集下载

预应力锚索+排桩基坑支护技术简介

预应力锚索+排桩基坑支护技术简介

预应力锚索+排桩基坑支护技术简介随着城市的高速发展,城市用地越来越紧缺,结合城市建设和改造开发大型地下空间已成为一种必然趋势,诸如高层建筑多层地下室、地下铁道及地下车站、地下道路、地下停车库等,基坑开挖深度也越来越深,因此基坑支护成为深基坑工程的重中之重。

在兰州市安宁区金牛路西侧地下停车场基坑工程中,采用了预应力锚索+排桩支护技术。

本文结合该工程对预应力锚索+排桩基坑支护技术及其工程应用进行了研究,取得的结论如下:(1)通过布设预应力锚索可以有效地减小桩身的内力,锚索在作用过程中,打入锚索的位置附近桩身钢筋的应力减小,但在其他位置桩身钢筋的应力受锚索拉力的影响就比较小了。

(2)排桩的嵌固深度并不是越长越好,嵌固深度过长,并不可以改善它的受力情况。

关键词:深基坑;基坑支护;预应力锚索+排桩支护;工程应用;1.1 选题依据随着经济实力的提升,城市的发展越来越快,与此同时,城市也变得日渐拥挤,在城市里开发地下空间已经是一种必要的选择,比如高层建筑多层地下室、地下停车场、地下商场以及地下仓库等。

目前地下空间的开发规模变得越来越大,例如近些年来上海市地下空间的开发面积越来越大,其中面积达到10~302410m ⨯的项目就有几十个;除了基坑面积日渐变大之外,基坑的开挖深度也变得越来越深,普通的基坑深度都在16~25m 以上,上海地铁四号线董家渡修复基坑的深度更是达到了41m 。

这些大型基坑一般都位于城市的中心地带,基坑的周边往往布设着各种地下管线、各类建筑物、地铁隧道等各种地下构筑物,施工场地紧张、工期紧、施工条件复杂、地质条件复杂、周边设施环境保护要求高。

这些问题给基坑工程的设计和施工带来的的难度非常大,重大恶性基坑事故不断发生,工程建设的安全问题越来越严峻[]1。

基坑的支护结构首先直接承受着基坑施工阶段的侧向土压力以及水压力,然后再把这些压力传递到支撑体系。

在需要隔水的基坑工程中,当周边的支护结构不具备隔水功能时,需要在支护结构的外侧布设隔水帷幕。

深基坑支护中锚杆的预应力与摩阻力试验

深基坑支护中锚杆的预应力与摩阻力试验

第6卷第5期2007年10月 江南大学学报(自然科学版)Journal of Jiangnan U niversity(N atural Science Edition) Vol.6 No.5Oct. 2007 文章编号:1671-7147(2007)05-0588-05 收稿日期:2006-05-02; 修订日期:2006-08-20. 基金项目:国家自然科学基金项目(50678158). 作者简介:王景春(1968-),男,河北隆尧人,教授.主要从事岩土工程方面的教学与研究.Email :wjc36295@深基坑支护中锚杆的预应力与摩阻力试验王景春1, 徐日庆1, 侯卫红2(1.浙江大学软弱土与环境土工教育部重点实验室,浙江杭州310027;2.石家庄铁道学院土木分院,河北石家庄050043)摘 要:锚杆支护在国内深基坑开挖和支护中得到了广泛应用,但对其工作机理和计算方法的研究尚不够完善.以1个预应力锚杆支护的深基坑工程为实例,对工程锚杆进行了试验.通过试验,测试了锚固体在岩土中摩阻力的分布规律及其锚杆中的预应力变化,校验了锚杆的设计数据,为工程提供了设计依据.测试结果表明,锚固体与岩土体间的摩阻力沿锚杆长度不是均匀分布的,其分布规律与摩阻力水平有关,在孔口附近最大,从孔口沿锚杆长度逐渐衰减.锚杆的预应力随着时间变化,其变化与注浆量、锚杆的位置及其锁定荷载有关.锚杆杆体的受力变化对基坑开挖较为敏感,同时围护墙体的水平位移对其有一定的影响.关键词:锚杆;深基坑;试验;抗拔;摩阻力;预应力中图分类号:TU 45文献标识码:AExperimental R esearch on Prestress and FrictionForce of Anchors for Deep ExcavationWAN G Jing 2chun 1, XU Ri 2qing 1, HOU Wei 2hong 2(1.Key Laboratory of Soft Soils and Ceoenvironmental Engineering ,Ministry of Education ,Zhejiang University ,Hangzhou 310027,China ; 2.Department of Civil Engineering ,Shijiazhuang Railway Institute ,Shijiazhuang 050043,China )Abstract :The retaining of anchors is widely used in China ,but t he p rinciple and calculating met hod for soil anchor are not so perfect.In t his paper ,t he researches and test on soil anchors is carried out based on a deep excavation.The dist ribution of t he f riction force on t he interface between soil and mortar and t he variation of p ret ress in anchors are obtained t hrough test.The result shows t he distribution of t he f riction force is not uniform and t he stress attenuates along t he lengt h of anchor ,which is t he maximal in t he orifice of hole and related to t he level of f riction force.The p ret ress in anchor varies in time and is correlative to t he grouting amount ,location for it self and locking load.The p ullout resistance of anchor is sensitive to t he excavating for deep excavatio n ,and t he displacement of retaining wall is influenced in certain degree when applying p restress on t he anchor.K ey w ords :soil anchor ;deep excavation ;site test ;p ullout resistance ;f riction force ;prest ress 锚杆排桩支护结构(或桩锚式支护结构)或锚杆支护地下连续墙支护结构是深基坑支护的常用结构,它适用于基坑周围施工宽度狭小、且邻近无深基础建筑物的工程[1].使用锚杆,可以充分发挥岩土体自身的稳定能力,且可代替内支撑,直接扩大作业空间.随着锚固技术的发展,锚杆在深基坑工程中的应用日益广泛,对锚固理论的研究也日益深入,主要集中在锚固荷载传递机理和加固效应两大内容上[224].但总的来说,对它的工作机理和计算方法研究尚不完善,对它实际受力情况也尚不十分了解[526].在基坑开挖过程中,锚杆的加入改变了围护结构的受力状态,约束了基坑边坡位移的发展,锚杆的受力又反映了基坑的稳定状态和锚杆支护的工作性能.锚杆的现场试验可以提供一种手段,使设计人员能够检验所作的设计和假设,验证解析解和数值模型[7].文中以一个预应力锚杆支护的深基坑工程为实例,进行了锚杆的现场试验,测试结果有助于揭示锚杆支护的作用机理,较全面分析其工作性能,为设计与施工的改进提供指导和帮助.1 工程概况与支护结构方案 某商厦由主楼和裙楼构成,其中48层的主楼为商业中心,为筒中筒结构;裙楼为8层的购物中心,框架结构,地下2层(局部3层),占地面积约为18000m2,基坑开挖深度为9m.该建筑地处闹市区,四面临街,因而对基坑围护结构的要求较高.该工程的地质状况如图1所示.其土层分布自上而下依次为Ⅰ层素填土、Ⅱ层粉质粘土、Ⅲ层粉质粘土与粉土、Ⅳ层细砂、Ⅴ层粉质粘土.整体来看场地的土层较均匀,基础采用箱基+桩基.该场地的地下水较丰富,地下水位在地面以下2.0m,水随季节变化有所升降,年变幅为0.5~1.0m.图1 地质剖面与围护结构简图Fig.1 Sketch for geological section and retaining structu re 基坑平面为不规则抹角长方形(160m×90 m),采用地下连续墙+预应力锚杆围护结构(见图1).地下连续墙厚0.7m,高18m,墙入基底9.0m.预应力锚杆长23m,位于地面下2.3m,间距0.80 m.采用20°和15°相间隔的倾角,锚杆锚固段长18 m,采用3根25的20MnSi钢.锚固土层为粉质粘土,天然容重为19.8kN/m3,固结快剪强度指标为c=15.4kPa,φ=19.2°2 锚杆的试验结果与分析2.1 锚杆的抗拔试验通常认为锚杆的破坏形态有:1)注浆体与岩土体间剪切破坏;2)锚杆杆体抗拉强度破坏;3)锚杆杆体与注浆体界面破坏;4)锚杆埋入稳定地层能够使地层呈锥体拔出.一般情况下第4种破坏不会发生,锚杆杆体的强度也很容易计算和控制,而对软岩和土层情况,锚杆的承载力通常不由杆体与注浆体间握裹力控制,而由注浆体与岩土体间极限剪切强度确定.根据《土层锚杆设计与施工规范》(CCES222 90)[8],需对锚杆进行抗拔试验,以确定锚杆的施工质量,检验锚杆是否达到设计要求.根据场区的岩土情况,进行了2组6根锚杆的破坏性试验.试验锚杆分布在场区的不同位置.锚孔的直径130,使用425R普通硅酸盐水泥,水灰比为0.45,锚杆的自由段长5m且不注浆.典型锚杆的基本试验曲线(Q2S 曲线)见图2.图2 锚杆的Q2S曲线Fig.2 The representative Q2S curves of anchor 根据现场拉拔试验,6根锚杆的承载力分别为372、414、427、367、408和397kN,满足了锚杆在粉质粘土中工作荷载要求达到350kN的设计要求. 2.2 锚杆杆体的受力变化规律研究锚杆杆体受力分布规律的试验,是通过在杆体的不同位置粘贴电阻应变片进行的.试验在对985 第5期王景春等:深基坑支护中锚杆的预应力与摩阻力试验锚杆施加预应力并锁定后开始,共进行了3根锚杆的实测,应变片的贴片位置见图3.但在施工过程中其中2根被损坏,所以测试结果仅列了1根锚杆的测试数据,试验结果见图4.单位:m图3 电阻应变片布置图Fig.3 The layout of strain gauges 随试验时间和开挖深度的增加,锚杆钢筋传力的位置和大小由图4可以一目了然.通过曲线显示,在基坑开挖深度不变的时间段里(即基坑不挖土),杆体不同位置处钢筋的受力变化比较均匀或者说没有突变(第7点破坏,没有反应);当基坑开挖时(基坑挖至3m 时安装锚杆,图4中第45d 进行土体开挖,挖至6m ,第89d 再次开挖直到基底,110d 底板浇注完成),随着开挖深度增加,由图4可以明显地表现为曲线的陡升,这一现象说明杆体的受力变化对基坑的开挖比较敏感,其敏感性的大小与程度视一次的开挖深度而定.当然,另一个表现敏感性的因素,是一次开挖基坑的宽度,随着基坑开挖宽度的增大,杆体各部位的受力也在增加,但是增加的幅度不大.图4 锚杆的应变随时间的变化曲线Fig.4 The curve betw een strain of anchor and time2.3 摩阻力的计算与变化规律锚杆在外荷载作用下,任一截面上的内力等于钢筋内力与注浆体内力之和,而两截面内力之差即为该区间注浆体与岩土间的剪切力,剪切力除以该区间注浆体表面积即为该区间的平均剪应力.锚杆任一截面的内力为N i =E g A g εgi +E c A c εci =(E g A g +E c A c )εi (1)区间平均剪应力τ=(N i -N i-1)/πD Δl(2)将式(1)代入式(2)得τ=(E g A g +E c A c )(εi -εi-1)/πDΔl (3)式中,E g ,E c 分别为钢筋和注浆体的弹性模量;A g ,A c 分别为钢筋和注浆体的截面积;εi 为任一截面i的应变值;Δl 为两测点之间的距离;D 为锚固体的直径,可用钻孔直径代替.根据式(3)计算出摩阻力随时间的变化规律,绘于图5中.从图5可以看出:1)在任一时间内(一级荷载作用下),锚固体与岩土体间的剪应力沿锚杆长度分布是不均匀的,在孔口附近最大,从孔口沿锚杆长度逐渐衰减.2)随着时间的延长,锚杆锚固体与土体之间的摩阻力是逐渐提高的.但是,锚杆的摩阻力在不同的位置其增长的峰值却不是同时出现的.在基坑开挖到底、底板打好后,此时的摩阻力基本趋于稳定.图5 摩阻力随时间的变化规律Fig.5 V ariation of friction versus time 摩阻力在同一天的时间内,沿杆体锚固段的摩阻力分布规律见图6.图6中曲线1为较低摩阻力时的前期分布,曲线2为摩阻力水平高时的后期分布.曲线1、2之间有1个转换过程,曲线的形状由凸形变为凹形,则在曲线1、2之间一定有1个直线分布,即摩阻力沿锚固长度逐渐递减的分布规律.但是,在锚固段末端的摩阻力水平并不趋于零,而是存在有一定数值大小的摩阻力.图6 沿锚固长度锚固体与土体之间的摩阻力分布Fig.6The distribution of friction force along anchoring length95 江南大学学报(自然科学版) 第6卷 2.4 锚杆的预应力随时间的变化规律锚杆的预应力采用GMS 型锚索测力计进行测试,以检查锚杆的预应力变化,确认锚杆的长期工作性能.共进行了5根锚杆的预应力监测,预应力的变化见表1.典型的监测曲线见图7.图7 锚杆预应力随时间的变化规律Fig.7 V ariation of prestress in anchors versus time表1 锚杆中的预应力变化T ab.1 V ariation of prestress in anchors锚杆锁定荷载/kN预应力损失/%基底垫层打好,预应力增长/%注浆量/kg 二次高压注浆量/kgy 12057.3(25d )39.01500450y 221010.5(25d )18.61150750y 3150 1.33(2d )18.2600300y 42017.0(24d )59.7900300y 52266.2(2d )60.6950600 从表1和图7可以看出:对锚杆施加的预应力越高,其在开挖前的预应力损失也越大;在土体开挖到基底后,预应力的增长幅度则不能确定.预应力在后期基坑开挖过程中的增长,主要和基坑的开挖方式、开挖速度有关.同时还和锚杆的位置有关,如Y 4和Y 5两根锚杆分别位于基坑两长边的墙体近中间位置,故基坑开挖到底后,其受力肯定较其余3根位于两短边墙体的锚杆不同.在相同的预应力水平下,后期的预应力增长幅度前者要比后者大许多.此外,锚杆的注浆量对锚杆的预应力也有影响.锚杆的注浆量越大,其预应力损失则稍偏高,但第二次高压注浆量越多,锚杆的预应力损失却稍偏低.究其原因,第一次注浆后,初步形成了锚杆的锚固体,对周围的土体进行一次挤压和向土中扩散浆液,加固了土体,使土体的固结度提高;二次高压注浆后,进一步向土体中扩散浆液,使土体、锚固体更加密实.由此不难看出,二次高压注浆量越大,地层的固结越高,反映到锚杆上则预应力损失较小.2.5 注浆对锚杆承载力的影响为研究注浆对锚杆承载力的影响,本工程对其中2根锚杆进行了二次常压注浆与二次高压注浆的对比试验,其中一次注浆的压力均为0.9M PA ,试验结果见表2.表2 注浆方式对承载力的锚杆影响T ab.2 E ffect of grouting mode on pull resistance of anchor注浆方式最大注浆压力/MPa注浆量/Kg 一次二次承载力/kN二次高压 3.78005004273.5900350408二次常压1.010*********.9120050282 比较二者的极限承载力,可以看出二次高压注浆的极限承载力平均可以提高1.4倍,二次常压注浆甚至达不到设计工作荷载,可见注浆方式对锚村的承载力的影响不可忽视.究其原因,常压(0.5~1.0M Pa )注浆主要是充填钻孔掏空或天然沉积溶空,这时基本上没有多大的阻力.二次高压(3.0~5.0M Pa )注浆,是在一次充填完成的基础上进行的,一次注浆形成的注浆体已有一定的强度.高压对原水泥浆进行了沿锚杆杆体不同位置的劈裂,这样浆液在土中沿部分土层的层理界面对土体进行挤压、扩散,形成层状、板块状和脉动状分布,构成土体的骨架.随着注浆的连续进行,注浆压力增大,土层的吃浆量、吃浆速度逐渐减小,层面裂隙不断填满,土层被压密,土颗粒被移动、重新排列、水气排出,这样起到加固土体的作用,从而提高锚杆的承载力.2.6 锚杆对墙顶水平位移的影响为反映工程信息,及时采取工程措施,在该基坑施工时进行了现场监测,图8为锚杆所在连续墙墙顶位移随时间的变化曲线.图8 连续墙墙顶水平位移随时间的变化Fig.8 Displacement on diaphragm top versus time195 第5期王景春等:深基坑支护中锚杆的预应力与摩阻力试验从图8中可以看出:1)施加锚杆前位移-时间的变化速率比施加锚杆后位移-时间的变化速率大.2)锚杆张拉完毕后(第41d),由于预应力的作用,可以将连续墙回拉2~4mm.3)在基坑开挖到设计深度,底板浇注完成后,连续墙的位移会较为稳定、近于不变,且连续墙的位移对基坑突然的开挖较为敏感.这与锚杆在同一时间内的受力变化相似.3 结 语 1)对于本工程来说,锚杆的设计是合理的,达到了设计的承载力.锚杆对地下连续墙的水平位移有一定的影响,锚杆杆体的受力变化对基坑的开挖比较敏感.2)锚固体与土体间摩阻力沿锚杆长度的分布是不均匀的,在孔口附近最大,沿锚杆长度从孔口向孔底衰减.根据本试验的情况说明,随着时间的延长,锚杆锚固体与土体之间的摩阻力是逐渐提高的,但是锚杆的摩阻力在不同位置时,其增长的峰值却不是同时出现的.所以摩阻力的分布规律与摩阻力水平有关.3)锚杆预应力随时间的变化有损失,对本工程来说,其损失程度在6%~10%之间.锚杆内的预应力变化与锚杆的位置、注浆量和锁定荷载有关,锚杆内的预应力对基坑的开挖非常敏感.参考文献:[1]刘建航,侯学渊.深基坑工程手册[M].北京:中国建筑工业出版社,1997.[2]张乐文,王稔.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):6272631.ZHAN G Le2wen,WAN G Ren.Research on status quo of anchorage theory of rock and soil[J].Rock and Soil Mechanics,2002,23(5):6272631(in Chinese).[3]程良奎.岩土锚固的现状与展望[J].土木工程学报,2001,34(3):7212.CH EN G Liang2kui.Present status and development of ground anchorages[J].China Civil Engineering Journal,2001,34(3):7212(in Chinese).[4]贾金青.复杂地层深基坑支护的方法与实践[J].岩土锚固工程,2000(2):48252.J IA Jin2qing.Method and practice for retaining of deep excavation in complex ground[J].Engineering of Anchorage of Rock and Soil,2000(2):48252(in Chinese).[5]高永涛,吴顺川,孙金海.预应力锚杆锚固段应力分布规律及应用[J].北京科技大学学报,2002,24(4):3872390.GAO Y ong2tao,WU Shun2chuan;SHUN Jin2hai.Application of the pre2stress bolt stress distributing principle[J].Journal of University of Science and Technology Beijing,2002,24(4):3872390(in Chinese).[6]朱焕春,吴海滨,赵海斌.反复张拉条件下锚杆工作机理分析[J].岩土工程学报,1999,21(6):6622665.ZHU Huan2chun,WU Hai2bin,ZHAO Hai2bin.Experimental study on bolting mechanism under cyclic tensile load[J].Chinese Jounal of G eotechnical Engineering,1999,21(6):6622665(in Chinese).[7]李宁,韩煊,陈飞熊,等.预应力群锚加固机理的数值试验研究[J].岩土工程学报,1997,19(6):60266.L I Ning,HAN Xuan,CH EN Fei2xiong,et al.Numerical model test on strengthening mechanism of prestressed bolts [J].Chinese Jounal of G eotechnical Engineering,1997,19(6):60266(in Chinese).[8]中国工程建设标准化协会.土层锚杆设计与施工规范CECS(22290)[M].北京:中国计划出版社,1991.(责任编辑:彭守敏) 295 江南大学学报(自然科学版) 第6卷 。

锚索排桩支护深基坑工程施工部署措施

锚索排桩支护深基坑工程施工部署措施

锚索排桩支护深基坑工程施工部署措施一、工程概况及工程地质条件1.1工程概况场地整平标高41.80m,基坑底标高28.30-30.70m,基坑周长180米,面积1560㎡,基坑开挖深度11.10-13.50m。

基坑支护采用混凝土灌注桩+预应力锚索形式支护,基坑支护设计安全等级一级。

基坑设计使用年限一年,未考虑越冬。

1.1.1工程地质情况施工场地原自然标高为44.30,因回填建筑垃圾深4米无法进行支护桩施工,将整个施工现场建筑垃圾外排,外排后场地整平标高41.80m,基坑底标高28.30-30.70m,基坑开挖深度11.10-13.50m。

地内各层土自上而下划分层如下:杂填土①:杂色,稍湿~湿,松散状态,均匀性差。

主要由黏性土、碎石、砖块及建筑垃圾组成,厚度变化一般。

堆积时间大于5年。

该层在场区连续分布,厚度范围1.20~6.20米,层底埋深1.20~6.20米。

粗砂②:黄褐色,饱和,稍密状态。

矿物成分以石英、长石为主,局部含中砂,级配不良。

该层在场区分布不连续,可见厚度范围3.40~3.90米,可见层底埋深9.00~9.50米。

粗砂③:黄褐色,饱和,中密状态。

矿物成分以石英、长石为主,局部含砾砂,级配不良。

该层在场区分布不连续,可见厚度范围1.00~1.90米,可见层底埋深10.30~10.90米。

粉质黏土④:黄褐色,硬可塑状态,中压缩性。

切面稍有光泽,无摇振反应,干强度中等,韧性中等,含铁锰质结核。

该层在场区连续分布,厚度范围1.50~7.20米,层底埋深3.50~18.10米。

粉质黏土⑤:黄褐色,软可塑状态,中压缩性。

切面稍有光泽,无摇振反应,- 1 -干强度中等,韧性中等,含铁锰质结核。

该层在场区分布不连续,可见厚度范围1.60~17.10米,可见层底埋深7.30~23.90米。

粉质黏土⑤1:黄褐色,软塑状态,中压缩性。

切面稍有光泽,无摇振反应,干强度中等,韧性中等,含铁锰质结核。

该层为粉质粘土⑤的透镜体。

[辽宁]钢管桩锚索基坑支护方案设计图(含支护计算书)ewo

[辽宁]钢管桩锚索基坑支护方案设计图(含支护计算书)ewo

深基坑支护设计计算书设计单位:X X X 设计院设计人:X X X设计时间:2013-10-17 10:51:31----------------------------------------------------------------------[ 支护方案 ]----------------------------------------------------------------------排桩支护----------------------------------------------------------------------[ 基本信息 ]--------------------------------------------------------------------------------------------------------------------------------------------[ 放坡信息 ]--------------------------------------------------------------------------------------------------------------------------------------------[ 超载信息 ]--------------------------------------------------------------------------------------------------------------------------------------------[ 附加水平力信息 ]--------------------------------------------------------------------------------------------------------------------------------------------[ 土层信息 ]--------------------------------------------------------------------------------------------------------------------------------------------[ 土层参数 ]--------------------------------------------------------------------------------------------------------------------------------------------[ 支锚信息 ]--------------------------------------------------------------------------------------------------------------------------------------------[ 土压力模型及系数调整 ]----------------------------------------------------------------------弹性法土压力模型: 经典法土压力模型:----------------------------------------------------------------------[ 工况信息 ]--------------------------------------------------------------------------------------------------------------------------------------------[ 设计结果 ]--------------------------------------------------------------------------------------------------------------------------------------------[ 结构计算 ]----------------------------------------------------------------------各工况:内力位移包络图:地表沉降图:----------------------------------------------------------------------[ 截面计算 ]----------------------------------------------------------------------[ 截面验算 ]基坑内侧抗弯验算(不考虑轴力) σnei = M/(γ* W)= 20.332/(1.050*0.106*10-3) = 182145.615(kPa)= 182.146(MPa) < f = 215.000(MPa) 满足基坑外侧抗弯验算(不考虑轴力) σwai = M/(γ* W)= 13.888/(1.050*0.106*10-3)= 124419.861(kPa)= 124.420(MPa) < f = 215.000(MPa) 满足抗剪验算τ = V * Sx / (I * tw )= 43.513*0.000*10-3/(845.190*10-8*0.600*10-2)= 0.000(kPa)= 0.000(MPa) < fv = 215.000(MPa) 满足----------------------------------------------------------------------[ 锚杆计算 ]----------------------------------------------------------------------[ 锚杆自由段长度计算简图 ]----------------------------------------------------------------------[ 整体稳定验算 ]----------------------------------------------------------------------计算方法:瑞典条分法应力状态:总应力法条分法中的土条宽度: 1.00m滑裂面数据整体稳定安全系数 K s = 2.060圆弧半径(m) R = 13.025圆心坐标X(m) X = -0.791圆心坐标Y(m) Y = 9.240----------------------------------------------------------------------[ 抗倾覆稳定性验算 ]----------------------------------------------------------------------抗倾覆安全系数:p, 对于内支撑支点力由内支撑抗压力决定;对于锚杆或锚索,支点力为锚杆或锚索的锚固力和抗拉力的较小值。

深基坑桩锚支护工程预应力锚索施工

深基坑桩锚支护工程预应力锚索施工

深基坑桩锚支护工程预应力锚索施工【摘要】文章首先对山西某深基坑桩锚支护工程进行简单的介绍,再从钻孔与清孔、锚索制作、锚索安装、锚索注浆、腰梁安装、锚索张力锁定、封锚、锚索张力监测八个方面对预应力锚索施工工艺进行探讨,以期能够为同行带来一些启发。

【关键词】深基坑;桩锚支护;预应力锚索;施工一、工程概述(一)工程简介山西某深基坑桩锚支护工程的基坑深度是14m,0m-15m都是粉土粉质粘土,15m-24m是细砂夹粉土,地下水位最高是-2.7m。

各方讨论之后,表示该深基坑支护工程应用桩—锚支护体系,排桩通过预应力锚索实现张拉,锚索注浆则是采取分二次注浆的工艺。

在具体施工过程中应用该施工工艺,不但能够为工程施工建设提供安全保障,而且还能大幅降低施工成本,缩短施工时间,最重要的就是不会对当地环境造成太大的影响。

(二)工程原理在对基坑进行预应力锚索加固过程中,锚索的一端固定在稳定性较高的岩层内,增强锚固力;通过锚头部分把另一端固定在基坑的坑壁上,再对锚索施加一定程度的预应力,基坑的坑壁就会受到主动应力,基坑整体的稳定性就得到提升,并且利用二次注浆能够加强预应力锚索的强度。

二、深基坑桩锚支护工程施工工艺(一)预应力锚索的结构及施工流程预应力锚索的组成部分有:索头、张拉段和锚固段。

其中,该工程具体施工流程可以参见图1。

图1 预应力锚索施工流程图(二)预应力锚索施工技术1、钻孔与清孔钻孔可以选择环状钻头的钻具或者锚杆钻机长螺旋钻,在钻孔前需要对钻机进行安装,安装必须严格遵循“平、正、稳、固”的要求。

钻孔时,则需要做到“清水钻孔,跟进套管”,保证倾斜角度为15°,施工时需采用跳打法进行。

在应用锚杆钻机的时候,需要不断用清水来清理孔,切勿使用泥浆循环清孔。

若是土层容易出现塌附的话,就必须加快钻孔的速度,如有必要,可以下入套管护壁。

而且钻孔深度半径必须达到相关的设计与技术要求。

完成钻孔后,需要仔细记录成孔数据,若是孔内存在外流水时,需要对其进行疏导,做好外排工作;若是发生松土掉落的现象,必须立刻采取一定的措施,对其进行加固。

基坑支护专项施工方案(土钉墙+排桩锚索)

基坑支护专项施工方案(土钉墙+排桩锚索)

况基坑平均挖深6m,在地道两头集水井处,基坑挖深8.2m,为深基坑作业。

由于基坑周边建筑物众多、管线密集,设计采用排桩锚拉基坑支护结构,以减小对周边构造物的影响。

1.基坑设计说明(1)围护结构类型砼管桩锚拉支护:在东、西两侧出入口外侧(远离道路中心线侧),全长范围内,采用砼管桩锚拉支护。

排桩采用φ500高强预应力砼管桩,设二层(局部三层)φs15.2@3000预应力钢绞线锚拉,坑壁挂φ6@200*200mm钢筋网,喷8cmC20砼面层。

注浆采用C20水泥净浆。

放坡挂网喷锚:横跨道路中心通道及东、西两侧出入口内侧(靠近道路中心线侧)采用放坡挂网喷锚支护。

放坡坡度为1:0.5,墙面为10cm厚C20喷射砼,内配φ8@200*200mm钢筋网。

一、砼管桩锚拉支护施工方案1、结构图示在隧道东西两幅靠近周边建筑物侧,为了保证周边建筑物安全,同时考虑到工期要求,采用高强预应力砼管桩锚拉支护。

管桩采用φ500高强预应力砼预制管桩,间距1.0米,2层(局部3层)预应力钢绞线锚拉。

详细结构见附件3:砼管桩锚拉支护结构剖面图。

2、施工工艺流程图施工准备静压支护管桩施工冠梁基坑开挖至锚索位施工锚索施工下一层直至坑底施工腰梁张拉锁定基坑封底3、工序详述1)施工准备施工放样:施工前,撒石灰放样出管桩外边轴线,按照设计间距定出管桩桩位。

项目技术管理人员应该对已定好的轴线进行复核,根据结构桩位图逐位校核,发现不符合要求的及时纠正。

管桩检验:管桩进场时必须进行查验、测量,按照管桩有关规范对管桩构造要求和设计图纸要求,对所有到场的桩尖进行测量,不满足设计和管桩规范要求的,责令其更换。

桩基摆位:采用山河智能液压静力压桩机ZYJ120型,功率15KW。

施工前对施工场地进行整平压实,桩机移动到相应桩位,垫实、对中、调平。

2)静压管桩用桩机自带吊索将管桩拖拽到桩位附近,慢慢提升使之逐渐垂直,直至脱离地面,人工扶持配合对中,施压固定,调整垂直度在设计要求内,施压压桩直至设计深度。

fA03排桩锚杆内支撑地下连续墙

fA03排桩锚杆内支撑地下连续墙

水平支撑
1000
400
10°~15°
T1:φ 48δ 3.5@1200,L=10.0m YM1:3×7φ 5@2000,L=20.0m(其中自由段6m),设T计2:拉φ力4285δ0K3N.,5@锁12定00拉,L力=1108.00KmN
T3:φ 48δ 3.5@1200,L=8.0m
钻孔桩 Φ 600@1000
摆喷桩 φ 600θ =113°L=8.0m
旋喷桩 Φ 600@1000
冠梁 C25砼
1500
1500 5900
400 1500
1500 (1000)
地下室外墙
排水沟 300×300
4000
钻孔桩 φ 600@1000,L=9.5m
600
1000
600
(2)机理 利用钢筋混凝土桩身的抗弯、抗剪能力承受桩后土体压力。 当基坑深度较大或坑顶荷载较大时,可与预应力锚杆一起形成 支护体系。
T1:φ 20@1200,L=8.0m
摆喷桩 φ 1000θ =97°L=7.0m
10°~15°
地下室外墙
13.11 排水沟 300×300
5000
钻孔桩 φ 1000@1500,L=10.4m
1000
荷载传递 浅层土体—支护桩—锚头—非锚固段锚索—锚固段锚 索—深层土体
塑料软管(双端绑扎)
钢筋网 6 @150X150
2)施工工艺 (1)工艺流程 导墙施工-钢筋笼制作-泥浆制备-成槽-下锁口管-钢筋笼 吊放-水下浇筑混凝土-把锁口管-进行下段墙体施工
(2)施工要点 导墙:导向,定位,挡土,储存泥浆; 泥浆:护壁,降温,润滑; 成槽:两方向垂直度;泥浆面;地下水升降;清底; 刷壁:防止漏水

基坑支护结构设计全套图纸CAD

基坑支护结构设计全套图纸CAD

第一章设计方案综合说明1.1 概述1.1.1 工程概况拟建南京新城科技园B地块深基坑位于河西香山路和嘉陵江东街交会处东南隅,北侧为规四路(隔马路为A地块基坑),东侧为青石路。

B地块±0.00m 相当于绝对标高+7.40m。

基坑挖深为6.1~8.0m。

拟建场地属Ⅱ级复杂场地。

该基坑用地面积约20000 m2,包括3幢地上建筑和一层地下室。

建筑物采用框架结构,最大单柱荷载标准值为23000KN,拟采用钻孔灌注桩基础设计方案。

有关拟建物层数、结构型式、柱网和室内外地坪设计标高具体见表1.1。

本工程重要性等级为二级,抗震设防类别为丙类。

根据该工程重要性等级、场地复杂程度和地基复杂程度,按《岩土工程勘察规范》(GB50021-2001)3.1节,划分该工程岩土工程勘察等级为乙级。

1.1.2 基坑周边环境条件基坑四面均为马路,下设通讯电缆、煤气管线等设施。

北侧隔马路为基坑(A地块)第一章设计方案综合说明1.1.3 工程水文地质条件拟建场地地形总体较为平坦,地面高程在4.87~8.78m(吴淞高程系)之间。

对照场地地形图看,场内原有沟塘已被填埋整平。

场地地貌单元属长江漫滩。

在基坑支护影响范围内,自上而下有下列土层:①~1杂填土:杂色,松散,由粉质粘土混碎砖、碎石和砼块等建筑垃圾填积,其中2.7~4.5m填料为粉细砂,填龄不足2年。

层厚0.3~4.9m;①~2素填土:黄灰~灰色,可~软塑,由粉质粘土、粘土混少量碎砖石填积,含少量腐植物,填龄在10年以上。

埋深0.8~5.3m,层厚0.2~2.6m;①~2a淤泥、淤泥质填土:黑灰色,流塑,含腐植物,分布于暗塘底部,填龄不足10年。

埋深0.2~2.9m,层厚0.6~4.0m;②~1粉质粘土、粘土:灰黄色~灰色,软~可塑,切面有光泽,韧性、干强度较高。

埋深0.3~4.7m,层厚0.3~2.1m;②~2淤泥质粉质粘土:灰色,流塑,含腐植物,夹薄层粉土,切面稍有光泽,韧性、干强度中等。

基坑支护专项施工方案(土钉墙+排桩锚索)

基坑支护专项施工方案(土钉墙+排桩锚索)

防城港国际大酒店基坑支护专项施工方案编制单位:广西大业建设集团有限公司编制人:审核人:批准人:编制日期:2012年月日目录一、工程概况 21.工程简介 2 2.基坑设计说明 3 3.施工工期错误!未定义书签。

二、工程地质条件及周边环境 31.工程地质情况 3 2.水文地质情况 4 3.周边环境 4 三、放坡挂网喷锚支护施工方案 51.结构图示 5 2.施工工艺流程图 5 3.工流程详解 5 4.质量保证措施8四、砼管桩锚拉支护施工方案91、结构图示102、施工工艺流程图103、工序详述104、质量控制措施12五、安全保障措施151.基坑开挖安全15 2.喷锚施工安全153.静压管桩施工过程的安全管理16 4.预应力施工安全17 5.用电安全17 六、雨季施工措施18一、工程概况1.工程简介1、本工程项目名称:防城港国际大酒店建设地点:防城港金花茶大道与金山大道交汇处建设单位:广西富乐华房地产开发有限公司2、本工程总建筑面积为:172924.22㎡,其中地下建筑面积为:46395.46㎡(包括负一、二层3#~4#地块交接处各F4#地块负二层下室),地上建筑面积为:126528.76㎡。

本工程建筑占地面积为:9314.23㎡,其余指标详见总平面图。

3、建筑性质与规模:本工程地下室2层,地上酒店一单元26层,二单元28层,建筑高度(室外地坪至屋面高度):一单元99.5m、二单元99.8m;本项目为:为集餐饮、娱乐、会议、酒店客房及酒店公寓为一体的综合性建筑。

一层为商业、餐饮及酒店大堂、门厅等;二层为餐饮;三层为娱乐场所及用房,四层办公会议场所、多功能厅、康体理疗中心,五层为健身及休闲中心、会所、公寓套间等。

一单元及二十六层为酒店客房部分,共设置479门/套,其中:459个标准间、12套豪华套房、4套行政套房、4套总统套房。

二单五层及二十八层为酒店公寓部分,共设置:664间公寓套间。

4、建筑结构形式为框架-剪力墙结构,设计合理使用年限为50年,抗震列度为6度。

排桩+预应力锚索基坑支护设计说明

排桩+预应力锚索基坑支护设计说明

排桩+预应力锚索基坑支护设计说明第二部分:基坑支护设计图纸:详后。

第一部分:基坑支护设计说明目录一、工程概况二、设计依据三、基坑支护设计标准、使用年限、设计荷载、计算软件四、地形及地貌、场地的工程地质及水文地质条件五、基坑支护结构设计原则六、基坑支护结构类型比选七、基坑支护结构设计概要八、主要材料九、基坑支护结构施工组织方案十、主要施工步骤十一、主要施工技术要求十二、基坑监测十三、基坑支护应急措施十四、基坑施工质量检验及验收十五、主要工程量十六、其它需要说明的事项第一部分:基坑支护设计说明一、工程概况1.工程名称:2.建设单位:3.工程地点:4.设计单位:5.勘察单位:6.施工、监理单位:7.用地面积:13838平方米。

8.总建筑面积:约138000m2(地上约102000 m2,地下约36000 m2)。

9.建筑层数:地上45层,地下3层。

10.建筑高度:主屋面标高约195.0m。

地下室底板面相对标高为-16.900m。

11.设计地面标高:暂定±0.000标高相当于绝对标高约为23.950m。

12.自然地面标高:绝对标高约为18.500~23.000m。

13.地下室平面尺寸:87.5m(长)x78.45m(宽)。

14.结构型式:现浇钢筋混凝土结构,框架-核心筒体系。

15.基础型式:机械钻孔嵌岩灌注桩,地下室边界处最厚基础约1.5m。

二、设计依据本工程初步设计所遵循的主要标准、规范、规程、资料:1.《建筑结构可靠度设计统一标准》(GB 50068-2001)2.《岩土工程勘察规范》(GB 50021-2001,2009年版)3.《高层建筑岩土工程勘察规程》(JGJ 72-2004)4.《建筑地基基础设计规范》(GB 50007-2002)5.《建筑桩基技术规范》(JGJ 94-2008)6.《建筑地基处理技术规范》(JGJ 79-2002)7.《建筑基坑支护技术规程》(JGJ 120-99)8.《建筑边坡工程技术规范》(GB 50330-2002)9.《基坑土钉支护技术规范》(CECS 96:97)10.《锚杆喷射混凝土支护技术规范》(GB 50086-2001)11.《混凝土结构设计规范》(GB 50010-2002)12.《高层建筑混凝土结构技术规程》(JGJ 3-2002)13.《高层建筑筏形与箱形基础技术规范》(JGJ 6-2011)14.《工程测量规范》(GB 50026-2007)15.《建筑工程设计文件编制深度规定》(2008年版)16.《工程建设标准强制性条文》(房屋建筑部分,2009年版)17.《XX中心大楼岩土工程勘察报告》(详细勘察)18.《市XX中心试桩质量检测报告》19.业主提供的由有关部门审批通过的实施本设计所需的批准文件。

预应力锚索+排桩支护技术理论

预应力锚索+排桩支护技术理论

预应力锚索 +排桩支护技术理论2.1 结构构成在基坑支护中,预应力锚索 +排桩支护模式应用比较广泛,桩锚支护结构主要包括的构件有:排桩、锚索、冠梁、腰梁等,它们之间相互联系,相互作用,相互影响,形成一个有机的整体。

(图 2.1)图 2.1桩锚结构简图2.2 结构受力基坑周围桩体受到土压力、水压力及周围建筑物等荷载的作用,桩体有着向基坑倾斜的趋势并产生了侧向位移。

由于受到桩体侧向位移的影响,基坑底面桩嵌固深度范围内的土体就会产生被动土压力来抵抗桩体承受的部分主动土压力,而锚索由于预应力的作用,也会抵抗部分主动土压力。

桩体所受的土压力有:主动土压力、被动土压力及锚索的锚固力。

如果锚索锚固力与被动土压力之和大于主动土压力,桩体就不会产生侧向位移,这时支护体系是有效的;如果锚索锚固力与被动土压力之和小于等于主动土压力,桩体就会产生侧向的位移,如果位移较小,在允许的范围内,我们认为支护是安全的,若超出了允许的范围,则认为支护体系失效。

另外桩体本身还应具有足够刚度和强度,避免在最大弯矩21, 22处变形过大,在最大剪应力处发生剪切破坏。

锚索受力情况复杂。

由于拉杆、浆体、土体等部分的相互影响和作用,锚索体系的工作机理难以分析清楚,再加上各部分材料性能差异也很大,更增加其复杂性。

工作机理:锚索的锚固力传到锚固段,当锚固段锚索受力后,通过锚索和砂浆间的黏结力传到锚固体中,再通过锚固体与土体之间的摩擦力传到土体深处。

单根锚索的承载力主要受以下两个因素的控制:锚固段胶结材料与孔壁的黏结力以及胶结材料与钢丝或钢绞线之间的握裹力。

锚索必须具有足够的强度以承受极限拉力。

钢材同胶结材料之间的握裹力比胶结材料同孔壁的粘结力大将近一倍,不会发生破坏。

因此,设计中可不考虑钢材与胶结材料的握裹力。

重要工程需进行钢材与胶结材料握裹力及锚固长度校核。

许多研究和试验证明,锚固体与土层的摩擦力分布不均匀,锚固段剪应力的分布沿孔壁呈倒三角形,沿锚固段长度迅速递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档