二次根式PPT课件
二次根式ppt课件
用基本运算符号把数或表示数的字母连接起来的式子,称为代数式.
随堂检测
1.计算( 0.04)2 的值是(
A.0.2
B.0.04
C.-0.2
B
).
D.-0.04
2.二次根式− ( 10 − 11)2 的值是(
A. 10 − 11
B.-1
A
C. 11 − 10
).
D.1
随堂检测
乘方和开方)把数或表示数的字母连接起来的式子,我们称这样
的式子为代数式.
课堂小结
1. 二次根式的性质有哪些?
平方在里面,夹上绝对值,分类来讨论.
( )2 =a(a≥0);
2 =a(a≥0)
平方在外面,直接去根号;
2 = ||.
2.运用二次根式的性质进行化简,需要注意什么?
取值a的取值范围,( )2 =a(a≥0); 2 =a(a≥0).
2.从以上的结论中你能发现什么规律?你能用一个式子表示这
个规律吗?
= ( ≥ )
典型例题
化简:
(1) 16
(2) (−5)2
解:(1) 16= 42 =4;
(2) ( − 5)2 = 52 =5.
= ( ≥ )
= ||
跟踪训练
1.计算:
(1) 9=
3
(3) ( − 7)2 =
7
;
(2) ( − 4)2 =
4
;
(4) (3 − )2 =
π-3
2.如果 (3 − )2 =x-3,那么x的取值范围是
x≥3
.
;
.
探究活动3
回顾我们学过的式子,如 5,, + ,−, ,− 3 , 3, ( ≥ 0)
二次根式的乘除法PPT课件
二次根式的乘除法PPT 课件contents •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•乘除混合运算及简化方法•在实际问题中应用举例•错题集锦与答疑环节目录二次根式基本概念与01性质二次根式定义及表示方法定义形如$sqrt{a}$($a geq0$)的式子叫做二次根式。
表示方法对于非负实数$a$,其算术平方根表示为$sqrt{a}$。
乘法定理$sqrt{a} times sqrt{b} = sqrt{a times b}$($a geq 0$,$bgeq 0$)。
非负性$sqrt{a} geq 0$($a geq 0$)。
除法定理$frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$($a geq 0$,$b > 0$)。
二次根式性质介绍例1解析例3解析例2解析计算$sqrt{8} times sqrt{2}$。
根据乘法定理,$sqrt{8} times sqrt{2} = sqrt{8 times 2} = sqrt{16} = 4$。
计算$frac{sqrt{20}}{sqrt{5}}$。
根据除法定理,$frac{sqrt{20}}{sqrt{5}} = sqrt{frac{20}{5}} = sqrt{4} = 2$。
化简$sqrt{18}$。
首先将18进行质因数分解,得到$18 = 2 times 9 = 2 times 3^2$,然后根据二次根式的性质,$sqrt{18} = sqrt{2 times 3^2} = 3sqrt{2}$。
典型例题解析二次根式乘法运算规02则同类二次根式乘法法则两个同类二次根式相乘,把他们的系数相乘,根式部分不变,再根据根式的乘法法则,化简得到结果。
如:√a ×√a = a (a≥0)同类二次根式相乘,结果仍为同类二次根式。
不同类二次根式乘法法则两个不同类二次根式相乘,先把他们的系数相乘,再根据乘法公式展开,化简得到结果。
二次根式ppt课件
02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。
二次根式ppt课件
通过案例讲解二次根式在实际问 题中的应用
分析数学模型和实际问题之间的 关系
课程安排
4. 课堂练习和总结(10分钟)
提供课堂练习,检验学生对所 学内容的掌握情况
总结本节课的重点和难点,进 行回顾和总结
PART 02
二次根式的基本概念
二次根式的定义
总结词:非负数
详细描述:二次根式是指根号内含有未知数的数学表达式,它必须满足被开方数为非负数,否则没有 意义。
要点二
培养学生的数学思维和解决问题 的能力,例如
让学生自己设计一个与二次根式相关的问题并解决它等。
PART 06
总结与回顾
主要知识点回顾
二次根式的定义
二次根式是一种可以用来解决各 种实际问题的数学工具,它表示 一个非负数通过开方得到的平方
根。
二次根式的性质
二次根式具有非负性、有界性、正 值性等性质,这些性质在解决实际 问题时具有重要的应用价值。
PART 04
二次根式的应用
代数领域的应用
01
02
03
根式与方程的解
通过二次根式,我们可以 求解一元二次方程的解, 确定其实数根和虚数根。
根式的化简
在代数运算中,对根式进 行化简可以简化表达式, 提高运算效率。
根式与不等式
利用根式可以求解一元二 次不等式,通过确定不等 式的解集,解决实际问题 。
- \sqrt{3}$等。
解决与二次根式相关的实际问题,例如 :计算圆的面积或周长等。
掌握和运用二次根式的运算法则和公式 ,例如:$(a+b)\sqrt{a} = a\sqrt{a}
+ b\sqrt{a}$等。
综合练习题
要点一
通过综合题目,考察学生对二次 根式的全面理解和运用,例如
15.1 二次根式 - 第1课时课件(共17张PPT)
知识点1 二次根式的概念
一起究
1.(1)2,18,(2)非负数m,p+q,t2-1的算术平方根又是怎样表示的?
2.学校要修建一个占地面积为S ㎡的圆形喷水池,它的半径应为多少米?如果在这个圆形喷水池的外围增加一个占地面积为a ㎡的环形绿化带,那么所成的大圆的半径应为多少米?
一般地,我们把形如 的式子叫做二次根式.
15.1 二次根式第1课时
第十五章 二次根式
学习目标
1.了解二次根式的概念.2.能根据二次根式的意义确定被开方数中字母的取值范围.3.掌握二次根式的双重非负性及其应用.
学习重难点
掌握二次根式的概念.
难点
重点
掌握二次根式的双重非负性及其应用.
复习巩固
一个正数有两个平方根,它们互为相反数.0只有一个平方根,是0本身.负数没有平方根.正数a的算术平方根是
二次根式特征
1.外貌特征:含有“ ”.2.内在特征:被开方数3.内在特征:a可以是数,也可以是含有字母的式子.
知识点2 二次根式的几个性质
例题解析
例1 化简:
随堂练习
C
A
A
3.下列计算正确的是( ).
拓展提升
D
3.做一个面积为300 cm3的长方形镜框,使它长与宽的比为3:2.镜框的宽应为多少厘米?
归纳小结
二次根式
定义
性质
同学们再见!
授课老师:
时间:2024年9月15日
人教版八年级数学下册《二次根式》PPT课件
3 a≥0,
解:由题意得
2a 6≥0,
∴a=3,
∴b=4.
当a为腰长时,三角形的周长为3+3+4=10;
当b为腰长时,三角形的周长为4+4+3=11.
课堂检测
拓 广 探 索 题
先阅读,后回答问题:
当x为何值时, x x 1 有意义?
解:由题意得x(x-1)≥0
解得 m≥2且m≠-1,m≠2, ∴m>2.
(2)无论x取任何实数,代数式
x2 6x m 都有意义,求
m的取值范围.
解:由题意得x2+6x+m≥0,即(x+3)2+m-9≥0.
∵(x+3)2≥0, ∴m-9≥0,即m≥9.
课堂检测
能 力 提 升 题
已知a,b为等腰三角形两条边长,且a,b满足b 3 a 2a 6 4,
双重非负性
二次根式的被开方数非负
二次根式的值非负
a ≥0.
探究新知
考 点 1 利用二次根式的双重非负性求字母的值
若 a 3 b 2 (c 1)2 0 ,求2a -b+3c的值.
提示:多个非负数的和为零,则可得每个非负数均为零.
初中阶段学过的非负数主要有绝对值、偶次幂及二次根式.
人教版 数学 八年级 下册
16.1 二次根式
第1课时
导入新知
电视塔越高,从塔顶发射的电磁波传播得越远,从而能收
看到电视节目的区域越广,电视塔高h(单位:km)与电视节
目信号的传播半径 r(单位:km)之间存在近似关系r= Rh ,
其中地球半径R≈6 400 km.如果两个电视塔的高分别是h1 km、
《最简二次根式》二次根式PPT课件
2.被开方数是分数的二次根式化简
例 2 化简 1125. 分析:因为,125=5×5×5=52×5,所以,只需 分子、分母同乘以 5 就可以了.
解法一: 1125= 513××55=255.
3.被开方数是小数的二次根式化简
例 3 化简 1.5.
分析:被开方数是小数时,常把小数化成相 应的分数,然后进行求解.
1 8x3
x
0
0.8 4 45 2 5 5 55 5
4 1 9 92 3 2 2 2 22 2
20a2b 4a2 5b c 2 a 5bc 2a 5bc
c
cc
c
c
x2
1 8x3
x2
1 2x x2 8x3 2x 4x2
2x
2x 4
1.最简二次根式的概念.
满足下列条件的二次根式,叫做最简二次根式。
(2) 1 6x 9x2 (x 1) 3
(2)3x 1
(3) x 32 1 x2 1 x 3 (3)2
2、如果 a3 a2 a a 1, 那么a的取值范围是 ( D )
A. a 0 C. a 1
B. a 1
D. 1 a 0
3.化简 1 x3 x
错解:原式 1 x x2 x
18
32
被开方数不 含开得尽方 的因数
a 3
b2
(b 0)
9a
3a 3
ba
(b 0)
3a
被开方数 不含分母
(1)被开方数各因式的指数都为1. (2)被开方数不含分母.
被开方数满足上述两个条件的二次根式,叫 做最简二次根式.
如:1 x2 y √
4
6m(a2 b2 ) √
1 4
x2 y x 4
初中数学二次根式PPT课件图文
3.(2014·南通中考)若 在实数范围内有意义, 则x的取值范围是 ( ) A.x≥ B.x≥- C.x> D.x≠
【解析】选C.由题意得 解得x>
一、二次根式的相关概念 1.二次根式:一般地,形如 (_____)的式子. 2.最简二次根式:同时满足:(1)被开方数不含_____. (2)被开方数中不含能开得尽方的___________.
a≥0
字母
因数或因式
二、二次根式的性质
两个重要性质
( )2=__(a≥0).
=|a|=
【名师点津】理解二次根式的性质需注意的两个问题 (1) (a≥0)的双重非负性: ①被开方数a非负; ② 本身非负.
(2) 与( )2的异同: 中的a可以取任何实数,而( )2中的a必须取非负 数,只有当a取非负数时, =( )2.
【题组过关】 1.(2016·潍坊中考)实数a,b在数轴上对应点的位置如 图所示,化简|a|+ 的结果是 ( ) A.-2a+b B.2a-b C.-b D.b
【解析】选A.由题干图知:a<0,a-b<0, 则|a|+ =-a-(a-b)=-2a+b.
2.(2015·资阳中考)已知:(a+6)2+ =0,则 2b2-4b-a的值为________. 【解题指南】首先根据非负数的性质可求出a的值和 b2-2b=3,进而可求出2b2-4b-a的值.
3.二次根式的混合运算:与实数的运算顺序相同,先算 乘方,再算_____,最后算加减,有括号的先算括号里面 的(或先去括号).
《二次根式的概念》课件
ONE
KEEP VIEW
《二次根式的概念》 ppt课件
REPORTING
CATALOGUE
目 录
• 二次根式的定义 • 二次根式的简化 • 二次根式的运算 • 二次根式的应用 • 总结与回顾
PART 01
二次根式的定义
平方根的定义
总结词
理解平方根是二次根式的基础
详细描述
平方根的定义是,对于非负实数a,若某数的平方等于a,则这个数称为a的平方 根。例如,4的平方根是±2,因为2^2=4和(-2)^2=4。
详细描述
在进行二次根式简化时,首先观察根号内的表达式是否 可以提取平方因子或进行因式分解,以消去根号。如果 无法直接提取平方因子或进行因式分解,可以尝试使用 配方法,将表达式转化为完全平方形式,从而消去根号 。接下来观察各项是否为同类项,如果是,则合并同类 项。最后化简各项的系数和根指数,使二次根式达到最 简形式。通过综合运用这些方法,可以逐步化简二次根 式,使其达到最简形式。
PART 04
二次根式的应用
二次根式在几何学中的应用
二次根式在勾股定理中的 应用
勾股定理是几何学中的重要定理,而二次根 式是解决勾股定理问题的重要工具。通过使 用二次根式,我们可以计算直角三角形的斜 边长度。
二次根式在面积和周长计 算中的应用
在几何学中,许多形状(如矩形、圆形、椭 圆形等)的面积和周长可以通过使用二次根
PART 02
二次根式的简化
根号的简化
总结词
根号的简化主要是通过因式分解、配方法等手段,将根号内的表达式化简为最简二次根式。
详细描述
在进行二次根式简化时,首先观察根号内的表达式是否可以提取平方因子或进行因式分解,以消去根号。如果无 法直接提取平方因子或进行因式分解,可以尝试使用配方法,将表达式转化为完全平方形式,从而消去根号。
二次根式的乘除ppt课件
化运算 .
感悟新知
知1-讲
特别提醒
1. 法则中被开方数a,b既可以是数,也可以是式子,但都
必须是非负的 .
2. 二次根式相乘,被开方数的积中有开得尽方的因数或因
式时一定要开方 .
3. 二次根式相乘的结果是一个二次根式或一个整式 .
感悟新知
知1-练
10
8
10
=-
9×8=-20 2.
3
10
3
27÷ =-1× 3 ×
8
8
27×
3
感悟新知
知3-练
(5)
(a>0,b>0);
a3b6
解:∵a>0,b>0,∴
=
ab
(6)8 ÷3 ÷6 .
a3b6
= a2b5=ab2 b.
ab
4
8 6÷3 3÷6 2=(8÷3÷6)× 6÷3÷2= .
学习目标
第21章 二次根式
21.2 二次根式的乘除
感悟新知
知1-讲
知识点 1 二次根式的乘法
1. 二次根式的乘法法则
一般地,有 · = (a ≥ 0,b ≥ 0). 这就
是说,两个算术平方根的积,等于它们被开方数的
积的算术平方根 .
感悟新知
知1-讲
2. 二次根式的乘法法则的推广
(1)当二次根式根号外有因数(式)时,可类比单项式乘单
方根代替,移到根号外,其中把根号内的分母中的因
式移到根号外时,要注意应写在分母的位置上;
C. 0 ≤ x<1
D. x ≥ 0 且x ≠ 1
2024二次根式的乘除课件初中数学PPT课件
二次根式的乘除课件初中数学PPT课件目录CONTENCT •二次根式基本概念与性质•二次根式乘法运算规则•二次根式除法运算规则•复杂表达式中二次根式乘除处理策略•误差分析与计算技巧提高•知识点回顾与课堂互动环节01二次根式基本概念与性质二次根式定义及表示方法二次根式定义形如$sqrt{a}$($a geq 0$)的代数式叫做二次根式。
表示方法被开方数是非负数,根指数是2,通常省略不写。
注意事项负数没有平方根,在实数范围内,平方根的结果为非负数。
01020304性质1性质2性质3性质4二次根式性质介绍$sqrt{frac{a}{b}} = frac{sqrt{a}}{sqrt{b}}$($a geq 0$,$b > 0$)。
$sqrt{ab} = sqrt{a} times sqrt{b}$($a geq 0$,$b geq 0$)。
$sqrt{a^2} = |a|$($a$为任意实数)。
当$a > 0$,$b > 0$且$a$与$b$同号时,$sqrt{a} + sqrt{b}$与$sqrt{a} -sqrt{b}$的乘积为$sqrt{a^2} -sqrt{b^2}$。
010203例题1解析例题2化简$sqrt{169}$。
根据二次根式的性质1,$sqrt{169} = |13| = 13$。
计算$sqrt{20} times sqrt{5}$。
03解析根据二次根式的性质3,$frac{sqrt{27}}{sqrt{3}} = sqrt{frac{27}{3}} = sqrt{9} = 3$。
01解析根据二次根式的性质2,$sqrt{20} times sqrt{5} = sqrt{20 times 5} = sqrt{100} = 10$。
02例题3化简$frac{sqrt{27}}{sqrt{3}}$。
例题4计算$(sqrt{5} + sqrt{3})(sqrt{5} -sqrt{3})$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
21.2二次根式的乘除
4最简二次根式是今后学习二次根式加减运
一.主要内容及地位
地位作用: 本章内容与已学内容“实数”“整
式”“勾股定理”联系紧密,同时也是以 后将要学习的“解直角三角形”“一元二 次方程”和“二次函数”等内容的重要基 础,并为学习高中数学中的不等式、函数 以及解析几何等的大部分知识作好准备.
二、本章知识结构框图
三、教学要求
课程标准要求:了解二次根式的概念及其加、减、 乘、除运算法则,会用它们进行有关实数的简单四 则运算(不要求分母有理化)。
一.主要内容及地位
主要内容
全章分为三节,第一节研究了二次根式的 概念和性质,本节起承上启下的作用。第 二节是二次根式的乘除运算,主要研究二 次根式的运算法则和二次根式的化简;所 使用的法则和公式与整式的乘法运算法则 及乘法公式类似。 第三节主要研究二次根 式的加减运算法则和进一步完善二次根式 的化简。所采用的方法与合并同类项类似 。 这些都说明了前后知识之间的内在联系。
课本要求:1. 理解二次根式的概念,了解被 开方数必须是非负数的理由; 2. 了解最简二次根式的概念; 3. 理解二次根式的性质; 4. 掌握二次根式的加、减、乘、除运算 法则,会用它们进行有关实数的简单四则运 算(不要求分母有理化); 5. 了解代数式的概念,进一步体会代数 式在表示数量关系方面的作用。
21.1二次根式
2.只要学生了解形如 a (a≥0)的式子叫做二次根式,
不必在“ 缠。
、2 x是1否是二次根式”等问题上纠
21.1二次根式
2 a a(a0) a2 a(a0)
3.对于以上性质 ,教科书是采用由特殊到一般地 归纳得出结论的方法。教学中应注意这两个性质 的区别和联系
21.1二次根式
四、课时安排
本章教学时间约需9(12)课时,具体分配 如下(仅供参考):
21.1 二次根式
约3课时
21.2 二次根式的乘除
约3课时
21.3 二次根式的加减
约4课时
数学活动
小结
约2课时
五、与原有教材的变化
1.新教材力求克服传统观念上学习二次根式 的枯燥性,避免大量纯式子的化简或计算, 适当穿插实际应用的例子,加强了二次根式 与实际的联系。
4
a 2与 a2
区别:
(1)意义不同: a 2 表示 非负数a的算术平方根
的平方, a 2 表示数a的平方的算术平方根
(2)取值范围不同:
2
a
a2
(3)读法不同:
(4)运算顺序不同:
(5) 表达方式不同
联系: a≥0时,两式相等。
21.1二次根式
5. 对于代数式的概念,教学中让学生有所 体会就可以了,不必深究这个概念,类似 于判断一个式子是否代数式等这样的问题 不必要出。
21.1二次根式
6.例x是怎样的实数时,下列各式在实数范围内 有意义?
2x 3
学生可能会错解∵
2 x 3 ≥0,∴x≥-
2 3
7.可以适当补充一些 a 2 (a<0)的练习
21.2二次根式的乘除
21.2二次根式的乘除
本节课教学的关键是二次根式乘除法则的逆用.
1.二次根式的乘除法着重讲乘法,除法由学生自己 去探索。有了乘法的经验,应当不难归纳出除法 运算法则,教学中要让学生充分地进行讨论、交 流,发表见解。
各节具体分析21.1二次根式
本节主要是学习二次根式的概念、求二次根式 中字母的取值范围和求二次根式值的问题.
21.1二次根式
1.本节首先设置四个实际问题,这些实际问题的 结果都可以表示成二次根式的形式,教科书由此 引出二次根式的定义。这些实际问题的目的是让 学生感受到研究二次根式是实际的需要,二次根 式与实际生活联系紧密。教学时,也可以根据学 生的实际情况,选择其他有趣的实际问题引入, 以调动学生的学习兴趣。教学时要鼓励学生独立 思考,自主探索问题中的数量关系。
2.教材对二次根式的乘法安排很有层次,先从具体 例子出发,有特殊到一般地归纳出二次根式的乘 法法则。
21.2二次根式的乘除
3.在学生熟悉两条运算法则的前提下,通过 变式训练加以巩固,提高学生的计算能力 和速度。本节课应以学生练习为主,教师 注重知识应用的误区设置,及时提醒学生 易犯的错误,强调计算结果的要求。
第21章 二次根式
本学期教学计划
八下:17章 反比例函数 8课时
18章 勾股定理 8课时
19章四边形
17课时
20章数据的分析 15课时
九上:21章二次根式
9课时
22章一元二次方程 13课时
共70课时
一.主要内容及地位
从《数学课程标准》看,关于数的内容,第 三学段主要学习有理数和实数,它们是“数 与代数”领域的重要内容.人教版的课本安排 了3章内容,分别是7年级上册第1章“有理 数”,7年级下册第10章“实数”和9年级上 册第21章“二次根式”.本章是在第10章的 基础上进一步研究二次根式的概念、性质和 运算。
二次根式的乘法
三、与原有教材的变化
二次根式的除法
五、与原有教材的变化
4.减少了课时。原来教材本章是22课时,新 教材是9课时。
5.减少了二次根式的性质:积的算术平方根 和商的算术平方根
a ba•b(a0 ,b0 )
a a (a0,b0) bb
五、与原有教材的变化
6.降低了对公式 a 2 | a | 的要求,给出字母的取 值范围不出现讨论的情况。
7.降低了二次根式运算和化简的要求,二次 根式的混合运算没有单立节。不出现繁琐 式子的运算。
五、与原有教材的变化
8.淡化了概念名词:教材中没有出现同类 二次根式、有理化因式、分母有理化等 名词。
六、重点和难点:
本章重点是二次根式的化简和运算,难点 是正确理解二次根式的性质和运算法则的 合理性,学习本章的关键是理解二次根式 的概念和性质,它们是学习二次根式的化 简与运算的依据。
如:⑴二次根式的概念
(2)二次根式的加减
(3)例题和习题, 如计算钢材问 题、确定纸张 规格问题、电 视塔的传播半 径问题等。
五、与原有教材的变化
2.加强了计算器的使用。包括用计算器 探索规律。课本第10页探究、第16页 拓广探索。
五、与原有教材的变化
3.加大学生的探索空间,体现由特殊到一般 的认识过程