Common Core State Standards Initiative共同核心州立标准计划

合集下载

美国《共同核心州立英语标准》的内容、特征及启示

美国《共同核心州立英语标准》的内容、特征及启示

2021年6月教育测量与评价长期以来,美国各州自行确定各州的课程标准与评价体系,造成了州与州之间学生学业水平发展不平衡的现状,也使得美国基础教育阶段学生在阅读、数学、科学等基本技能领域发展普遍存在不足。

全美阅读能力评估(NAEP )测试数据表明,1992—2015年美国4年级和8年级学生阅读成绩在“基本”与“熟练”之间增长相对停滞。

为此,在政策层面,2002年和2015年,美国联邦政府分别颁布了《不让一个孩子掉队法案》和《每个学生都成功法案》;在标准层面,2010年,美国联邦政府在各州学科课程标准的基础上制定了《共同核心州立标准》(Common Core State Standards ),目的是在数学和英语这两个学科领域设置一个相对统一的课程标准,促进学生核心能力和更高层次思维能力的提升。

它的出台为提升美国基础教育质量奠定了评价基础。

《共同核心州立标准》包括《共同核心州立数学标准》和《共同核心州立标准·英语语言艺术和历史/社会、科学和技术学科中的读写标准》(下文简称《共同核心州立英语标准》),分别对相应学科领域幼儿园至12年级学生在特定年龄阶段应该学什么、应该掌握什么做了明确的规定。

2010年6月,美国在国家层面推出了《共同核心州立英语标准》,其核心思想是强调课程内容要发展学生的英语基本知识和技能,确保他们的语言得到充分的练习和使用。

目前我国基础教育领域已经完成了高中学科课程标准的修订,正在组织开展义务教育学科课程标准的修订工作。

本文分析《共同核心州立英语标准》的基本内容和主要特征,总结其经验,希望为我国义务教育语文课程标准的修订提供启示。

一、《共同核心州立英语标准》的基本内容1.基本框架《共同核心州立英语标准》主要包括“英语语言艺术标准”和“历史/社会、科学和技术学科中的读写标准”两部分内容,涉及1份主文件和3份附件。

[1]主文件共66页,包括3个部分:第一部分是从幼儿园至5年级的“英语语言艺术标准”“历史/社会、科学和技术学科中的读写标准”;第二部分是6~12年级的“英语语言艺术标准”;第三部分是6~12年级的“历史/社会、科学和技术学科中胡进/北京教育科学研究院教育督导与教育质量评价研究中心研究员,主要研究方向为评价框架、学业标准、课程标准、学生学习等。

高三英语二轮复习专题一 强化练(七)

高三英语二轮复习专题一 强化练(七)

强化练(七)主旨大意题(2)Ⅰ.阅读理解A(2023·浙江五校联考)On Mondays, two of my children get ready for school in an unusual way.Each packs plenty of food and water, a pair of rubber boots and sometimes a cup of hot chocolate.Then, I drop them off at a nearby park where they spend the entire day outside at a certified forest school.When I first let them sign up for the forest school program,I loved the idea, but as a mum,I was concerned about a few things: Would they be comfortable outside for that long? Would they stay engaged for that many hours? Then I asked them if time ever seemed to move slowly,they stared at me in confusion.They didn't understand my question, which fittingly removed my concern.In this program, kids direct their own play,climbing tall trees or testing ice on the frozen lake.They are never told their play is too high or too sharp, but are rather trusted toself-adjust.Something else my sons appreciate about the forest school is not being told to move on to the next activity, but being left to stay in a particular spot for as long as their curiosity allows.“What about all the things they're missing in real school?”concerned parents have asked me.Neither of their classroom teachers thinks it's a problem, but most significantly, my kids are learning new and different skills that a classroom cannot teach.They are learning to sit silently and observe nature up close—a skill that's virtually impossible to develop in a noisy and overcrowded classroom setting.They are making social connections across a broader range of age groups.They cooperate together, using their different sizes and strengths to fulfill various roles within their games.I appreciate it that the forest school is shaping my boys' relationship with theoutdoors.They're learning how to spend extended periods of time in nature, what to do to pass the time,and developing knowledge that will get them much closer to nature in the coming decades.1.What is special about the forest school program?A.Teachers engage in kids' play.B.Kids play and learn outdoors.C.It focuses on nature protection.D.It offers various foods and drinks.2.How did the author feel about kids' reaction to her question?A.Awkward. B.Concerned.C.Relieved. D.Proud.3.What does Paragraph 4 mainly talk about?A.The concerns caused by the program.B.The benefits gained from role-play.C.The skills acquired by children.D.The games loved by teachers.4.What can be a suitable title for the text?A.Nature:a Wonderland for the YoungB.The Forest School Program Proves a HitC.Parks Are Replacing Traditional SchoolsD.Forest School:a Fine Place for My Kids[语篇解读]本文主要讲述了作者的两个儿子在森林学校项目中的收获以及该项目的好处。

美国ccssm课程标准的理性审视

美国ccssm课程标准的理性审视

美国ccssm课程标准的理性审视CCSSM是美国的公共学校通用核心状态标准(Common Core State Standards,CCSS)的缩写。

它旨在为美国的公立学校制定一套共同的数学标准,以帮助学生获得所需的知识和技能。

该课程标准是由美国教育部资助的,并在2010年发布。

CCSSM的目标是通过聚焦于最重要的内容来帮助学生掌握关键的数学概念和技能。

它还旨在提高学生的思维能力和创新能力,并让学生能够在不同的情况下应用所学的知识。

CCSSM包括以下具体细节:数学基础知识:包括数字感知、数学语言、基本数学概念和计算技能。

数学思维能力:包括使用数学工具、解决数学问题、分析数据和进行推理。

数学应用能力:包括在生活和职业中使用数学、理解数学在其他学科中的应用以及解决实际问题的能力。

数学传递能力:包括通过写作、讲述和解释知识来传递数学思想的能力。

CCSSM的其他重要特征包括:强调了跨学科学习:CCSSM认为学习数学与学习其他学科有关,因此它将数学融入到其他学科中。

这样,学生就能在不同的情境中应用所学的数学知识。

强调了数学概念和技能的结合:CCSSM认为,学习数学不仅是学习概念,也是学习如何运用这些概念来解决实际问题。

因此,它强调了学习数学概念和技能的结合。

强调了数学思维能力的重要性:CCSSM认为,学习数学不仅是学习计算技能,也是学习如何思考和解决问题。

因此,它强调了学习数学的过程,而不仅仅是学习结果。

强调了个人发展的重要性:CCSSM认为,学习数学的过程应该考虑学生的个人发展,并适应学生的不同水平和需求。

因此,它强调了需要为学生提供适当的支持和帮助,以帮助他们在数学学习中取得进步。

CCSSM还包括每个年级应学习的具体内容和目标。

这些目标是按照年级分类的,从幼儿园到12年级。

每个年级的目标都包括数学概念、技能和应用,这些目标旨在帮助学生在数学学习中取得进步。

CCSSM的批评者认为,它强调了计算和测量的技能,而忽略了其他重要的数学概念,如推理和概念性思维。

美国“各州共同核心标准”之阅读标准(K5年级)的特点及启示

美国“各州共同核心标准”之阅读标准(K5年级)的特点及启示

3.分析个人、事件或 思想在文本过程中是 如何和为何发展和互 动的。
4.解释文本中所用的词和短 语,包括确定技巧、内涵和 比喻意义,并分析具体词语 的选择是如何形成意义或语 调的。
5.分析文本的结构,包括 具体的句子、段落和文本 的更大部分(例如一节、 一章、一个场景)是如何 相互关联的。
6.评估观点或目的是 如何塑造文本的内容 和风格的。
关键词:美国“各州共同核心标准” 阅读标准(K-5年级) 美国小学阅读标准 小学阅读教育 中美 阅读比较借鉴
“各州共同核心标准”(Common Core State Standards,以下简称CCSS)是美国近 年来出台的重要的国家课程标准。政府希望 通过这一标准统一各州的教学水平,提升美 国学生的综合素质,增强美国学生的国际竞 争力,并为其升学和就业做好准备。为鼓励 各州采用这一课程标准,政府还对标准的实 施给予财政鼓励与支持,至今已有42个州采 用。因此,CCSS自制定伊始就表现出非常明 确的目标导向和实用特性,这在CCSS的“英
域外教育
美国“各州共同核心标准”之阅读标准 (K-5年级)的特点及启示
●何致文*
摘 要:美国“各州共同核心标准”是目前美国广泛使用的课程标准。其K-5年级阅读标准十分重视信息 类文本的阅读,注重阅读中的整合训练,并制定了阅读文本难易度的评价标准。我国小学阶段阅读教育可 以借鉴其经验,注重阅读素养培育的跨学科性,全方位提升学生的阅读能力和知识基础;强调阅读中学生 的主体性,培养学生独立思考和自主表达的研究意识;丰富阅读材料的呈现形式,提升学生的媒介素养和 阅读训练的时代性;建立中文阅读分级标准,有效指导教材编写与教学实践中的文本选择。
7.整合和评估不同媒体和格 式的内容,包括视觉、定量 以及文字等形式。

美国共同核心州立标准

美国共同核心州立标准

Application t o S tudents w ith D isabilitiesThe Common Core State Standards articulate rigorous grade-level expectations in the areas of mathematics and English language arts.. These standards identify the knowledge and skills students need in order to be successful in college and careersStudents with disabilities ―students eligible under the Individuals with Disabilities Education Act (IDEA)―must be challenged to excel within the general curriculum and be prepared for success in their post-school lives, including college and/or careers. These common standards provide an historic opportunity to improve access to rigorous academic content standards for students with disabilities. The continued development of understanding about research-based instructional practices and a focus on their effective implementation will help improve access to mathematics and English language arts (ELA) standards for all students, including those with disabilities.Students with disabilities are a heterogeneous group with one common characteristic: the presence of disabling conditions that significantly hinder their abilities to benefit from general education (IDEA 34 CFR §300.39, 2004). Therefore, how these high standards are taught and assessed is of the utmost importance in reaching this diverse group of students.In order for students with disabilities to meet high academic standards and to fully demonstrate their conceptual and procedural knowledge and skills in mathematics, reading, writing, speaking and listening (English language arts), their instruction must incorporate supports and accommodations, including: •supports and related services designed to meet the unique needs of these students and to enable their access to the general education curriculum (IDEA 34 CFR §300.34, 2004).•An Individualized Education Program (IEP)1 which includes annual goals aligned with and chosen to facilitate their attainment of grade-level academic standards.•Teachers and specialized instructional support personnel who are prepared and qualified to deliver high-quality, evidence-based, individualized instruction and support services.Promoting a culture of high expectations for all students is a fundamental goal of the Common Core State Standards. In order to participate with success in the general curriculum, students with disabilities, as appropriate, may be provided additional supports and services, such as:•Instructional supports for learning―based on the principles of Universal Design for Learning (UDL)2―which foster student engagement by presenting information in multiple ways andallowing for diverse avenues of action and expression.1 A ccording to IDEA, an IEP includes appropriate accommodations that are necessary to measure the individual achievement and functional performance of a child2 UDL is defined as “a scientifically valid framework for guiding educational practice that (a) provides flexibility in the ways information is presented, in the ways students respond or demonstrate knowledge and skills, and in the ways students are engaged; and (b) reduces barriers in instruction, provides appropriate accommodations, supports, and challenges, and maintains•Instructional accommodations (Thompson, Morse, Sharpe & Hall, 2005)―changes in materials or procedures―which do not change the standards but allow students to learn within the framework of the Common Core.•Assistive technology devices and services to ensure access to the general education curriculum and the Common Core State Standards.Some students with the most significant cognitive disabilities will require substantial supports and accommodations to have meaningful access to certain standards in both instruction and assessment, based on their communication and academic needs. These supports and accommodations should ensure that students receive access to multiple means of learning and opportunities to demonstrate knowledge, but retain the rigor and high expectations of the Common Core State Standards.ReferencesIndividuals with Disabilities Education Act (IDEA), 34 CFR §300.34 (a). (2004).Individuals with Disabilities Education Act (IDEA), 34 CFR §300.39 (b)(3). (2004).Thompson, Sandra J., Amanda B. Morse, Michael Sharpe, and Sharon Hall. “Accommodations Manual: How to Select, Administer and Evaluate Use of Accommodations and Assessment for Students with Disabilities,”2nd Edition. Council for Chief State School Officers, 2005/content/pdfs/AccommodationsManual.pdf . (Accessed January, 29, 2010).high achievement expectations for all students, including students with disabilities and students who are limited English proficient.” by Higher Education Opportunity Act (PL 110-135)。

美国共同核心州立标准政策的形成及其初步实施

美国共同核心州立标准政策的形成及其初步实施

(总第275期)Comparative Education ReviewGeneral No.2752010年6月2日,由美国各州主导,全美州长协会(NationalGovernorsAssociation,简称NGA)和州首席教育官理事会(CouncilofChiefStateSchoolOfficers,简称CCSSO)共同发布了《共同核心州立标准》(CommonCoreStateStandards,简称CCSS)。

这份标准定义了美国K-12年级教育阶段学生所应该掌握的知识和技能,其目的是使所有学生在离开高中时都能为升学或就业做好准备。

由于美国教育分权的制度使然,联邦政府从未颁布过直接细化到课堂的教育政策,而是通过经济杠杆的方式间接调控各州的教育。

《共同核心州立标准》得到了联邦政府的政策支持,将在美国绝大多数地区加以推行,实际上扮演了美国的课程政策的角色。

《共同核心州立标准》的出台在美国引起了广泛的关注,迄今为止,45个州、美属维尔京群岛、北马里亚纳群岛以及首府华盛顿哥伦比亚特区已经正式承诺采纳该标准。

有关《共同核心州立标准》的报道和争论也频频见诸美国各种新闻媒体和期刊。

那么,《共同核心州立标准》为何能够获得如此之多的关注?一份“共同的”课程标准为何能在历来奉行教育分权的美国被大多数州采纳?联邦政府在其中发挥了什么作用?一、《共同核心州立标准》的形成过程传统上,公共教育是保留给各州和地方政府的政策领域,联邦政府很难直接干预。

然而,美国教育近年来出现了各种问题,迫使联邦政府越来越多地采用间接战略,诱导州政府和地方政府进行改革。

[1]可以说,《共同核心州立标准》得以被采纳,其中很大的原因在于联邦政府所出台的诱导法案。

①本文系2009年度教育部人文社科重大研究项目《教育政策形成、实施和评价机制的比较研究》(2009JJD880004)的阶段性研究成果之一。

作者简介:廖青(1988-),女,江西人,教育部人文社会科学重点研究基地北京师范大学比较教育研究中心、北京师范大学国际与比较教育研究院硕士研究生。

美国“共同核心州立标准”中K~2年级语言标准简介

美国“共同核心州立标准”中K~2年级语言标准简介

美国“共同核心州立标准”中K~2年级语言标准简介作者:谢萌郭力平来源:《幼儿教育·教育科学版》2012年第02期【摘要】美国2010年颁布的“共同核心州立标准”包括《共同核心州立数学标准》和《共同核心州立英语语言标准》。

本文介绍了《共同核心州立英语语言标准》的目标、结构以及K~2年级的具体内容。

这份标准对我国《3~6岁儿童学习与发展指南》的制订与实施有借鉴意义。

【关键词】共同核心州立标准;语言标准;K-2年级;美国【中图分类号】G619【文献标识码】A【文章编号】1004-4604(2012)01/02-0085-0520世纪90年代至今,美国政府致力于统一基础教育阶段的课程内容标准,以提升教育质量。

2009年6月。

美国全国州长协会和各州教育长官委员会联合发起“共同核心州立标准计划”。

2010年6月2日,“共同核心州立标准”(Common CoreState Standards,简称CCSS)正式颁布。

迄今已经有48个州和哥伦比亚特区政府签署了采纳承诺。

“共同核心州立标准”是在原有各州立标准的基础上形成的共同核心标准,旨在终结各州已有标准的分立、低效局面。

通过制定统一的K~12年级课程内容标准,使各个年级的学生明确所需掌握的知识、技能,为进人大学及未来就业做好准备,进而提高美国的国际竞争力,同时也借此指导教师、家长更好地为学生提供支持和帮助。

例如,该标准与课程发展紧密联系,打破了各州课程发展严重滞后于标准制定的局面:教师可以参照该标准所提供的核心内容备课,在进行绩效考核时也能收集到更准确的、与学生学习相关的数据,从而更有效地促进教育质量提升。

最新颁布的“共同核心州立标准”包括《共同核心州立数学标准》与《共同核心州立英语语言标准》两份文件。

本文将具体介绍“共同核心州立标准”下美国K~2年级(即幼儿园~小学一、二年级)的英语语言标准(以下简称语言标准),以资借鉴。

一、语言标准的基本目标及结构《共同核心州立英语语言标准》旨在促进学生掌握语言基本知识,发展语言技能。

primary mathematics

primary mathematics

Student participation in elementary mathematicsclassrooms:the missing link between teacher practicesand student achievement?Marsha Ing 1&Noreen M.Webb 2&Megan L.Franke 2&Angela C.Turrou 2&Jacqueline Wong 2&Nami Shin 2&Cecilia H.Fernandez 2Published online:5August 2015#Springer Science+Business Media Dordrecht (outside the USA)2015Abstract Engaging students as active participants in mathematics classroom discussions has great potential to promote student learning.Less well understood is how teachers can promote beneficial student participation,and how teacher-student interaction relates to student achieve-ment.This study examined how the kinds of teacher practices that may encourage beneficial student participation relate to student achievement in elementary school mathematics ing videotaped recordings,we examined the extent to which students explained their own ideas and engaged with others ’ideas and how teachers supported these kinds of student participation.Linking teacher practices,student participation,and achievement all at the individual student level,we found that student achievement was best predicted by the combination of teacher practices and student participation.The results show that taking intoEduc Stud Math (2015)90:341–356DOI 10.1007/s10649-015-9625-z*Marsha Ing marsha.ing@Noreen M.Webbwebb@Megan L.Frankemfranke@Angela C.Turrouachan@Jacqueline Wongwritejackie@Nami Shinnami0623@Cecilia H.Fernandezceci.henriquez@1University of California,Riverside,1207Sproul Hall,Riverside,CA 92521,USA 2University of California,Los Angeles,Los Angeles,CA,USA342M.Ing et al. account student participation is necessary for understanding how teaching practices relate to student mathematics learning.Keywords Participation.Instruction.Achievement.MathematicsAs researchers,policy makers,and practitioners work toward improving student learning in mathematics,they increasingly recognize the importance of engaging students as active participants in the learning process.A central component of students’participation is their engagement in classroom mathematics conversations.For example,in the USA,the Common Core State Standards Initiative for Mathematical Practice explicitly addresses students’com-munication competence,including the ability to construct viable arguments and critique the reasoning of others(National Governors Association Center for Best Practices&Council of Chief State School Officers,2010).Teachers are expected to work to enable students to justify their conclusions,communicate conclusions to others,listen to arguments of others,decide whether those arguments make sense,and ask useful questions to clarify or improve the arguments.1This study examines the kinds of teacher practices that may encourage beneficial student participation in discussions around important mathematical content and how teacher practices and student participation relate to student achievement.It extends previous research in two ways.First,we code the participation of individual students,the teacher practices experienced by each student,and the achievement of individual students to help us understand the encounters that matter for students.Second,we present and analyze a single,unified model that links student participation,teacher practices,and student achievement in order to better understand the relationships among them.We focus on two fundamental dimensions of student participation that underlie the recom-mendations for students to develop competency in constructing arguments and critiquing the reasoning of others:explaining one’s own ideas and engaging in the ideas of others.The power of explaining one’s ideas to others and engaging with others’ideas for promoting mathematics learning has a broad range of theoretical support.One perspective is cognitive.During the processes of formulating ideas and communicating with others,students offering explanations monitor and revise their own thinking and may recognize their own misconceptions,or contradictions or incompleteness in their ideas(e.g.,Hatano,1993).To resolve these issues, explainers may bring concepts or details together in ways they had not thought of previously (Roscoe&Chi,2008).Students may also see other ways to revise their ideas,such as making their arguments more compact,their ideas clearer or more elaborated,or their problem-solving strategies more paring one’s ideas with others’ideas may help reveal errors and gaps in students’understanding,as well as differences in perspectives.Students can use each other’s ideas to re-examine and question their own thinking,to correct misconceptions and make their understanding more complete,and to extend their own thinking in the building of more elaborated mental models(Chi,2000).Another perspective is sociocultural.As Sfard,Nesher,Streefland,Cobb,and Mason (1998)describe,mathematical ideas being discussed shift as students compare,challenge, criticize,refute,complete,reject,and amplify each other’s suggestions.Participating in these 1Similar recommendations appear in curriculum standards in other countries,such as the Australian Association of Mathematics Teachers Standards for Excellence in Teaching Mathematics in Australian Schools(2006); Finnish National Core Curriculum for Basic Education(2012),and New Zealand Curriculum(2008).Student participation in elementary mathematics classrooms343 B reflective shifts in discourse^gives students opportunities to reflect on and reorganize mathematical activity.As mathematical conversations unfold,students’B reflection is enabled by their participation in the discourse,and by reflecting they contribute to the shift in discourse^(p.48).Participating in discussions,especially explaining one’s own ideas and engaging with others’ideas,helps students understand each other’s thinking as well as the changes in ideas that develop.As discussed by Sfard and Kieran(2001),interaction that is mathematically productive for students depends on students making their emergent thinking available for their conversation partners.In addition to theoretical support,there is empirical support for the relationship between explaining one’s ideas to others and engaging with others’ideas and students’learning.In a recent study,we found that the extent of detail in elementary school students’explanations of their mathematics problem-solving strategies and the degree to which students added further detail to others’ideas,or described how and why they disagreed with others,or suggested alternatives to others’approaches significantly predicted student achievement(Webb et al., 2014).Along similar lines,other researchers have demonstrated that giving complex expla-nations(e.g.,integrating multiple concepts)and engaging with others’ideas at a high level (e.g.,acknowledging,repeating,challenging,elaborating)are related to students’learning outcomes in mathematics(e.g.,Veenman,Denessen,van den Akker,&van der Rijt,2005). Warner(2008)found that student questioning,explaining,re-explaining,and using their own or others’ideas were associated with the growth of students’mathematical ideas.Other researchers suggest that the frequency of students’substantive mathematical explanations may be a factor in achievement differences between countries(e.g.,Perry,2000).Considering the positive effects of explaining one’s own thinking and engaging with the ideas of others,an important question is how teachers can interact with students during classroom dialogue to facilitate and support these productive student interactions.In this paper, we focus on teacher moves that invite students to explain their own and others’thinking,that probe specific details in students’explanations to elicit further student elaboration,and that encourage students to compare and connect their ideas with others’ideas.Our previous research(e.g.,Franke et al.,2009)has given examples of how these moves may be productive for student participation.Other researchers have examined similar types of teacher moves that may promote productive student participation,such as asking students probing and clarifying questions to encourage them to elaborate on their ideas and problem-solving strategies(e.g., Kazemi&Stipek,2001)and asking students to add to the ideas presented by others(e.g., O’Connor,Michaels,&Chapin,2015).Few studies have examined whether teacher support for student participation translates into improved student learning outcomes.One exception is a series of studies by Gillies and colleagues that compared classrooms of teachers trained to carry out specific support moves (or who were observed to carry out the support moves frequently)to classrooms of teachers not trained to do so(or who were observed to carry out the support moves infrequently). Students in classrooms whose teachers frequently paraphrased students’ideas,prompted students to explain their ideas,and used questions to challenge and scaffold children’s learning (1)exhibited more elaboration of ideas and(2)obtained higher scores on reasoning and problem-solving tasks than students in classrooms where teachers carried out these behaviors less frequently(e.g.,Gillies&Boyle,2008;Gillies&Haynes,2011;Gillies&Khan,2009).While these studies suggest important links between teacher practices,student participation, and student learning,unanswered questions remain about the extent to which the effects of teacher practices on student learning can be explained by the mediating role of student344M.Ing et al. participation.The purpose of this study is to examine this question.To do so,we examine the relationships among teacher practices,student participation,and student learning outcomes in a single unified model.To comprehensively analyze this model,we examine the relationships among all variables at the individual student level,that is,the links among teacher practices that are focused on individual students,the participation of the students experiencing those teacher moves,and those students’learning outcomes.The intent of this paper,then,is to clarify these relationships in a way that attends to the experiences of each individual student.1Method1.1SampleThe teachers and students analyzed here are largely the same sample as that reported in previous studies(Franke et al.,in press;Webb et al.,2014).The data were collected during the2008–2009academic year at an elementary school affiliated with a major university in California.A goal of the school is for teachers to teach for mathematical proficiency(as defined by Adding it Up,National Research Council,2001)by asking students about their mathematical thinking,supporting mathematical discussion,and focusing on problem solving. While the school is organized into multiage groups,ranging from early childhood level(4to 6year olds)to upper level(10to12year olds),we focus on the intermediate classrooms(8to 10year olds)because these classrooms covered similar mathematical content and included standardized test scores from the previous school year that could be used as a covariate in the analyses.The sample with complete video and achievement test data consisted of71students from six classrooms(the total enrollment in these six classrooms was113).To ensure an ethnically and socioeconomically diverse student population,the school is not designed to serve the children of the university community,and students apply for admission (stratified by ethnicity and income).The school demographics include41%white,20% Latino,4%Asian,3%African-American,and33%multiethnic;23%of families had annual incomes below$50,000(13%below$35,000),and18%of students qualified for free or reduced meals.The specific demographics for the sample of students analyzed in this study are not reported to maintain confidentiality.However,the ethnic and socioeconomic diversity is similar to that of the school as a whole.The previous studies reported quantitative information about the relationship between student participation and achievement scores and qualitative information about instructional practices that may have encouraged students to attend to and engage with each other’s thinking.The current study extends the previous studies by(a)systematically coding and analyzing instructional practices that were experienced by students individually(for all students in the sample);(b)coding instructional practices in ways suitable for quantitative analysis;and(c)linking information about instructional practices,student participation,and student achievement in a single unified analysis(as described in the following sections).1.2Observation:recording and coding proceduresRecording procedures Project members spent6months prior to formal data collection taking field notes,talking with teachers and practicing videotaping to become familiar with the classrooms and teachers’customary practices.All observation data were collected during aStudent participation in elementary mathematics classrooms345 regular mathematics lesson(approximately one hour).Teachers were asked to teach what they would consider a typical mathematics lesson.The mathematical content of the lesson included whole number operations,fractions,and decimals.Teachers were asked to teach what they would consider a typical mathematics lesson.The mathematical content of the lessons varied across classrooms,ranging from whole number operations to fractions and decimals.All lessons included both problem solving(with attention to conceptual ideas and procedures) and work on understanding number relationships.Teachers were aware that the focus of the data collection was around engagement of students’thinking around the mathematics and student participation,but they were encouraged to interact with students as they would in a typical mathematics lesson.Since a goal of the video and audio observation recording procedure was to capture all discussions in the whole-class and small-group settings,multiple video and audio recordings were captured from at least12students per classroom.For video recording,we used one stationary video camera with two flat microphones to capture the ongoing flow of the classroom and the discussion of up to two groups of students;in addition, we used four mobile cameras to capture the discussion of the remaining groups of students.We supplemented the video recording with six digital audio recorders that were placed on students’desks to capture the audio for student-to-student discussion that may not have been captured clearly by the audio on the video camera.This combination of multiple video and audio cameras made it possible to identify which student was speaking even during simulta-neous small group conversations.The number of math problem-solving discussions recorded per student(number of prob-lems discussed during either whole-class discussion or small-group discussion)ranged from4 to13across the classrooms.Multiple video and audio recordings for a classroom were merged into a single classroom movie using Final Cut Pro.We carried out a sequence of steps to create the single file for each class.First,we created a movie for the whole-class setting(that followed the teacher during the entire class period and captured all interactions of students with the teacher)and a separate movie for each small-group discussion(that captured every conversation on every problem).To create each of these movies,we selected the best video and sound sources at each point in time and merged them into a single file.Second,we merged these whole-class and small-group movies into a single file.As described below,we carried out the coding using the omnibus file(movie)for each classroom.Coding procedures We coded each classroom movie using video analysis software that allows for moment-to-moment coding of all interaction occurring in the movie(Studiocode Business Group,1997–2013).The video analysis software creates B timelines^that are linked to a video and provide chronologically accurate representations of the classroom lesson.These timelines make it possible to create instances of codes that simultaneously capture time length (e.g.,5-minute warm-up activity,30-second student explanation)and code descriptors(e.g., fully detailed student explanation).Multiple codes can be applied simultaneously.We included codes for multiple types of student participation and teacher support of student participation (described in detail below),as well as codes for the classroom context(e.g.,whole-class discussion,small-group discussion,individual seatwork),the type of mathematical activity (e.g.,question-and-answer warm-up exercise,extended problem),and the mathematical con-tent of the activity or problem(necessary for coding decisions such as what constituted fully detailed student explanations;see below).The spatial organization of the timeline greatly facilitated coding decisions by presenting the full context of each interaction episode between teacher and students and among students(e.g.,the ideas that had already been shared,and by346M.Ing et al. whom,prior to an interaction episode;the full sequence of the interaction episode as it unfolded).A team of raters participated in discussions about the development of the coding procedures and refinement of the variables used in the analyses.Each rater was initially responsible for coding a single classroom.Raters then brought questions to the rater team for discussion, which led to further refinement of the coding scheme,and further review of coding decisions. After the final version of the codes were established,a second rater double-coded excerpts of the timeline for each classroom.The percent of exact agreement between the first and second raters for the variables used to create the student participation composite and the teacher support of student participation composite measures used in the analysis(described in detail below)was high(ranging from82to100%).Generalizability analyses(Shavelson&Webb, 1991)also showed high consistency among raters(generalizability coefficients for a single rater were.89for the student participation composite and.95for the teacher support of student participation composite).1.3Coding of student participationThe student participation variable used in the analyses is a composite(sum)of three variables that were coded and analyzed as separate variables in Webb et al.(2014):a student giving fully detailed explanations,a student engaging with other students’ideas,and a student having other students engage with his or her ideas.We used a single composite participation variable here instead of the separate variables because(1)conceptually,they are linked dimensions of student participation,(2)the variables were substantially intercorrelated(ranging from r=.31,p<.05to r=.59,p<.01),and(3)using a single student participation variable greatly simplified the unified analyses predicting student achievement from teacher practice and student participation.Student explanations The coding of student explanations focused on the extent to which students provided fully detailed explanations of a valid approach for solving the problem.This decision was based on our previous work showing strong positive correlations between giving correct and complete(or fully detailed)explanations and achievement,but nonsignificant or negative correlations between giving explanations that were ambiguous,incorrect,incomplete, or not detailed and achievement(Webb et al.,2008,2009,2014).We considered an explana-tion to be fully detailed if the student verbalized every step involved in solving the problem and the student’s strategy was correct and valid.The explanation variable reflected the number of fully detailed explanations given by a student across the problem-solving discussions(0= none,1=1,2=2or more).Because few students gave more than two fully detailed explana-tions,they were coded in the same way as students who gave two fully detailed explanations. Student engagement with each other’s ideas The coding of student engagement with each other’s ideas focused on the extent to which students engaged with other students around the mathematics.As in our previous study(Webb et al.,2014),we created two variables representing the level of student engagement with each other’s ideas.One variable represented the level at which a student engaged with other students’ideas;the other variable represented the level at which other students engaged with a student’s ideas.In our previous study,each of these variables was significantly correlated with achievement.That is,higher levels ofStudent participation in elementary mathematics classrooms347 engaging with other students’ideas and others engaging with a students’idea were related to higher student achievement.Consistent with the coding in the previous study(Webb et al.,2014),we used three levels of student engagement for both engaging in another student’s ideas and having other students engage with a student’s ideas:low,medium,and high.Low-level engagement with another student’s idea consisted of referencing or acknowledging another student’s idea in a general way without providing details(e.g.,B I get it,^B I agree^).Medium-level engagement with another student’s idea consisted of explicitly referencing the details of the other student’s idea for how to solve the problem but not adding any further detail to the explanation originally offered(e.g.,repeating what another student said or describing what he or she did,asking questions about the details of another student’s strategy,or disagreeing with details in another student’s strategy without suggesting any alternative).High-level engagement with another student’s idea consisted of adding to another student’s suggested strategy by(a)disagreeing with what had been being shared and suggesting an alternative,(b)adding further detail to the approach articulated by another student,or(c)suggesting an alternative approach that explic-itly referenced the idea already posed(e.g.,stating that the alternative approach is better than or different from the original suggestion).The engagement variables reflected the maximum level of engagement with another student’s idea that a student showed during the course of the discussions and the maximum level that other students engaged with a student’s idea(0=low,1=medium,2=high).Students who never showed evidence of engagement with other students’ideas were included in the low engagement level of engaging with other students’ideas.Similarly,students who never received any engagement with their ideas(or received ambiguous statements)were included in the low engagement level for receiving engagement from others.The three student participation variables(giving fully detailed explanations,engaging with other students’ideas,having other students engage with a student’s ideas)were then combined to form a single composite student participation variable.For the composite,we summed the scores on the separate variables,resulting in a scale from0to6.1.4Coding of teacher support of student participationThe teacher support of student participation(TSSP)variable used in the analyses is a composite (sum)of two variables:teacher eliciting of a student’s thinking and teacher support for a student’s engaging with other students’ideas.Each component in the composite was coded for each student and is described in detail below.Given the focus of this work to analyze the instructional practices that individual students experienced,we coded teacher support provided to individual students but not general support offered to the class as a whole,such as asking instructions for students to explain their thinking to each other when working in small groups.Because general support to the whole class was similar across all students,it did not provide information about the student-specific instructional practices experienced by any particular student.Teacher eliciting of student thinking The coding of teacher eliciting of student thinking focused on the extent to which the teacher encouraged each student to share his or her thinking. First,based on our previous work,we included the teacher asking a student probing questions about specific details that a student had offered(B I see you drew some lines there;can you tell us what those lines mean?^)because such questions often elicited further elaboration from348M.Ing et al. students(Franke et al.,2009;Webb et al.,2008).Second,extending our previous work,we broadened the concept of eliciting student thinking to include the teacher’s initial invitation for a student to explain his or her thinking(B Can you explain your strategy?^)and instances of teacher repetition or revoicing of particular details of a student’s explanation that signaled (typically through tone of voice)that the teacher was requesting further elaboration or clarification of those details.Each student’s code for teacher eliciting of student thinking reflected the number of teacher moves that the student experienced during the course of the discussions(0=none,1=1,2=2or more).Because few students experienced more than two eliciting student thinking moves,those students were assigned the same code as students who experienced two eliciting moves.Teacher support for student engagement with others’ideas The coding of teacher support for student engagement with others’ideas focused on the extent to which the teacher encouraged a student to engage with other students’ideas.We observed teachers making six moves to foster student engagement with each other’s ideas:asking a student to explain someone else’s strategy,asking students to discuss differences between multiple ideas already shared,asking one student to make a suggestion to another student based on the other student’s work,asking students to connect their own ideas to the ideas of another student,asking students to work together to jointly create a solution,and asking one student to use another student’s strategy.The teacher support for student engagement variable for each student reflected the number of moves that a student experienced in which the teacher encouraged the student to engage in others’ideas(0=none,1=1,2=2,or more).Because few students experienced more than two teacher moves to support their engagement with others’ideas,they were assigned the same code as students who experienced two moves.The correlation between the two teacher practice variables(teacher eliciting of student thinking and teacher support for student engagement with others’ideas)was positive and significant,r(71)=0.32,p<.01.The two teacher practice variables were then combined(sum of the scores on the two variables)into a single teacher practice composite(TSSP)with a scale of0to4.Similar to the rationale provided for the use of a single student participation composite variable,this single composite teacher practice variable was used in the analyses instead of the separate variables.As is the case for the student participation composite,using a teacher practice composite greatly simplified the unified analyses predicting student achieve-ment from teacher practices and student participation.1.5Student achievement measuresPosttest achievement Student achievement was measured using a researcher-designed, written assessment of students’mathematical thinking that focused on aspects of whole number addition,subtraction,multiplication,and division,as well as place value,and fair sharing using four problems situated in a story context(e.g.,B There are12pieces of gum in each package.Megan had5packages of gum.She gave15pieces of gum to her friends.How many pieces of gum does she have left?^).2The problems are parallel to those used in previous 2An additional standardized mathematics achievement measure was initially considered as a posttest measure. However,the high,positive correlation between the prior achievement measure and standardized achievement measure,r(71)=.69,p<.01,indicated that none of the other variables would significantly relate to posttest achievement after partialling out the influence of prior achievement.。

美国ccss课程标准

美国ccss课程标准

美国ccss课程标准美国ccss课程标准(Common Core State Standards)是美国国家教育标准,旨在为全国范围内的学校提供一套一致的学术标准,以确保学生在各个领域都能够获得高质量的教育。

这些标准涵盖了英语语言艺术和数学两个主要领域,旨在帮助学生发展批判性思维、问题解决能力和沟通技能。

在英语语言艺术领域,ccss要求学生在阅读、写作、口语和听力方面都能够达到一定的标准。

对于阅读,学生需要能够理解各种文本,包括文学作品、历史文献和科学文章。

他们还需要能够分析文本,理解作者的意图以及文本中的主题和结构。

在写作方面,学生需要能够撰写不同类型的作文,包括叙事、说明和论证性作文,并且要能够表达清晰的观点和论据。

此外,ccss还强调了口语和听力技能的培养,要求学生能够有效地表达自己的想法,并且能够理解他人的观点。

在数学领域,ccss要求学生掌握数学的基本概念和技能,包括整数、分数、代数、几何和数据分析等内容。

学生需要能够灵活运用这些概念解决实际问题,并且要能够进行数学推理和建模。

此外,ccss还强调了数学思维和解决问题的能力,要求学生能够通过数学来解决日常生活中的各种问题,培养学生的创造性和批判性思维能力。

美国ccss课程标准的实施对学生、教师和教育机构都有着重要的意义。

对于学生来说,ccss提供了一套全国统一的学术标准,帮助他们建立起扎实的学术基础,为未来的学习和工作打下坚实的基础。

对于教师来说,ccss提供了一套清晰的教学指南,帮助他们更好地设计课程和教学活动,提高教学质量。

对于教育机构来说,ccss提供了一套评估标准,帮助他们更好地监测学生的学术发展,并且提供了一种衡量教学质量的标准。

总的来说,美国ccss课程标准的实施对美国的教育体系有着深远的影响。

它不仅提高了学生的学术水平,也提高了教师的教学质量,为整个教育体系的发展提供了有力支持。

相信随着ccss标准的不断完善和实施,美国的教育水平将会得到进一步提高,为国家的未来发展培养更多的人才。

美国基于标准的课程改革:理论与途径

美国基于标准的课程改革:理论与途径

美国基于标准的课程改革:理论与途径刘春香【摘要】美国基于标准的课程改革经过了三个主要发展阶段,期间多种理论被用于理解和解决课程改革中涌现的问题.本文主要分析三种重要的理论——系统理论、复杂理论和网络理论对美国基于共同标准的课程改革的影响.【期刊名称】《当代教育科学》【年(卷),期】2015(000)014【总页数】4页(P6-9)【关键词】共同标准;系统理论;复杂理论;网络理论【作者】刘春香【作者单位】上海市闵行区教育学院【正文语种】中文1989年,在布什政府的倡导和推动下,美国基础教育领域兴起了基于标准的课程改革,它以全美数学教师协会发表的《中小学数学课程与评价标准》为其开始标志,特指由学科标准的倡导和建立而引发的教育系统内核心要素的变革。

[1]截至2014年,美国基于标准的课程改革已有近30年历程,多种视角被运用于理解基于标准的课程改革问题。

那么,其课程改革策略主要受哪些核心理论和方法的影响?本文通过梳理美国基于标准的课程改革发展历程,阐述对其最具影响力的三种理论——系统理论、复杂理论和网络理论,并揭示在这三种理论的共同影响下,当前基于共同标准的课程改革的行动逻辑。

20世纪80年代,西方国家兴起了基于标准的课程改革,至今方兴未艾。

1989年,布什政府倡导建立新的“世界级标准”,开启了美国基于标准的课程改革,随后各学科课程标准纷纷建立。

1989年至2014年期间,其经历三个重要的发展阶段。

1989年至2001年是各州基于标准的课程改革探索期,主要表现为各专业学术机构建构各学科课程标准,在克林顿政府1994年《美国学校改进法》的要求下,各州依据自愿性原则,参照学科课程标准设置各州学术标准,并应用标准测试监测课程标准的实现程度。

基于标准的课程改革第二个重要发展阶段是在2001年至2010年,以小布什总统签署《不让一个孩子落后法》为主要标志。

为追求优质而公平的教育,使所有学生达到2014年教育目标,该法案强调根据标准测试的结果,运用硬性的绩效问责指标考察学校的进步情况,作为对学校问责和干预的依据。

2019年6月CATTI二级笔译实务参考答案及全面解析

2019年6月CATTI二级笔译实务参考答案及全面解析

2019年6月CATTI二级笔译实务参考答案及全面解析2019年6月CATTI二级笔译实务参考答案及全面解析(1)第一篇英译汉2009年,《时代周刊》称赞纽约市三所公立学校试行的一项在线数学课程为当年50项最佳创新之一。

该软件每天为学生生成个性化的数学“播放列表”,学生可以选择他们希望以哪种方式研究——软件、虚拟教师或真人在线授课。

不同的算法排序教师的专业和课程表,以满足学生的需求。

一位资深教师惊叹地说:“它生成课程、测试并评分。

”解析:首先,正确理解“Time magazine”应该是“Time周刊”,不是“时代杂志”。

其次,在翻译时要注重语境,确保单词或短语的指代清晰,如“the are”指代前文提到的“在线数学授课程序”;“flesh-and-blood one”指代真人在线授课。

最后,要注意词语的选择,如“different algorithm”可以翻译成“独特算法”,而不是简单的“不同的计算程序”。

在2009年,《时代周刊》发表文章,称赞一种在线数学教育新程序,将其列为当年50大杰出创新成果之一。

该程序已在纽约市的3所公立学校进行试点运行。

该课程软件每日更新授课内容,以满足学生不同的需求,并提供多种播放模式选择,包括软件或虚拟教师授课,以及真人在线教学。

该课程软件采用独特的算法,对教师的专业和排课时间进行分类,以满足每位学生的需求。

一位经验丰富的教师赞叹道,“该软件不仅提供在线课程,还有测试环节,并能对测试内容进行评分。

”原文中没有格式错误或明显有问题的段落)XXX’s future。

The report called for a series ofreforms that XXX school days and years。

morehomework。

higher standards and more testing。

It also called forschools to adopt “computer-based XXX.” This reportset the stage for a new era of school XXX.Andrea Gabor's book。

Common Core State Standards P .ppt

Common Core State Standards  P .ppt
5
Why is this important?
These Common Core Standards will be a critical first step to bring about real and meaningful transformation of our education system to benefit all students The Common Core Standards help define the knowledge and skills all students need to succeed in college and careers Expectations will be consistent for all students
7
NGA/CCSSO ELA/Mathematics Common Core Standards
The following slides provide a brief overview of the March draft K-12 ELA and mathematics Common Core Standards
Overview of Common Core K-12 Standards (con’t)
The Standards comprise three main sections: a comprehensive K-5 section and two content areaspecific sections for grades 6-11, one in English language arts and one in history/social studies and scienceon Core State Standards for English Language Arts

ccss 阅读标准

ccss 阅读标准

ccss 阅读标准全文共四篇示例,供读者参考第一篇示例:随着时代发展和教育改革的不断深化,越来越多的国家开始关注并实施统一的教育标准,以确保学生在各个领域都能获得高质量的教育。

在美国,Common Core State Standards(CCSS)即“全国核心课标”是一个旨在提高学生学术成就的国家性教育标准。

CCSS阅读标准作为其中一个重要组成部分,对培养学生的阅读能力和素养起着至关重要的作用。

CCSS阅读标准的首要目标是帮助学生发展成为具备阅读技能和策略的精通者。

它强调了阅读作为获取和理解知识、构建文化资产以及培养人格品质的重要性。

CCSS阅读标准分为幼儿园至12年级的不同阶段,每个阶段都详细规定了学生应当达到的阅读能力要求和标准。

在幼儿园和一年级,学生需要通过观察图画、聆听故事、理解音节等方式初步认识阅读;而到了高年级,学生则需要能够独立分析文本、做出批判性思考以及撰写论证性文章。

CCSS阅读标准注重培养学生的文本理解能力和文学鉴赏能力。

它要求学生能够从文本中获取信息,理解作者的意图和观点,并将自己的观点和观念与文本进行对比和分析。

CCSS阅读标准还强调通过阅读文学作品来促进学生的情感、智力和道德发展,培养他们的审美情趣和人文素养。

通过阅读经典文学作品和多种文本类型,学生能够开阔视野,加深对人类文明和社会现实的认识。

除了培养学生的文本理解能力,CCSS阅读标准还注重提高学生的批判性阅读能力和综合应用能力。

一方面,学生需要能够分析和评估不同文本的可靠性和有效性,判断其说理是否充分,逻辑是否严密。

学生还需要能够将阅读所学知识应用到现实生活和学习中,解决问题、做决策和表达观点。

在CCSS阅读标准的指导下,学生可以通过阅读不同领域的文本,拓展自己的知识面,提高自己的综合应用能力。

CCSS阅读标准在美国教育领域起着不可替代的重要作用。

它不仅规范了学生在阅读方面的学习目标和能力要求,还促进了教师在教学实践中的专业发展和教学效果的提升。

ccss和cefr对标标准

ccss和cefr对标标准

ccss和cefr对标标准CCSS(Common Core State Standards)和CEFR (Common EuropeanCCSS(Common Core State Standards)和CEFR(Common European Framework of Reference for Languages)是两种广泛使用的教育和语言标准。

它们分别针对美国和中国的教育体系以及欧洲的语言学习者。

尽管它们的重点和方法有所不同,但它们之间存在一定的联系和对比。

CCSS是美国各州共同采用的一套教育标准,旨在确保所有学生在阅读、写作、数学等方面具备一定的知识和技能。

CCSS涵盖了从幼儿园到12年级的各个阶段,为学生提供了清晰的学习目标和期望。

CCSS强调跨学科学习,鼓励学生将所学应用于现实生活中的问题解决。

此外,CCSS还关注学生的批判性思维、创新能力和团队合作能力的培养。

CEFR则是一种描述语言能力和水平的标准,适用于欧洲各国的语言学习和评估。

CEFR将语言能力分为六个等级,从A1(入门级)到C2(精通级),每个等级都对应一定的语言技能和知识。

CEFR不仅适用于英语,还适用于其他欧洲语言,如法语、德语等。

CEFR的目标是帮助学习者了解自己的语言水平,选择适合的课程和教材,以及制定有效的学习计划。

尽管CCSS和CEFR的目标和方法有所不同,但它们之间存在一定的联系和对比。

首先,它们都为学生提供了明确的学习目标和期望。

CCSS通过设定具体的学术标准来指导学生的学习,而CEFR则通过描述语言能力和水平来帮助学习者了解自己的需求。

其次,它们都强调跨学科学习和实际应用。

CCSS鼓励学生将所学应用于现实生活中的问题解决,而CEFR则要求学习者在不同场景中展示自己的语言能力。

最后,它们都关注学生的全面发展,包括批判性思维、创新能力和团队合作能力等。

然而,CCSS和CEFR之间也存在一些差异。

首先,它们的适用范围不同。

美国:多管齐下防治学生网络欺凌

美国:多管齐下防治学生网络欺凌

24EDUCATOR美国:多管齐下防治学生网络欺凌滕志妍 赵璐蓉 | 西北师范大学教育科学学院网络欺凌是由信息和通信技术支持的故意侵害他人的行为,更具经常性、持续性、隐蔽性和无情性等特征,造成的危害往往更广泛、更严重。

对此,美国在对传统面对面欺凌防治方案和干预措施的有效性进行系统评估的基础上,进一步发展和延伸,探索出一系列较为有效的防治学生网络欺凌的干预措施。

建立防治学生网络欺凌法律体系进入21世纪,美国针对互联网的立法逐渐走向体系化,不断完善网络环境中的儿童权益保障,如:2000年颁布的《儿童互联网保护法》,要求学校必须阻止或过滤互联网对淫秽、儿童色情及对未成年人有害信息的访问;2007年颁布的《宽带数据服务改进法案》,要求学校必须提供互联网安全方面的指导,向学生讲授“恰当的在线行为以及关于网络欺凌的认识和应对方法”;2012年,联邦贸易委员会修订了规则,要求未成年人接受网络在线服务须获得父母的同意;2021年,美国国会颁布《2021年K-12网络安全法案》,协助中小学改善网络安全态势,帮助学校提高网络风险应对能力。

此外,美国各州还制定了反欺凌法案。

从1999年佐治亚州出台美国第一部《校园欺凌防治法案》到2015年蒙大拿州通过《校园欺凌防治法》,美国50州都有了本州反校园欺凌法案,其中48个州的立法包括反网络欺凌的内容。

较为完备的法律体系为地方政府(学区)和学校防治网络欺凌提供了有力的法律支持。

系统开展数字公民教育网络世界已成为当代青少年不可切割的生活空间。

为了让学生在安全、负责和尊重的基础上使用网络,美国较早开展了数字公民教育,在学校、家庭、专业机构与社会力量的支持下,形成了较完善的数字公民素养协同培育体系。

1998年,美国国际教育技术协会发布《国家教育技术标准(学生版)》,制定了学生信息技术素养培养标准,2007年修订版首次提出了“数字公民”概念,2016年修订版对数字公民的目标与内容进行阐释,帮助学生认识在互联的数字世界中生活、学习和工作的权利、责任与机会,以安全、合法和合乎道德的方式开展网络活动。

Common-core-achieve-presentation

Common-core-achieve-presentation
4
Common Core Initiative Mission
The Common Core State Standards… Provide a consistent, clear understanding of what students are expected to learn, so teachers and parents know what they need to do to help them. Are designed to be robust and relevant to the real world, reflecting the knowledge and skills that our young people need for success in college and careers. Position US students to compete successfully in the global economy.
2.
3. 4. 5. 6. 7. 8.
Australia • New South Wales • Victoria Canada • Alberta • British Columbia • Ontario England Finland Hong Kong Ireland New Zealand Singapore
Overview
• Background in the Common Core State Standards
• Examining the ELA/Literacy Standards
• Examining the Mathematics Standards • Finding the intersection with Financial Literacy and Economics Education • Q&A

史无前例的美国“共同核心标准”

史无前例的美国“共同核心标准”

史无前例的美国“共同核心标准”史无前例的美国“共同核心标准”《中国教育报》2010-06-10在美国著名的报告《国家处在危险中》发布之后的26年里,美国各州为提高教育的学术标准都迈出了很大的步伐。

但最大的一个问题一直是:50个州,50个标准。

去年的6月份,美国全国州长协会(NGA)和各州教育长官委员会(CCSSO)联合发起设立全国统一的数学和英语课程标准的行动,得到了绝大多数州政府和教育长官的积极响应和支持。

经过一年的努力,今年的6月2日,在亚特兰大市举行的一个新闻发布会上,美国全国州长协会最佳实践中心和各州教育长官委员会公布了“共同核心(州立)标准(the Common Core State Standards)”的最终定稿,这标志着由美国各州政府发起的制定全国统一课程标准的工作结束。

除阿拉斯加和德州外,其他48州将采用并实施统一的标准。

1.标准的“标准”“共同核心标准”规定了学生从幼儿园到12年级应该掌握的知识与技能,目标是他们高中毕业时为上大学和就业做好了充分的准备。

标准制定所依据的标准有:·跟大学与就业对学生的要求一致·明确、易理解、前后一贯·涵盖了高难度的内容,以及在高级技能中对知识的运用·参考了当前各州课程标准的优缺点·参考了其他教育质量领先国家的课程标准,为所有学生作好在全球经济与社会上成功的准备·以事实证据与研究为基础·在争议中诞生2.标准的特点“共同核心标准”是由两大机构组织的专家组撰写完成的,由两份文件组成:《共同核心数学标准》与《共同核心英语语言艺术与历史/社会、科学、技术学科中的读写标准》。

后者加上3份附件,共有近600页。

“标准”给每个年级的学生需要掌握的知识与技能设定了宽泛的目标。

比如,幼儿园的孩子应该以10为单位数到100,小学3年级学生应掌握主语与动词一致,5年级学生需要知道暗喻和明喻,7年级学生必须懂得如何计算面积。

美国全体系小学英语教材指南者Compass介绍(上)

美国全体系小学英语教材指南者Compass介绍(上)

美国全体系小学英语教材指南者Compass介绍(上)上一篇文章我们介绍了英语教学ELL,ESL和EFL的区别。

有许多国际教育机构咨询有没有一套能将这些课程“一网打尽”的教材,可以使学校在教材的选择上一劳永逸。

今天我们正式开始介绍美国小学最新最前沿的全体系英语教材《指南针Compass》。

本篇文章先简单介绍教材的一些亮点,以后的文章会系统全面的介绍这套教材和课程的前沿之处,让英语教育机构彻底脱离教材市场同质化严重的“苦海”。

前言:目前市场上的英文原版教材琳琅满目,学校和家长一直在为孩子努力寻找一套专业,全面,配套丰富的教材,一套好的教材可以使英语学习事半功倍,今天我们为您推荐的就是美国RICHMOND出版社2018年最新的全体系小学英语教材:COMPASS (英语指南针)。

我们会从以下几个方面为您专业的分析本套教材出版社RICHMOND是一家专门出版英语教材的出版社,隶属于西班牙语世界最大的出版集团Santillana,多年来专门致力于为美国移民量身定制英文教材,教材广泛用于美国加州,德州,佛罗里达州的教育机构。

之前被广泛赞誉的Spotlight on English就是RICHMOND出版的精品教材,RICHMOND并没有满足于Spotlight on English的成功,他们继续探索研发,在保留美国本土教材启发性教育理念和完整单词量的同时,又针对移民学生的特点进行优化,同时整合了被大家公认的剑桥五级通用考试内容,于是COMPASS于2018年横空出世教材简介Compass全套教材是基于US common core state standards (CCSS), 也就是美国共同核心州立标准来设计的一套包括听说读写综合性语言教材。

本套教材由阅读,自然拼读和拼写,语言应用,写作,单词和语法五大模块组成。

这五大模块为学生提供一套完整的分为六个级别的美国小学英语学习和教学系统。

教材同时配套先进的课堂互动白板软件,在线学习系统以及完整的教师指南。

七宝德怀特课程设置

七宝德怀特课程设置

七宝德怀特课程设置七宝德怀特(SeaboardWorldSchool)是一所位于中国上海的国际学校,拥有世界一流的师资力量和先进的教育理念。

作为一所注重个性化教育的学校,七宝德怀特的课程设置也是非常独特的,旨在为每个学生提供最适合他们的学习路径。

小学课程在小学阶段,七宝德怀特的课程设置主要分为两个部分:核心课程和拓展课程。

核心课程包括语言艺术、数学、科学、社会研究和个人、社会和物理健康教育。

拓展课程则包括艺术、音乐、体育、STEM、世界语言和社区服务等。

在语言艺术方面,七宝德怀特采用了美国的Common Core State Standards(CCSS)和英国的国家课程标准,旨在培养学生的读写能力、口语表达能力和批判性思维能力。

在数学方面,学生将学习基本的数学概念和技能,包括加减乘除、分数、小数、几何和代数等。

在科学方面,学生将学习生命科学、地球科学和物理科学等基本概念和技能。

在社会研究方面,学生将学习历史、地理、政治和经济等方面的知识,以及批判性思维和研究技能。

在拓展课程方面,七宝德怀特提供了丰富多彩的课程和活动,以满足学生的兴趣和需求。

在艺术方面,学生将学习绘画、雕塑、剪纸、陶艺等多种艺术形式。

在音乐方面,学生将学习唱歌、演奏乐器、音乐理论等。

在体育方面,学生将学习各种体育运动和健身技能。

在STEM方面,学生将学习科技、工程、数学和计算机科学等领域的知识和技能。

在世界语言方面,学生将学习英语以外的语言,包括中文、法语、西班牙语等。

在社区服务方面,学生将参与各种社区活动,了解社会和社区的需求,并为社区做出贡献。

初中课程在初中阶段,七宝德怀特的课程设置更加注重学生的个性化发展和专业化学习。

学生将选择自己感兴趣的学科和领域,并通过深入学习和实践来培养自己的技能和能力。

在语言艺术方面,学生将继续学习英语和其他语言,包括文学、写作、口语表达和批判性思维等方面的知识和技能。

在数学方面,学生将学习代数、几何、概率和统计等方面的知识和技能,并通过实践来应用这些知识和技能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Provides equal access to a high quality education
Provides opportunities to meaningfully engage parents
Why is a common core of state standards good for educators?
Practices
Presentation to the Mathematics and Science Partnership – February 23, 2010
What is the Common Core State Standards Initiative?
The Common Core State Standards Initiative is a significant and historic opportunity for states to collectively develop and adopt a core set of academic standards in mathematics and English language arts
Allows for more focused pre-service and professional development
Assures that what is taught is aligned with assessments including formative, summative, and benchmarking
Expectations will be consistent for all kids and not dependent on a student’s zip code
It will help students with transitions between states
Clearer standards will help students understand what is expected of them and allow for more self-directed learning by students
48 states, DC, Puerto Rico and the Virgin Islands have signed on to the Common Core State Standards Initiative led by the NGA Center and CCSSO
This initiative will potentially affect 43.5 million students which is about 87% of the student population (Source: ; 2007)
Why is this important?
Currently, every state has its own set of academic standards, meaning public education students in each state are learning to different levels
Why is a common core of state standards good for parents?
Helps parents understand exactly what students need to know and be able to do
Helps parenபைடு நூலகம்s support their children and educators by making expectations clear and goals high
Why is a common core of state
standards good for students?
It will help prepare students with the knowledge and skills they need to succeed in college and careers
Common Core State Standards Initiative
An Initiative of the Council of Chief State School Officers and the National Governors Association Center for Best
Why is a common core of state
standards good for states and
districts?
Allows states to align curricula to internationally benchmarked standards
Allows states and districts to ensure professional development for educators is based on best practices
This initiative will allow equal access to an excellent education
All students must be prepared to compete with not only their American peers in the next state, but with students from around the world
Provides the opportunity for instructors to tailor curriculum and teaching methods
Informs the development of a curriculum that promotes deep understanding for all children
相关文档
最新文档