复习凸函数理论在解决中学数学极值问题中的应用

合集下载

凸函数的性质与应用

凸函数的性质与应用

凸函数的性质与应用凸函数是一种特殊的函数,它的图像在任何一点处都是凸的,也就是说,它的图像在任何一点处都是向上凸的。

凸函数的性质和应用非常广泛,它们在数学、统计学、经济学、机器学习等领域都有着重要的应用。

首先,凸函数的性质可以用来求解最优化问题。

最优化问题是指在给定条件下,求解使目标函数取得最大值或最小值的变量值。

凸函数的性质可以用来求解最优化问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解最优化问题。

其次,凸函数的性质可以用来求解线性规划问题。

线性规划问题是指在给定条件下,求解使目标函数取得最大值或最小值的变量值,而且变量值必须满足一组线性约束条件。

凸函数的性质可以用来求解线性规划问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解线性规划问题。

此外,凸函数的性质还可以用来求解最小二乘问题。

最小二乘问题是指在给定条件下,求解使目标函数取得最小值的变量值,而且变量值必须满足一组线性约束条件。

凸函数的性质可以用来求解最小二乘问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解最小二乘问题。

最后,凸函数的性质还可以用来求解机器学习问题。

机器学习是一种人工智能技术,它可以自动从数据中学习规律,并做出预测。

凸函数的性质可以用来求解机器学习问题,因为它的图像在任何一点处都是向上凸的,所以可以用来求解机器学习问题。

总之,凸函数的性质和应用非常广泛,它们在数学、统计学、经济学、机器学习等领域都有着重要的应用。

凸函数的性质可以用来求解最优化问题、线性规划问题、最小二乘问题和机器学习问题,从而为科学研究和实际应用提供了重要的理论支持。

函数凹凸性与极值在优化中的应用指南

函数凹凸性与极值在优化中的应用指南

函数凹凸性与极值在优化中的应用指南函数的凹凸性和极值之间的关系在优化问题中具有广泛的应用。

这种关系不仅有助于我们理解优化问题的本质,还能指导我们设计求解策略、评估解的质量以及进行算法的选择与改进。

以下是具体的应用:1. 指导求解策略●凸优化问题:对于凸优化问题,由于局部最优解即为全局最优解,因此可以采用各种高效的算法(如梯度下降法、牛顿法等)来求解。

这些算法在凸函数上能够确保收敛到全局最优解。

●非凸优化问题:对于非凸优化问题,虽然不能直接保证局部最优解即为全局最优解,但可以利用函数的凹凸性信息来指导求解策略。

例如,通过寻找函数的拐点(凹凸性变化的点)或利用凸包络等方法来近似原问题,从而更容易地找到全局最优解或较好的局部最优解。

2. 评估解的质量●全局最优性检验:在凸优化问题中,可以通过比较解与已知的全局最优解(如果存在的话)来检验解的质量。

如果两者相等或非常接近,则可以认为找到了全局最优解。

●局部最优性评估:在非凸优化问题中,虽然无法直接判断解是否为全局最优解,但可以利用函数的凹凸性信息来评估解是否为局部最优解。

例如,如果解位于一个由凸变凹或由凹变凸的点上,并且该点处的函数值比其他邻近点都小(或大),那么这个解很可能是局部最优解。

3. 算法选择与改进●算法选择:根据函数的凹凸性选择合适的优化算法。

对于凸函数,可以选择具有全局收敛性的算法;而对于非凸函数,则可能需要采用启发式算法或元启发式算法来寻找近似解。

●算法改进:在算法运行过程中,可以根据函数的凹凸性信息来调整算法参数或改进算法策略。

例如,在梯度下降法中,可以根据函数的二阶导数(即凹凸性信息)来调整学习率的大小;在遗传算法中,可以利用函数的凹凸性信息来指导交叉和变异操作等。

4. 实际应用场景●金融领域:在投资组合优化、风险管理和资产定价等问题中,经常需要求解凸优化问题来找到最优的投资组合或风险策略。

此时,函数的凹凸性对于保证解的全局最优性和稳定性至关重要。

函数凸凹性在高考解题中的应用

函数凸凹性在高考解题中的应用

函数凸凹性在高考解题中的应用
函数凸凹性在高考解题中的应用
函数凸凹性是高等数学研究的函数重要性质之一,虽然在高中数学的课标中没有对凸凹函数做具体要求,但是它的身影在高考试题中却频频出现.充分说明了高考命题源于课本,又高于课本的原则,同时也体现了高考为高校输送优秀人才的选拔性功能.下面仅就函数凸凹性的一个侧面在高考题中的应用做初步论述.
一、凹凸函数的定义及相关定理
引理:
定理:
证明:
二、定理在高考题中的应用
以下就2012年高考试题中出现的若干有关凸凹性的试题来说明定理的解题应用价值.
例一
分析
另一种解法
解后反思
解法一基于题目代数条件、放缩求最值,解法自然,但仅停留在条件到结论的表面计算,部分学生由于计算量大和讨论繁琐而望而却步;解法二简洁明快,直观性较强,且揭示了试题立意的本质即是基于函数凹凸性立意.
例二
评注
例三
2014年长春第二次质量监测
解答。

17.凸函数及其应用

17.凸函数及其应用

编号学士学位论文凸函数及其应用学生姓名:艾木拉姑丽·吐尔逊学号:20060101025系部:数学系专业:数学与应用数学年级:2006-1班指导教师:托乎提·塞都拉完成日期:2011 年 5 月10 日1摘要函数凸是一种非常重要的函数.它是研究函数,作出函数图象的基础,因此论文中首先提出了凸函数的几种等价定义并说明凸函数的几何意义,然后讨论凸函数的充要条件或充分条件.提出凸函数的9种常用的判别法,并给出每一个定理的证明,最后应用凸函数概念证明几个重要不等式.关键词:有界;单调;连续;可导;凸函数;Lagrange 定;Lepshitiz 条件;Jensen 不等式;2目 录摘要 .............................................................................................................................1 引言 .............................................................................................................................1 1.凸函数的定义与几何意义 .....................................................................................1 2.凸函数的判别法 .. (3)定理1............................................................................................................................ 3 定理2............................................................................................................................ 4 定理3............................................................................................................................ 5 定理4............................................................................................................................ 6 定理5............................................................................................................................ 6 定理6............................................................................................................................ 8 定理7............................................................................................................................ 9 定理8............................................................................................................................ 9 定理9.. (10)3.凸函数的应用 ....................................................................................................... 11 总结 ...........................................................................................................................17 参考文献 ...................................................................................................................18 致谢 (19)1引言讨论函数()y f x =的性态,仅仅知道函数()y f x =在区间I 严格增加还不够.因为函数()y f x =在区间I 严格增加还有不同的方式.函数的凹,凸性是研究函数性质(形态)的重要方法,且证明有些不等式的有力工具.为了掌握好函数的所有性质,首先要讨论函数凸性的充分条件与充要条件,因此本文中提出了凸函数的几种常用的判别法. 1.凸函数的定义与几何意义设函数()f x 在区间I 上有定义、从几何上来看、若()y f x =的图像上任意两点()()11,x f x 和()()22,x f x 之间的曲线段总位于连接这两点的线段之下(上)、则称该函数是凸(凹).参见图1.这个概念用解析的语言可以表述成 定义1;定义2:设函数()f x 在开区间I 有定义,若()12,,0,1x x I λ∀∈∀,有()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦〈1〉则称()f x 在区间I 是下凸函数或简称函数()f x 在区间I 是凸的﹒()121x x x λλ=+-若定义中则221,x x x x λ-=-1211x x x x λ--=-则不等式〈1〉可以改写为()()()()1212fx f x fx f x x x x x--≤--2这就是凸函数的另一种定义﹒ 凸函数的几何意义: 当()0,1λ∈时点()()122211x x x x x x λλλλ=+-=--表示了区间()12,x x 中的某一点,即()12,x x x λ∈﹒在下图中弦12A A 的方程是:()()()12121fx f x y f x x x +=+-将x x λ=代入上式得()()()3231BA f x f x λλ=+-但()4BA f x =因此不等式〈1〉在几何上表示为34BA BA ≥也就是说,曲线()y f x =在弦12A A 下方,呈现为下凸的形状,而上凸函数的图象则呈现为上凸的形状﹒(图1)除了凸函数上面的定义意外,还可以给出连续函数()f x 在区间I 上为凸函数的的等价性定义;定义1':()f x 在区间I 上有定义且连续()f x 称为I 上的凸函数,如果21,x x ∀I ∈,有⎪⎭⎫ ⎝⎛+221x x f ()()⎪⎭⎫⎝⎛+≤221x f x f f将“≤”改为“〈”.定义2':()f x 在区间I 上有定义且连续()f x 称为I 上的凸函数,如果Ix x x n ∈∀,...,,21,有()()()⎪⎭⎫⎝⎛+++≤⎪⎭⎫⎝⎛+++n x f x f x f f n x x x f n n (2121)x)x ()()21f x λ-图13例1: 证明()2f x x =在R 上是严格凸函数﹒ 证明:事实上()1212,,,0,1x x R x x λ∀∈≠∀∈且有()()()()()()()()()()()()()()22221211222222222212121122222212221212121121111111f x x x x x x x x x x x x x x x x x x fx f x λλλλλλλλλλλλλλλλλλλλ+-=+-+-⎡⎤⎣⎦<+<+-++-⎡⎤⎡⎤=+-+-+-⎣⎦⎣⎦=+-=+-即函数()2f x x =在R 上是严格凸函数﹒2.凸函数的判别法定理1设()f x 于(,)a b 上可微 ,则()f x 严格下凸⇔()f x '是严格增加﹒ 证明:()⇐根据Lagrange 中值定理对一切()1212,,,x x a b x x ∈≠及01t <<必存在()()1122,,t t x x x x ξξ∈∈和使得()()()()121t f x tf x t f x ---()()()()()121t t t f x f x t f x f x =-+--⎡⎤⎡⎤⎣⎦⎣⎦()()()()()()()()112212211(1)0t t t f x x t f x x t t f f x x ξξξξ''=-+--⎡⎤⎡⎤⎣⎦⎣⎦''=---<⎡⎤⎣⎦( ()()12f f ξξ''<)()()()()121t f x tf x t f x ∴<+-由凸函数定义()f x 在(),a b 是函数﹒()⇒任取()12,,x x a b ∈满足12x x <我们来证明4()()()()12,f x f x f x a b '''<及在严格增加,设ξη<从(),x ξη∈知存在数01t <<使得()11t x t ξη=-+,根据()f x 的严格下凸条件得】()()()()1f t f x tf ξη<-+即()()()()f fx f f x xxξηξη--<--上式表明λ的函数()()()f fx xλψλλ-=-在()12,x x 严格增加.由此可见()()x x ψψ+<-记起()()11x f x ψ'+=并类次可()()22x f x ψ'+=∴()()()12f x f x f x '''<⇒在(),a b 严格增加﹒定理2函数()f x 在区间I 可导则()f x 在区间I 可导,则()f x 在I 是凸函数的充要条件是()()()()1221121,x x I f x f x f x x x '∀∈≥+-有证明:()⇒若()f x 在I 是凸函数,则由定理1有()f x '在I 上单调增加12,x x I∴∀∈ ()12x x <有()()()()2121f x f x f x x ξ'-=-()()()12121xx f x x x ξ'<<≥- ()()()()21121f x f x f x x x '∴≥+-同法可证明12x x >时也有()()()()21121f x f x f x x x '>+-()⇐若()()()()1221121,x x I f x f x f x x x '∀∈≥+-有令()3121x x x λλ=+- ()01λ<<则()()()131221211,x x x x x x x x λλ-=---=-∴对13,x x I∈有()()()()13313f x f x f x x x '≥+-()()()()33121f x f x x x λ'=+--5对()()()()()()()23233233321,x x I f x f x f x x x f x f x x x λ''∈≥+-=+-有从而()()()()()()()()()()()()()()()()()()133122332112312111111f x f x f x x x f x f x f x x x f x f x f x f x x λλλλλλλλλλλλ≥+--'-≥-+--∴+-≥=+-即()f x 在I 是凸函数. 定理3若函数()f x 在区间(),a b 上二阶可微且()0f x ''≥,则()f x 下凸. 证明:在区间(),a b 内任取两点()1212,x x x x <, 令120120202x x x x x x +=+-=即函数()f x 在0x 的泰勒公式是()()()()()()2000012f x f x f x x x f c x x '''=+-+- ()0c x x 是与之间当1x x =时()()()()()()21001011012fx fx f x x x f c x x '''=+-+- ()10x c x <<当2x x =时()()()()()()22002022012fx fx f x x x f c x x '''=+-+-02x c x <<()()()()()()()()()()()()()()221200*********2201102201222122fx f x f x f x x x x f c x x f c x x fx f c x x f c x x ⎡⎤'''''∴+=++-+-+-⎣⎦⎡⎤''''=+-+-⎣⎦()()()()()()()()2212110220,00,00x a b f x f c f c f c x x f c x x ''''''''''∀∈>∴≥≥-+-≥ 有即于是()()()()()()1212022f x f x f x f x f x f x ++≥≤或因此()(),f x a b 在内是凸﹒6定理4设函数()f x 在开区间I 可导,函数()f x 在I 上是凸⇔曲线()y f x =位于它的任意一点切线的上方.证明:()⇒0x I ∀∈,曲线()y f x =在点()()00,x f x 的切线方程: ()()()()000y x f x f x x x '=+- 从而()()()()()()000f x y x f x f x f x x x '-=---()()()()()()()00000f x x f x x x f f x x x ξξ''=---''=--⎡⎤⎣⎦其中ξ在x 与0x 之间.若函数()f x 在I 是凸,根据定理1,则()()00f f x x x ξ''--与同号,于是x I ∀∈,有()()0f x y x -≥即曲线()y f x =在其上任意点()()00,x f x 的切线上方.()⇐若0,x x I ∈,有()()()()()()0000f x y x f x f x f x x x '-=---≥当0x x <时有()()()000fx f x f x x x -'≤- ,当0x x >时有()()()000fx f x f x x x -'≥-于是x I ∀∈且()()()()121212fx f x fx f x x x x x x x x--<<≤--有 因此函数()f x 在I 上凸.定理5()f x 在(),a b 上为下凸函数的充要条件是对一切()123,,,x x x a b ∈ ()123x x x <<恒有x7()()()()()()213132213132fx f x fx f x fx f x x x x x x x ---≤≤--- ;证明:如图所示在曲线()y f x =上自左至右任取三点,,P Q R 则两两相连所得线段的斜率满足PQ PR Q R K K K ≤≤ ( 图-2)()⇒设3221313111x x x x x x x x λλ--=<-=--则 ,令()2131x x x λλ=+- 则根据()f x 的凸函数有()()()()()131311fx f x x fx f x λλλλ=+-≤+-⎡⎤⎣⎦ (1)()()3221133131x x x x fx fx x x x x --=+-- (2)进而得到()()()()()()312321213x x f x x x f x x x f x -≤-+- (3)()()()()()()3213122130x x f x x x f x x x f x ∴---+-≥()()()()()()()()3112113122130x x f x x x f x x x f x x x f x -----+-≥ 或 ()()()()()()()()3213222122130x x f x x x f x x x f x x x f x -----+-≥ 从而()()()()()()31212132x x f x f x x x f x f x --≤--⎡⎤⎡⎤⎣⎦⎣⎦()()()()21312131fx f x fx f x x x x x --∴≤-- 同法可证 ()()()()31323132fx f x fx f x x x x x --∴≤--()⇐由123,,x x x 在(),a b 上任意性,可以得到凸函数的定义2故()f x 在(),a b 上为一凸函数.8定理6()f x 在区间I 上为凸函数x I ⇔∀∈,当12x x x <<时有 ()()()11221101x fx x f x x f x ≥.证明:()⇒()1212,,,x x x I x x x f x ∀∈<<且在区间I 上可导,由定义()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦(1)设()121x x λλλ=+- 1211x x x x λ--=- 不等式(1)可以改写为()()()21122121x x x x fx fx fx x x x x --=+-- (2) 设12x x x <<将不等式(2)不等号两边乘上210x x ->有()()()()()()21112120x x f x x x f x x x f x -+-+-≥ (3)或可以改写为行列式的形式()()()1122111x fx x f x x f x ≥ ,()⇐()()()11221101x fx x f x x f x ≥ 设12x x x <<由于()()2121x x x x x x -=-+-,(3)或改写为()()()()()()()()21121120x x f x x x f x x x f x x x f x -----+-≥或()()()()1212fx f x fx f x x x x x--≤-- ∴函数()f x 是凸函数.9定理7若函数()f x ,()g x 在区间I 上为凸函数,则()()f x g x +也在I 上为凸. 证明:因为()(),f x g x 在区间I 上为凸函数.∴对定义区间内任意两点12,x x 及()0,1λ∀∈,有()()()()121211f x x f x f x λλλλ+-≤+-⎡⎤⎣⎦及()()()()121211g x x g x g x λλλλ+-≤+-⎡⎤⎣⎦不等式两边分别相加得()()()()()()()12121122111f x x g x x f x g x f x g x λλλλλλ+-++-≤++-+⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦按定义()()f x g x +为凸函数.定理8若()f u 是单调增加的凸函数,且()u x ψ=为凸函数,则复合函数()f x ψ⎡⎤⎣⎦也是凸函数.证明:()u x ψ= 是凸函数,12,x x ∀有()()121222x x x x ψψψ++⎛⎫≤ ⎪⎝⎭(由凸函数的定义)又因为()f x 是单调增加的凸函数,所以12,x x ∀有()()()()121212222f x f x x x x x f f ψψψψψ+⎡⎤⎡⎤+⎡⎤⎡+⎤⎛⎫⎣⎦⎣⎦≤≤⎢⎥ ⎪⎢⎥⎝⎭⎣⎦⎣⎦(()()1212122x x x x ψψψ+⎛⎫+≥⎡⎤ ⎪⎣⎦⎝⎭)所以复合函数()f u ψ⎡⎤⎣⎦也是凸函数.10定理9函数()f x 在区间I 上为凸⇔12,,n x x x I ∀∈ 有()()()112211221212n n n n n n t f x t f x t f x t x t x t x f t t t t t t +++⎛⎫+++≤⎪++++++⎝⎭其中 ()122,,,,0nn t t t ≥>证明:()⇐若12,,,n x x x I ∀∈ 有 ()()()112211221212n n n n n nt f x t f x t f x t x t x t x f t t t t t t +++⎛⎫+++≤⎪++++++⎝⎭()12,,,0nt t t > 则2n =时有()()112211221212t f x t f x t x t x f t t t t +⎛⎫+≤ ⎪++⎝⎭()12,0t t >令12,1t t t t ==- (0<t<1)有()()()()121211f tx t x tf x t f x +-≤+-⎡⎤⎣⎦ 由定义知函数()f x 在I 上为凸. 必要性()⇒若()f x 在I 为凸函数,则12,x x I ∀∈有()()()()121211f tx t x tfx t f x +-≤+-⎡⎤⎣⎦ ()01t << 12,0t t ∴∀>令112t t t t =+ 则2121t t t t -=+ 则()()112211221212t f x t f x t x t x f t t t t +⎛⎫+≤⎪++⎝⎭ 即2n =是不等式成立.设1n k =-时有11()()()112211112211121121k k k k k k t f x t f x t f x t x t x t x f t t t t t t ------+++⎛⎫+++≤⎪++++++⎝⎭()121121,,,,,,,0k k x x x I t t t --∀∈> ,n k =时有()()112211121112211121121121.()()k k k k k k k k k k k k k k t x t x t x t t t t x t x t x t x t x t t t f f t t t t t t t t --------+++⎡⎤++++⎢⎥⎡⎤+++++++⎢⎥=⎢⎥++++++++⎢⎥⎣⎦⎢⎥⎣⎦()()112211*********.k k k k k k k kt x t x t x t t t ft x t t t t t t t -----⎛⎫+++++++ ⎪+++⎝⎭≤++++()()()112211121()k k k k k kt fx t f x t f x t f x t t t t ---++++≤++++即n k =是不等式成立,所以定理是正确的.3.凸函数的应用例2: ()f x 为区间I 上的凸函数,1,2,,x I n ιι∈= 10,1nιιιλλ=>=∑这时有()()()()11221122n n n n f x x x f x f x f x λλλλλλ+++≤+++ . 证明:(用数学归纳法) 当2n =是凸函数的定义 12λ=时112λλ==()()()11221122f x x f x f x λλλλ+≤+成立.当1n k =-时0a ι> 111k a ιι-==∑ 有12()()()()112211112211k k k k f x x x f x f x f x αααααα----+++≤+++ 成立当n k = 时 11nιιλ==∑时只各项 1kιιλαλ=-就有()()1122111122111.1k k k k k k k k k kx x x f x x x x f x λλλλλλλλλλ----⎡⎤+++++++=-+⎢⎥-⎣⎦()()11221111k k k k k kx x x f f x λλλλλλ--⎡⎤+++=-+⎢⎥-⎣⎦()()()()()1122111.k k k k k fx f x f x f x λαααλ--≤-++++⎡⎤⎣⎦()()()()112211k k k k f x f x f x f x λλλλ--=++++()()()()11221122n n n n f x x x f x f x f x λλλλλλ∴+++≤+++例3:设:()f x 在区间(a ,b )内为凸函数,并且有界,试证()lim x af x +→与()5lim x f x →均存在.证明:不妨设()f x M ≤,根据()f x 的凸性知,()00,,x a b a x x ∀∈<<时()()()()()()00000fx f x fx f x fx Mk x x x x xx a---==>---是x 的单调有界函数,从而存在()()00lim ,x afx f x A x x +→-=-,而(),x a b ∈ ()()()()()0000fx f x f x x x fx x x -=-+-则()()()000lim x af x a x f x →=-+例4:设0i a >,0i b >(1,2,...,i n =)证明:11111nnnp qp q i i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪⎝⎭⎝⎭∑∑∑其中110,,1p q qp<<+∞+=此不等式称为赫尔德(Holder )不等式,当2p q ==时,13又称为始瓦茨(Schwarz )不等式或柯西不等式;证明:令 ()16f x x =则()()0;011121''>∀<⎪⎪⎭⎫ ⎝⎛-=-x xq q x f q 因此()f x 为()0,+∞上的严格凹函数,于是若10,,1ni i i i x t o t =>>=∑ 则有()q n n q nn q qx t x t xt xt xt 1111122111......++≤+++ 现取1pii np ii a t a==∑,q i i pib x a =并且代入不等式,得()q p i ni qq nqni nn a bbb a b a 1111111......⎪⎭⎫ ⎝⎛∑++≤∑++==整理即得q p i ni p p i ni i i ni b a b a 11111⎪⎭⎫⎝⎛∑⎪⎭⎫ ⎝⎛∑<∑==-;例5:由()ln f x x = 的凸性,利用Jensen 不等式来导出平均值不等式. 解:由于()210,f x x=-<故()fx 在()0,+∞上是凹函数,对于凹函数詹森不等式()()()()1...............1111n n n n x f x f x x f λλλλ++≤++ 应取反向,设()0,0,1,2,,;i x i n >=⋅⋅⋅并取()1,1,2,,i i n nλ==⋅⋅⋅显示有11ni i λ==∑把它们代入反向的(1)式,得到()111lnln ln lnnn x x x x nn+⋅⋅⋅+≥+⋅⋅⋅+=由于()ln f x x =是递增函数,因此得到1nx x n⋅⋅⋅≤再由()1ln ln g x x x=-=为—凹函数,类似地又有1111111ln ln ln ln nn x x nn x x +⋅⋅⋅+⎛⎫-≤-+⋅⋅⋅+= ⎪⎝⎭又得14111nn x x ≤+⋅⋅⋅+1111nnx x n nx x ⋅⋅⋅≤≤+⋅⋅⋅+例6:设()f x 为区域(),a b 内的凸函数,试证:()f x 在I 的一内闭区间[](),,a b αβ⊂上满足来布尼兹(Lipschitz )条件.证明:首先我们要清楚来布尼兹(Lipschitz )条件,称()f x 在[],αβ满足 来布尼兹(Lipschitz )条件,是存在L ,使[]12,,x x αβ∀∈有()()1212fx f x L x x -≤-即()()1212f x f x Lx x -≤-曾有凸函数关于增量比值的性质:()()1212fx f x x x --是关于x 的增函数实际上,有关增量的结论,一般还有如下四个结论是等价的()123x x x <<(1)()f x 在[],αβ上凸函数; (2)()()()()21312131fx f x fx f x x x x x --≤--;(3)()()()()31322131fx f x fx f x x x x x --≤--;(4)()()()()21322132fx f x fx f x x x x x --≤--;15上面式(1)(2)(3)均表明()()00fx f x x x --对固定的1x 而言,是关于x 的增函数的结论的变形形式.则由于[](),,a b αβ⊂,故有在0h >使得[](),,h h a b αβ-+⊂ 12x x <且[]12,,x x αβ∈时,取32x x h =+尤式(4)知()()()()213221fx f x fx f x M m x x hh---≤≤-,其中,M m 分别表示f 在[],h h αβ-+上的上,下确界,则()()1221..................M m f x f x x x h--≤-(1)12x x >,则可取32x x h =-,有()()()()21212121fx f x M m M m fx f x x x x x hh---≤⇒-≤--当21x x = 21x x =时不等式(1)成立.变换21,x x 的位置,不等式(1)成立,故[]12,,x x αβ∀∈有()()1221M m fx f x x x h--≤-;例7:设()f x 是区间[],a b 上的凸函数,则()()()122b af a f b a b f f x dx b a++⎛⎫≤≤⎪-⎝⎭⎰证明:由()f x 的凸性保证了积分()ba f x ⎰有意义当,2a b x b +⎡⎤∈⎢⎥⎣⎦时,2a b a b x a +⎡⎤+-∈⎢⎥⎣⎦且有()()22a b f a b x f x f +⎛⎫+-+≥⎪⎝⎭因为()()2a b baaf x dx fx dx +=⎰⎰令x a b μ=+-,得16()()()22a bbb aa b bf x dx f a b d f a b dx μμμ++=-+-=+-⎰⎰⎰从而()()()()22222bbb aa b a ba ba b f x dx f a b x f x dx f dx a b f ++++⎛⎫⎛⎫=+-+≥=-⎡⎤⎪ ⎪⎣⎦⎝⎭⎝⎭⎰⎰⎰于是()12b aa b f fx dx b a+⎛⎫≤⎪-⎝⎭⎰作变换()()t b x b a =-÷-,则有()()()()()()()()()()()1111112b af a f b f x dx f a t b dt b a t a t b dt b a tf a t f b dt b a +=+-=-⋅+-≤-+-=-⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰⎰⎰从而()()()12b af a f b f x dx b a+≤-⎰例8:设0,0,p q >>求证:当2o xπ<<时sin cos px qx <证:原式可以变形为22sin cos 1pqp qx x p q p q +⎛⎫⎛⎫⎛⎫⋅< ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭,取对数又可变性为22sin cos 1ln ln ln px px p q p p q q p q ⎛⎫⎛⎫⎛⎫+< ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭,由()ln g x x =的凹性,即证;17总结凸函数是研究函数性质的重要工具,作出函数图象与证明不等式的一种方法.因此本文中主要讨论凸函数概念与凸函数的9种常用的判别法.应用凸函数解决问题或证明一个不等式时首先选取本文中的适当的一种凸函数判别法,然后利用此种方法讨论已知函数的凸性,最后按照函数的凸性来证明原不等式.18参考文献[1] 毛羽辉.数学分析选论(上册)[M].北京:科学出版社.2004:66~72[2] 吴良森,毛羽辉,韩士安,吴畏.数学分析指导书[M].高等教育出版社.2004:169~171[3] 谢惠民,恽自求,易法槐,钱定边.数学分析习题课讲义(上册)[M].高等教育出版社.2004:243~245[4] 方企勤.数学分析(上册)[M].北京大学数学系.1986:197~206[5] 欧阳光中,姚允龙.数学分析(上册)[M].复旦大学出版社.1991:195~199[6]陈传璋,金福临,朱学炎,欧阳光中.数学分析(上册)[M].高等教育出版社.1978:193~200[7]刘玉璉,傅沛仁,林玎,刘宁 .数学分析(上册)[M].高等教育出版社.2003:256~262[8]任胜健.数学分析(第一册)[M].北京大学出版社.2009:218~225[9]牛庆银.数学分析选论[M].科学出版社.2004:66~72[10]李胜宏.数学分析[M].浙江大学出版社.2009:197~20319 致谢在喀什师范学院的教育下经过五年的学习,使我在做人做事各个方面得到了很大的提高.在老师的指导下我的毕业论文顺利通过,他帮我批准了好多次,提供了这方面的资料和很好的意见,非常感谢他的帮助,在老师耐心的指导下,我学会了论文的三步骤:怎么样开头,怎么样继续,怎么样结束.非常感谢指导老师,也非常感谢我系的各位老师,在他们的教育下,使我在各方面得到了很大的提高,为以后工作打下了良好的基础.此致敬礼:艾木拉姑丽.吐尔逊 2011-5-10。

凸函数的性质与应用

凸函数的性质与应用

凸函数的性质与应用数学与统计学院、数学与应用数学、0701班,湖北,黄石,4350021.引言凸函数是数学分析中的一个重要概念,它涉及了许多数学命题的讨论证明和应用,而且在现代优化学、运筹学、管理学、和工程测绘学等多个学科有着重要的意义和很好的应用.关于凸函数,虽然很多书籍都做了相应的介绍,但多是从不同的角度出发来进行不同的定义和应用.在高等数学中,利用导数讨论函数的性态时,经常遇到一类特殊函数—凸函数,由于凸函数具有一些特殊性质,利用这些性质可非常简单地证明一些初等不等式、函数不等式和积分不等式. 凸函数是一类重要的函数,在不等式的研究中尤为重要.本文通过凸函数的定义、性质的描述,主要研究其在不等式证明中的应用,举例说明解题思路与证明方法,并且证明了几个常见的重要不等式及高次函数的凸性猜想. 函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘函数的图象,而且有助于对函数的定性分析.2. 凸函数的有关概念2.1凸函数的定义、定理及其几何意义定义 若函数()f x 对于区间(),a b 内的任意12,x x 以及()0,1,λ∈恒有1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点()()11,,x f x ()()22,x f x 间的割线总在曲线之上.定理1 若函数()f x 在区间(),a b 内连续,对于区间(),a b 内的任意12,x x 恒有12121[][()()]22x x f f x f x +≤+, 则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任意两点()()11,,x f x ()()22,x f x 间割线的中点总在曲线上.定理2 若函数()f x 在区间(),a b 内可微,且对于区间(),a b 内的任意x 及0x ,恒有00()()()f x f x f x x '≥+-,则称()f x 为区间(),a b 上的凸函数.其几何意义为:凸函数曲线()y f x =上任一点处的切线,总在曲线之下. 注 若将定义1,2,3中的≤“”改为<“”则称()f x 为(),a b 上的严格凸函数. 2.2 凸函数定义与定理之间的等价性条件2.2.1 定义1与定理1的等价性证 定义1⇒定理1:显然,只要取12λ=即可由定义1推得定理1.定理1⇒定义1:我们首先推证()f x 对于任意的12,x x (),a b ∈及有理数()0,1λ∈,不等式1212[(1)]()(1)()f x x f x f x λλλλ+-≤+-,成立.事实上,对于此有理数λ,总可表示为有穷二进位小数,即121121122220.2n n n nn na a a a a a a ---++=,其中0,1(1,2,,1);1i n a i n a ==-=或由于1λ-也是有理数,故也可以表示为有穷的二进位小数,即1λ-=121121122220.2n n n nn nb b b b b b b ---++=, 其中()1,1,2,,1;i i b a i n =-=-1,n b =这是因为()11λλ+-=的缘故,因此111212[]()()i i f a x b x a f x b f x +≤+(1,2,,1)i n =-,所以12[(1)]f x x λλ+-12112112112112222222[]22n n n n n nn n nna a a ab b b b f x x ------++++=+21212121111212112222()(22[]2n n n n n nn n a a a b b b a x b x x x f ------+++++=2121212111121211222211[()]()2222n n n nn n n n a a a b b b f a x b x f x x ------++≤+++2121212111121211222211[()()]()2222n n n n n n n n a a a b b b a f x b f x f x x ------++≤+++121112212221111[()()][()()]()2222n n n a x b x a f x b f x a f x b f x f -+≤++++11122122122111[()()][()()][()()]222n n na f xb f x a f x b f x a f x b f x ≤+++++12112112112112222222()()22n n n n n n n n n na a a ab b b b f x f x ------++++=+12()(1)().f x f x λλ=+-下面再推证()f x 对λ为无理数时定义1也成立.事实上,对任意无里数()0,1,λ∈{}(0,1),n λ⊂存在有理数列12(),(1)n n n n x x λλλλ→→∞+-→所以,12(1)()x x n λλ+-→∞,由于()f x 在(),a b 内连续,所以1212121212[(1)][lim (1)]lim [(1)]lim[()(1)()]()(1)()n n x n n n n x x f x x f x x f x x f x f x f x f x λλλλλλλλλλ→∞→∞→∞+-=+-=+-≤+-=+-综上即知,定义1与定理1等价.2.2.2 定义1与定理2的等价条件证 定义1⇒定理2:对(),a b 内任意的0x 及x ,若0,x x <则取0h >,使00,x x h x <+<由推论1得0000()()()()].f x h f x f x f x h x x +-+≤-上式中令0,h →由于()f x 可微,所以有0()f x '00()(),f x f x x x +≤-即00()()()f x f x f x x '≥+-.若0,x x <则取0h >,使00,,x x x x h x <<+<同理可证.2.2.3 定理2与定义1的等价条件对于区间(),a b 内的任意12,x x (不妨设12x x <)以及()0,1,λ∈令()121x x x λλ=+-,则12,x x x << ()()1121,x x x x λ-=-- 2x x -= ()()211,x x λ--由泰勒(Taylor)公式,我们有111222()()()()()()()()f x f x f x x f x f x f x x θθ''=+-=+-及其中1122x x x θθ<<<<,于是12()(1)()f x f x λλ+-12[(1)]f x x λλ=+-+2121(1)()[()()]x x f f λλθθ''---.再由单调性知21()()f f θθ''≥,所以12()(1)()f x f x λλ+-≥ 12[(1)]f x x λλ+-,即12[(1)]f x x λλ+-≤12()(1)()f x f x λλ+-.所以在一定条件下,定义1与定理3等价.3. 凸函数的有关结论 3.1 凸函数的运算性质性质1 若()f x 为区间I 上的凸函数, k 为非负实数,则()kf x 也为区间I 上的凸函数.性质2 若()(),f x g x 均为区间I 上的凸函数,则()f x + ()g x 也为区间I 上的凸函数.推论 若()(),f x g x 均为区间I 上的凸函数,12,k k 为非负实数,则()()12f x k g x +k 也为区间I 上的凸函数.性质3 若()f x 为区间I 上的凸函数,()g x 为J 上的凸增函数,且()f I J ⊂,则g f ⋅为区间I 上的凸函数.性质4 若()(),f x g x 均为区间I 上的凸函数,则()F x =()(){}max ,f x g x 也是区间I 上的凸函数.上述性质很容易证明,故在此省略.3.2 凸函数的其他性质引理 f 为I 上的凸函数的充要条件是:对于I 上的任意三点12x x x <<,总有32212132()()()()f x f x f x f x x x x x +-≤--. ()1证 [必要性]记3231,x x x x λ-=-则213(1).x x x λλ=+- 由f 的凸性知道()21313[(1)]()(1)()f x f x x f x f x λλλλ=+-≤+-=3221133131()()x x x xf x f x x x x x --+--.从而有()()312321213()()()()x x f x x x f x x x f x -≤-+-,即()()()322212321213()()()()()x x f x x x f x x x f x x x f x -+-≤-+-.整理后即得()1式.[充分性]在I 上任取两点1313,,(),x x x x <在[13,x x ]上任取一点213(1)x x x λλ=+- ()0,1,λ∈即3231.x x x x λ-=-由必要性的推导逆过程,即可证明 1313[(1)]()(1)()f x x f x f x λλλλ+-≤+-.故f 为I 上的凸函数.同理可证,f 为I 上的凸函数的充要条件是:对于I 上的任意三点12,x x x <<总有313221213132()()()()()()]]f x f x f x f x f x f x x x x x x x -+-≤≤---.性质1 设f 为区间I 上的严格凸函数,若有0x 是()f x 的极小值点,则0x 是()f x 在I 上唯一的极小值点.证明 若()f x 有异于0x 的另一极小值点1x I ∈ ,不妨设()()10f x f x ≤ 由于()f x 是在I 上的严格凸函数, 故对于任意的()0,1λ∈,都有()01010[(1)]()(1)()f x x f x f x f x λλλλ+-<+-≤.于是,任意的0δ>,1,只要充分接近时总有()0010(1),x x x U x λλδ=+-∈.但是,()0()f x f x ≤,这与1x 是()f x 的极小值点的条件矛盾,从而0x 是()f x 在I 上唯一的极小值点.性质2 设()f x 为(),a b 内的凸函数,有()f x 在I 的任一内闭区间()(),,a b αβ<上满足Lipschitz 条件.证明 要证明()f x 在(),αβ上满足Lipschitz 条件,即要证明:0,L ∃>使得()12,,x x αβ∀∈有1212()()f x f x L x x -≤-. ()2()()()(),,,,,,a b h h a b αβαβ⊂-+⊂因为,故可取充分小使得因此,()12,,x x αβ∀∈,12,x x <32x x h =+取,根据定义有32212132()()()()f x f x f x f x M mx x x x h+--≤≤--,(其中,M m 分别表示()f x 在(),h h αβ-+的上、下界)从而2121()()M mf x f x x x h--≤-, ()3 若1232,,x x x x h >=-可取由定义有32211223()()()()f x f x f x f x x x x x --≤--,从而32211223()()()()f x f x f x f x M m x x x x h---≤≤--.由此也可推出()3式.若12x x =,则()2显然成立.这就证明了()3式显然对于一切()12,,x x αβ∈都成立,因此()3式当12,x x 互换位置也应成立,故有2121()()M mf x f x x x h--≤-. 令M mL h-=,则原命题成立.性质3 设()f x 是(),a b 上的凸函数,则()f x 在(),a b 上处处存在左、右导数,且左导数小于、等于右导数.证明 ()()()00,,,x a b U x a b δ∀∈∃⊂.记()()00()(),,f x f x F x x a b x x +=∈-,()121200,x x x x x x δ<∈-任意且,,,有引理得()()1020121020()()()()f x f x f x f x F x F x x x x x ++=≤=--.()F x 在()00x x δ-,上单调递增;再在0x 右方任取一定点()00,x x λλδ∈+,,由引理得: ()()()12F F F x x λ≤≤所以()F x 在()00x x δ-,上单调递增且有上界, 故由单调有界原理: 极限()0lim x x F x -→存在,即0()f x +'存在; 任意102x x x <<由定义3有()()1020121020()()()()f x f x f x f x F x F x x x x x ++=≤=--.令1020,x x x x -+→→,则()f x 在0x 的左导数小于等于()f x 在0x 的右导数.性质4 设()f x 为(),a b 内可导凸函数,证明()0,x a b ∈ 为()f x 的极小值的充要条件是0()0f x '=.证明 [必要性]已知函数()f x 在0x 可导,且取得极小值,则0()0f x '=(极值的必要条件).[充分性] (),x a b ∀∈,0,x x ≠有00()()().f x f x x x ≥+-因为0()0f x '=,故(),,x a b ∀∈都有0()(),f x f x ≥所以0x 为()f x 的极小值点.定理1 设f 为区间I 上的可导函数,则下列论断互相等价;1) f 为I 上的凸函数, 2) f '为I 上的增函数, 3) 对I 上的任意两点12,,x x 有()21121()()()f x f x f x x x '≥+-. ()*证明 1)2)→ 任取I 上的两点1212,x x x x <()及充分小的正数,h 由于1122,x h x x x h -<<<+根据的凸性及引理有11212212()()()()()()f x f x h f x f x f x h f x h x x h---+-≤≤-.有f 是可导函数,令0h +→时可得211212()()()()f x f x f x f x x x -''≤≤-.所以f '为I 上的递增函数.2)3)→ 在以1212,()x x x x <为端点的区间上,应用拉格朗日中值定理和f '递增条件,有()()2121121()()()()f x f x f x x f x x x ξ''-=-≥-,移项后即得()*式成立,且当12x x >仍可得到相同结论3)1)→ 设以12,x x 为I 上的任意两点,312(1)x x x λλ=+-,由3)并利用131223211)()x x x x x x x x λλ-=---=-与(),()()133133312()()()()(1)()f x f x f x x x f x f x x x λ''≥+-=+--,()233233321()()()()()f x f x f x x x f x f x x x λ''≥+-=+-(),分别用λ和1λ-乘上列两式并相加,便得()()12312(1)()()(1)f x f x f x f x x λλλλ+-≥=+-,从而为I 上的凸函数.推论1 设()f x 为区间I 上的二阶可导函数,则()f x 为凸函数.()0,f x x I ''⇔≥∈.推论2 设()f x 为区间I 上的可微凸函数,则有0x I ∈是()f x 的极小值点.()00.f x ''⇔=定理2 设()f x 在(),a b 上连续,则()f x 是(),a b 上的凸函数的充要条件是:对任意含于(),a b 的闭区间[],,x h x h -+都有1()()2hhf x f x t dt h -≤+⎰. 证明 必要性:()()()()1,2t h f x f x t f x t ∀≤≤-++,故 ()()()()12[]2hhhhhf x f x t f x t f x t dt --≤-++≤+⎰⎰.充分性:假定存在12,x x <使()()1212122x x f f x f x +⎛⎫>+⎡⎤ ⎪⎣⎦⎝⎭ 作辅助函数()()()()11,x f x k x x f x ϕ=---其中2121()()f x f x k x x +=-则120,2x x ϕ+⎛⎫> ⎪⎝⎭因此[]()()[][]12012,max 0,0,,,,x x x x h x h x h x x ϕϕ=>=-+⊂取()()000t h x x t ϕϕ≤-+≥当时,且不恒为0,因此()()002hhh x xt dt ϕϕ->+⎰.再由()x ϕ的定义推出: ()002()hhf xt hf x dt -+>⎰ 这与条件矛盾, 故定理2得证.定理3 若()f x 为(),a b 内的凸函数,(),,i x a b ∈ 1,2,,,i n =则()111.ni ni i i x f f x n n ==⎛⎫⎪ ⎪≤ ⎪ ⎪⎝⎭∑∑ 证明 对12,2n x ==不等式是显然的,设对1n -不等式成立. 因为1212111,1nn n x x x x x x n x nn n n-++++++-=⋅+- 这里()()1211,,,,,1n n x x x n a b x a b n n λ-+++-=∈∈- 由题得()()111111.1n n i i n i i n i i x x n f f f x f x n n n nn ===⎛⎫⎛⎫ ⎪ ⎪- ⎪⎪≤+=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 4.凸函数的一些应用4.1应用凸函数性质证明不等式在初等数学及数学分析的课程中,对于不等式的证明是一个重要内容.有时利用凸 函数的理论,证明一些不等式,将会更加简单.下面用例题加以说明.例1 求证:对任意实数,,a b 有()21.2a ba bee e +≤+ 证明 设()()(),0,,x f x e f x x ''=≥∈-∞+∞则故()xf x e =(),-∞+∞为上的凸函数.从而对121,,2x a x b λ===有定义 12121[][()()]22x x f f x f x +≤+.即得()212a ba bee e +≤+. 注:该题构造函数,运用凸函数的定义很容易就导出.例2 设01,01,x a <<<<则有()()1111.aax x x -+-<-证明 设()()()()11101aaf x x x x -=+-<<.那么()()()()()()111111,aaa a f x a x x x ax ---'=-+-++-()()()()()()1111111aaaa f x a a x x a a x x ----''=--+---+()()()()1121111a aa a a a x x a a x x ------+--+()()()()()()12112111111aa a a a a a x x x x x x x x -----⎡⎤=--+-++++-+⎣⎦()()()()()()1212111111.a a aa a a x x a a x x ------=--+-=-+-于是 ,当01,01x a <<<<时,()0,f x ''>由严格凸函数的定义,其中12,1,0,x x x λ===得()()()()()110110,f x f x x x f x f =⋅+-⋅<⋅+-⋅⎡⎤⎣⎦即()()1111.aax x x -+-<-注:该题运用了定理1及推论1的结论.例3 在ABC 中,证明sin sin sin 2A B C ++≤()()()()sin ,0,,sin 0,0,f x x x f x x x ππ''=-∈=>∈证明 令由应用2得()()()33f A f B f C A B C F ++++⎛⎫≥ ⎪⎝⎭,即sin sin sin sin3A B CA B C ++++≤s i n ,3π≤=所以sinA+sinB+sinC 2注:该题运用了定理3的结论.例4设12n a a a 、、均为正数,且121n a a a +++=.求证:()2222212121111.n n na a a a a a n +⎛⎫⎛⎫⎛⎫++++++≥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭证 因为()2,f x x =()()()22,20,f x x f x f x x ''==>=由于得是凸函数,有凸函数的性质,有22212122121221211111111111.n n n nn a a a a a a a a a a a a n n n a a a ⎛⎫⎛⎫⎛⎫+++++ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎛⎫++++++ ⎪⎪≥⎪ ⎪⎝⎭⎛⎫=++++ ⎪⎝⎭()4 由柯西不等式:222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫⋅≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑得1212111111()1n n a a a a a a ⎛⎫+++=+++⋅ ⎪⎝⎭()12122111(),n na a a a a a n =++++++≥212111()nn a a a ∴+++≥,由()4即得 ()2222212121111n n n a a a a a a n+⎛⎫⎛⎫⎛⎫+++++≥⎪⎪ ⎪⎝⎭⎝⎭⎝⎭.4.2关于凸函数的某些猜想猜想1 三次函数不是(),-∞+∞上的凸函数. 证 设()3232103,0.x x a x a x a a f a +++≠= 显然,()f x 在(),-∞+∞上可导,且()232123x x a x a f a ++'=,因为30,a ≠故()f x '在(),-∞+∞上不单调,所以不是凸函数.猜想2 试给出四次的函数在定义域上是凸函数的一个充分条件. 设()432432104,0,x x x a x a x a a f a a ++++≠=因为四次的在定义域上二次同样可导,且()324321432x x x a x a f a a +++'=, ()24321262x x x a f a a ++''=.根据3..1的推论1可知,下式()423420.64120a a a a >⎧⎪⎨-⋅⋅≤⎪⎩ 则该四次函数在(),-∞+∞是凸函数. 化简得① 423420.380a a a a >⎧⎨-⋅≤⎩② 423420.380a a a a <⎧⎨-⋅≤⎩ 则该四次函数在(),-∞+∞不是凸函数.③ 423420.380a a a a >⎧⎨-⋅>⎩设()24321262x x x a f a a ++''=与x 轴的两交点分别是()1212,,x x x x <则()x f 在()()12,,,x x -∞+∞内分别为凸函数,在()12,x x 内不是凸函数.④ 423420.380a a a a <⎧⎨-⋅>⎩同理设()x f ''与x 轴的两交点分别是()1212,,x x x x <则()x f 在()12,x x 内为凸函数,其他区间不是凸函数.猜想3 5次函数在实数范围内是否有为凸函数的?设5次函数的表达式为()54325432105,0,x x x x a x a x a a f a a a +++++≠= 显然该是在实数范围内二次可导.()432543215432,x x x x a x a f a a a ++++'= ()325432201262.x x x x a f a a a +++''=现在需要找出二次导数在实数范围内是否恒大于等于0. 我们设()()325432201262,x f x x x x a g a a a ''=+++=()2154360246.x x x g a a a =++'下面分情况讨论:()524530,2446060a a a a >⎧⎪⎨-⋅⋅≤⎪⎩ 即()0x g ≥'在R 上恒成立.则()x g 在R 上单调递增,此时5a 为某一定值,但是总,x R ∃∈使得()0,x g <即x R ∃∈使()0f x ''<成立.同四次的理一样,其他3种情况更不可能为凸函数. 所以五次函数在R 上不是凸函数.以此类推,高次函数()11100,,n n n n n f x a x a x a x a a --=+++≠5n 时,该函数在实数范围内不是凸函数.5.小结本文通过凸函数的定义、性质的描述,主要研究其在不等式证明中的应用,举例说明解题思路与证明方法,并且证明了几个常见的重要不等式及高次函数的凸性猜想.函数的凸性是函数在区间上变化的整体性态,把握函数在区间上的整体性态,不仅可以更加科学、准确地描绘函数的图象,而且有助于对函数的定性分析.致谢经过半年的忙碌和工作,本次毕业论文已经接近尾声,在这里首先要感谢我的指导老师柴国庆教授.柴老师平日里工作繁多,但在我做毕业论文的每个阶段,从初次选题到查阅资料,论文初稿的确定和修改,中期检查,后期详细设计等整个过程中都给予了我悉心的指导,还不惜把自己的研究成果让我参考、借鉴,细心地纠正论文中的错误并给予指导.如果没有他的大力支持,此次论文的完成将变得非常困难.除了敬佩柴老师的专业水平外,他的治学严谨和科学研究的精神也是我永远学习的榜样,然后还要感谢大学四年来所有的老师,为我们打下坚实的专业知识的基础.最后祝各位评审老师身体健康,工作顺利!参考文献[1]数学分析上第三版.华东师范大学数学系编.北京.高等教育出版社,2001,148-154.[2]李惜雯.数学分析例题解析及难点注释(上册).西安.西安交通大学出版社,2004.1,265-269.[3]林源渠方企勤.数学分析解题指南.北京.北京大学大学出版社,2003.11.84-87.[4]大学数学名师导学丛书.北京.中国水利水电出版社,2004208-212..[5]花树忠.邯郸市职工大学基础教学部.邯郸,056001.[6]李世杰.衢州市教育局.浙江.衢州,324002.[7]宋小军.西华师范大学数学与信息学院.四川文理学院学报.2010年5期.[8]陈迪红.长沙铁道学院学报.第12卷.第3期.1994年9月.[9]曹良干.阜阳师范学院学报.总22期.[10]陈太道.琼州大学.数学系.临沂师范学院学报第24卷,第3期.[11]李宗铎.湖南教育学院学报长沙大学.第18卷第2期.。

凸函数的性质与应用【文献综述】

凸函数的性质与应用【文献综述】

文献综述数学与应用数学凸函数的性质与应用凸函数是数学分析中一类非常重要的函数,它不仅在一些具体学科,如机器人学,模具设计或一些数学分支(如全局优化,运筹学等)中具有重要的应用,在具体的数学学科学习中也有重要的应用.我们在华东师范大学数学系编的数学分析书上册的第六章第五节学习了凸函数的有关定义和性质.在该书中对凸函数的定义叙述为:定义1[1] 设f 为定义在区间I 上的函数,若对I 上的任意两点1x ,2x 和任意实数λ∈(0,1)总有: 1212((1))()(1)()f x x f x f x λλλλ+-≤+-,则称f 为I 上的凸函数.几何形状如下图所示:根据凸函数的定义和相关引理,我们可以得出关于二阶可导凸函数的一个重要的充要条件:定理2[1]设f 为区间I 上的二阶可导函数,则在I 上f 为凸函数的充要条件是: 0)(''≥x f ,I x ∈.从凸函数的定义,图像,充要条件上,我们可以看到凸函数有其本身的特殊性和直观性,而这些性质对于证明某些较复杂的不等式,解答高中里的数学题目均有很大的帮助.国内外现状与研究方向:由于凸函数在数学上的广泛应用,国内外越来越多的学者专注于对凸函数各个方面的研究.首先,在凸函数的众多研究课题当中,对其基本定义和性质的研究最为广泛和普遍.研究的主要内容包括凸函数及对其概念的理解,等价定义,判别法,它的线形性[华东师范大学.数学分析上册(第三版)就对凸函数的概念和定义作了详细的说明].除了对凸函数原有性质的研究之外,对其新性质的研究也使研究者们趋之若鹜.目前越来越多的学者专注于凸函数的若干新性质在求解线性与非线性不等式组和线性规划中的应用,寻找求解线性与非线性不等式组的新方法.其次,在对凸函数的定义和性质有了充分研究的前提下,研究者们更加关注对凸函数的应用的研究.例如研究其与不等式证明有关的下凸函数的性质[邱忠文,刘瑞金.函数的凹凸性及不等式的证明;王新奇.利用函数的凹凸性证明一类三角不等式];利用Jenven不等式证明当 n 取任意自然数时该性质的推广;在不等式中的应用[于靖.利用曲线的凹凸性证明柯西不等式];凸函数与极值,导数的一些关系[裴礼文.数学分析中的典型问题与方法;孙本旺,汪浩.数学分析中的典型例题和方法];判断函数极值点与拐点等应用.凸函数在高中数学中的研究也是一大亮点:由于凸函数是一类象形函数,在高中课程中虽然没有明确引入它的定义和概念,但因其性质具有明显的直观性,可以考查学生的观察能力和知识迁移能力,又可考查函数的各种性质,还能使平淡的题目增色,所以近年来已受高考命题人的青睐.初等函数基本都是凸函数,研究凸函数性质的纵向和横向的发散应用[方良秋.高考题中凸函数的题型及应用].最后,随着凸函数的凸性在数学,物理学,经济学,管理学,最优化理论等领域的广泛应用,对凸函数的凸性的进一步研究已成为众多学者密切关注的一个焦点,而由凸集和凸函数拓展延伸而产生的各类凸集和凸函数的不断出现,不仅极大地丰富了凸分析理论,而且有力地推动了数学科学的发展,特别是对数学规划,控制论,最优化等领域的发展起到巨大的作用,也引起了众多学者的密切关注和极大兴趣[钟伟,周彬林.凸函数的几种不同定义及应用].进展情况:一开始时,凸函数的重要作用被认为是在一些具体学科,如机器人学,模具设计或一些数学分支(如全局优化,运筹学等)中的应用.但随着对凸函数横向和纵向研究的逐渐深入,研究者们越来越意识到凸函数是数学分析中的一个重要概念,它涉及了许多数学命题的讨论证明和应用.例如由重庆师范大学罗超群学者所写的《凸函数在分析中的初探》就详细得探讨了凸函数的线形性和凸函数与极值,倒数的一些关系;由中国科学院计算数学与科学工程计算研究所时贞军学者和曲阜师范大学运筹与管理学院岳丽学者所写的《凸函数的若干新性质及应用》则详细讨论凸函数的性质在求解线性与非线性不等式组和线性规划中的应用,为线性与非线性不等式组,线性规划的求解提供了一种新方法;由井冈山职业技术学院的晏忠红学者所写的《凸函数的应用》则对用凸函数方法和凸函数詹生不等式推证几种重要的不等式作出了讨论;由湖南省汨罗市第二中学的刘正良和宋加文老师则在《凸函数理论及应用策略》中描述了凸函数在初高中数学学科中的具体应用.总之,学者们对凸函数各方面的研究是趋之若鹜,使得凸函数在各方面的应用也越来越深入.存在问题:现阶段关于凸函数主要存在三个方面的问题:(1)在一元微积分的教学里,函数的凹凸性的的概念却往往被忽视.在一些工科类的微积分教材中,对于函数的凹凸性的判断甚至就简单地通过比较函数图像和其切线(或割线)的上下位置关系来描述.(2)对二元凸函数的性质研究较少.(3)对于凸函数的定义和基本性质的介绍比较分散,跨度大.参考文献:[1] 华东师范大学. 数学分析上册(第三版)[M]. 北京:高等教育出版社,2006:119-125.[2] 雷澜.凸函数的性质与不等式证明[N].渝州大学学报,2000,17(4):19-21.[3] 裴礼文. 数学分析中的典型问题与方法[M]. 北京: 高等教育出版社, 2006: 186-191.[4] 卢兴江,金蒙伟. 高等数学竞赛教程[M]. 杭州: 浙江大学出版社, 2010: 20-46.[5] 顾荣. 函数凹凸性定义的探讨[J]. 佳木斯教育学院学报,2010, 102(6): 299.[6] 王庆东,侯海军. R n 中函数凹凸性判定的充要条件[J]. 河北理科教学研究, 2003, 3: 50.[7] 张国坤. 多元函数的凹凸性再探[J], 曲靖师专学报. 1995, 14(6): 29-31.[8] 陈朝晖. 二元函数凹凸性的判别法及最值探讨[J]. 高师理科学刊, 2010, 30(5): 25-28.[9] 白景华. 凸函数的性质、等价定义及应用[J]. 开封大学学报, 2003, 17(2), 69-64.[10] 赵文彼, 栗洪敏. 利用函数的凹凸性推导出一批积分不等式[J]. 工科数学, 1994, 10(4):227-229.[11] 王新奇. 利用函数的凹凸性证明一类三角不等式[J]. 西安文理学院学报(自然科学版), 2005,8(3): 37-40.[12] 于靖. 利用曲线的凹凸性证明柯西不等式[J]. 辽宁师专学报, 2003, 5(2): 2-3.[13] 沈文国. 用泰勒公式研究函数凹凸性的一种拓广[J]. 兰州工业高等专科学校学报, 2001,8(4): 4-8.[14] 普丰山, 李兆强. 连续函数的单调性及凸凹性研究[J]. 河南科学, 2009, 27(8): 896-899.[15] 陈传璋. 数学分析[M]. 北京: 高等教育出版社, 1992:203-205.[16] 时贞军. 无约束优化的超记忆梯度算法[J]. 工程数学学报, 2000, 17(2): 99-104.[17] 孙本旺, 汪浩. 数学分析中的典型例题和方法[M]. 长沙: 湖南科学技术出版社, 1983:246-264.[18] 方良秋.高考题中的凸函数题型及其应用[J].数学教学通讯报,2007,271:38-4.[19] 李碧荣.凸函数及其性质在不等式证明中的应用[N].广西师范学院学报,2004,21(2):93-95.[20] 邱忠文, 刘瑞金. 函数的凹凸性及不等式的证明[J]. 工科数学, 1993, 19(3): 151-154.[21] 陈太道.凸函数判定及其应用[N].临沂师范学院学报,2002,24(3):91-92.[22] 古小敏.对凸函数定义之间等价性的进一步研究[J].重庆工商大学学报(自然科学版),2009,26(2):172-182.。

凸函数的性质及其应用

凸函数的性质及其应用

摘要高等数学的重点研究对象凸函数是数学学科中的一个最基本的概念。

凸函数的许多良好性质在数学中都有着非常重要的作用。

凸函数在数学,对策论,运筹学,经济学以及最优控制论等学科都有非常广泛的应用,现在已经成为了这些学科的重要理论基础和强有力的工具。

同时,凸函数也有一些局限性,因为在实际的运用中大量的函数并不是凸函数的形式,这给凸函数的运用造成了不便。

为了突破其局限性并加强凸函数在实际中的运用,于是在60年代中期便产生了凸分析。

本文主要是研究凸函数在数学和经济学方面的应用,在数学方面,文主要探究了不等式的证明,看看它与传统方法比较哪个更为简洁;在经济学方面,主要介绍了凸函数的一些新的发展,即最优问题,该问题在投资决策中起到了非常重要的作用;最后简单的介绍了一下经济学中的有关Arrow-pratt风险厌恶度量的知识。

关键词:凸函数;不等式;经济学;最优化问题AbstractConvex function, the main study object of higher mathematics, is one of the most fundamental concepts in mathematics. Many good properties of convex function have a very important role in mathematics. Convex function has a very wide range of applications in mathematics, game theory, operations research, economics and optimal control theory, and now has become the most important theoretical basis and the most powerful tool of these disciplines.Convex function has some limitations at the same time, because large numbers of functions are not convex functions in the practical application, which has caused inconvenience to the use of convex functions. In order to break its limitations and strengthen the use of convex function in practice, convex analysis was produced in the mid 60's.The paper is mainly study the applications of convex function in mathematics and economics. In mathematics, the paper mainly discusses the poof of inequality to see which is more simple compared with the traditional method. In the aspect of economics, the paper mainly introduces some new developments of convex functions, namely, optimal problems, which play an important role in the investment decision. Finally, the paper introduces the related knowledge of the Arrow-pratt risk aversion measure in economics simply.Key words:Convex function;Inequality;Economics;Optimization problem目录摘要 (I)Abstract ......................................................................................................................... I I第1章绪论 (1)第2章预备知识 (3)2.1 凸函数的定义 (3)2.2 凸函数的定理 (6)2.3 凸函数的简单性质 (9)2.4 几种常见的不等式 (10)第3章在数学中的应用 (12)3.1. 初等不等式的证明 (12)3.2 函数不等式的证明 (14)3.3 积分不等式的证明 (15)第4章凸函数在经济学的中应用 (19)4.1 最优化问题 (19)4.1.1 线性规划下的最优化问题 (19)4.1.2 非线性规划下的最优化问题 (21)4.2 Arrow-pratt风险厌恶度量 (26)结论 (28)参考文献 (29)致谢 (30)第1章绪论提起凸函数我们就知道它是一种性质特殊的函数,在初高中阶段我们只是对其性质,及其图像进行了简单的认识。

函数的凸性在高中数学中的应用

函数的凸性在高中数学中的应用

( 2 )由题 意 I / )≥ 1 + +b , 即e ≥ ( 。+1 ) +b ,

∈R 恒 成 立 . 记g ( x ) =e , 所 以g ( x ) 图像 位 于 直 线 Y =( a +1 ) +b的
上 方.
J e n s e n不 等 式 的 应 用也 就是 凸 函数 的 应 用 . 对 具 体 的 函数 套 用 J e n s e n不 等 式 的结 果 .可 以 证 明 一 些 较 复 杂 的 不 等 式 .这 种 证 明 不 等 式 的 方 法 称 为 J e n s e n不 等 式 法 或 凸 函数 法 . 具 体 应 用 时 。往 往 还 用 到所 选 函 数 的 严 格单调性. 2 . 函数 凸 凹性 在 高 中 数 学 解 题 中 的应 用 凸 凹 性 尽 管 是 高 等 数 学 的 一 个 内容 . 但 在 高 中 数 学 中却 有 着 广 泛 的应 用 , 如能灵活应用 , 可事半功倍. 在 以下 例 题 中 主 要 采 用 凸 凹 函数 性 质 解 题 , 其他方法暂不介绍. 2 . 1函 数 凸 凹性 在 证 明不 等 式 中 的 应 用 证 明 不 等 式 是 高 中数 学 的 一 个 重 点 内 容 . 也 是 难 点 内 容, 但 若 用 函 数 凸 凹性 的 方 法 证 明 不 等 式 , 往 往 会 起 到 奇 妙
边 形 的n 个内 角, 则 有∑ i n 嘶 ≤ . i n
i= 1


( 3 , 4 ,
( 1 ) 若 对 任 意 ∈, , 有厂 ( ) >0 , 则. ) 在, 上为凸函数 ; ( 2 ) 若 对 任 意 ∈, , 有尸 ( ) <0 , 则f ( x ) 在, 上为凹函数. 定理 2 ( J e n s e n不 等 式 )设 f ( x ) 是定 义 在 区 间 , 上 的一

引导高中生学习数学凸优化的应用

引导高中生学习数学凸优化的应用

引导高中生学习数学凸优化的应用数学凸优化是高中数学课程中的一门重要内容,它在工程学、经济学、管理学等领域都有广泛的应用。

然而,由于数学凸优化的抽象性和复杂性,许多高中生对于学习这门学科感到困惑和无趣。

面对这一问题,如何引导高中生学习数学凸优化的应用成为了教育工作者们共同关注的问题。

本文将从几个方面提出一些建议,帮助高中生更好地学习数学凸优化的应用。

首先,我们可以通过生活实例来引导高中生学习数学凸优化的应用。

数学凸优化的应用包括诸如最优化问题、线性规划、凸函数和凸集等内容,这些概念在我们日常生活中其实并不陌生。

例如,我们在购物时会面临着如何选择最佳购买策略的问题,我们可以用数学凸优化的方法来解决这一问题。

通过引导高中生将数学凸优化的知识与日常生活中的实际问题相联系,可以激发他们的学习兴趣,提高他们对数学凸优化的应用的理解和掌握能力。

其次,我们可以选用生动活泼的教学方法来引导高中生学习数学凸优化的应用。

传统的教学方法强调理论和公式的灌输,容易使学生感到枯燥乏味。

相比之下,通过采用案例分析、小组讨论、实践操作等探究性学习的方法,可以使高中生更加主动参与到学习过程中,培养他们的实际动手操作能力和问题解决能力。

同时,教师还可以邀请相关领域的专家到课堂上进行讲座或者实地考察,引导学生更深入地了解数学凸优化的应用场景。

此外,我们可以利用先进的技术手段来引导高中生学习数学凸优化的应用。

在当今信息技术高度发达的时代,我们可以利用计算机、互联网等技术手段提供丰富的学习资源供学生使用。

教师可以使用多媒体教学软件或者网络课堂平台来呈现数学凸优化的应用案例,让学生通过互动学习的方式进行实践操作,提高他们的学习效果和学习兴趣。

同时,教师还可以建立在线学习社区,让学生们在网络上相互交流、分享学习心得,形成良好的学习氛围。

最后,我们还应该注重培养高中生的数学思维和创新能力。

数学凸优化的应用需要学生具备一定的数学分析和推理能力,因此我们应该注重培养学生的数学思维方式。

凸函数的性质与应用

凸函数的性质与应用

> 设
x
2
,

,
(
4 )
x
,
式 成立
x
十 1
,
我们 证 明
1

n
n
+
(
q
,
4 )
:
,
式 也 成立

,
:
为 I 上 的任 意
+
+
i
个点
q
x
Z
:
,
q
:
为 满足 条 件
`
q
,



q

l
=
1
的任 意
n
个正 实 数
,
不 失 一般 性 设 x
,
<
< … <
x
<
x
、 」。
因为
!
x
<
l


X +
+ r
+
:
丝 吐 +

:
不妨 设 X
)
:
<
利用 拉格朗 日 中值 公 式
,

2`
互) (五 毛 【( 迄
l
2
` (
X
;

l
f(
X :

`
签』

x
,
)
)f

“X
,
」!

“一 ,

`
(五 名k )』
’ “`
c
Z
=
(
x

凸函数的若干性质及应用

凸函数的若干性质及应用

凸函数的若干性质及应用凸函数是数学分析中的重要概念,具有许多重要的性质和广泛的应用。

本文将从性质和应用两个方面来阐述凸函数的相关内容。

一、性质:1. 定义:凸函数的定义是指函数f(x)在定义域的任意两点x1和x2,对于任意的t∈[0,1],都有f(tx1+(1-t)x2)≤tf(x1)+(1-t)f(x2)成立。

这个定义也可以用来判定函数的凹凸性。

2. 凸函数的图像:凸函数的图像总是位于其切线的下方,且曲线向上凸起,在凸函数的图像上取任意两点,连接这两点与曲线的切线,切线位于曲线的下方。

3. 严格凸函数:如果函数f(x)在定义域内的每两个不同的点x1和x2之间,对于任意的t∈(0,1),都有f(tx1+(1-t)x2)<tf(x1)+(1-t)f(x2)成立,则称函数f(x)为严格凸函数。

4. 凸函数的一次导数:凸函数的一次导数是非递减的,也就是说,若函数f(x)是凸函数,则它的导函数f'(x)是非递减的。

二、应用:凸函数在许多领域都有广泛的应用,以下介绍凸函数的一些常见应用:1. 最优化问题:凸函数在最优化问题中具有重要作用,特别是线性规划和凸规划。

通过建立优化问题的目标函数为凸函数,可以快速求得该问题的最优解。

2. 机器学习:在机器学习中,凸函数常用于构建损失函数和约束条件。

通过选择合适的凸函数作为损失函数,可以用来拟合模型和训练模型,如线性回归和逻辑回归等。

3. 经济学:凸函数在微观经济学中具有广泛的应用,特别是在效用函数和供求关系中。

凸函数可以描述消费者偏好和生产者的成本、收益等经济现象,为经济学家提供了重要的理论工具。

4. 几何学:凸函数与凸集有着密切的关系,可以通过凸函数来描述凸集。

凸函数在几何学中被广泛用于解决凸优化问题、凸包问题等凸几何相关的问题。

5. 图像处理:在数字图像处理中,凸函数常用于图像的分割、边缘检测、图像重建等问题。

通过构建合适的凸函数和优化算法,可以提高图像处理的效率和精度。

凸函数在教育学中的应用

凸函数在教育学中的应用

凸函数在教育学中的应用凸函数是一种特殊的数学函数,具有许多独特的特性和应用。

在教育学中,凸函数也有着广泛的应用。

本文将探讨凸函数在教育学中的应用。

一、凸函数概述凸函数是指图像位于其切线上方的函数。

也就是说,对于一条切线,函数图像所有的点都在切线的上方。

凸函数具有多种特性。

其中最重要的是凸函数具有单峰性。

也就是说,凸函数图像在某个点上达到最大值,该点称为凸函数的极值点。

进一步,凸函数图像呈现出一条向上的曲线,而凹函数则呈现出一条向下的曲线。

二、凸函数在教育学中的应用1. 学习曲线分析学习曲线是指学习者在学习过程中知识掌握程度与学习时间的关系。

利用凸函数分析学习曲线,可以更好地把握学习过程的节奏,有效预测学生的学习成果。

具体而言,用凸函数分析学习曲线可以先得出其极值点,进而确定学生的学习阶段和适合学生的教学策略。

例如,对于初学者来说,由于知识掌握程度较低,学习曲线可能呈现出较缓的上升趋势,此时可以采用更为生动的教学方式,提高学生的学习积极性,激发学生的兴趣。

对于更为资深的学生,由于已经掌握了一定的知识,学习曲线可能会呈现出降角度逐渐减小的趋势,此时可以采用更多的知识联系、思维拓展等方式,提高学生的学习深度。

2. 学科评估分析凸函数还可以应用于学科评估分析中。

学科评估分析是指对于一门学科的学习情况进行综合评估,包含学生掌握情况、教学效果、考试成绩等多个方面。

利用凸函数分析学科评估可以先选择一定的指标,如学生掌握程度、教学效果等,将其综合计算得到一个凸函数。

进一步,通过比较不同学科的凸函数,可以得出各个学科的优劣情况。

例如,对于一门学科,若其凸函数呈现单峰性,则说明学生的学习有了明显的提升,教学效果较好,考试成果理应在良好水平上。

而若该学科的凸函数呈现出双峰性,则说明该学科教学可能存在问题,需要对教师教学方法、学生学习情况等方面进行深入的分析。

3. 学生成长趋势分析利用凸函数分析学生的学生成长趋势,可以更为科学地预测学生的发展方向,为学生的未来成长提供难得的机遇。

02凸优化理论与应用_凸函数

02凸优化理论与应用_凸函数

02凸优化理论与应用_凸函数凸优化是数学中的一个重要分支,旨在解决凸函数的极小化问题。

凸函数是一类具有较好性质的函数,具有广泛的应用背景和重要的理论意义。

在凸优化理论与应用中,凸函数起到了基础的作用。

首先,什么是凸函数呢?凸函数是指在定义域上的任意两点,函数值沿着连接这两点的线段上升的函数。

准确地说,对于一个定义在实数域上的函数f(x),如果对于任意的实数x1,x2和0≤λ≤1,都有f(λx1+(1-λ)x2)≤λf(x1)+(1−λ)f(x2),那么函数f(x)就是凸函数。

凸函数具有很多重要的性质,其中包括:1.凸函数的一阶导数是递增的,二阶导数非负。

2.凸函数的上确界与下确界都位于它的定义域的边界上。

3.凸函数的极小值点是全局最小值点。

4.凸函数和线性函数的复合仍然是凸函数。

5.凸函数的和与正数的乘积仍然是凸函数。

凸函数的性质使得它在实际问题中的应用非常广泛。

凸优化可以用于求解很多实际问题,其中包括:1.经济学中的最优化问题,比如最大化收益或者最小化成本。

2.工程设计中的优化问题,比如最优化能源利用或者最小化材料消耗。

3.机器学习中的参数优化问题,比如最小化损失函数或者最大化目标函数。

4.金融领域的组合优化问题,比如最大化组合投资的收益或者最小化风险。

5.数据分析中的最优化问题,比如拟合曲线或者寻找最佳预测模型。

凸优化理论提供了解决这些问题的一般框架和方法,包括线性规划、二次规划、半正定规划等。

这些方法可以有效地求解凸优化问题,并且在计算机科学和工程学中得到广泛的应用。

除了理论方面,凸优化在应用中也面临一些挑战和问题。

其中之一就是如何在实际问题中找到符合实际需求的凸函数模型。

在实际问题中,往往存在多个目标和约束条件,如何将多个目标和约束条件转化为凸函数模型是一个关键的问题。

另一个挑战是求解凸优化问题的算法设计和计算复杂性分析。

虽然凸函数的求解问题是较为简单的,但是随着问题规模的增大,计算复杂性也会显著增加。

【精品】函数凹凸性及其在高中数学中的应用探讨.doc

【精品】函数凹凸性及其在高中数学中的应用探讨.doc

函数凹凸性及其在高中数学中的应用探讨摘要在高中数学课本中,凹凸函数这一概念虽未曾出现,但观察近儿年全国各地高考试题及一些有难度的高中题,涉及凹凸函数知识的题目已频繁出现.事实上,让高中生掌握一些凹凸函数的简单应用,能起到承上启下,启辿学生思维,增强学生数形结合能力的作用.例如有些对数函数,指数函数以及一些三角不等式的计算或证明,往往看起来很复杂,甚至无从下手,但如果利用凹凸函数的性质给予计算或证明,则会起到简捷明了、事半功倍的效果.本文通过对函数凹凸性定义和相关性质定理的介绍,探讨运用这些定理去证明一些较复杂的不等式,求取值范围,求最值以及解数形结合类的题目,以使学生对相关知识有一个更全面、更系统、更深刻的了解,进一步提高运用这些性质定理去解决相关题目的数学能力和应用能力.这体现了函数的凹凸性在高中数学解题中的巧妙作用.关键词:上凸函数;下凸函数;单调性;不等式Exploring the Concavity and Convexity of Function and its Application ofMathematics in Senior Middle SchoolAbstract: Although the concept of the concavity and convexity of function has not been introduced in the high school textbook of mathematics,many difficult questions involved in the concavity and convexity of function had appeared frequently in the College Entrance Examination.In fact.to some high school students, mastering a simple application of the concavity and convexity of function can play a connecting,enhanceing the capacity of figures and graphics.For example,the calculation and proof of some logarithmic function, exponential function,as well as the triangle function often looks very complicated,even impossible to start,but the problem can be solved simply, clearly and effectively using the concavity and convexity of function.In this paper.the basic definitions ,the character and theorem of the concavity and convexity of function are introduced.The application in proving some complex inequalities, solving the rang of the figure and figures-graphics are discussed. So that the student can have a more comprehensive,more systematic and deeper understanding and further enhance the ability of using these theorems to solve some related problems.This reflect the clever role of the Concavity and Convexity of Functionof ma由ematics in high school.Keywords: convex function; concave function; monotonicity; inequality1引言 (1)2文献综述 (1)2.1国内外研究现状 (1)2.2国内外研究现状评价 (2)2. 3 提出问题 (2)3凹凸函数基础知识 (2)3.1凹凸函数的定义 (3)3.2凹凸函数的相关定理 (3)3. 高中数学中常见函数的凹凸性函数凹凸性在高中数学解题中的应用4. 1 函数凹凸性在证明不等式中的应用4. 利用函数凹凸性求取值范围4.3函数凹凸性在数形结合中的应用 (11)4. 4 利用函数凹凸性求最值 (12)5 结论 (13)5.1主要发现 (13)5. 2 启示 (13)5. 3局限性 (13)5. 4努力方向 (13)参考文献 (15)1 引言函数的叫凸性主要用于高等数学中,例如凸函数在泛函分析、最优化理论、数理经济学以及数学规划和控制论等领域有着广泛的应用,而高中课本中没有相关的概念.虽然函数的凹凸性在高中教材中没有给出系统定义、性质,但它的身影在高考中频频出现, 充分说明了高考命题源于课本,乂高于课本的原则,同时也体现了高考为高校输送优秀人才的选拔性功能.在求解高中涉及函数的凹凸性的相关问题时,许多学生常常感到束手无策,部分学生由于计算量大和繁锁,产生厌学数学的情绪.为了解除这种困惑,培养与提高学生学习数学的兴趣,让学生掌握函数凹凸性及其在高中数学中的应用是很必要的.因此本毕业论文从凹凸函数的基础知识和函数凹凸性在高中数学解题中的应用两个大方面,对函数凹凸性定义、相关定理及其应用进行进一步的分析,探讨函数凹凸性在证明不等式、求取值范围以及求最值、解数形结合合问题方面的应用,皆在为解决高中有关函数凹凸性的相关问题提供比较清晰的解题思路和解题方法.2 文献综述2. 1国内外研究现状根据所查到的相关文献资料可知,目前有关函数凹凸性在高等数学和初等数学中的研究甚多,学者们从不同的方面和角度对其进行了较为广泛的探讨,比如:唐才祯、莫玉忠、李金继的《凹凸函数在不等式证明中的巧用》一文⑴和张建平的《琴生不等式的应用》一文⑵主要介绍了函数凹凸性的定义和詹生不等式的证明过程;谢晓强的《函数凹凸性的儿个应用》一文&和魏远金的《函数凹凸性在高考中的应用》一文"[主要论述了函数凹凸性在初等数学中的应用,解决了一些用初等数学知识难以解决的初等不等式;王强芳、魏远金的《函数凹凸性在解题中的应用》一文⑸探讨函数的凹凸性在高考数学中的应用;周再禹的《巧用函数凸性证明不等式》一文⑹探讨了用函数的凸性巧妙的来证明中学代数中的一些不等式;尚亚东、游淑军的《凸函数及其在不等式证明中的应用》一文⑺和刘海燕的《凸函数在不等式证明中的应用》一文⑻介绍了凸函数的定义性质及其在证明不等式的一些应用;郝建华的《凸函数的性质及其在不等式证明中的应用》一文⑼主要介绍了两个重要的不等式——霍尔德不等式和闵可夫斯基不等式;刘大谨的《凶函数与不等式》一文"探讨了/'⑴在区间/是四函数的充要条件;江炳新的《构造凸函数证一类不等式》一文“针对目前高考数学的部分压轴题中体现的高等数学思想方法提出在教学中要引导学生进行函数凹Hi性的探究;傅拥军的《函数I,性在不等式证明中的应用》一文”针对在中学数学中不等式的证题方法较多,技巧性强的这一特点,通过例题说明函数凸性是函数在区间变化的整体形态,对于一些不等式,可以巧妙地构造凸函数,利用凸函数加以证明;夏红卫的《凸函数与不等式》一文邱从凸函数的定义出发,得到函数的连续性,推导出Jensen不等式,并由此得到n个正数的算术平均与儿何平均之间的不等式关系;张景丽、陈蒂的《凸函数在不等式证明中的应用》一文「逐论述可导凸函数的儿何特征和性质,并举例说明它们在不等式证明中的应用;晏忠红的《凸函数的应用》一文h主要论述了用凸函数方法和凸函数詹生不等式推证儿种重要的不等式,并对某些结论作一些探讨,等等;朱庆喜的《函数凹凸性的应用举例》'⑺一文主要根据函数凹凸性的定义形式通过例子反映出函I数凹凸性的简捷有效应用;王萍珠的《例说高考函数图像题的解法》-文⑻是针对高考中的函数图像题这类问题该如何解决而提出应从学会看图和学会作图两方面着手;罗志斌,曾菊华的《关于函数凹凸定义的一个注解》用一文针对不同教材的函数凹凸定义进行比较,对函数凹凸性的相关性质进行讨论,并对函数凹凸性的应用进行研究;赵春燕的《构造函数,利用函数性质证明不等式》地一文论述在构造函数的背景下运用函数的单调性、微积分中值定理、函数的极值和最值等,将不等式问题转化为函数问题,等等.2.2国内外研究现状评价综合国内外研究现状可以看出,关于函数凹凸性在高中数学中的应用的研究,仁者见仁、智者见智.其中,较大多数只对一个或儿个题目研究某一方面的问题,对高中出现的有关函数凹凸性的问题没有给出系统的归纳和分类.因此函数凹凸性在高中数学中的应用还有许多问题值得研究和探索.2. 3提出问题经过查阅了国内外的参考文献以及对近儿年高考试题的分析,发现函数凹凸性在解决高中题时有巧妙作用,而IR前文献对用函数凹凸性来解决高中题乂没具体给出应用的归纳和分类.于是本文在查阅了相关资料后,在前人研究的基础之上,对函数凹凸性的应用做了归纳和分类,总结出函数凹凸性在证明不等式、求取值范围、解数形结合问题以及求最值方面的应用,进而培养与提高学生学习数学的兴趣,为学生解决这些问题提供史广的解题思路和解题方法.3凹凸函数基础知识3.1凹凸函数的定义函数凹凸性在高中数学中有巧妙的作用,往往能起到事半功倍的效果,下面先介绍一下它的定义.定义1:如果函数,(尤)对其定义域中任意的玉,心都有如下不等式V | [/(xj + f(x2)](1)成立,则称/(尤)是下凸(凸)函数(如图1所示),当且仅当明=互时等号成立.如果函数/.(])对其定义域中任意的明,心都有如下不等式/(^±^)>_L[/(X I)+/(X2)](2)成立,则称丁⑴是上凸(凹)函数(如图2所示),当且仅当玉=互时等号成立.从儿何意义来看,不等式(1)表示定义域中任意两点羽,尤2的中点M所对应的曲线上的点Q位于弦上对应点P的下面.不等式(2)则有相反的意义.3. 2凹凸函数的相关定理以下儿个有关凹凸函数相关定理在解题中非常重要,为了使以后的解题过程更加的方便,下面做一个归纳总结.定理1 (詹生不等式)⑹若函数/(W在区间I是上四函数,则有不等式:/'筋玉+02心+・・・ + 0,/〃)20|/。

函数凹凸性及其在高中数学中的应用探讨

函数凹凸性及其在高中数学中的应用探讨

函数凹凸性及其在高中数学中的应用探讨在高中数学中,函数的凹凸性是一个非常重要的概念,它对于函数的性质和图像具有重要的指导和应用作用。

本文将探讨函数凹凸性的概念和其在高中数学中的应用。

首先,我们来了解凹凸性的概念。

给定一个定义在区间[a,b]上的函数f(x),如果对于[a,b]上的任意两个不相等的实数x1和x2,总有对应的λ∈(0,1),使得f(λx1+(1−λ)x2)≤λf(x1)+(1−λ)f(x2),则称函数f(x)在[a,b]上是凹函数;如果上述不等式反向成立,则称函数f(x)在[a,b]上是凸函数。

其次,函数的凹凸性在高中数学中具有广泛的应用。

以下是几个常见的应用:1.极值问题:对于一个凸函数,如果它在一个区间上的两个点处取得极值,则它在该区间上的任意两个点处均取得极值。

这意味着我们可以通过找到凸函数的一个极值点来确定整个区间上的极值点。

同样地,对于一个凹函数,如果它在一个区间上的两个点处取得极值,则它在该区间上的任意两个点处均取得极值。

这对于求解函数的最大值和最小值问题具有重要意义。

2.曲线的凹凸性判断:函数的凹凸性可以用来判断曲线的凹凸性。

通过判断函数的二阶导数或拐点,我们可以判断一个函数在一些区间上是凹函数还是凸函数。

当二阶导数大于0时,函数是凹的;当二阶导数小于0时,函数是凸的。

3.凸集的判定:在几何学中,凸集是指集合中的每两个点之间的连线都在该集合内。

函数的凹凸性可以用来判定几何中的集合是否为凸集。

例如,如果一个多边形的边是凹函数,那么该多边形即是凸多边形。

4.约束条件优化问题:在约束条件优化问题中,我们需要在给定一组约束条件下求解一个目标函数的最值。

通过分析约束条件和目标函数的性质,我们可以判断所求最值点的性质。

如果目标函数是凹函数且约束条件线性,则最值点唯一存在且是凸集的一些边界点;如果目标函数是凸函数且约束条件线性,则最值点唯一存在且是凸集的一些内点。

利用凹凸性可以使我们更有效地求解这类问题。

凸函数的应用

凸函数的应用

凸函数的应用在许多数学问题的证明过程中,我们经常遇到一些有关于不等式的证明,所以我们可以学会着去运用凸函数来证明,因为凸函数的性质和判定方法可以很大程度化简化证明.通过例举出的例子可以得出,运用凸函数的性质证明来证明与之相关的不等式,则可让一些难度比较大的和不容易证明的不等式得以求证出结果.所以要学会用凸函数来解决一些不等式的问题,这样才能让发挥数学这门学科的优势,和凸函数的存在意义,更能方便我们的学习和生活. 凸函数在不等式的应用凸函数的性质证明初等不等式(例)证明:当,0x y >且x y ≠时,有()2x yy x y x +>+㏑x+y㏑㏑.思路:将不等式()2x y y x y x +>+㏑x+y㏑㏑变形,即两边同时乘以12,得新式222y x y x x y++>㏑x+y㏑㏑,因此我们可以构造辅助函数()()ln 0f s s s s =>,则可证出()()222fx fy x y x yln +++>. 证:设()()ln 0f s s s s =>∴ ()'1ln f s s =+ ()()''10f s s s=> ∴()f s 在区间()0,+∞是凸函数∴对 ,0x y ∀>且 x y ≠,得 ()()22f x f y x y f ++⎛⎫> ⎪⎝⎭ 所以得222y x y x x y++>㏑x+y㏑㏑即()2x yy x y x +>+㏑x+y㏑㏑1. 凸函数的性质证明函数不等式(例)证明:对任何非负实数,x y 有2arctan arctan arctan 2x y x y +⎛⎫≥+ ⎪⎝⎭证:设()()arctan ,0,f s s s =-∈+∞,()()''22201sfs s =>+,()0,s ∈+∞,则()f s 在()0,+∞上是凸函数,由凸函数性质知,对任何的非负实数,x y 有()()22f x f y x y f ++⎛⎫≥ ⎪⎝⎭,既arctan arctan arctan 22x y x y ++⎛⎫-≥- ⎪⎝⎭ 所以2arctan arctan arctan 2x y x y +⎛⎫≥+ ⎪⎝⎭. 2. 凸函数的性质证明积分不等式(例)证明:()f x 在[],a b 上可积且()n f x N ≤≤,()t ϕ是在[],n N 上的连续凸函数,则()()11bbaafx dx f x dx b ab aϕϕ⎛⎫≤⎪--⎝⎭⎰⎰证:设(),s k s f f a b a k ⎛⎫=+- ⎪⎝⎭(),1s k x b a k =-由于()t ϕ是凸函数,故有()()()1212......k k kk k k kk f f f f f f k kϕϕϕϕ++++++≤① 由定积分的定义知在①中令k →∞时 使得()()11bbaa fx dx f x dx b ab aϕϕ⎛⎫≤⎪--⎝⎭⎰⎰.(Jensen )不等式琴生不等式是一个十分重要凸函数的性质,因为每一个凸函数都可以满足琴声不等式性质,于是琴生不等式是重要方法对于研究不等式来说.定理:假设函数()f x 是区间I 上的凸函数,则存在i x I ∀∈并且()01,2,...,i p i n >=,总有()1111nn ni i i i i i i i p f p x p f x ===⎛⎫=≤ ⎪⎝⎭∑∑∑.(例)若()0,01,2,...,1ni i i ix q i n q >>==∑求证:12121122......n q q qn n n x x x q x q x q x ≤+++证:因为对所有的,0i i x >,可以令ln i i y x =,所以有()()exp ln exp iyi i i i i x q x q y ==又因为(),tf t e x R =∈是凸函数所以有()()121211111...exp exp n n n nn nq q q n i i i i i i i i i ii i i i i x x x q y f q y q f y q y q x =====⎛⎫⎛⎫==≤== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑.注:①当212'112,k kn q q x x x y k k=====时, 则存在'11k kxy x y k k=+. ②当()11,2,...,i q i n n==时,有12...nx x x n+++≤.(Holder )不等式赫尔德不等式是数学分析的重要内容,不等式的命名来自奥图.赫尔德.This inequality clearly s hows the relationship between LP spaces. There are many Hölder's inequality, and of course there are also proofs of convex functions. 定理:假设0,0,1i i a b i n >>≤≤,则存在 11111pqpqnnni i i i i i i a b a b ===⎛⎫⎛⎫≤ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭∑∑∑ 其中1p >,并且111p q+=. (例)证明存在n 个正数,这些数倒数的算术平均值大于或等于这些数的算术平均值的倒数.证:假设函数()()10f x x x =<<+∞,因此()()()'''2312,0f x f x x x x =-=<<+∞所以()1fx x =在()0,+∞上是凸函数,在Jensen 不等式中取1,1,2,...,i p i nn== 则得到12121111......nn n x x x n x x x ⎛⎫≤+++ ⎪+++⎝⎭ 既121211111......n n x x x n x x x n⎛⎫≤+++ ⎪+++⎝⎭.凸函数在极值的应用根据常识的数学知识我们可以得知,一个连续函数如果是有界的,那么在这个区间内一定有max 和min.但是对于函数来说max 和min 可能是在区间上的随机处.又因为对于凸函数,它的max(min)具有一些特征性质。

凸函数理论解决数学中极值问题

凸函数理论解决数学中极值问题

凸函数是数学函数的一类特征。

凸函数就是一个定义在某个向量空间的凸子集C(区间)上的实值函数。

凸函数性质定义在某个开区间C内的凸函数f在C内连续,且在除可数个点之外的所有点可微。

如果C是闭区间,那么f有可能在C的端点不连续。

一元可微函数在某个区间上是凸的,当且仅当它的导数在该区间上单调不减。

一元连续可微函数在区间上是凸的,当且仅当函数位于所有它的切线的上方:对于区间内的所有x和y,都有f(y) ≥ f(x) + f '(x) (y − x)。

特别地,如果f '(c) = 0,那么c是f(x)的最小值。

一元二阶可微的函数在区间上是凸的,当且仅当它的二阶导数是非负的;这可以用来判断某个函数是不是凸函数。

如果它的二阶导数是正数,那么函数就是严格凸的,但反过来不成立。

例如,f(x) = x4的二阶导数是f "(x) = 12 x2,当x = 0时为零,但x4是严格凸的。

更一般地,多元二次可微的连续函数在凸集上是凸的,当且仅当它的黑塞矩阵在凸集的内部是正定的。

凸函数的任何极小值也是最小值。

严格凸函数最多有一个最小值。

对于凸函数f,水平子集{x | f(x) < a}和{x | f(x) ≤ a}(a ∈ R)是凸集。

然而,水平子集是凸集的函数不一定是凸函数;这样的函数称为拟凸函数。

延森不等式对于每一个凸函数f都成立。

如果X是一个随机变量,在f的定义域内取值,那么(在这里,E表示数学期望。

)一般凸函数极值问题,由于在凸函数的定义中并没有对做出连续性和可导性假设,因此一方面凸函数可能是不连续的,进而也是不可导的。

一般凸函数极值问题,由于在凸函数的定义中并没有对做出连续性和可导性假设,因此一方面凸函数可能是不连续的,进而也是不可导的。

证明在上是凸函数,但在上分别是不连续和不可导的,另一方面连续函数和可导函数也可能不是凸函数。

例如在R上是不连续和不可导的,但在R上不是凸函数。

这样,当在I上不可导时,上述定理及推论失效。

函数的凸性在解题中的应用

函数的凸性在解题中的应用

( 3 ) 对( a , b ) kl  ̄任意两点x 1 , x 2 有f ( x 2 ) ≥厂 ( ) + . 厂 ’ x , ) ( 一 ) 。
证明: 由( 1 ) 证( 2 ) 任取 ( a , b ) 上的两点葺, x , ( x i < x 2 ) 及 充 分 小 的
定义 : 设 f( x ) 为定义在 区间( a , b ) 上的 函数 , 若对于( a , b ) 内的 正数 h。
2 0 1 3 NO . 1 2 Ch i n a Ed u ceUon I R N ov st i 0 [ 3 Her sI d
教 学 案 例
函数 的 凸性 在 解 题 中 的应 用
杨 荣 秀 ( 巴州二 中 新疆库 尔勒 8 4 1 0 0 0) 摘 要: 函数 贯穿着中学数 学课程 的内容 , 函数的 凸性是 函数 的一个 重要 性质, 虽然此性 质没有在 中学数学中直接提 出, 但它隐含 在高考, 竞赛 、 自主招生 的题 目之 中。 这 篇文章就函数 的凸性及应 用作 了一个介 绍, 说明什 么 是 函数 的凸性 , 有关 的定 义. 定理 及其应 用。 关键 词 : 函数 的凸性 有关定义定理 在解题 中的应 用 中图分 类号 : G 4 2 1 文 献标识 码 : A 文章 编号 : 1 6 7 3 —9 7 9 5 ( 2 0 1 3 ) O 4 ( c ) -O 1 0 6 -0 2 1 ) 。 我们已经知道 函 数厂 ( ) = 和厂 ( ) = x的图象 , 它们不同的 不等 式 (
k x , + ( 1 - A ) x 2 , A = 厂 ( 1 ) , B = f ( x 2 ) , C = + ( 1 一 )
般地, 如果 y = ,( ) 为( a , b ) 上的凸函数 , 那么y= 一 厂 l ( ) 为( a ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

凸函数理论在解决中学数学极值问题中的应用 -将极值问题转化为凸函数问题求解
例 1 在条件11116x x y y -+++-++≤的约束下,求函数
2(,)sin 4
x y
f x y +=的最大值和最小值。

解:约束条件在xy 平面上构成一个八边形(如图4-1)。

图4-1
先考虑函数2(,)4
x y
g x y +=,由于2x 是一元凸函数,
222
1212[(1)](1)x x x x αααα+-≤+-
而y 是线性函数,所以
21212112222
11221122[(1)][(1)]
[(,)(1)(,)]4
(1)(,)(1)(,)
44
x x y y g x y x y x y x y g x y g x y αααααααααα+-++-+-=
++≤+-=+- 有
(,)185
max (,)max (,)(2,1)4
i i x y D i g x y g x y g ∈≤≤===,
又由于
5,42π<sin x 在,22ππ⎡⎤
-⎢⎥⎣⎦
上单调增,所以 2(,)5
max sin sin .44
x y D x y ∈+= 至于最小值,我们注意到当x 的绝对值越小,y 的值越小,(,)g x y 越小,故
2
1)2,0(),(min ),(-=-=∈g y x g D y x 再由sin x 的单调性,有
(,)1
min (,)sin
2
x y D
f x y ∈=-. 注意,(,)f x y 的极小值点不在八边形的顶点集上。

例2 已知,x y 满足下列不等式
270,43120,230x y x y x y -+≥--≤+-≥
求22(,)f x y x y =+的最大值和最小值。

解:约束条件构成(,)x y 的区域为下图(4-2)中以5
(9,8),(2,),(3,0)2A B C -为
顶点的三
图4-2
角形闭域S .
我们来证明(,)f x y 是S 上的下凸函数。

对于任意的112222(,)(,)M x y M x y 与,
2211(,)(,)x y A x y 22x y ⎡⎤⎢⎥⎣⎦
=22
2
22()0x y +≥ 可知(,)f x y 是S 上的下凸函数。

可得
max{(,)(,)}max{(),(),()}()(9,8)145f x y x y S f A f B f C f A f ∈==== 为求min{()}f M M S ∈,
首先注意到,对于M S ∈表示点M 到坐标原点的距离,故
}S OH ∈==
=
从而得
9min{(,)(,)}5
f x y x y S ∈=。

相关文档
最新文档