高考文科数学基本不等式

合集下载

(23)2022年高考真题——文科数学(全国乙卷) 答案(1)

(23)2022年高考真题——文科数学(全国乙卷) 答案(1)
当 时, , 单调递减;
所以 ;
【小问2详解】
,则 ,
当 时, ,所以当 时, , 单调递增;
当 时, , 单调递减;
所以 ,此时函数无零点,不合题意;
当 时, ,在 上, , 单调递增;
在 上, , 单调递减;
又 ,当x趋近正无穷大时, 趋近于正无穷大,
所以 仅在 有唯一零点,符合题意;
当 时, ,所以 单调递增,又 ,
【分析】根据古典概型计算即可
【详解】从5名同学中随机选3名的方法数为
甲、乙都入选的方法数为 ,所以甲、乙都入选的概率
故答案为:
15.过四点 中的三点的一个圆的方程为____________.
【答案】 或 或 或 ;
【解析】
【分析】设圆的方程为 ,根据所选点的坐标,得到方程组,解得即可;
【详解】解:依题意设圆的方程为 ,
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为 .已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数 .
【答案】(1) ;
(2)
在区间 上 ,即 单调递减,
又 , , ,
所以 在区间 上的最小值为 ,最大值为 .
故选:D
12.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()
A. B. C. D.
【答案】C
【解析】
【分析】先证明当四棱锥 顶点O到底面ABCD所在小圆距离一定时,底面ABCD面积最大值为 ,进而得到四棱锥体积表达式,再利用均值定理去求四棱锥体积的最大值,从而得到当该四棱锥的体积最大时其高的值.

文科数学学霸笔记26 基本不等式

文科数学学霸笔记26 基本不等式

3. 检 验 等 号 是 否 成 立 , 完 成 后 续 问 题 .
例 3 : 已 知 等 差 数 列 {an} 中 , a3 = 7 , a9 = 19 , Sn 为 数 列 {an}
考 点 26 基 本 不 等 式 一、基本不等式
1. 基 本 不 等 式 :
ab
a+b ≤
2
(1) 基 本 不 等 式 成 立 的 条 件 : a ≥ 0 , b ≥ 0. (2) 等 号 成 立 的 条 件 : 当 且 仅 当 a = b 时 取 等 号 .
a+b (3) 其 中
称为正数 a , b 的算术平均数,
ab
称为正数
2
a , b 的几何平均数 . 2. 两 个 重 要 的 不 等 式 (1)a2 + b2 ≥ 2ab(a , b ∈ R) , 当 且 仅 当 a = b 时 取 等 号 .
a+b 2
(2)ab ≤ 2
(a , b ∈ R) , 当 且 仅 当 a = b 时 取 等 号 .
3. 利 用 基 本 不 等 式 求 最 值 已知 x ≥ 0 , y ≥ 0 ,则 (1) 如 果 积 xy 是 定 值 p , 那 么 当 且 仅 当 x = y 时 , x + y 有 最 小 值 是 2 p ( 简 记 : 积 定 和 最 小 ). (2) 如 果 和 x + y 是 定 值 s , 那 么 当 且 仅 当 x = y 时 , xy 有
使积式中的各项之和为定值 . ( 3 )若一次应用基本不等式不能达到要求,需多次应用 基本不等式,但要注意等号成立的条件必须要一致 . 注: 若可用基本不等式,但等号不成立,则一般是利用函数单 调性求解 .
例 1 : 设 0<x< 3 , 则 函 数 y = 4x(3 - 2x) 的 最 大 值 为 ________. 2

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

2020届高三文理科数学一轮复习《基本不等式》专题汇编(学生版)

《基本不等式》专题一、相关知识点1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R); (2)a +b ≥2ab (a >0,b >0).(3)b a +ab ≥2(a ,b 同号且不为零); (4)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(5)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R).2(a 2+b 2)≥(a +b )2(a ,b ∈R).(6)a 2+b 22≥(a +b )24≥ab (a ,b ∈R).(7)a 2+b 22≥a +b 2≥ab ≥21a +1b(a >0,b >0). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则:(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值是p 24.(简记:和定积最大)5.重要不等式链 若a ≥b >0,则a ≥a 2+b 22≥a +b 2≥ab ≥2aba +b≥b . 题型一 基本不等式的判断1.若a ,b ∈R ,则下列恒成立的不等式是( )A.|a +b |2≥|ab | B .b a +ab ≥2 C.a 2+b 22≥⎝⎛⎭⎫a +b 22 D .(a +b )⎝⎛⎭⎫1a +1b ≥4 2.若a ,b ∈R ,且ab >0,则下列不等式中,恒成立的是( )A .a 2+b 2>2abB .a +b ≥2abC .1a +1b >2abD .b a +ab ≥23.下列命题中正确的是( )A .函数y =x +1x 的最小值为2 B .函数y =x 2+3x 2+2的最小值为2C .函数y =2-3x -4x (x >0)的最小值为2-4 3D .函数y =2-3x -4x(x >0)的最大值为2-4 34.若a >b >1,P =lg a ·lg b ,Q =12(lg a +lg b ),R =lg ⎝⎛⎭⎫a +b 2,则( )A .R <P <QB .Q <P <RC .P <Q <RD .P <R <Q题型二 利用基本不等式求最值类型一 直接法或配凑法利用基本不等式求最值1.若实数x ,y 满足xy =1,则x 2+2y 2的最小值为________.2.已知a >0,b >0,且2a +b =4,则1ab 的最小值为3.已知0<x <1,则x (3-3x )取得最大值时x 的值为4.已知x <0,则函数y =4x +x 的最大值是5.函数f (x )=xx +1的最大值为6.若x >1,则x +4x -1的最小值为________.7.设0<x <2,则函数y =x (4-2x )的最大值为________.8.若x ,y 均为正数,则3x y +12yx +13的最小值是9.已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为________.10.已知x <54,则f (x )=4x -2+14x -5的最大值为________.11.设x >0,则函数y =x +22x +1-32的最小值为12.已知x ,y 为正实数,则4x x +3y +3yx的最小值为13.函数y =x 2+2x -1(x >1)的最小值为________.14.已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是15.已知x ,y 都为正实数,且x +y +1x +1y =5,则x +y 的最大值是16.已知a >b >0,则2a +4a +b +1a -b的最小值为17.已知正数a ,b 满足2a 2+b 2=3,则a b 2+1的最大值为________.类型二 常数代换法利用基本不等式求最值1.已知a >0,b >0,a +b =1,则1a +1b 的最小值为________.2.已知a >0,b >0,a +2b =3,则2a +1b 的最小值为________.3.已知正实数x ,y 满足2x +y =2,则2x +1y 的最小值为________.4.已知正项等比数列{a n }的公比为2,若a m a n =4a 22,则2m +12n 的最小值为5.已知向量a =(3,-2),b =(x ,y -1),且a ∥b ,若x ,y 均为正数,则3x +2y 的最小值是6.已知x >0,y >0,且4x +y =xy ,则x +y 的最小值为7.若直线x a +yb =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.8.已知a >0,b >0,函数f (x )=a log 2x +b 的图像经过点⎝⎛⎭⎫4,12,则1a +2b 的最小值为________.9.已知函数y =log a (x +3)-1(a >0且a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +1n 的最小值为10.已知x >0,y >0,lg 2x +lg 8y =lg 2,则1x +13y 的最小值是11.已知直线l :ax +by -ab =0(a >0,b >0)经过点(2,3),则a +b 的最小值为________.12.已知x ,y 均为正实数,且1x +2+1y +2=16,则x +y 的最小值为13.若a ,b ,c 都是正数,且a +b +c =2,则4a +1+1b +c 的最小值是14.已知正数x ,y 满足x +2y =3,则y x +1y 的最小值为________.15.设a >0,b >1,若a +b =2,则3a +1b -1的最小值为________.16.已知x >0,y >0,且2x +8y -xy =0,求:(1)xy 的最小值;(2)x +y 的最小值.类型三 通过消元法利用基本(均值)不等式求最值1.若正实数m ,n 满足2m +n +6=mn ,则mn 的最小值是________.2.已知正实数x ,y 满足xy +2x +y =4,则x +y 的最小值为________.3.设x ,y 均为正数,且xy +x -y -10=0,则x +y 的最小值是________.4.已知x >0,y >0,且2x +4y +xy =1,则x +2y 的最小值是________.类型四:利用基本不等式求参数值或取值范围1.若对于任意的x >0,不等式xx 2+3x +1≤a 恒成立,则实数a 的取值范围为2.已知函数y =x +mx -2(x >2)的最小值为6,则正数m 的值为________.3.若对x >0,y >0,x +2y =1,有2x +1y ≥m 恒成立,则m 的最大值是________.4.已知a >0,b >0,若不等式3a +1b ≥ma +3b恒成立,则m 的最大值为5.正数a ,b 满足1a +9b =1,若不等式a +b ≥-x 2+4x +18-m 对任意实数x 恒成立,则实数m 的取值范围是________.6.已知不等式(x +y )⎝⎛⎭⎫1x +a y ≥9对任意的正实数x ,y 恒成立,则正实数a 的最小值为7.已知函数f (x )=3x 2+ax +26x +1,若存在x ∈N +使得f (x )≤2成立,则实数a 的取值范围为___题型三 基本不等式的综合问题类型一 基本不等式的实际应用问题1.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A .80元B .120元C .160元D .240元2.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =__________吨.3.某学校为了支持生物课程基地研究植物生长,计划利用学校空地建造一间室内面积为900 m 2的矩形温室,在温室内划出三块全等的矩形区域,分别种植三种植物,相邻矩形区域之间间隔1 m ,三块矩形区域的前、后与内墙各保留1 m 宽的通道,左、右两块矩形区域分别与相邻的左右内墙保留3 m 宽的通道,如图.设矩形温室的室内长为x (单位:m),三块种植植物的矩形区域的总面积为S (单位:m 2). (1)求S 关于x 的函数关系式;(2)求S 的最大值.类型二 基本不等式与函数的交汇问题1.已知A ,B 是函数y =2x 的图象上不同的两点,若点A ,B 到直线y =12的距离相等,则点A ,B 的横坐标之和的取值范围是( )A .(-∞,-1)B .(-∞,-2)C .(-∞,-3)D .(-∞,-4)类型三 基本不等式与数列的交汇问题1.已知a >0,b >0,并且1a ,12,1b 成等差数列,则a +9b 的最小值为2.已知正项等比数列{a n }的前n 项和为S n ,且S 8-2S 4=5,则a 9+a 10+a 11+a 12的最小值为3.设等差数列{a n }的公差是d ,其前n 项和是S n (n ∈N +),若a 1=d =1,则S n +8a n 的最小值是______.类型四 基本不等式与解析几何的交汇问题1. 已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是2.当双曲线M :x 2m -y 2m 2+4=1的离心率最小时,M 的渐近线方程为3.两圆x 2+y 2-2my +m 2-1=0和x 2+y 2-4nx +4n 2-9=0恰有一条公切线,若m ∈R ,n4m2+1n2的最小值为∈R,且mn≠0,则。

2016版《一点一练》高考数学(文科)专题演练:第六章 不等式(含两年高考一年模拟)

2016版《一点一练》高考数学(文科)专题演练:第六章   不等式(含两年高考一年模拟)
13.(2015·三明模拟)若x,y满足约束条件且z=kx+y取得最小值时的点有无数个,则k=________.
14.(2015·厦门市质检)点P(x,y)在直线y=kx+2上,记T=|x|+|y|,若使T取得最小值的点P有无数个,则实数k的取值是________.
15.(2015·赤峰市测试)已知O(x,y)为区域内的任意一点,当该区域面积为4时,z=2x-y的最大值为________.
16.(2015·吉林市高三摸底)已知正项等比数列{an}的公比q=2,若存在两项am,an,使得=4a1,则+的最小值为________.
考点20二元一次不等式(组)与简单的线性规划
两年高考真题演练
1.(2015·天津)设变量x,y满足约束条件则目标函数z=3x+y的最大值为()
A.7B.8C.9D.14
6.(2015·贵州七校一联)一个平行四边形的三个顶点的坐标为(-1,2),(3,4),(4,-2),点(x,y)在这个平行四边形的内部或边上,则z=2x-5y的最大值是()
A.16B.18C.20D.36
7.(2015·云南师大附中适应性考试)设x,y满足约束条件若目标函数z=ax+by(a>0,b>0)的最大值为4,则a+b的值为()


原料限额
A(吨)
3
2
12
B(吨)
1
2
8
A.12万元B.16万元
C.17万元D.18万元
5.(2015·四川)设实数x,y满足则xy的最大值为()
A.B.C.12D.14
6.(2015·重庆)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为()
A.-3B.1C.D.3
7.(2015·福建)变量x,y满足约束条件若z=2x-y的最大值为2,则实数m等于()

高考数学复习备战:最新真题解析—不等式选讲

高考数学复习备战:最新真题解析—不等式选讲
(2)基本不等式:如果a,b>0,那么 ,当且仅当a=b时,等号成立.用语言可以表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.
(3)算术平均—几何平均定理(基本不等式的推广):对于n个正数a1,a2,…,an,它们的算术平均数不小于它们的几何平均数,即 ,当且仅当a1=a2=…=an时,等号成立.
(2)法一:利用基本不等式得到 ,再利用不等式的基本性质证明;法二:利用Cauchy不等式证明.
(1)∵ , , 都为正整数,且 .
∴ ,
当且仅当 时“=”成立.
(2)法一:由题意得
①+②+③,得 ,
当且仅当 时“=”成立.
法二:由Cauchy不等式,得 .
令 ,
则 .
令 ,则 在 上单调递增.
∴ ,即 .
(1)当 时, 等价于 ,
该不等式恒成立,所以 ;
当 时, 等价于 ,
解得 ,此时不等式无解;
当 时, 等价于 ,解得 ,所以 .
综上所述,不等式的解为 .
(2)由 ,得 ,
当 时, 恒成立,所以 ;
当 时, 恒成立,
因为 ,
当且仅当 时取等号,所以 .综上所述, 的取值范围是 .
2.(2022·青海·模拟预测(理))已知函数 .
当 时, ,解得 ,
故不等式 的解集为 或 ;
(2)由(1)可知:
当 时, ,
当 时, ,
当 时, ,
故 的最小值为3,即 ,则 ,即
则 ,
当且仅当 时取等号,
故 的最小值为 .
3.(2022·河南·开封市东信学校模拟预测(理))已知函数 .
(1)求不等式 的解集;
(2)设 时, 的最小值为M.若正实数a,b,满足 ,求 的最小值.

2015届高考二轮数学文科金版学案专题复习课件4.2线性规划、基本不等式与不等式的证明

2015届高考二轮数学文科金版学案专题复习课件4.2线性规划、基本不等式与不等式的证明
4 3 4b 3a 所 以 a + b = (a + b) a+b = 7 + a + b ≥ 7 +
栏 目 链 接
2
4b 3a a · b =7+4 3,
4b 3a 当且仅当 a = b 时,等号成立.故选 D.
栏 目 链 接
高考 热点 突破
突破点1
不等式正、误的辨别与大小比较问题
栏 目 链 接
主干 考点 梳理
考点1
线性规划问题
1.设出变量 x,y,列出变量x , y函数值为0的直线l.
栏 目 链 接
3.利用直线l确定最优解对应的点,从而求
出最优解.
主干 考点 梳理
考点2
基本不等式的应用问题
ab.
a+b 1.基本不等式: ≥ 2
B )
栏 目 链 接
主干 考点 梳理
解析: 画出不等式表示的平面区域,如图, 由z=x+y,得y=-x+z,令z=0,画出y=
-x的图象,当它的平行线经过A(2,0)时,z 取得最小值,最小值为z=2,无最大值.故 选B.
栏 目 链 接
主干 考点 梳理
2 2 2 . 2.若 x>0,则 x+x的最小值为________
栏 目 链 接
主干 考点 梳理
x+2y≤8, 解析: 作出不等式组 0≤x≤4, 所表示的可行域 0≤y≤3, 如下图所示.
栏 目 链 接
主干 考点 梳理
直线x=4交直线x+2y=8于点A(4,2),作
直线l:z=2x+y,则z为直线l在y轴上的截 距,当直线经过可行域上的点A时,直线l 在y轴上的截距最大,此时z取最大值,即 zmax=2×4+2=10.故选C.
解析:
栏 目 链 接
2 2 ∵x>0⇒x+ ≥2 2,当且仅当 x= ⇒x= 2时取等号. x x

不等式性质与基本不等式(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)

不等式性质与基本不等式(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)

考向22 不等式性质与基本不等式1.(2022年甲卷理科第12题)12.已知3132a =,1cos 4b =,14sin 4c =,则 A .c b a >> B .b a c >>C .a b c >>D .a c b >>【答案】A【解析】构造函数21()1cos 2h x x x =--,0,2x π⎡⎤∈⎢⎥⎣⎦,则()()sin g x h x x x '==-+,()1cos 0g x x '=-+所以()(0)0g x g =,因此,()h x 在0,2π⎡⎤⎢⎥⎣⎦上递减,所以1()(0)04h a b h =-<=,即a b <. 另一方面,114sintan 4411cos 44c b ==,显然0,2x π⎛⎫∈ ⎪⎝⎭时,tan x x >, 所以114sintan 44111cos 44c b ==>,即b c <.因此c b a >>. 2.(2022年甲卷文科第12题)12.已知910m =,1011m a =-,89m b =-,则 ( )A .0a b >>B .0a b >>C .0b a >>D .0b a >> 【答案】A【解析】由910m =,可得9log 10(11.5)m =∈ ,.根据a ,b 的形式构造函数()1m f x x x =-- (1x >), 则1()1m f x mx -'=-,令()0f x '=,解得110mx m -=,由9log 10(11.5)m =∈ ,知0(0)x ∈ 1,. ()f x 在(1) +∞,上单调递增,所以(10)(8)f f >,即a b >,又因为9log 10(9)9100f =-=,所以0a b >>,答案选A .3.(2022年新高考1卷第7题)设0.10.1e =a ,19b =,ln0.9c =-,则A .a b c <<B .c b a <<C .c a b <<D .a c b <<【答案】C【解析】令e =x a x ,1xb x=-,ln(1)c x =--, ① ln ln ln [ln ln(1)]-=+---a b x x x x , ln(1),(0.0.1]y x x x =+-∈;1'1011x y x x-=-=<--, 所以0y ,所以ln ln 0-a b ,所以b a > ②e ln(1),(0,0.1]-=+-∈x a c x x x ,1(1)(1)e 1'e e 11+--=+-=--x xxx x y x x x, 令()(1)(1)1x k x x x e =+--,所以2'()(12)e 0=-->x k x x x , 所以()(0)0k x k >>,所以'0y >,所以0a c ->,所以a c >.4.(2022年新高考2卷第12题)对任意22,,1x y x y xy +-=,则A .1x y +≤B .2x y +≥-C .222x y +≤ D .221x y +≥【答案】BC【解析】由221x y xy +-=得2212y x y ⎫⎛⎫-+=⎪ ⎪⎪⎝⎭⎝⎭令cos sin cos 23sin ??23y x x y y θθθθθ⎧⎧-==+⎪⎪⎪⎪⇒⎨⎪==⎪⎪⎩⎩故[]cos 2sin 2,26x y πθθθ⎛⎫+=+=+∈- ⎪⎝⎭,故A 错,B 对;2222cos sin 33x y θθθ⎛⎫⎛⎫+=++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭()14242 2cos 2sin 2,2,333333θθθϕ⎡⎤=-+=-+∈⎢⎥⎣⎦(其中tan 3ϕ=), 故C 对,D 错.5. (2022年北京卷第11题)函数1()f x x =+_________.【答案】()(],00,1-∞⋃ 【解析】因为()1f x x =100x x -≥⎧⎨≠⎩,解得1x ≤且0x ≠, 故函数的定义域为()(],00,1-∞⋃;故答案为:()(],00,1-∞⋃6.(2022年乙卷理科第14题)已知1x x =和2x x =分别是函数)10(2)(2≠>-=a a ex a x f x 且的极小值点和极大值点,若21x x <,则a 的取值范围是___________ 【答案】⎪⎭⎫ ⎝⎛e 1,0【解析】()()ex a a x f x-=ln 2'至少要有两个零点1x x =和2x x =,我们对其求导,()()e a a x f x 2ln 22''-=,(1)若1>a ,则()x f''在R 上单调递增,此时若()00''=x f ,则()x f '在()0,x ∞-上单调递减,在()+∞,0x 上单调递增,此时若有1x x =和2x x =分别是函数)10(2)(2≠>-=a a ex a x f x 且的极小值点和极大值点,则21x x >,不符合题意。

高考数学最新真题专题解析—等式与不等式

高考数学最新真题专题解析—等式与不等式

高考数学最新真题专题解析—等式与不等式考向一 基本不等式的应用【母题来源】2022年新高考全国II 卷【母题题文】若x ,y 满足221+-=x y xy ,则( )A. 1x y +≤B. 2x y +≥-C. 222x y +≤D. 221x y +≥ 【答案】BC【试题解析】因为22222a b a b ab ++⎛⎫≤≤⎪⎝⎭(,a b R ),由221+-=x y xy 可变形为,()221332x y x y xy +⎛⎫+-=≤ ⎪⎝⎭,解得22x y -≤+≤,当且仅当1x y ==-时,2x y +=-,当且仅当1x y ==时,2x y +=,所以A 错误,B 正确;由221+-=x y xy 可变形为()222212x y x y xy ++-=≤,解得222x y +≤,当且仅当1x y ==±时取等号,所以C 正确;因为221+-=x y xy 变形可得223124y x y ⎛⎫-+= ⎪⎝⎭,设3cos sin 2y x y θθ-==,所以cos ,33x y θθθ=+=,因此2222511cos sin cos 12cos 233333x y θθθθ=θ-θ+=+++42π2sin 2,23363θ⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎝⎭⎣⎦,所以当3333x y ==-时满足等式,但是221x y +≥不成立,所以D 错误.故选:BC .【命题意图】本题考查基本不等式及其应用,属于中高档题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度有易有难,是历年高考的热点,考查学生的基本运算能力.常见的命题角度有:(1)利用不等式比较大小;(2)利用不等式求最值;(3)基本不等式成立的条件 【得分要点】(1)对原不等式进行化简、变形;(2)符合基本不等式的条件“一正、二定、三相等”,用基本不等式求解; (3)判断等号成立的条件; (4)利用“1”的合理变换是解题.考向二 线性规划【母题来源】2022年高考全国乙卷(文科)【母题题文】若x ,y 满足约束条件2,24,0,x y x y y +≥⎧⎪+≤⎨⎪≥⎩则2z x y =-的最大值是( )A. 2-B. 4C. 8D. 12【答案】C【试题解析】由题意作出可行域,如图阴影部分所示, 转化目标函数2z x y =-为2y x z =-,上下平移直线2y x z =-,可得当直线过点()4,0时,直线截距最小,z 最大,所以max 2408z =⨯-=.故选:C.【命题意图】本题考查线性规划及其应用,属于比较容易题目.【命题方向】这类试题在考查题型上主要以选择、填空题的形式出现.试题难度较小,是历年高考的热点,考查学生的基本作图能力和运算能力. 常见的命题角度有:(1)线性规划求最值;(2)利用线性规划求参数的值;【得分要点】1.正确画出可行域;2.确定目标函数平移的方向决定取得最大值或最小值。

2023年高考数学(文科)一轮复习——基本不等式及其应用

2023年高考数学(文科)一轮复习——基本不等式及其应用

第3节 基本不等式及其应用考试要求 1.了解基本不等式的证明过程;2.会用基本不等式解决简单的最大(小)值问题.1.基本不等式:ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号.(3)其中a +b2称为正数a ,b 的算术平均数,ab 称为正数a ,b 的几何平均数. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. 3.利用基本不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a+1b≤ab≤a+b2≤a2+b22(a>0,b>0).4.应用基本不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用基本不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.1.思考辨析(在括号内打“√”或“×”)(1)两个不等式a2+b2≥2ab与a+b2≥ab成立的条件是相同的.()(2)函数y=x+1x的最小值是2.()(3)函数f(x)=sin x+4sin x的最小值为-5.()(4)x>0且y>0是xy+yx≥2的充要条件.()答案(1)×(2)×(3)√(4)×解析(1)不等式a2+b2≥2ab成立的条件是a,b∈R;不等式a+b2≥ab成立的条件是a≥0,b≥0.(2)函数y=x+1x的值域是(-∞,-2]∪[2,+∞),没有最小值.(4)x>0且y>0是xy+yx≥2的充分不必要条件.2.(易错题)已知x>2,则x+1x-2的最小值是()A.1B.2C.2 2D.4 答案 D解析∵x>2,∴x-2>0,∴x+1x-2=x-2+1x-2+2≥2(x-2)1x-2+2=4,当且仅当x-2=1x-2,即x=3时,等号成立.3.若x<0,则x+1x()A.有最小值,且最小值为2B.有最大值,且最大值为2C.有最小值,且最小值为-2D.有最大值,且最大值为-2 答案 D解析因为x<0,所以-x>0,x+1x=-⎣⎢⎡⎦⎥⎤-x+⎝⎛⎭⎪⎫-1x≤-2(-x)·⎝⎛⎭⎪⎫-1x=-2,当且仅当x=-1时,等号成立,所以x+1x≤-2.4.若x>0,y>0,且x+y=18,则xy的最大值为()A.9B.18C.36D.81 答案 A解析因为x+y=18,所以xy≤x+y2=9,当且仅当x=y=9时,等号成立.5.一段长为30 m的篱笆围成一个一边靠墙的矩形菜园,墙长18 m,则这个矩形的长为________m,宽为________m时菜园面积最大.答案1515 2解析设矩形的长为x m,宽为y m.则x+2y=30,所以S=xy=12x·(2y)≤12⎝⎛⎭⎪⎫x+2y22=2252,当且仅当x=2y,即x=15,y=152时取等号.6.已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案 14解析 由题设知a -3b =-6,又2a>0,8b>0,所以2a+18b ≥22a·18b =2×2a -3b 2=14,当且仅当2a =18b ,即a =-3,b =1时取等号.故2a +18b 的最小值为14.考点一 利用基本不等式求最值 角度1 配凑法求最值例1 (1)已知0<x <1,则x (3-2x )的最大值为________. (2)已知x >54,则f (x )=4x -2+14x -5的最小值为________.(3)(2021·沈阳模拟)若0<x <12,则y =x 1-4x 2的最大值为________. 答案 (1)98 (2)5 (3)14解析 (1)x (3-2x )=12·2x (3-2x )≤12·⎝ ⎛⎭⎪⎫2x +3-2x 22=98, 当且仅当2x =3-2x ,即x =34时取等号. (2)∵x >54,∴4x -5>0, ∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5. 当且仅当4x -5=14x -5,即x =32时取等号. (3)∵0<x <12, ∴y =x1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12·4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2,即x =24时取等号,则y =x1-4x 2的最大值为14.角度2 常数代换法求最值例 2 (2022·江西九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为________. 答案 5解析 因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b +3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立, 即b 3a +3b 的最小值为5. 角度3 消元法求最值例3 已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 6解析 法一(换元消元法) 由已知得x +3y =9-xy , 因为x >0,y >0, 所以x +3y ≥23xy , 所以3xy ≤⎝⎛⎭⎪⎫x +3y 22, 所以13×⎝⎛⎭⎪⎫x +3y 22≥9-(x +3y ), 即(x +3y )2+12(x +3y )-108≥0,则x +3y ≤-18(舍去)或x +3y ≥6(当且仅当x =3y ,即x =3,y =1时取等号),故x+3y的最小值为6. 法二(代入消元法)由x+3y+xy=9,得x=9-3y 1+y,所以x+3y=9-3y1+y+3y=9+3y21+y=3(1+y)2-6(1+y)+121+y=3(1+y)+121+y-6≥23(1+y)·121+y-6=12-6=6,当且仅当3(1+y)=121+y,即y=1,x=3时取等号,所以x+3y的最小值为6.感悟提升利用基本不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用基本不等式求解,但要注意利用基本不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.训练1 (1)已知函数f(x)=-x2x+1(x<-1),则()A.f(x)有最小值4B.f(x)有最小值-4C.f (x )有最大值4D.f (x )有最大值-4(2)正数a ,b 满足ab =a +b +3,则a +b 的最小值为________. 答案 (1)A (2)6解析 (1)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立. 故f (x )有最小值4.(2)∵a >0,b >0,∴ab ≤⎝ ⎛⎭⎪⎫a +b 22, 即a +b +3≤⎝ ⎛⎭⎪⎫a +b 22, 整理得(a +b )2-4(a +b )-12≥0,解得a +b ≤-2(舍)或a +b ≥6(当且仅当a =b =3时取等号). 故a +b 的最小值为6.考点二 基本不等式的综合应用例4 (1)(2022·河南名校联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( ) A.14B.12C.22D.1(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)A (2)B解析 (1)圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b 2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b ,即a =22,b =24时等号成立,故ab 的最大值是14.(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只需求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵(x +y )⎝ ⎛⎭⎪⎫1x +a y =1+a +y x +ax y≥a +2a +1=(a +1)2, 当且仅当y =ax 时,等号成立, ∴(a +1)2≥9,∴a ≥4, 即正实数a 的最小值为4.感悟提升 1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.训练2 (1)若△ABC 的内角满足3sin A =sin B +sin C ,则cos A 的最小值是( ) A.23B.79C.13D.59(2)当x ∈(0,+∞)时,ax 2-3x +a ≥0恒成立,则实数a 的取值范围是________. 答案 (1)B (2)⎣⎢⎡⎭⎪⎫32,+∞解析(1)由题意结合正弦定理有3a=b+c,结合余弦定理可得:cos A=b2+c2-a22bc=b2+c2-⎝⎛⎭⎪⎫b+c322bc=89b2+89c2-29bc2bc=89b2+89c22bc-19≥2×89b×89c2bc-19=79.当且仅当b=c时等号成立.综上可得,cos A的最小值是79.(2)ax2-3x+a≥0,则a≥3xx2+1=3x+1x,x∈(0,+∞),故x+1x≥2,当且仅当x=1时等号成立,故y=3x+1x≤32,故a≥32.考点三基本不等式的实际应用例5 为了美化校园环境,园艺师在花园中规划出一个平行四边形,建成一个小花圃,如图,计划以相距6米的M,N两点为AMBN一组相对的顶点,当AMBN 的周长恒为20米时,小花圃占地面积(单位:平方米)最大为()A.6B.12C.18D.24答案 D解析设AM=x,AN=y,则由已知可得x+y=10,在△MAN中,MN=6,由余弦定理可得,cos A =x 2+y 2-622xy =(x +y )2-362xy -1=32xy -1≥32⎝ ⎛⎭⎪⎫x +y 22-1=3225-1=725, 当且仅当x =y =5时等号成立, 此时(cos A )min =725, 所以(sin A )max =1-⎝ ⎛⎭⎪⎫7252=2425,所以四边形AMBN 的最大面积为2×12×5×5×2425=24,此时四边形AMBN 是边长为5的菱形.感悟提升 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. 3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.训练3 某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =________吨. 答案 20解析 该公司一年购买某种货物400吨,每次都购买x 吨,则需要购买400x 次,运费为4万元/次,一年的总存储费用为4x 万元,一年的总运费与总存储费用为之和为⎝ ⎛⎭⎪⎫400x ·4+4x 万元,400x ·4+4x ≥160,当且仅当1 600x =4x ,即x =20时,一年的总运费与总存储费用之和最小.1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( ) A.a +b ≥2ab B.a b +ba ≥2 C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2.2.若3x +2y =2,则8x +4y 的最小值为( ) A.4 B.4 2 C.2 D.2 2答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4,当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.3.若a >0,b >0,lg a +lg b =lg(a +b ),则a +b 的最小值为( ) A.8 B.6 C.4 D.2答案 C解析 依题意ab =a +b ,∴a +b =ab ≤⎝ ⎛⎭⎪⎫a +b 22,即a +b ≤(a +b )24,∴a +b ≥4,当且仅当a =b =2时取等号, ∴a +b 的最小值为4.4.已知f (x )=x 2-2x +1x ,则f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为( )A.12 B.43C.-1D.0答案 D解析 因为x ∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )=x 2-2x +1x =x +1x -2≥2-2=0,当且仅当x =1x ,即x =1时取等号.又1∈⎣⎢⎡⎦⎥⎤12,3,所以f (x )在⎣⎢⎡⎦⎥⎤12,3上的最小值为0.5.某车间分批生产某种产品,每批产品的生产准备费用为800元,若每批生产x 件,则平均仓储时间为x8天,且每件产品每天的仓储费用为1元.为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产产品( ) A.60件 B.80件 C.100件 D.120件答案 B解析 设每批生产产品x 件,则每件产品的生产准备费用是800x 元,仓储费用是x8元,总的费用是⎝ ⎛⎭⎪⎫800x +x 8元,由基本不等式得800x +x 8≥2800x ·x 8=20,当且仅当800x=x8,即x =80时取等号.6.对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A. 2 B.2 2C.4D.92答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0, ∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2nm 恒成立, ∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为2 2.7.(2022·河南顶级名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n 的最小值为( ) A.4 B.9C.23D.32答案 D解析 设各项均为正数的等比数列{a n }的公比为q ,q >0,由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7,即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝ ⎛⎭⎪⎫1m +4n=16⎝ ⎛⎭⎪⎫5+n m +4m n ≥16⎝⎛⎭⎪⎫5+2n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号. 8.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3 B.5C.7D.9答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y ) =2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号, ∴x +y ≥7,故x +y 的最小值为7.9.(2021·宜昌期末)某地为了加快推进垃圾分类工作,新建了一个垃圾处理厂,每月最少要处理300吨垃圾,最多要处理600吨垃圾,月处理成本y (单位:元)与月处理量x (单位:吨)之间的函数关系可近似表示为y =12x 2-300x +80 000,为使每吨的平均处理成本最低,该厂每月的垃圾处理量应为________吨.答案 400解析 由题意知,每吨垃圾的平均处理成本为y x =12x 2-300x +80 000x =x 2+80 000x -300,其中300≤x ≤600,又x 2+80 000x -300≥2x 2·80 000x -300=400-300=100,所以当且仅当x 2=80 000x ,即x =400吨时,每吨垃圾的平均处理成本最低. 10.(2022·兰州诊断)设a ,b ,c 均为正实数,若a +b +c =1,则1a +1b +1c ≥________. 答案 9解析 ∵a ,b ,c 均为正数,a +b +c =1, ∴1a +1b +1c =(a +b +c )⎝ ⎛⎭⎪⎫1a +1b +1c=3+⎝ ⎛⎭⎪⎫b a +a b +⎝ ⎛⎭⎪⎫a c +c a +⎝ ⎛⎭⎪⎫c b +b c≥3+2+2+2=9,当且仅当a =b =c =13时,取等号.11.(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.12.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b 的最小值为__________. 答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b ≥2a +b 2·8a +b=4,当且仅当a +b2=8a +b,即a +b =4时,等号成立. 故12a +12b +8a +b的最小值为4.13.(2022·宜春调研)已知x >0,y >0,x +2y =3,则x 2+3yxy 的最小值为( )A.3-2 2B.22+1C.2-1D.2+1答案 B解析 x >0,y >0,x +2y =3, 则x 2+3y xy =x 2+y (x +2y )xy=x y +2yx +1≥2x y ·2yx +1=22+1. 当且仅当x =2y 时,上式取得等号, 则x 2+3yxy 的最小值为22+1.14.(2022·西安一模)《几何原本》卷2的几何代数法(以几何方法研究代数问题)成为后世西方数学家处理问题的重要依据,通过这一原理,很多代数的公理或定理都能够通过图形实现证明,也称之为无字证明.现有如图所示的图形,点F 在半圆O 上,点C 在直径AB 上,且OF ⊥AB ,设AC =a ,BC =b ,则该图形可以完成的无字证明为( )A.a +b2≥ab (a >0,b >0)B.a 2+b 2≥2ab (a >0,b >0)C.2aba +b≤ab (a >0,b >0) D.a +b 2≤a 2+b 22(a >0,b >0)答案 D解析 由图形可知OF =12AB =12(a +b ),OC =⎪⎪⎪⎪⎪⎪12(a +b )-b =⎪⎪⎪⎪⎪⎪12(a -b ),在Rt △OCF 中,由勾股定理可得 CF =⎝ ⎛⎭⎪⎫a +b 22+⎝ ⎛⎭⎪⎫a -b 22=12(a 2+b 2), ∵CF ≥OF ,∴12(a 2+b 2)≥12(a +b )(a >0,b >0).故选D.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab 的最小值为________.答案 4解析 ∵a ,b ∈R ,ab >0, ∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a的取值范围是________. 答案 ⎣⎢⎡⎭⎪⎫-83,+∞解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3.设g (x )=x +8x ,x ∈N *, 则g (x )=x +8x ≥42, 当且仅当x =22时等号成立, 又g (2)=6,g (3)=173, ∵g (2)>g (3),∴g (x )min =173. ∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。

2022年全国高考文科数学(乙卷)试题及答案解析

2022年全国高考文科数学(乙卷)试题及答案解析

2022年普通高等学校招生全国统一考试(乙卷)文科数学一、单选题(本大题共12小题,共60.0分)1. 集合M ={2,4,6,8,10},N ={x|−1<x <6},则M ∩N =( )A. {2,4}B. {2,4,6}C. {2,4,6,8}D. {2,4,6,8,10}2. 设(1+2i)a +b =2i ,其中a ,b 为实数,则( )A. a =1,b =−1B. a =1,b =1C. a =−1,b =1D. a =−1,b =−13. 已知向量a ⃗ =(2,1),b ⃗ =(−2,4),则|a ⃗ −b ⃗ |=( )A. 2B. 3C. 4D. 54. 分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:ℎ),得如图茎叶图:则下列结论中错误的是( )A. 甲同学周课外体育运动时长的样本中位数为7.4B. 乙同学周课外体育运动时长的样本平均数大于8C. 甲同学周课外体育运动时长大于8的概率的估计值大于0.4D. 乙同学周课外体育运动时长大于8的概率的估计值大于0.65. 若x ,y 满足约束条件{x +y ≥2,x +2y ≤4,y ≥0,则z =2x −y 的最大值是( )A. −2B. 4C. 8D. 126. 设F 为抛物线C :y 2=4x 的焦点,点A 在C 上,点B(3,0),若|AF|=|BF|,则|AB|=( )A. 2B. 2√2C. 3D. 3√27. 执行如图的程序框图,输出的n =( )A. 3B. 4C. 5D. 68.如图是下列四个函数中的某个函数在区间[−3,3]的大致图像,则该函数是()A. y=−x3+3xx2+1B. y=x3−xx2+1C. y=2xcosxx2+1D. y=2sinxx2+19.在正方体ABCD−A1B1C1D1中,E,F分别为AB,BC的中点,则()A. 平面B1EF⊥平面BDD1B. 平面B1EF⊥平面A1BDC. 平面B1EF//平面A1ACD. 平面B1EF//平面A1C1D10.已知等比数列{a n}的前3项和为168,a2−a5=42,则a6=()A. 14B. 12C. 6D. 311.函数f(x)=cosx+(x+1)sinx+1在区间[0,2π]的最小值、最大值分别为()A. −π2,π2B. −3π2,π2C. −π2,π2+2 D. −3π2,π2+212.已知球O的半径为1,四棱锥的顶点为O,底面的四个顶点均在球O的球面上,则当该四棱锥的体积最大时,其高为()A. 13B. 12C. √33D. √22二、填空题(本大题共4小题,共20.0分)13. 记S n 为等差数列{a n }的前n 项和.若2S 3=3S 2+6,则公差d =______.14. 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为______. 15. 过四点(0,0),(4,0),(−1,1),(4,2)中的三点的一个圆的方程为______. 16. 若f(x)=ln|a +11−x |+b 是奇函数,则a =______,b =______.三、解答题(本大题共7小题,共82.0分)17. 记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知sinCsin(A −B)=sinBsin(C −A).(1)若A =2B ,求C ; (2)证明:2a 2=b 2+c 2.18. 如图,四面体ABCD 中,AD ⊥CD ,AD =CD ,∠ADB =∠BDC ,E 为AC 的中点. (1)证明:平面BED ⊥平面ACD ;(2)设AB =BD =2,∠ACB =60°,点F 在BD 上,当△AFC 的面积最小时,求三棱锥F −ABC 的体积.19. 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:m 2)和材积量(单位:m 3),得到如下数据: 样本号i12345678910 总和根部横截面积x i 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6 材积量y i0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9并计算得∑x i 210i=1=0.038,∑y i 210i=1=1.6158,∑x i 10i=1y i =0.2474.(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量; (2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01); (3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为186m 2.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值. 附:相关系数r =∑(n i=1x i −x −)(y i −y −)√∑(ni=1x i −x −)2∑(n i=1y i −y −)2,√1.896≈1.377.20. 已知函数f(x)=ax −1x −(a +1)lnx .(1)当a =0时,求f(x)的最大值;(2)若f(x)恰有一个零点,求a 的取值范围.21. 已知椭圆E 的中心为坐标原点,对称轴为x 轴、y 轴,且过A(0,−2),B(32,−1)两点.(1)求E 的方程;(2)设过点P(1,−2)的直线交E 于M ,N 两点,过M 且平行于x 轴的直线与线段AB 交于点T ,点H 满足MT ⃗⃗⃗⃗⃗⃗ =TH⃗⃗⃗⃗⃗⃗ .证明:直线HN 过定点. 22. 在直角坐标系xOy 中,曲线C 的参数方程为{x =√3cos2t,y =2sint(t 为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,已知直线l 的极坐标方程为ρsin(θ+π3)+m =0.(1)写出l 的直角坐标方程;(2)若l 与C 有公共点,求m 的取值范围.已知a ,b ,c 都是正数,且a 32+b 32+c 32=1,证明:(1)abc ≤19;(2)a b+c+b a+c+c a+b≤2√abc.答案解析1.【答案】A【解析】解:∵M ={2,4,6,8,10},N ={x|−1<x <6}, ∴M ∩N ={2,4}. 故选:A .直接利用交集运算求解即可.本题考查集合的交集运算,属于基础题.2.【答案】A【解析】解:∵(1+2i)a +b =2i , ∴a +b +2ai =2i ,即{a +b =02a =2,解得{a =1b =−1.故选:A .根据已知条件,结合复数相等的条件,即可求解. 本题主要考查复数相等的条件,属于基础题.3.【答案】D【解析】解:a ⃗ −b ⃗ =(4,−3),故∣a ⃗ −b ⃗ ∣=√42+(−3)2=5,故选:D .先计算处a ⃗ −b ⃗ 的坐标,再利用坐标模长公式即可. 本题主要考查向量坐标公式,属于基础题.4.【答案】C【解析】解:由茎叶图可知,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,选项A 说法正确;由茎叶图可知,乙同学周课外体育运动时长的样本平均数大于8,选项B 说法正确; 甲同学周课外体育运动时长大于8的概率的估计值为616=38<0.4,选项C 说法错误; 乙同学周课外体育运动时长大于8的概率的估计值为1316=0.8125>0.6,选项D 说法正确.故选:C.根据茎叶图逐项分析即可得出答案.本题考查茎叶图,考查对数据的分析处理能力,属于基础题.5.【答案】C【解析】解:作出可行域如下图阴影部分所示,由图可知,当(x,y)取点C(4,0)时,目标函数z=2x−y取得最大值,且最大为8.故选:C.作出可行域,根据图象即可得解.本题考查简单的线性规划问题,考查数形结合思想,属于基础题.6.【答案】B【解析】解:F为抛物线C:y2=4x的焦点(1,0),点A在C上,点B(3,0),|AF|=|BF|=2,由抛物线的定义可知A(1,2)(A不妨在第一象限),所以|AB|=2√2.故选:B.利用已知条件,结合抛物线的定义,求解A的坐标,然后求解即可.本题考查抛物线的简单性质的应用,距离公式的应用,是基础题.7.【答案】B【解析】解:模拟执行程序的运行过程,如下:输入a=1,b=1,n=1,计算b=1+2=3,a=3−1=2,n=2,判断|3222−2|=14=0.25≥0.01,计算b=3+4=7,a=7−2=5,n=3,判断|7252−2|=125=0.04≥0.01;计算b=7+10=17,a=17−5=12,n=4,判断|172122−2|=1144<0.01;输出n=4.故选:B.模拟执行程序的运行过程,即可得出程序运行后输出的n值.本题考查了程序的运行与应用问题,也考查了推理与运算能力,是基础题.8.【答案】A【解析】解:首先根据图像判断函数为奇函数,其次观察函数在(1,3)存在零点,而对于B选项:令y=0,即x3−xx2+1=0,解得x=0,或x=1或x=−1,故排除B选项,对于D选项,令y=0,即2sinxx2+1=0,解得x=kπ,k∈Z,故排除D选项,C选项分母为x2+1恒为正,但是分子中cosx是个周期函数,故函数图像在(0,+∞)必定是正负周期出现,故错误,故选:A.首先分析函数奇偶性,然后观察函数图像在(1,3)存在零点,可排除B,D选项,再利用cosx 在(0,+∞)的周期性可判断C选项错误.本题主要考查函数图像的识别,属于基础题.9.【答案】A【解析】解:对于A,由于E,F分别为AB,BC的中点,则EF//AC,又AC⊥BD,AC⊥DD1,BD∩DD1=D,且BD,DD1⊂平面BDD1,∴AC⊥平面BDD1,则EF⊥平面BDD1,又EF⊂平面B1EF,∴平面B1EF⊥平面BDD1,选项A正确;对于B,由选项A可知,平面B1EF⊥平面BDD1,而平面BDD1∩平面A1BD=BD,故平面B1EF不可能与平面A1BD垂直,选项B错误;对于C,在平面ABB1A1上,易知AA1与B1E必相交,故平面B1EF与平面A1AC不平行,选项C错误;对于D,易知平面AB1C//平面A1C1D,而平面AB1C与平面B1EF有公共点B1,故平面B1EF 与平面A1C1D不可能平行,选项D错误.故选:A.对于A,易知EF//AC,AC⊥平面BDD1,从而判断选项A正确;对于B,由选项A及平面BDD1∩平面A1BD=BD可判断选项B错误;对于C,由于AA1与B1E必相交,容易判断选项C错误;对于D,易知平面AB1C//平面A1C1D,而平面AB1C与平面B1EF有公共点B1,由此可判断选项D错误.本题考查空间中线线,线面,面面间的位置关系,考查逻辑推理能力,属于中档题.10.【答案】D【解析】解:设等比数列{a n}的公比为q,q≠0,由题意,q≠1.∵前3项和为a1+a2+a3=a1(1−q3)1−q=168,a2−a5=a1⋅q−a1⋅q4=a1⋅q(1−q3)= 42,∴q=12,a1=96,则a6=a1⋅q5=96×132=3,故选:D.由题意,利用等比数列的定义、性质、通项公式,求得a6的值.本题主要考查等比数列的定义、性质、通项公式,属于基础题.11.【答案】D【解析】解:f(x)=cosx+(x+1)sinx+1,x∈[0,2π],则f′(x)=−sinx+sinx+(x+1)cosx=(x+1)cosx,令cosx=0得,x=π2或3π2,∴当x∈[0,π2)时,f′(x)>0,f(x)单调递增;当x∈(π2,3π2)时,f′(x)<0,f(x)单调递减;当x∈(3π2,2π]时,f′(x)>0,f(x)单调递增,∴f(x)在区间[0,2π]上的极大值为f(π2)=π2+2,极小值为f(3π2)=−3π2,又∵f(0)=2,f(2π)=2,∴函数f(x)在区间[0,2π]的最小值为−3π2,最大值为π2+2,故选:D.先求出导函数f′(x)=(x+1)cosx,令cosx=0得,x=π2或3π2,根据导函数f′(x)的正负得到函数f(x)的单调性,进而求出函数f(x)的极值,再与端点值比较即可.本题主要考查了利用导数研究函数的最值,属于中档题.12.【答案】C【解析】解:由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a,底面所在圆的半径为r,则r=√22a,∴该四棱锥的高ℎ=√1−a22,∴该四棱锥的体积V=13a2√1−a22=43√a24⋅a24⋅(1−a22)≤4 3√(a24+a24+1−a223)3=43√(13)3=4√327,当且仅当a24=1−a22,即a2=43时,等号成立,∴该四棱锥的体积最大时,其高ℎ=√1−a22=√1−23=√33,故选:C.由题意可知,当四棱锥为正四棱锥时,其体积最大,设底面边长为a,由勾股定理可知该四棱锥的高ℎ=√1−a22,所以该四棱锥的体积V=13a2√1−a22,再利用基本不等式即可求出V的最大值,以及此时a的值,进而求出ℎ的值.本题主要考查了四棱锥的结构特征,考查了基本不等式的应用,属于中档题.13.【答案】2【解析】解:∵2S3=3S2+6,∴2(a1+a2+a3)=3(a1+a2)+6,∵{a n}为等差数列,∴6a2=3a1+3a2+6,∴3(a2−a1)=3d=6,解得d=2.故答案为:2.根据已知条件,可得2(a 1+a 2+a 3)=3(a 1+a 2)+6,再结合等差中项的性质,即可求解.本题主要考查等差数列的前n 项和,考查转化能力,属于基础题.14.【答案】310【解析】解:由题意,从甲、乙等5名学生中随机选出3人,基本事件总数C 53=10, 甲、乙被选中,则从剩下的3人中选一人,包含的基本事件的个数C 31=3,根据古典概型及其概率的计算公式,甲、乙都入选的概率P =C 31C 53=310.故答案为:310.从甲、乙等5名学生中随机选出3人,先求出基本事件总数,再求出甲、乙被选中包含的基本事件的个数,由此求出甲、乙被选中的概率.本题主要考查古典概型及其概率计算公式,熟记概率的计算公式即可,属于基础题.15.【答案】x 2+y 2−4x −6y =0(或x 2+y 2−4x −2y =0或x 2+y 2−83x −143y =0或x 2+y 2−165x −2y −165=0)【解析】解:设过点(0,0),(4,0),(−1,1)的圆的方程为x 2+y 2+Dx +Ey +F =0, 即{F =016+4D +F =02−D +E +F =0,解得F =0,D =−4,E =−6, 所以过点(0,0),(4,0),(−1,1)圆的方程为x 2+y 2−4x −6y =0. 同理可得,过点(0,0),(4,0),(4,2)圆的方程为x 2+y 2−4x −2y =0. 过点(0,0),(−1,1),(4,2)圆的方程为x 2+y 2−83x −143y =0.过点(4,0),(−1,1),(4,2)中的三点的一个圆的方程为x 2+y 2−165x −2y −165=0.故答案为:x 2+y 2−4x −6y =0(或x 2+y 2−4x −2y =0或x 2+y 2−83x −143y =0或x 2+y 2−165x −2y −165=0).选其中的三点,利用待定系数法即可求出圆的方程.本题考查了过不在同一直线上的三点求圆的方程应用问题,是基础题.16.【答案】−12 ln2【解析】解:f(x)=ln|a+11−x|+b,若a=0,则函数f(x)的定义域为{x|x≠1},不关于原点对称,不具有奇偶性,∴a≠0,由函数解析式有意义可得,x≠1且a+11−x≠0,∴x≠1且x≠1+1a,∵函数f(x)为奇函数,∴定义域必须关于原点对称,∴1+1a =−1,解得a=−12,∴f(x)=ln|1+x2(1−x)|+b,定义域为{x|x≠1且x≠−1},由f(0)=0得,ln12+b=0,∴b=ln2,故答案为:−12;ln2.显然a≠0,根据函数解析式有意义可得,x≠1且x≠1+1a ,所以1+1a=−1,进而求出a的值,代入函数解析式,再利用奇函数的性质f(0)=0即可求出b的值.本题主要考查了奇函数的定义和性质,属于中档题.17.【答案】解:(1)由sinCsin(A−B)=sinBsin(C−A),又A=2B,∴sinCsinB=sinBsin(C−A),∵sinB≠0,∴sinC=sin(C−A),即C=C−A(舍去)或C+C−A=π,联立{A=2B2C−A=πA+B+C=π,解得C=58π;证明:(2)由sinCsin(A−B)=sinBsin(C−A),得sinCsinAcosB−sinCcosAsinB=sinBsinCcosA−sinBcosCsinA,由正弦定理可得accosB−bccosA=bccosA−abcosC,由余弦定理可得:ac⋅a2+c2−b22ac =2bc⋅b2+c2−a22bc−ab⋅a2+b2−c22ab,整理可得:2a2=b2+c2.【解析】(1)由sinCsin(A−B)=sinBsin(C−A),结合A=2B,可得sinC=sin(C−A),即C+C−A=π,再由三角形内角和定理列式求解C;(2)把已知等式展开两角差的正弦,由正弦定理及余弦定理化角为边即可证明结论.本题考查三角形的解法,考查正弦定理及余弦定理的应用,考查运算求解能力,是中档题.18.【答案】证明:(1)∵AD =CD ,∠ADB =∠BDC ,BD =BD , ∴△ADB≌△CDB ,∴AB =BC ,又∵E 为AC 的中点. ∴AC ⊥BE ,∵AD =CD ,E 为AC 的中点. ∴AC ⊥DE ,又∵BE ∩DE =E , ∴AC ⊥平面BED , 又∵AC ⊂平面ACD , ∴平面BED ⊥平面ACD ; 解:(2)由(1)可知AB =BC ,∴AB =BC =2,∠ACB =60°,∴△ABC 是等边三角形,边长为2, ∴BE =√3,AC =2,AD =CD =√2,DE =1, ∵DE 2+BE 2=BD 2,∴DE ⊥BE , 又∵DE ⊥AC ,AC ∩BE =E , ∴DE ⊥平面ABC ,由(1)知△ADB≌△CDB ,∴AF =CF ,连接EF ,则EF ⊥AC , ∴S △AFC =12×AC ×EF =EF ,∴当EF ⊥BD 时,EF 最短,此时△AFC 的面积最小, 过点F 作FG ⊥BE 于点G ,则FG//DE ,∴FG ⊥平面ABC , ∵EF =DE×BE BD=√32, ∴BF =√BE 2−EF 2=32,∴FG =EF×BF BE=34, ∴三棱锥F −ABC 的体积V =13×S △ABC ×FG =13×√34×22×34=√34.【解析】(1)易证△ADB≌△CDB ,所以AC ⊥BE ,又AC ⊥DE ,由线面垂直的判定定理可得AC ⊥平面BED ,再由面面垂直的判定定理即可证得平面BED ⊥平面ACD ; (2)由题意可知△ABC 是边长为2的等边三角形,进而求出BE =√3,AC =2,AD =CD =√2,DE =1,由勾股定理可得DE ⊥BE ,进而证得DE ⊥平面ABC ,连接EF ,因为AF =CF ,则EF ⊥AC ,所以当EF ⊥BD 时,EF 最短,此时△AFC 的面积最小,求出此时点F 到平面ABC 的距离,从而求得此时三棱锥F −ABC 的体积.本题主要考查了面面垂直的判定定理,考查了三棱锥的体积公式,同时考查了学生的空间想象能力与计算能力,是中档题.19.【答案】解:(1)设这棵树木平均一棵的根部横截面积为x −,平均一棵的材积量为y −, 则根据题中数据得:x −=0.610=0.06,y −=3.910=0.39;(2)由题可知,r =10i=1i −i −√∑(i=1x i −x −)2∑(i=1y i −y −)2=i 10i=1i −−√(∑x i i=1−nx −2)(∑y i i=1−ny −2)=√0.002×0.0948=0.01×√1.896=0.01340.01377=0.97;(3)设从根部面积总和X ,总材积量为Y ,则XY=x−y−,故Y =0.390.06×186=1209(m 3).【解析】根据题意结合线性回归方程求平均数、样本相关系数,并估计该林区这种树木的总材积量的值即可.本题考查线性回归方程,属于中档题.20.【答案】解:(1)当a =0时,f(x)=−1x −lnx(x >0),则f′(x)=1x 2−1x =1−x x 2,易知函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减, ∴f(x)在x =1处取得极大值,同时也是最大值, ∴函数f(x)的最大值为f(1)=−1; (2)f′(x)=a +1x 2−a+1x=ax 2−(a+1)x+1x 2=(x−1)(ax−1)x 2,①当a =0时,由(1)可知,函数f(x)无零点;②当a <0时,易知函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减, 又f(1)=a −1<0,故此时函数f(x)无零点;③当0<a <1时,易知函数f(x)在(0,1),(1a ,+∞)上单调递增,在(1,1a )单调递减, 且f(1)=a −1<0,f(1a )=1−a +(a +1)lna <0,且当x →+∞时,f(x)>0,此时f(x)在(0,+∞)上存在唯一零点; ④当a =1时,f′(x)=(x−1)2x 2≥0,函数f(x)在(0,+∞)上单调递增,又f(1)=0,故此时函数f(x)有唯一零点;⑤当a >1时,易知函数f(x)在(0,1a ),(1,+∞)上单调递增,在(1a ,1)上单调递减, 且f(1)=a −1>0,且当x →0时,f(x)<0,故函数f(x)在(0,+∞)上存在唯一零点; 综上,实数a 的取值范围为(0,+∞).【解析】(1)将a =0代入,对函数f(x)求导,判断其单调性,由此可得最大值; (2)对函数f(x)求导,分a =0,a <0,0<a <1,a =1及a >1讨论即可得出结论.本题考查里利用导数研究函数的单调性,极值及最值,考查函数的零点问题,考查分类讨论思想及运算求解能力,属于难题.21.【答案】解:(1)设E 的方程为x 2a 2+y2b2=1, 将A(0,−2),B(32,−1)两点代入得{4b 2=194a2+1b2=1,解得a 2=3,b 2=4, 故E 的方程为x 23+y 24=1;(2)由A(0,−2),B(32,−1)可得直线AB :y =23x −2 ①若过P(1,−2)的直线的斜率不存在,直线为x =1, 代入x 23+y 24=1,可得M(1,2√63),N(1,−2√63), 将y =2√63代入AB :y =23x −2,可得T(√6+3,2√63),由MT ⃗⃗⃗⃗⃗⃗ =TH ⃗⃗⃗⃗⃗⃗ ,得H(2√6+5,2√63), 易求得此时直线HN :y =(2−2√63)x −2,过点(0,−2);②若过P(1,−2)的直线的斜率存在,设kx −y −(k +2)=0,M(x 1,y 1),N(x 2,y 2), 联立{kx −y −(k +2)=0x 23+y 24=1,得(3k 2+4)x 2−6k(2+k)x +3k(k +4)=0,故有{x 1+x 2=6k(2+k)3k 2+4x 1x 2=3k(4+k)3k 2+4,{y 1+y 2=−8(2+k)3k 2+4y 1y 2=4(4+4k−2k 23k 2+4,且x 1y 2+x 2y 1=−24k3k 2+4(∗), 联立{y =y 1y =23x −2,可得T(3y 12+3,y 1),H(3y 1+6−x 1,y 1),可求得此时HN :y −y 2=y 1−y 23y1+6−x 1−x 2(x −x 2),将(0,−2)代入整理得2(x 1+x 2)−6(y 1+y 2)+x 1y 2+x 2y 1−3y 1y 2−12=0, 将(∗)代入,得24k +12k 2+96+48k −24k −48−48k +24k 2−36k 2−48=0, 显然成立.综上,可得直线HN 过定点(0,−2). 【解析】(1)设E 的方程为x 2a 2+y 2b 2=1,将A ,B 两点坐标代入即可求解;(2)由A(0,−2),B(32,−1)可得直线AB :y =23x −2,①若过P(1,−2)的直线的斜率不存在,直线为x =1,代入椭圆方程,根据MT ⃗⃗⃗⃗⃗⃗ =TH⃗⃗⃗⃗⃗⃗ 即可求解;②若过P(1,−2)的直线的斜率存在,设kx−y−(k+2)=0,M(x1,y1),N(x2,y2),联立{kx−y−(k+2)=0x23+y24=1,得(3k2+4)x2−6k(2+k)x+3k(k+4)=0,结合韦达定理和已知条件即可求解.本题考查了直线与椭圆的综合应用,属于中档题.22.【答案】解:(1)由ρsin(θ+π3)+m=0,得ρ(sinθcosπ3+cosθsinπ3)+m=0,∴12ρsinθ+√32ρcosθ+m=0,又x=ρcosθ,y=ρsinθ,∴12y+√32x+m=0,即l的直角坐标方程为√3x+y+2m=0;(2)由曲线C的参数方程为{x=√3cos2t,y=2sint(t为参数).消去参数t,可得y2=−2√33x+2,联立{√3x+y+2m=0y2=−2√33x+2,得3y2−2y−4m−6=0(−2≤y≤2).−3≤√3≤6,即−193≤4m≤10,−1912≤m≤52,∴m的取值范围是[−1912,5 2 ].【解析】(1)由ρsin(θ+π3)+m=0,展开两角和的正弦,结合极坐标与直角坐标的互化公式,可得l的直角坐标方程;(2)化曲线C的参数方程为普通方程,联立直线方程与曲线C的方程,化为关于y的一元二次方程,再求解m的取值范围.本题考查简单曲线的极坐标方程,考查参数方程化普通方程,考查直线与抛物线位置关系的应用,是中档题.23.【答案】解:(1)证明:∵a,b,c都是正数,∴a32+b32+c32≥33a32⋅b32⋅c32=3(abc)12,当且仅当a=b=c=3−23时,等号成立.因为a32+b32+c32=1,所以1≥3(abc)12,所以13≥(abc)12,所以abc≤19,得证.(2)证明:要使ab+c +ba+c+ca+b≤2√abc成立,只需证a32√bcb+c+b32√aca+c+c32√aba+b≤12,又因为b+c≥2√bc,a+c≥2√ac,a+b≥2√ab,当且仅当a=b=c=3−23时,同时取等.所以a 32√bcb+c +b32√aca+c+c32√aba+b≤a32√bc2√bcb32√ac2√ac32√ab2√ab=a32+b32+c322=12,得证.【解析】结合基本不等式与恒成立问题证明即可.本题考查基本不等式的应用,属于中档题.。

高中数学解题方法系列:用基本不等式求最值的4种策略

高中数学解题方法系列:用基本不等式求最值的4种策略

高中数学解题方法系列:用基本不等式求最值的4种策略基本不等式ab b a ≥+2(0,0>>b a 当且仅当b a =时等号成立)是高中必修五《不等式》一章的重要内容之一,也是高考常考的重要知识点。

从本质上看,基本不等式反映了两个正数和与积之间的不等关系,所以在求取积的最值、和的最值当中,基本不等式将会焕发出强大的生命力,它将会是解决最值问题的强有力工具。

本文将结合几个实例谈谈运用基本不等式求最值的三大策略。

一、基本不等式的基础知识[1]基本不等式:如果0,0>>b a ,则ab b a ≥+2,当且仅当b a =时等号成立。

在基本不等式的应用中,我们需要注意以下三点:“一正”:a 、b 是正数,这是利用基本不等式求最值的前提条件。

“二定”:当两正数的和b +a 是定值时,积ab 有最大值;当两正数的积ab 是定值时,和b +a 有最小值。

“三相等”:b a =是ab b a =+2的充要条件,所以多次使用基本不等式时,要注意等号成立的条件是否一致。

二、利用基本不等式求最值的四大策略策略一利用配凑法,构造可用基本不等式求最值的结构通过简单的配凑(凑系数或凑项)后,使原本与基本不等式结构不一致的式子,变为结构一致,再利用均值不等式求解最值。

题型一配凑系数例1 设230<<x ,求函数)23(4x x y -=的最大值。

分析:因为x x x 23)23(4+=-+不是个定值,所以本题无法直接运用基本不等式求解。

但凑系数将4x 拆为x 22⋅后可得到和3)23(2=-+x x 为定值,从而可利用基本不等式求其最大值。

解:因为230<<x ,所以023>-x 故2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫ ⎝⎛∈=23,043x 时等号成立. 所以原式的最大值为29. 题型二配凑项1 配凑常数项例2 已知54x <,求函数54124-+-=x x y 的最大值。

高中数学 基本不等式

高中数学  基本不等式

高 考 体 验 · 明 考 情
号成立条件.
典 例 探 究 · 提 知 能
2.利用基本不等式求函数最值时,注意“一正、二 定、三相等,和定积最大,积定和最小”.常用的方法为 拆、凑、代换、平方.
课 后 作 业


新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
3 4 (1)已知x>0,y>0,且x+y=1,且 + 的最小值是 x y ________. (2)(2013· 金华调研)设x,y为实数,若x2+y2+xy=1, 则x+y的最大值是________. 【解析】 (1)∵x>0,y>0,x+y=1, 3 4 3 4 3y 4x ∴ + =(x+y)( + )= + +7 x y x y x y ≥2 3y 4x · +7=7+4 3, x y
新课标 ·文科数学(安徽专用)
第四节
自 主 落 实 · 固 基 础
基本不等式
高 考 体 验 · 明 考 情
典 例 探 究 · 提 知 能
课 后 作 业


新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
典 例 探 究 · 提 知 能
a+b 1.基本不等式 ab≤ 2 a>0,b>0 (1)基本不等式成立的条件:_____________. a=b (2)等号成立的条件:当且仅当_________时等号成立. a+b 算术平均数 (3)其中 称为正数a,b的____________, ab称为正 2 几何平均数 数a,b的_____________.

课 后 作 业

新课标 ·文科数学(安徽专用)
自 主 落 实 · 固 基 础
1.(人教A版教材习题改编)设0<x<1,则x(3-3x)取 得最大值时,x的值为( ) 1 1 3 2 A. B. C. D. 3 2 4 3

高中总复习二轮文科数学精品课件 专题8 选修4系列 8.2 不等式选讲(选修4—5)

高中总复习二轮文科数学精品课件 专题8 选修4系列 8.2 不等式选讲(选修4—5)
所以当a≥3或a≤-1时,f(x)≥4.
当-1<a<3时,f(a2)=|a2-2a+1|=(a-1)2<4.
所以a的取值范围是(-∞,-1]∪[3,+∞).
.
命题热点三
不等式的证明
【思考】 不等式证明的常用方法有哪些?
例3(2022全国甲,文23)已知a,b,c均为正数,且a2+b2+4c2=3,证明:
即ac+4bc≤1(当且仅当a=b=c时,等号成立).
预测演练•巩固提升
1.(2022广西桂林阳朔中学模拟)已知函数f(x)=|x+3|,g(x)=|2-x|.
(1)求不等式f(x)+g(x)≤6的解集;
(2)设h(x)=f(x)-g(x),x1,x2∈R,求h(x1)-h(x2)的最大值.
解:(1)依题意,|x+3|+|2-x|≤6,
2
2
(0<x<1)的最小值为
1-
1.
题后反思 基本不等式在解决多变量代数式的最值问题中有着重要的应用,
运用基本不等式时应注意其条件(一正、二定、三相等).
对点训练4已知函数f(x)=x2+|x-2|.
(1)解不等式f(x)≤2|x|;
(2)若f(x)≥a2+4b2+5c2-
1
对任意x∈R恒成立,证明ac+4bc≤1.
则当 x≤-3
7
时,-(x+3)+(2-x)≤6,解得- ≤x≤-3;
2
当-3<x<2 时,x+3+2-x≤6,所以-3<x<2;
当 x≥2 时,x+3+x-2≤6,解得

人教版高考文科数学一轮复习资料选修-不等式的证明

人教版高考文科数学一轮复习资料选修-不等式的证明

第2讲 不等式的证明一、知识梳理 1.基本不等式定理1:设a ,b ∈R ,则a 2+b 2≥2ab ,当且仅当a =b 时,等号成立. 定理2:如果a ,b 为正数,则a +b2≥ab ,当且仅当a =b 时,等号成立.定理3:如果a ,b ,c 为正数,则a +b +c 3≥3abc ,当且仅当a =b =c 时,等号成立.定理4:(一般形式的算术—几何平均不等式)如果a 1,a 2,…,a n 为n 个正数,则a 1+a 2+…+a n n≥ na 1a 2…a n ,当且仅当a 1=a 2=…=a n 时,等号成立.2.不等式的证明方法证明不等式常用的方法有比较法、综合法、分析法、反证法、放缩法、数学归纳法等. 常用结论基本不等式及其推广1.a 2≥0(a ∈R ).2.(a -b )2≥0(a ,b ∈R ),其变形有a 2+b 2≥2ab ,⎝⎛⎭⎫a +b 22≥ab ,a 2+b 2≥12(a +b )2.3.若a ,b 为正实数,则a +b 2≥ab .特别地,b a +ab ≥2.4.a 2+b 2+c 2≥ab +bc +ca . 二、教材衍化 求证:3+7<2+ 6. 证明:3+7<2+6 ⇐(3+7)2<(2+6)2 ⇐10+221<10+46⇐21<26⇐21<24.故原不等式成立.一、思考辨析判断正误(正确的打“√”,错误的打“×”) (1)比较法最终要判断式子的符号得出结论.( )(2)综合法是从原因推导到结果的思维方法,它是从已知条件出发,经过逐步推理,最后达到待证的结论.()(3)使用反证法时,“反设”不能作为推理的条件应用.( ) 答案:(1)× (2)√ (3)× 二、易错纠偏常见误区不等式放缩不当致错.已知三个互不相等的正数a ,b ,c 满足abc =1.试证明: a +b +c <1a +1b +1c.证明:因为a ,b ,c >0,且互不相等,abc =1,所以a +b +c =1bc+1ac+1ab<1b +1c 2+1a +1c 2+1a +1b 2=1a +1b +1c ,即a +b +c <1a +1b +1c.用综合法、分析法证明不等式(师生共研)(2019·高考全国卷Ⅰ)已知a ,b ,c 为正数,且满足abc =1.证明: (1)1a +1b +1c ≤a 2+b 2+c 2; (2)(a +b )3+(b +c )3+(c +a )3≥24.证明:(1)因为a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ac ,又abc =1,故有a 2+b 2+c 2≥ab +bc +ca =ab +bc +ca abc =1a +1b +1c.当且仅当a =b =c =1时,等号成立.所以1a +1b +1c≤a 2+b 2+c 2.(2)因为a ,b ,c 为正数且abc =1,故有(a +b )3+(b +c )3+(c +a )3≥33(a +b )3(b +c )3(a +c )3 =3(a +b )(b +c )(a +c ) ≥3×(2ab )×(2bc )×(2ac )=24.当且仅当a =b =c =1时,等号成立. 所以(a +b )3+(b +c )3+(c +a )3≥24.用综合法证明不等式是“由因导果”,用分析法证明不等式是“执果索因”,它们是两种思路截然相反的证明方法.综合法往往是分析法的逆过程,表述简单、条理清楚,所以在实际应用时,往往用分析法找思路,用综合法写步骤,由此可见,分析法与综合法相互转化,互相渗透,互为前提.充分利用这一辩证关系,可以增加解题思路,开阔视野.1.若a ,b ∈R ,ab >0,a 2+b 2=1.求证:a 3b +b 3a≥1. 证明:a 3b +b 3a =a 4+b 4ab =(a 2+b 2)2-2a 2b 2ab =1ab -2ab .因为a 2+b 2=1≥2ab ,当且仅当a =b 时等号成立, 所以0<ab ≤12.令h (t )=1t -2t ,0<t ≤12,则h (t )在(0,12]上递减,所以h (t )≥h (12)=1.所以当0<ab ≤12时,1ab -2ab ≥1.所以a 3b +b 3a≥1.2.(一题多解)(2020·宿州市质量检测)已知不等式|2x +1|+|2x -1|<4的解集为M . (1)求集合M ;(2)设实数a ∈M ,b ∉M ,证明:|ab |+1≤|a |+|b |.解:(1)当x <-12时,不等式化为-2x -1+1-2x <4,即x >-1,所以-1<x <-12;当-12≤x ≤12时,不等式化为2x +1-2x +1<4,即2<4, 所以-12≤x ≤12;当x >12时,不等式化为2x +1+2x -1<4,即x <1,所以12<x <1.综上可知,M ={x |-1<x <1}.(2)法一:因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1. 而|ab |+1-(|a |+|b |) =|ab |+1-|a |-|b | =(|a |-1)(|b |-1)≤0, 所以|ab |+1≤|a |+|b |. 法二:要证|ab |+1≤|a |+|b |, 只需证|a ||b |+1-|a |-|b |≤0, 只需证(|a |-1)(|b |-1)≤0,因为a ∈M ,b ∉M ,所以|a |<1,|b |≥1, 所以(|a |-1)(|b |-1)≤0成立. 所以|ab |+1≤|a |+|b |成立.放缩法证明不等式(师生共研)若a ,b ∈R ,求证:|a +b |1+|a +b |≤|a |1+|a |+|b |1+|b |.【证明】 当|a +b |=0时,不等式显然成立. 当|a +b |≠0时, 由0<|a +b |≤|a |+|b |⇒1|a +b |≥1|a |+|b |, 所以|a +b |1+|a +b |=11|a +b |+1≤11+1|a |+|b |=|a |+|b |1+|a |+|b |=|a |1+|a |+|b |+|b |1+|a |+|b |≤|a |1+|a |+|b |1+|b |.在不等式的证明中,“放”和“缩”是常用的推证技巧.常见的放缩变换有: (1)变换分式的分子和分母,如1k 2<1k (k -1),1k 2>1k (k +1),1k <2k +k -1,1k >2k +k +1上面不等式中k ∈N +,k >1.(2)利用函数的单调性.(3)真分数性质“若0<a <b ,m >0,则a b <a +mb +m ”.[注意] 在用放缩法证明不等式时,“放”和“缩”均需把握一个度.设n 是正整数,求证:12≤1n +1+1n +2+…+12n<1.证明: 由2n ≥n +k >n (k =1,2,…,n ),得12n ≤1n +k <1n .当k =1时,12n ≤1n +1<1n ;当k =2时,12n ≤1n +2<1n ;…当k =n 时,12n ≤1n +n <1n,所以12=n 2n ≤1n +1+1n +2+…+12n <n n =1.所以原不等式成立.反证法证明不等式(师生共研)设0<a ,b ,c <1,求证:(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.【证明】 设(1-a )b >14,(1-b )c >14,(1-c )a >14,三式相乘得(1-a )b ·(1-b )c ·(1-c )a >164,①又因为0<a ,b ,c <1,所以0<(1-a )a ≤⎣⎡⎦⎤(1-a )+a 22=14. 同理:(1-b )b ≤14,(1-c )c ≤14,以上三式相乘得(1-a )a ·(1-b )b ·(1-c )c ≤164,与①矛盾.所以(1-a )b ,(1-b )c ,(1-c )a 不可能同时大于14.利用反证法证明问题的一般步骤(1)否定原结论.(2)从假设出发,导出矛盾. (3)证明原命题正确.已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a ,b ,c >0.证明:①设a <0,因为abc >0, 所以bc <0.又由a +b +c >0,则b +c >-a >0,所以ab +bc +ca =a (b +c )+bc <0,与题设矛盾. ②若a =0,则与abc >0矛盾, 所以必有a >0. 同理可证:b >0,c >0. 综上可证a ,b ,c >0.[基础题组练]1.设a >0,b >0,若3是3a 与3b 的等比中项,求证:1a +1b ≥4.证明:由3是3a 与3b 的等比中项得 3a ·3b =3,即a +b =1,要证原不等式成立,只需证a +b a +a +b b ≥4成立,即证b a +a b ≥2成立,因为a >0,b >0, 所以b a +ab≥2b a ·ab=2, (当且仅当b a =a b ,即a =b =12时,“=”成立),所以1a +1b≥4.2.求证:112+122+132+…+1n 2<2.证明:因为1n 2<1n (n -1)=1n -1-1n,所以112+122+132+…+1n 2<1+11×2+12×3+13×4+…+1(n -1)×n=1+⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝⎛⎭⎫1n -1-1n =2-1n <2. 3.(2020·蚌埠一模)已知函数f (x )=|x |+|x -3|. (1)解关于x 的不等式f (x )-5≥x ;(2)设m ,n ∈{y |y =f (x )},试比较mn +4与2(m +n )的大小.解:(1)f (x )=|x |+|x -3|=⎩⎪⎨⎪⎧3-2x ,x <0,3,0≤x ≤3,2x -3,x >3.f (x )-5≥x ,即⎩⎪⎨⎪⎧x <0,3-2x ≥x +5或⎩⎪⎨⎪⎧0≤x ≤3,3≥x +5或⎩⎪⎨⎪⎧x >3,2x -3≥x +5,解得x ≤-23或x ∈∅或x ≥8.所以不等式的解集为⎝⎛⎦⎤-∞,-23∪[8,+∞). (2)由(1)易知f (x )≥3,所以m ≥3,n ≥3.由于2(m +n )-(mn +4)=2m -mn +2n -4=(m -2)(2-n ). 且m ≥3,n ≥3,所以m -2>0,2-n <0, 即(m -2)(2-n )<0, 所以2(m +n )<mn +4.4.(2020·开封市定位考试)已知函数f (x )=|x -1|+|x -m |(m >1),若f (x )>4的解集是{x |x <0或x >4}.(1)求m 的值;(2)若正实数a ,b ,c 满足1a +12b +13c =m3,求证:a +2b +3c ≥9.解:(1)因为m >1,所以f (x )=⎩⎪⎨⎪⎧-2x +m +1,x <1m -1,1≤x ≤m 2x -m -1,x >m ,作出函数f (x )的图象如图所示,由f (x )>4的解集及函数f (x )的图象得⎩⎪⎨⎪⎧-2×0+m +1=42×4-m -1=4,得m =3.(2)由(1)知m =3,从而1a +12b +13c=1,a +2b +3c =(1a +12b +13c )(a +2b +3c )=3+(a 2b +2b a )+(a 3c +3c a )+(2b 3c +3c2b )≥9,当且仅当a =3,b =32,c =1时“=”成立.5.(2020·原创冲刺卷)已知定义在R 上的函数f (x )=|x +1|+|x -2|+(x -1)2的最小值为s .(1)试求s 的值;(2)若a ,b ,c ∈R +,且a +b +c =s ,求证:a 2+b 2+c 2≥3.解:(1)f (x )=|x +1|+|x -2|+(x -1)2≥|x +1|+|2-x |≥|(x +1)+(2-x )|=3,即f (x )≥3. 当且仅当x =1,且(x +1)(2-x )≥0,即x =1时,等号成立,所以f (x )的最小值为3,所以s =3.(2)证明:由(1)知a +b +c =3.故a 2+b 2+c 2=(a 2+12)+(b 2+12)+(c 2+12)-3 ≥2a +2b +2c -3=2(a +b +c )-3=3(当且仅当a =b =c =1时,等号成立). 6.设不等式-2<|x -1|-|x +2|<0的解集为M ,a ,b ∈M . (1)证明:⎪⎪⎪⎪13a +16b <14; (2)比较|1-4ab |与2|a -b |的大小.解:(1)证明:记f (x )=|x -1|-|x +2|=⎩⎪⎨⎪⎧3,x ≤-2,-2x -1,-2<x ≤1,-3,x >1,由-2<-2x -1<0解得-12<x <12,即M =⎝⎛⎭⎫-12,12,所以⎪⎪⎪⎪13a +16b ≤13|a |+16|b |<13×12+16×12=14. (2)由(1)得a 2<14,b 2<14,因为|1-4ab |2-4|a -b |2=(1-8ab +16a 2b 2)-4(a 2-2ab +b 2) =(4a 2-1)(4b 2-1)>0,故|1-4ab |2>4|a -b |2,即|1-4ab |>2|a -b |.[综合题组练]1.(2020·江西八所重点中学联考)已知不等式|ax -1|≤|x +3|的解集为{x |x ≥-1}. (1)求实数a 的值;(2)求12-at +4+t 的最大值.解:(1)|ax -1|≤|x +3|的解集为{x |x ≥-1},即(1-a 2)x 2+(2a +6)x +8≥0的解集为{x |x ≥-1}.当1-a 2≠0时,不符合题意, 舍去.当1-a 2=0,即a =±1时,x =-1为方程(2a +6)x +8=0的一解,经检验a =-1不符合题意,舍去, a =1符合题意. 综上,a =1.(2)(12-t +4+t )2=16+2(12-t )(4+t )=16+2-t 2+8t +48,当t =82=4时,(12-t +4+t )2有最大值,为32.又12-t +4+t ≥0,所以12-t +4+t 的最大值为4 2. 2.(2019·高考全国卷Ⅲ)设x ,y ,z ∈R ,且x +y +z =1. (1)求(x -1)2+(y +1)2+(z +1)2的最小值;(2)若(x -2)2+(y -1)2+(z -a )2≥13成立,证明:a ≤-3或a ≥-1.解:(1)由于[(x -1)+(y +1)+(z +1)]2=(x -1)2+(y +1)2+(z +1)2+2[(x -1)(y +1)+(y +1)(z +1)+(z +1)(x -1)] ≤3[(x -1)2+(y +1)2+(z +1)2],故由已知得(x -1)2+(y +1)2+(z +1)2≥43,当且仅当x =53,y =-13,z =-13时等号成立.所以(x -1)2+(y +1)2+(z +1)2的最小值为43.(2)证明:由于[(x -2)+(y -1)+(z -a )]2=(x -2)2+(y -1)2+(z -a )2+2[(x -2)(y -1)+(y -1)(z -a )+(z -a )(x -2)] ≤3[(x -2)2+(y -1)2+(z -a )2], 故由已知得(x -2)2+(y -1)2+(z -a )2≥(2+a )23,当且仅当x =4-a 3,y =1-a 3,z =2a -23时等号成立.因此(x -2)2+(y -1)2+(z -a )2的最小值为(2+a )23. 由题设知(2+a )23≥13,解得a ≤-3或a ≥-1.。

高考备考指南文科数学第13章第4讲不等式的证明

高考备考指南文科数学第13章第4讲不等式的证明

件.
栏目索引
第十三章 选考部分
高考备考指南
文科数学
【跟踪训练】
3.(2018 年银川模拟)已知 x,y,z 是正实数,且 x+2y+3z=1.
(1)求1x+1y+1z的最小值;
(2)求证:x2+y2+z2≥114.
栏目索引
第十三章 选考部分
高考备考指南
文科数学




(1)


西





1 x
栏目索引
第十三章 选考部分
高考备考指南
文科数学
【解析】(1)证明:因为( 3x+1+ 3y+2+ 3z+3)2≤(12+12+12)(3x+1+3y+
2+3z+3)=27,所以 3x+1+ 3y+2+ 3z+3≤3 3.
当且仅当 x=23,y=13,z=0 时取等号.
(2)因为 6=x+2y+3z≤ x2+y2+z2· 1+4+9,所以 x2+y2+z2≥178,当且仅当 x
栏目索引
又 a,b 均为正数,所以 a(a-1)x2+b(b-1)y2+2abxy=-ab(x2+y2-2xy)=-ab(x -y)2≤0,当且仅当 x=y 时等号成立.所以(ax+by)2≤ax2+by2.
第十三章 选考部分
高考备考指南
文科数学
(2)a+1a2+b+1b2=4+a2+b2+a12+b12=4+a2+b2+a+a2b2+a+b2b2=4+a2 +b2+1+2ab+ba22+ab22+2ba+1=4+(a2+b2)+2+2ba+ab+ba22+ab22≥4+a+2 b2+2+ 4+2=225,当且仅当 a=b 时等号成立.
栏目索引

2023年全国统一高考数学试卷(文科)(乙卷)(解析版)

2023年全国统一高考数学试卷(文科)(乙卷)(解析版)

2023年全国统一高考数学试卷(文科)(乙卷)参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.(5分)|2+i2+2i3|=( )A.1B.2C.D.5【答案】C【解答】解:由于|2+i2+2i3|=|1﹣2i|=.故选:C.2.(5分)设全集U={0,1,2,4,6,8},集合M={0,4,6},N={0,1,6},则M∪∁U N =( )A.{0,2,4,6,8}B.{0,1,4,6,8}C.{1,2,4,6,8}D.U【答案】A【解答】解:由于∁U N={2,4,8},所以M∪∁U N={0,2,4,6,8}.故选:A.3.(5分)如图,网格纸上绘制的是一个零件的三视图,网格小正方形的边长为1,则该零件的表面积为( )A.24B.26C.28D.30【答案】D【解答】解:根据几何体的三视图转换为直观图为:该几何体是由两个直四棱柱组成的几何体.如图所示:故该几何体的表面积为:4+6+5+5+2+2+2+4=30.故选:D.4.(5分)在△ABC中,内角A,B,C的对边分别是a,b,c,若a cos B﹣b cos A=c,且C=,则∠B=( )A.B.C.D.【答案】C【解答】解:由a cos B﹣b cos A=c得sin A cos B﹣sin B cos A=sin C,得sin(A﹣B)=sin C=sin(A+B),即sin A cos B﹣sin B cos A=sin A cos B+sin B cos A,即2sin B cos A=0,得sin B cos A=0,在△ABC中,sin B≠0,∴cos A=0,即A=,则B=π﹣A﹣C==.故选:C.5.(5分)已知f(x)=是偶函数,则a=( )A.﹣2B.﹣1C.1D.2【答案】D【解答】解:∵f(x)=的定义域为{x|x≠0},又f(x)为偶函数,∴f(﹣x)=f(x),∴,∴,∴ax﹣x=x,∴a=2.故选:D.6.(5分)正方形ABCD的边长是2,E是AB的中点,则•=( )A.B.3C.2D.5【答案】B【解答】解:正方形ABCD的边长是2,E是AB的中点,所以=﹣1,,,=2×2=4,则•=()•()=+++=﹣1+0+0+4=3.故选:B.7.(5分)设O为平面坐标系的坐标原点,在区域{(x,y)|1≤x2+y2≤4}内随机取一点,记该点为A,则直线OA的倾斜角不大于的概率为( )A.B.C.D.【答案】C【解答】解:如图,PQ为第一象限与第三象限的角平分线,根据题意可得构成A的区域为圆环,而直线OA的倾斜角不大于的点A构成的区域为图中阴影部分,∴所求概率为=.故选:C.8.(5分)函数f(x)=x3+ax+2存在3个零点,则a的取值范围是( )A.(﹣∞,﹣2)B.(﹣∞,﹣3)C.(﹣4,﹣1)D.(﹣3,0)【答案】B【解答】解:f′(x)=3x2+a,若函数f(x)=x3+ax+2存在3个零点,则f′(x)=3x2+a=0,有两个不同的根,且极大值大于0极小值小于0,即判别式Δ=0﹣12a>0,得a<0,由f′(x)>0得x>或x<﹣,此时f(x)单调递增,由f′(x)<0得﹣<x<,此时f(x)单调递减,即当x=﹣时,函数f(x)取得极大值,当x=时,f(x)取得极小值,则f(﹣)>0,f()<0,即﹣(﹣+a)+2>0,且(﹣+a)+2<0,即﹣×+2>0,①,且×+2<0,②,则①恒成立,由×+2<0,2<﹣×,平方得4<﹣×,即a3<﹣27,则a<﹣3,综上a<﹣3,即实数a的取值范围是(﹣∞,﹣3).故选:B.9.(5分)某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,则甲、乙两位参赛同学抽到不同主题概率为( )A.B.C.D.【答案】A【解答】解:某学校举办作文比赛,共6个主题,每位参赛同学从中随机抽取一个主题准备作文,甲、乙两位参赛同学构成的基本事件总数n=6×6=36,其中甲、乙两位参赛同学抽到不同主题包含的基本事件个数m==30,则甲、乙两位参赛同学抽到不同主题概率为P===.故选:A.10.(5分)已知函数f(x)=sin(ωx+φ)在区间(,)单调递增,直线x=和x=为函数y=f(x)的图像的两条对称轴,则f(﹣)=( )A.﹣B.﹣C.D.【答案】D【解答】解:根据题意可知=,∴T=π,取ω>0,∴ω==2,又根据“五点法“可得,k∈Z,∴φ=,k∈Z,∴f(x)=sin(2x)=sin(2x﹣),∴f(﹣)=sin(﹣)=sin(﹣)=sin=.故选:D.11.(5分)已知实数x,y满足x2+y2﹣4x﹣2y﹣4=0,则x﹣y的最大值是( )A.1+B.4C.1+3D.7【答案】C【解答】解:根据题意,x2+y2﹣4x﹣2y﹣4=0,即(x﹣2)2+(y﹣1)2=9,其几何意义是以(2,1)为圆心,半径为3的圆,设z=x﹣y,变形可得x﹣y﹣z=0,其几何意义为直线x﹣y﹣z=0,直线y=x﹣z与圆(x﹣2)2+(y﹣1)2=9有公共点,则有≤3,解可得1﹣3≤z≤1+3,故x﹣y的最大值为1+3.故选:C.12.(5分)设A,B为双曲线x2﹣=1上两点,下列四个点中,可为线段AB中点的是( )A.(1,1)B.(﹣1,2)C.(1,3)D.(﹣1,﹣4)【答案】D【解答】解:设A(x1,y1),B(x2,y2),AB中点为(x0,y0),,①﹣②得k AB==9×=9×,即﹣3<9×<3⇒,即或,故A、B、C错误,D正确.故选:D.二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

且仅当m=2+1 2,n= 21+1时等号成立,所以m1 +n1 的最小
值为3+2 2,故选C.
答案:C
返回
2. [考法二·考向二] 已知a>0,b>0,a,b的等比中项是1,且m
=b+1a,n=a+1b,则m+n的最小值是
()
A.3
B.4
C.5
D.6
解析:由题意知ab=1,∴m=b+1a=2b,n=a+1b=2a,
1 4
,解得x1+x2<-2(因为x1≠x2,等号取不
到),故选B.
[答案] B
返回
考向二 基本不等式与数列的交汇问题
[例3]
(2019·济宁期末)已知a>0,b>0,并且
1 a

1 2

1 b

等差数列,则a+9b的最小值为
()
A.16
B.9
C.5
D.4
[解析] ∵1a,12,1b成等差数列,∴1a+1b=1,∴a+9b=
返回
() () () ()
返回
二、填空题
1.当x>0时,函数f(x)=x22+x 1的最大值为________. 答案:1
2.已知a,b∈(0,+∞),若ab=1,则a+b的最小值为 ________;若a+b=1,则ab的最大值为________.
解析:由基本不等式得a+b≥2 ab =2,当且仅当a=b=
(2)∵x>2,m>0,∴y=x-2+
m x-2
+2≥2
x-2·x-m 2
+2=2 m +2,当且仅当x=2+ m 时取等号,又函数y=x+
x-m 2(x>2)的最小值为6,∴2 m+2=6,解得m=4.
[答案] (1)B (2)4
返回
[方法技巧]
通过拼凑法利用基本不等式求最值的策略 拼凑法的实质在于代数式的灵活变形,拼系数、凑常数 是关键,利用拼凑法求解最值应注意以下几个方面的问题: (1)拼凑的技巧,以整式为基础,注意利用系数的变化以 及等式中常数的调整,做到等价变形; (2)代数式的变形以拼凑出和或积的定值为目标; (3)拆项、添项应注意检验利用基本不等式的前提.
解析:因为a>0,b>0,
1 a

9 b
=1.所以a+b=(a+b)·1a+9b

10+
b a

9a b
≥10+2
9 =16.由题意.得16≥-x2+4x+18-
m,即x2-4x-2≥-m对任意实数x恒成立,又x2-4x-2=
(x-2)2-6的最小值为-6,所以-6≥-m,即m≥6.
答案:[6,+∞)
∴2x+1y的最小值为8,又2x+1y≥m恒成立,∴m≤8,即m的最
大值为8.
[答案] (1)C (2)8
返回
[方法技巧]
通过常数代换法利用基本不等式求最值的步骤 常数代换法适用于求解条件最值问题.通过此种方法利 用基本不等式求最值的基本步骤为: (1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1; (3)把“1”的表达式与所求最值的表达式相乘或相除,进 而构造和或积的形式; (4)利用基本不等式求解最值.
∴m+n=2(a+b)≥4 ab=4,当且仅当a=b=1时取等号.
答案:B
返回
3. [考法二·考向三] 两圆x2+y2-2my+m2-1=0和x2+y2-
4nx+4n2-9=0恰有一条公切线,若m∈R,n∈R,且
mn≠0,则m42+n12的最小值为
()
A.1
B.2
C.3
D.4
解析:由题意可知两圆内切,x2+y2-2my+m2-1=0化为
(a+9b)1a+1b=10+ab+9ab≥10+2 ab·9ab=16,当且仅当ab=
9ab且1a+1b=1,即a=4,b=43时等号成立,故选A. [答案] A
返回
考向三 基本不等式与解析几何的交汇问题
[例4]
(2019·邢台月考)当双曲线M:
x2 m

y2 m2+4
=1的离
心率最小时,M的渐近线方程为
返回
突破点二 基本不等式的综合问题
返回
关于基本不等式的考题,涉及的知识点较多,常融合于 函数、数列、立体几何、解析几何及实际问题中,此类问题 一般难度较大,需要较强的分析问题、解决问题的能力.
返回
[全析考法]
考法一 基本不等式的实际应用问题 [例1] 如图,一个铝合金窗分为上、
下两栏,四周框架和中间隔挡的材料为铝 合金,宽均为6 cm,上栏与下栏的框内高 度(不含铝合金部分)的比为1∶2,此铝合 金窗占用的墙面面积为28 800 cm2,设该 铝合金窗的宽和高分别为a cm,b cm,铝合金窗的透光部分 的面积为S cm2.
返回
2.几个重要的不等式
1a2+b2≥_2_a_b__,a,b∈R;
2ba+ab≥2,ab>0; 3ab≤a+2 b2,a,b∈R; 4a2+2 b2≥a+2 b2,a,b∈R
当且仅当a=b时 等号成立.
返回
3.算术平均数与几何平均数
a+b
设a>0,b>0,则a,b的算术平均数为___2___,几何平均
返回
[集训冲关]
1.[考法一]已知x<0,则函数y=4x+x的最大值是
()
A.-18
B.18
C.16
D.-4
解析:∵x<0,∴y=- -4x+-x ≤-4,当且仅当x=
-2时取等号.
答案:D
返回
2.
[考法二]
正数a,b满足
1 a

9 b
=1,若不等式a+b≥-x2+4x+
18-m对任意实数x恒成立,则实数m的取值范围是_______.
返回
[解析] 设A(x1,y1),B(x2,y2),不妨设x1<x2.函数y= 2x为单调增函数,若点A,B到直线y=12的距离相等,则
1 2
-y1=y2-
1 2
,即y1+y2=1,即2x1+2x2=1.由基本不等式
得1=2x1+2x2≥2 2x1·2x2 ,当且仅当x1=x2=-1时取等
号,则2x1+x2≤
基本不等式
[考纲要求] 1.了解基本不等式的证明过程. 2.会用基本不等式解决简单的最大(小)值问题.
Contents
1
突破点一 利用基本不等式求最值
2 突破点二 基本不等式的综合问题
3
课时跟踪检测
返回
突破点一 利用基本不等式求最值
返回
抓牢双基·自学回扣
[基本知识]
1.基本不等式: ab≤a+2 b (1)基本不等式成立的条件: a>0,b>0 . (2)等号成立的条件:当且仅当 a=b 时取等号.
x2+(y-m)2=1,x2+y2-4nx+4n2-9=0化为(x-2n)2+y2
=9,故 4n2+m2=3-1=2,即4n2+m2=4,m42+n12=
()
A.y=±2x
B.y=±2 2x
C.y=± 2x
D.y=±12x
返回
[解析] 由题意得m>0,e= 1+m2m+4 = 1+m+m4

1+2
4 m·m

5
,当且仅当m=
4 m
,即m=2时等号
成立,所以双曲线的方程为
x2 2

y2 8
=1,所以渐近线方程为y
=±2x,故选A.
[答案] A
返回
[方法技巧]
b-18 3
=(a-16)(b-18)=ab-2(9a+8b)+288=28
800-
2(9a+8b)+288=29 088-2(9a+8b).
返回
(2)∵9a+8b≥2 9a·8b=2 9×8×28 800=2 880,当且 仅当9a=8b时等号成立,此时b=98a,代入①式得a=160,从 而b=180,即当a=160,b=180时,S取得最大值.
数为__a_b_,基本不等式可叙述为:两个正数的算术平均数不
小于它们的几何平均数.
4.利用基本不等式求最值问题
已知x>0,y>0,则: (1)如果积xy是定值p,那么当且仅当 x=y 时,x+y有最
小值是_2__p_.(简记:积定和最小) (2)如果和x+y是定值p,那么当且仅当 x=y 时,xy有最 p2
返回
考法二 通过常数代换法利用基本不等式求最值
[例2] (1)(2019·青岛模拟)已知x>0,y>0,lg 2x+lg 8y=
lg 2,则1x+31y的最小值是
()
A.2
B.2 2
C.4
D.2 3
(2)(2019·齐齐哈尔八校联考)若对x>0,y>0,x+2y=1,
有2x+1y≥m恒成立,则m的最大值是________.
∴铝合金窗的宽为160 cm,高为180 cm时,可使透光部 分的面积最大.
返回
[方法技巧]
利用基本不等式求解实际应用题的方法 (1)此类型的题目往往较长,解题时需认真阅读,从中提 炼出有用信息,建立数学模型,转化为数学问题求解. (2)当运用基本不等式求最值时,若等号成立的自变量不 在定义域内时,就不能使用基本不等式求解,此时可根据变 量的范围用对应函数的单调性求解.
大值是__4__.(简记:和定积最大)
[基本能力]
一、判断题(对的打“√”,错的打“×”) (1)函数y=x+1x的最小值是2. (2)函数f(x)=cos x+co4s x,x∈0,π2的最小值为4. (3)x>0,y>0是xy+xy≥2的充要条件. (4)若a>0,则a3+a12的最小值为2 a. 答案:(1)× (2)× (3)× (4)×
相关文档
最新文档