结构图及信号流图.

合集下载

2011-2结构图与信号流图

2011-2结构图与信号流图
39
(3)混合节点
既有输入支点又有输出支点的节点称为混 合节点。
(4)通路
从某一节点开始,沿支路箭头方向经过各 相连支路到另一节点(或同一节点)构成的路 径,称为通路。通路中各支路传输的乘积称为 通路传输(通路增益)。
40
(5)开通路 与任一节点相交不多于一次的通路称为开通路。 (6)闭通路 如果通路的终点就是通路的起点,并且与任何 其他 节点相交不多于一次的通路称为闭通路或称为回环。 (7)回环增益 回环中各支路传输的乘积称为回环增益(或传 输)。
45
1 1
2 1 La 1 be
T11 T2 2 1 2 T Tk k k 1 abcd fd (1 be) 1 be ( f abc bef ) dg
46
例2-15
xc xc x1 x1 求:Tr ,T y ,Tr1 ,T y1 xr y xr y
……
Lm
——m个互不接触回环的传输乘积之和; k ——称为第k条通路特征式的余因子,是在

中除去
第k 条前向通路相接触的各回环传输(即将其置 零)。
44
例 2-14
T1 abcd , T2 fd
1 L1 L2 1 ( La Lb Lc ) La Lc 1 be abcdg fdg befdg 1 be ( f abc bef )dg
对于单位反馈系统,有 X c ( s) WK ( s) WB ( s) X r ( s) 1 WK ( s)
34
5.系统对给定作用和扰动作用的传递函数
原则:对于线性系统来说,可以运用叠加原理, 即对每一个输入量分别求出输出量,然后再进行 叠加,就得到系统的输出量。

自动控制理论结构图和信号流图

自动控制理论结构图和信号流图

R1C2 s
ui ( s )
-
-
1
R1
1
C1sห้องสมุดไป่ตู้
u (s)
1 R2C2 s 1
uo ( s )
② 16
结构图等效变换例子||例2-11
R1C2 s
ui ( s ) -
1
R1
1
C1s
u (s)
1 R2C2 s 1
uo ( s )

R1C2 s

uo ( s )

ui ( s ) -
1 R1C1 s 1
[注意]: 相临的信号相加点位置可以互换;见下例
X 1 ( s) X 2 ( s)
Y ( s)
X 1 ( s)
X 3 (s)
Y ( s)




X 3 (s)
X 2 ( s)
13
比较点和分支点的移动和互换
同一信号的分支点位置可以互换:见下例
X 1 ( s)
X 2 ( s)
X ( s)
Y ( s ) G (s)
u (s) I ( s) 1 C1s
-
1
R1
I1 ( s )
I 2 ( s)
1 u ( s) C1s 1 [u ( s) uo ( s)] I 2 ( s) R2 I (s) 1 I 2 ( s) uo ( s ) C2 s
u (s)
1 R2
uo ( s )
1 C2 s
I 2 ( s)
[例2-11]利用结构图等效变换讨论两级RC串联电路的传递函数。 R1 R2
ui
i1
i, u
C1
i2

结构图与信号流图

结构图与信号流图

1 ( Cs
1 R1
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院 18
第四节 结构图与信号流图
2 引出点和比较点的移动变换
原则:保持移动前后封闭域输入输出关系不变。
X ( s)
1
G (s)
X ( s)
2
X ( s)
1
G (s)
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院
5
第四节 结构图与信号流图
比较点(综合点、相加点):
表示对两个以上的信号进行加减运算,加号常省略,负号必 须标出;进行相加减的量,必须具有相同的量纲。
引出点: 表示信号引出或测量的位置,同一位置引出的信号大小和性 质完全相同。
G (s)
比较点前移
西安邮电学院自动化学院 20
移动的支路上乘以它所扫过方框内的传函的倒数。
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
第四节 结构图与信号流图
3 相邻引出点可互换位置、可合并
a b
b
a
4 相邻比较点可互换位置、可合并
a
b
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
XI’AN UNIVERSITY OF POSTS & TELECOMUNICATION
西安邮电学院自动化学院
3
例2 引入闭环控制后的直流电机转速控制系统
+Vcc
ur
uf

结构图与信号流图

结构图与信号流图
C(s) R(s) G(s) Q(s) G(s)
(5) 引出点的移动
(1) 引出点前移
R (s)
G (s )
C (s)
C (s)
C(s) = R(s)G(s)
R (s)
G (s ) G (s )
C (s) C (s)
C(s) = R(s)G(s)
(2) 引出点后移
R (s) G (s )
C (s) R (s)
R (s ) -
G 1(s )
C (s)
G 23 (s )
HH11((ss))
G23(s) =
1+
G 2(s )G 3(s )G 4 (s ) G3(s)G4(s)H 3(s) + G2(s)G3(s)H 2(s)
F(s) = C (s) =
G 1(s )G 23 (s )
R (s) 1 + G1(s)G23(s)H1(s)
2-3 结构图与信号流图
引言 一、结构图的基本单元和等效规则 二、信号流图的组成和性质 三、信号流图的绘制 四、Mason公式 五、闭环系统的传递函数
1
引言
何谓结构图
由单向运算框图和信号流向线组成的描写一般系统中 信号传递关系的定量分析图形。
何谓信号流图 由单向增益支路和节点运算框图和信号流向线组成的
V3 dV1 kV2
f
m

b
l

V3
k

h

C
V1 d Ⅴ e V2 1
g
以R为输入,V2为输出则可整理成下列方程
1 m 0 l V1 b
g
1 h
e V2
f
R
d k 1 V3 0

2-3 控制系统的结构图与信号流图

2-3  控制系统的结构图与信号流图
其中,节点又分为三种:
输入节点(源节点):只有输出支路的节点。 混合节点:既有输入支路,又有输出支路的节点。 输出节点(阱点或汇点):只有输入支路的节点。
17:19 28
② 信号流图中常用术语 (ⅰ)、通道(通路):从一个节点开始,沿支路箭头方向 穿过各相连支路的路径。 开通道:通道与任何一个节点只相交一次。 闭通道(回环):通路的终点回到起点,而通道与任何其它节 点只相交一次。“自环”即闭通道的一种特殊情况。 前向通道:从源点开始到汇点结束的开通道。
H1 G1 1/ G1 1/ G2
17:19
G2
(2) 同时进行串联、并联
26
G 1G2 1/G1+1/G2+H1 (3)系统的C(S)/ R(S)
G1G2 ———————— 1+ G1+G2+G1G2H
C(s) G1(s)G2(s) —— = —————————————— R(s) 1+ G1(s)+G2(s)+G1(s)G2(s)H(s)
C ( S ) G3 G4 G1G2 R( S ) 1 G2G3 H
方法2:B移动到A (略)
17:19 25
例题6 试利用结构图等效变换原则,简化下述结构图,并求取系统 的C(S)/ R(S)。
R(S)
H(S)
A
G1(S)
BC
C(S)
G2(S)
解:(1) 同时将B处相加点前移、C处分支点后移:
17:19 18
⑸ 分支点的移动:移动原则同“⑷相加点的移动”。 ① 前往后移
X1
G(S)
X2 X1
X1
G(S)
X2 X1
1/ G(S)
② 后往前移
X1
G(S)

自动控制原理第2章(2)

自动控制原理第2章(2)

(3) 按信号流向将各框图连起来
Ur(s) + _ I1(s) 1/R1
Uc(s)
华中科技大学文华学院机电学部 自动控制理论
控制系统的结构图与信号流图
方框图等效变换 基本连接方式:串联、并联、反馈 基本连接方式:串联、并联、
1.串联方框的等效变换 1.串联方框的等效变换
R(s) C(s) G1(s) G2(s) R(s) C(s) G1(s) G2(s)
华中科技大学文华学院机电学部 自动控制理论
控制系统的结构图与信号流图
例3 试化简如下系统结构图,并求传递函数C(s)/R(s) 试化简如下系统结构图,并求传递函数C(s)/R(s)
H2(s) R(s)
_ _
G1(s)
G2(s)
_
G3(s) H3(s)
G4(s)
C(s)
H1(s)
解:①将G3(s)输出端的分支点后移得: (s)输出端的分支点后移得: 输出端的分支点后移得
x1 = xr gxc x2 = ax1 fx4 x3 = bx2 exc x4 = cx3 xc = dx4
xr x1
a x2 b -f
x3 c
-g
x4 d
-e
xc
华中科技大学文华学院机电学部 自动控制理论
控制系统的结构图与信号流图
2、由系统结构图绘制信号流图 在结构图的信号线上用小圆圈标志出传递的信号, ①在结构图的信号线上用小圆圈标志出传递的信号,得到节点 用标有传递函数的线段代替结构图中的方框, ②用标有传递函数的线段代替结构图中的方框,得到支路
G(s) H(s)
R(s)
C(s) G(s) 1m G(s)H(s)
化简一般方法:移动分支点或相加点 化简一般方法: 交换相加点 合并

控制系统的结构图与信号流图

控制系统的结构图与信号流图
2-3 控制系统的结构图与信号流图
控制系统的结构图和信号流图:描述系统各元部件之间的信号传 递关系的一种图形化表示,特别对于复杂控制系统的信号传递过 程给出了一种直观的描述。
KA
Km s (T m s 1)
r
K1
系统结构图的组成与绘制
系统结构图一般有四个基本单元组成:(1)信号线; (2)引 出点(或测量点);(3)比较点(或信号综合点)表示对信号
Automatic Control Theory 2
M s C M U a (s )
2013-7-24
绳轮传动机构: L( s ) r m ( s )
测量电位器:
E (s)
E 2 ( s ) K 1 L( s )
M s (s)
CM
U a (s )
E1 ( s )
m (s) L (s )
2013-7-24 Automatic Control Theory 14
•回路 起点和终点同在一个节点上,而且信号通过每个节点不多 于一次的闭合通路(单独回路)。 •不接触回路 回路之间没有公共节点时,该回路称为不接触回路。
信号流图的绘制
(1)由微分方程绘制信号流图: RC串联电路的信号流图
u r (t ) i1 (t ) R1 u c (t ) u c (t ) i (t ) R2 1 i2 (t ) dt i1 (t ) R1 u1 (t ) C i1 (t ) i2 (t ) i (t )
之间的所有传递函数之乘积,记为 H(s)
开环传递函数:反馈引入点断开时,输入端对应比较器输出 E(s)
到输入端对应的比较器的反馈信号 B(s) 之间所有传递函数的乘 积,记为GK(s), GK(s)=G(s)H(s) E (s) C (s)

自动控制原理第二章3

自动控制原理第二章3
Uc(s)
第三节控制系统的结构图和信号流图
N(s) R(s) C(s) G1(s) G2(s)
+ _
H(s) 典型反馈控制系统方框图 1)信号线:带单向箭头,表示信号流向 信号线:带单向箭头, 2)引出点:信号从引出点分开,大小和性质相同 引出点:信号从引出点分开, 3)比较点:两个或两个以上的信号相加减 比较点: 4)方框:对信号进行数学变换,方框中写入环节的传递函数 方框:对信号进行数学变换,
R1 C2S 1 C(S) 1 1 R2 +R1C R2 +1)C2S C2S2S
R(s)
_
1 R1C1S+1 R1C2S
1 R2C2S+1
C(s)
第三节控制系统的结构图和信号流图
三、控制系统的信号流图: 控制系统的信号流图:
1、定义 、 一组线性代数方程式变量间传递关系的图形表示, 一组线性代数方程式变量间传递关系的图形表示,由节 支路和支路增益组成。 点、支路和支路增益组成。 y1 典型的信号流图 x1 1 x2 a e a y2=ay1 d x3 b f x4 c x5 g 1 x6 y2
第三节控制系统的结构图和信号流图
绘制动态结构图的一般步骤为: 绘制动态结构图的一般步骤为 (1)确定系统中各元件或环节的传递函数。 )确定系统中各元件或环节的传递函数。 (2)绘出各环节的方框,方框中标出其传 )绘出各环节的方框, 递函数、输入量和输出量。 递函数、输入量和输出量。 (3)根据信号在系统中的流向,依次将各 )根据信号在系统中的流向, 方框连接起来。 方框连接起来。
p1 = abc
L1与L3
p2 = d
L3 = g L2与L3
L1 = ae
L2 = bf

信号流图PPT课件

信号流图PPT课件

设线性系统由n个线性代数方程描述,若写成 n (2.94) x j a ij x i , j 1,2,, n
i 1
则称为因果关系形式。其中,写在等式左端的变 量为“果”,写在等式右端的变量为“因”。
对于一个给定的线性方程组,其信号流图不是 唯一的。但这些信号流图尽管形式上不同,但 求解结果都是一样的,都描述了同一个系统。 所以,这些信号流图是等效的,称为等效的非 同构图。 2.由微分方程组构造 信号流图只能表示线性代数方程,当系统是 由线性微分方程描述时,则应首先通过拉氏变 换将它们变换成线性代数方程,再整理成因果 形式,作出系统的信号流图。
(b)
X 3 ( s) E ( s)
X 1 ( s)
X 1 ( s)
X 3 (s)
E ( s)
E (s)
X 2 ( s)
E ( s)
-1 X 2 ( s) (c)
E (s)
图2.30 结构图与信号流图的对应关系
1)结构图中的信号线,方框及传递函数与信 号流图中的节点、支路及传递函数相对应。如 图2.30a所示。 2 )结构图中的引出点,在信号流图中合到节 点上去了,信号直接从节点上引出,这是因为 同一节点输出相等,如图2.30b所示。 3)结构图中的“比较点”与信号流图中的 “节点”相对应,如图2.30c所示 。
与梅森增益公式有关的几个概念 1)通道:凡从某一节点开始,沿着支路的箭 头方向连续经过一些支路而终止在另一节点 (或同一节点)的途径,统称为通道。 2)前向通道:从输入节点到输出节点,而且 每个节点只经过一次的通道称为前向通道。前 向通道中各支路的乘积,称为前向通道传递增 益。
信号流图的变换法则与简化 信号流图通过变换,也可以得到只剩下输入 节点和输出节点的信号流图,从而求出总的传 递函数。 1. 加法——并联支路的简化 n 个同方向的并联支路,可用一个等效支路代 替,等效支路的传递函数等于 n 个支路传递函 数之和。

自动控制原理 控制系统的结构图

自动控制原理 控制系统的结构图
其他变化(比较点的移动、引出点的移动)以此三种 基本形式的等效法则为基础。
12
(1)串联连接
R( s )
U (s) 1
G (s) 1
G (s) 2
C( s )
R(s)
C(s)
G(s)
(a)
(b)
特点:前一环节的输出量就是后一环节的输入量
U1(s) G1(s)R(s) C(s) G2 (s)U1(s) G2 (s)G1(s)R(s)
注意:进行相加减的量,必须具有相同的量纲。
X1 +
+
X1+X2 R1(s)
-
R1(s)R2(s)
X1
X2
R2(s)
X3
X1-X2 +X3 -
X2
4
(4) 引出点(分支点、测量点) 表示信号测量或引出的位置
R(s)
G (s) 1
X(s)
G (s) 2
C(s)
X(s) 引出点示意图
注意:同一位置引出的信号大小和性质完全一样
G(s)
分支点(引出点)前移
C(s) C(s)
引出点后移
R(s)
G(s)
R(s)
分支点(引出点)后移
R(s)
G(s)
C(s)
G(s)
C(s)
C(s) R(s)G(s)
G(s) R(s)
C(s) R(s)
C(s) R(s)
G1(s)G2
(s)
G(s)
结论:
n
G(s) Gi (s) n为相串联的环节数 i 1
串联环节的等效传递函数等于所有传递函数的乘积
13
(2)并联连接
G1 (s)

信号与系统-系统函数与信号流图_图文_图文

信号与系统-系统函数与信号流图_图文_图文
(3)反馈 等效系统函数为
对于负反馈,总有
二.信号流图
系统的信号流图是用一些点和有向线段来描述系统。变成信号流图形式 就是用线段端点代表信号,称为节点。有向线段表示信号传输的路径和方 向,一般称为支路,每一条支路上有增益,所以每一条支路相当于乘法器 。
信号流图中的节点可以有很多信号输入,它们是相加的关系, 而且可以有不同方向输出。
对于连续时间动态LTI系统的模拟,通常由加法器、标量乘 法器和积分器三种部件构成。
系统模拟可以理解为就是用这三种部件画出系统的信号流图 或是系统的方框图,使得流图或方框图实现了指定的系统函数。
四.系统模拟
例: 用加法器、标量乘法器和积分器三种部件模拟下面微分方程描
述的系统
解:首先考虑下面的系统
由线性时不变系统的性质知道存在下面关系
节点:
三.Mason公式
表示系统中的变量或信号的点称为节点。
支路:
连接两节点间的有向线段称为支路。 支路增益就是两节点间的增益。
输入节点(源点): 仅有输出支路的节点, 一 般为系统的输入。
输出节点(阱点): 仅有输入支路的节点,一般为系统的输出
混合节点:
既有输入支路又有输出支路的节点
三.Mason公式
四.系统模拟
方程两边积分三次得到
说明
是某信号积分三次得到,可以画出部分框图。
四.系统模拟
第一个积分器的输入信号实际是 可以画出部分系统框图
四.系统模拟
可以画出完整的系统框图
四.系统模拟
对应的信号流图为
其中
若 则
表示积分器(拉普拉斯变换的性质)
通路: 从任一节点出发沿着支路箭头方向连续地穿过 各相连支路到达另一节点的路径称为通路。

2.4 控制系统的结构图和信号流图

2.4 控制系统的结构图和信号流图

Uo(s)
6
(e)
Ui(s)
(-)
1 R1
I1(s)
(-) IC(s)
1 C1s
U(s)
(-) (f)
1 R2
1
Uo(s)
I2(s)
C2s
7
2 结构图的等效变换和简化
结构图方框之间基本连接方式主要有三种:

串联 并联 反馈
8
串联方框的简化(等效):
R(s)
G1(s)
V(s) (a)
G2(s)
uo (s)
-

21
R 1C 2 s
ui (s )
-
1 R1
1 C1s
u (s )
1 R 2C 2 s 1
uo (s)

R 1C 2 s
ui (s )
-
1 R 1C 1 s 1
1 R 2C 2 s 1
uo (s)

1 uo ( s ) ui ( s ) ( R1C1s 1)( R2C2 s 1) 1 R1C2 s ( R1C1s 1)( R2C2 s 1)
I1 ( s ) R1
1 C1s
u (s )
1
1
R2
uo (s)
C2s
-
I (s )
-
I 2 ( s)
C2s
ui (s )
1
I1 ( s ) R1
1 C1s
u (s )
1 R 2C 2 s 1
uo (s)
-

I (s )
R 1C 2 s
ui (s )
-
1 R1
1 C1s
u (s )

自动控制原理控制系统的结构图

自动控制原理控制系统的结构图

I1(s)
I2 (s)
CR1s
7
i2
C
i
i1 R1
ui
R2
uo
(3)
I(s) I1(s) I2 (s)
I2 (s)
I (s)
I1(s)
(4)U o (s) R2 I (s)
I (s)
Uo (s)
R2
8
(1)Ui (s)
(3)
- Uo(s)
I2 (s)
(2)
1
I1(s)
I1(s)
I2 (s)
- Uo (s)
(d)
将图(b)和(c)组合起来即得到图(d),图(d)为该 一阶RC网络的方框图。
11
2.3.3 系统结构图的等效变换和简化
为了由系统的方框图方便地写出它的闭环传递函 数,通常需要对方框图进行等效变换。
方框图的等效变换必须遵守一个原则,即: 变换前后各变量之间的传递函数保持不变
在控制系统中,任何复杂系统的方框图都主要由 串联、并联和反馈三种基本形式连接而成。
u
o
idt c
对其进行拉氏变换得:
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
10
I (s)
U
o
(s)
U
i (s)
I (s) sC
U R
o
(s)
(1) (2)
Ui (s)
I(s)
(b)
Uo (s)
I(s)
(c)
Uo (s)
Ui (s)
I(s)
Uo (s)

自动控制原理胡寿松(课堂PPT)

自动控制原理胡寿松(课堂PPT)
G2(s)G4(s)
G3(s)H(s) G4(s)H(s)
C(s) G5 (s)
3
R(s) G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s )
C(s) G5 (s)
G 3 ( s ) G 4 ( s ) H ( s )
4
R(s)
1
G 1 ( s ) G 3 ( s ) G 2 ( s ) G 4 ( s ) 1G3(s)G4(s)H(s)
函数确定。 r (t )
1 e(t) 1/ s
1
c(t)
1
22
信号流图常用的名词术语
➢源节点(输入节点):只有信号输出支路的节点。
➢阱节点(输出节点):只有信号输入支路的节点。
C(s) G5 (s)
5
C R ( (s s) ) G 1 1 (s G )G 3 3 (( ss )) G G 4 2 (( ss ))H G 4 (( ss ))G 5(s) 6
21
• 信号流图的组成及性质
信号流图是以点和有向线段,描述系统的组成、结构、信号传 递关系的图形。它完全表述了一个系统。
C(s)
1G2(s)G3(s)H2(s) G4(s)
H3(s)/G2(s) H1(s)
G2(s)G3(s)G4(s) 1G2(s)G3(s)H2(s)
C(s)
H3(s)/G2(s) H1(s)
G1(s)
G 2(s)G 3(s)G 4(s)
C(s)
1G 2(s)G 3(s)H 2(s)G 3(s)G 4(s)H 3(s)
1
§2-3 控制系统的结构图与信号流图
1.系统结构图的组成和绘制 2.结构图的等效变换和简化 3.信号流图的组成和性质 4.信号流图的绘制 5.梅逊增益公式 6.闭环系统的传递函数

第2-3 控制系统的结构图与信号流图要点

第2-3  控制系统的结构图与信号流图要点
11:09 9
结构图的绘制
例1 画出RC电路的结构图。
R ui i C uo
(a ) 网络 一阶 RC
11:09
10
解:利用复阻抗的概念及元件特性可得每一元件的 输入量和输出量之间的关系如下:
U i (s) U o (s) R: I ( s) R I (s) C: U o ( s) sC
典型结构变换、结构图化简、代数化简、梅逊公
讲授技巧及注 以例题为基础,强调技巧,思路和注意事项,结 合一些形象的教学手段。 意事项
11:09 2
本节内容
结构图的组成和绘制
结构图的等效变换→求系统传递函数
信号流图的组成和绘制 MASON公式→求系统传递函数 闭环系统有关传函的一些基本概念
11:09 3
i1
ur
R1
1 sC1
u1
R2
i2
1 sC2
uc
11:09
13
有变量相减,说明存在反馈和比较,比较后的信号一 般是元件的输入信号,所以将上页方程改写如下相乘 的形式:
ur ( s ) u1 ( s ) I1 ( s ) R1 1 u1 ( s ) [ I1 ( s ) I 2 ( s )] sC 1 I ( s ) u1 ( s ) uC ( s ) 2 R2 u ( s ) I ( s ) 1 C 2 sC 2
11:09
1 [u r ( s ) u1 ( s )] R I1 ( s ) 1 1 [ I1 ( s ) I 2 ( s )] sC u1 ( s ) 1 [u ( s ) u ( s )] 1 I ( s ) C 2 1 R2 I (s) 1 u ( s) 2 C sC 2

结构图与信号流图

结构图与信号流图
特点
结构图能够清晰地展示系统的层次结构和组件之间的关系,便于理解和分析系 统的整体结构。
结构图的种类
层次结构图
用于描述系统的层次关系,如组织结构图、文件 系统等。
流程图
用于描述系统的工作流程和过程,包括顺序流程 图、流程图等。
网络图
用于描述网络拓扑结构和设备连接关系,如网络 设备连接图、通信网络拓扑图等。
目的与重要性
目的
通过结构图和信号流图,可以清晰地 展示系统或设备的内部结构和信号传 递路径,帮助理解和分析系统的功能 和工作原理。
重要性
在工程设计、故障诊断、系统优化等 方面,结构图和信号流图都是非常重 要的工具,能够提高工作效率、减少 错误和优化系统性能。
02
结构图
定义与特点
定义
结构图是一种用于描述系统、过程或设备的组成部分及其相互关系的图形表示 方法。
结构图的应用场景
系统设计
在系统设计阶段,结构图被用 来描述系统的整体架构和各个
组件的功能与关系。
项目管理
在项目管理中,结构图被用来 描述项目的组织结构和任务分 配。
故障诊断
在故障诊断中,结构图可以帮 助分析故障的原因和位置,以 便快速定位和解决问题。
数据分析
在数据分析中,结构图可以用 来描述数据之间的关系和数据
数据流
02
在软件工程中,信号流图用于描述程序中数据流的传递和处理
过程,有助于理解和优化程序的执行效率。
通信系统
03
在通信系统中,信号流图用于描述信号的传输和处理过程,有
助于分析和优化通信系统的性能。
结构图与信号流图结合应用案例
电子系统设计
在电子系统设计中,结构图和信号流图可以结合使用,分别 描述系统的组成和信号的传递与处理过程,有助于全面分析 和优化系统的性能。

结构图与信号流图

结构图与信号流图

对结构图与信号流图的总结
集成化
结构图和信号流图的应用领域越来越广泛,为了更好地满足用户需求,未来的发展趋势将是将这两种可视化工具集成到一个统一的平台中,以便于更加高效地进行系统设计和分析。
结构图与信号流图的发展趋势
智能化
随着人工智能和机器学习技术的发展,未来的结构图和信号流图将更加智能化。这些工具将能够自动分析和提取系统中的特征和规律,为设计师提供更加准确的指导和支持。
可视化优化
为了更好地满足不同领域的需求,未来的结构图和信号流图将会在可视化效果和交互性方面进行优化。例如,采用更加逼真的渲染效果、支持多种显示模式、提供更加灵活的交互方式等。
应用领域拓展
标准化与规范化
结合虚拟现实技术
对结构图与信号流图的未来展望
THANKS
谢谢您的观看
xx年xx月xx日
结构图与信号流图
contents
目录
结构图信号流图结构图与信号流图的比较应用案例总结与展望
01
结构图
结构图是一种用图形符号表示系统或设备内部结构和运行状态的图形表示方法。
定义
结构图主要用于描述系统或设备的组成、功能、操作流程和相互作用等方面。
用途
定义与用途
系统结构图、设备结构图、流程图等。
有线信号流图和无线信号流图
时域信号流图和频域信号流图
模拟信号流图和数字信号流图
节点
节点是信号流图中的基本元素,表示信号的处理、传输和变换等过程。
支路是连接节点的路径,表示信号的传输通道。
阻抗是支路上对信号的阻碍作用,用数值表示,单位为欧姆。
电流是支路上传输的能量流,用符号表示,单位为安培。
电压是支路上传输的电势差,用符号表示,单位为伏特。

第二章信号流图

第二章信号流图

②信号分支点的移动: 分支点从环节的输入端移到输出端
X 1 ( s)
G (s ) Y (s )
X 1 ( s)
G (s ) N (s )
Y (s)
X 1 ( s)
X 1 ( s)
N ( s) ? 1 X 1 ( s)G ( s) N ( s) X 1 ( s), N ( s) G( s)
u1 (0)
Ur
1
1 R1
C R1Cs 1
R2
U
Uc
I1
I2
I
1
1
15
2、由系统结构图绘制信号流图
结构图与信号流图的对应关系 1)结构图的信号线对应于信号流图的节点、方框对应于支 路和支路增益; 2)结构图输入端和输出端对应于信号流图的输入节点和 输出节点; 3)结构图综合点或引出点对应于信号流图的混合节点。 在结构图比较点之前没有引出点时,只需在比较点后设 置一个节点便可;但若在比较点之前有引出点时,就需 在引出点和比较点各设置一个节点,它们之间的支路增 益是“1”。
解:列写微分方程
i2 C
u r (t ) i1 (t ) R1 u c (t ) u c (t ) i (t ) R 2 1 C i 2 (t ) dt i1 (t ) R1 i1 (t ) i 2 (t ) i (t )
i
i1
u r (t )
R1
25
梅逊公式例R-C
G4(s)
R(s)
G11(s) G (s) H1(s)
△1=1
R(s)
G22(s) G (s)
G33(s) G (s)
H3(s)
C(s
C(s) G1(s) =?

2-4-2信号流图及梅逊公式

2-4-2信号流图及梅逊公式

果关
2.信号流图的性质
l信号流图适用于线性系统。

l支路表示一个信号对另一个信号的函数关系,信号只能沿支路上的箭头指向传递。

l在节点上可以把所有输入支路的信号叠加,并把相加后的信号送到所有的输出支路。

l具有输入和输出节点的混合节点,通过增加一个具有单位增益的支路把它作为输出节点来处理。

l对于一个给定的系统,信号流图不是唯一的,由于描述同一个系统的方程可以表示为不同的形式。

的方
一节点,
节点
小圆圈


1
4条
:系统有单个路条,两两互不接路7
求:
2.4.6 闭环系统的传递函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( s ) G1G2G3G4 G1G2G4 G2G3G4G5 G2G4G5 G3G4G6 G2G4G6 H 2 1 G2 H 2 G1G2G3G4 H1 G1G2G4 H1
例 6 求传递函数 C(s)/R(s), C(s)/N(s)
G (s )
P
例5 求传递函数 C(s)/R(s)
G (s )
P
k 1 k
1
n
k
1 [G2 H2 G1G2G3G4 H1 G1G2G4 H1 ] 1 G2 H 2 G1G2G3G4 H1 G1G2G4 H1 P1 G1G2G3G4 1 1 P2 G1G2G4 2 1 P3 G2G3G4G5 3 1 P4 G2G4G5 4 1 P5 G3G4G6 5 1 P6 G6 H 2G2G4 6 1
信号流图
一、信号流图的组成
二、信号流图的绘制
1、由微分方程绘制信号流图
2、由结构图绘制信号流图
2、由结构图绘制信号流图
信号流图与结构图的对比
信号流图
源节点 阱节点 混合节点 支路 支路增益 前向通路 回路 互不接触回路
结构图
信号输入 信号输出 比较点,引出点 环节 环节传递函数
控制系统的传递函数
• • • •
例7 系统结构图如图所示 求当输入 r ( t ) 1( t )时系统的响应 cr ( t ) ; 求当干扰 n(t ) (t ) 时系统的响应 cn ( t ); 求当初条件 c(0) 1时系统的自由响应 c 0 (t );
c(0) 0
G (s )
P
k 1 k
1
n
k
1 ( RCs )3 ( s ) 1 5 ( RCs ) 6 ( RCs)2 1 ( RCs)3
1 ( RCs )3 5( RCs)2 6( RCs) 1
例4 求传递函数 C(s)/R个因素同时作用下系统的总输出 c(t ); • 求在上述三个因素同时作用下系统的总偏差 e(t )
k 1 k
1
n
k
1 [ G2 H G1G2 G1G3 ] (G2 H )(G1G3 )
1 G2 H G1G2 G1G3 G1G2G3 H
P1 G1G2
P2 G1G3
PN 1 1 PN 2 G4G1G2
PN 3 G4G1G3
1 1
结构图及其等效变换
本节主要内容
• 为什么要绘制系统的结构图
• 结构图的组成要素
• 怎样绘制实际系统的结构图
• 如何进行结构图的等效变换(法则及技巧) • 结构图的适用范围(局限性)
+
If 4 6 5 M 2
_ +
G 1
I
+
U
负 载
_
_
V 3
a Uab 8 b U0_ 7
+
• 结构图是介于原理图和数学方程之间,描 述系统各组成元部件之间信号传递关系的 数学图形。它既补充了原理图所缺少的变 量间的定量关系,又避免了抽象的纯数学 描述。 • 结构图是系统的一种数学模型,它可以对
1 G( s)H ( s)C G( s) R
( s ) C ( s) G( s ) R( s ) 1 G( s ) H ( s )
例1
电枢控制式直流电动机结构图化简
例2
函数记录仪结构图化简
例3 结构图化简
例4 结构图化简
例5 结构图化简
系统的特性进行全面的描述。
一、结构图的组成
• 1、信号线
• 2、引出点 • 3、比较点
R(s)
R(s) R(s)
R(s) _
R(s)- C(s) C(s)
• 4、方块(环节)
R(s)
G(s)
C(s)
二、结构图的建立
三、结构图的等效变换法则
1、环节串联
C G2 ( s ) U U G1 ( s ) R G2 ( s ) G1 ( s ) R
2 1 G2 H
N 1 1 G2 H N2 1
N 3 1 G2 H
G1G2 G1G3 (1 G1 H ) ( s ) 1 G2 H G1G2 G1G3 G1G2G3 H
N ( s)
( 1 G1G3G4 )(1 G2 H ) G1G2G4 1 G2 H G1G2 G1G3 G1G2G3 H
三、梅逊(Mason)增益公式
四、举例
例1 求传递函数 C(s)/R(s)
例2 求传递函数 C(s)/R(s)
例3 求传递函数 C(s)/R(s)
1 1 1 1 [5 ] 6 2 ( RCs ) 3 RCs ( RCs ) 1 P1 1 1 ( RCs )3
2、环节并联
C U1 U 2 U 1 G1 ( s ) R U 2 G2 ( s ) R G1 ( s ) R G2 ( s ) R G1 ( s ) G2 ( s ) R
3、反馈连接
C G( s) E E R B R H ( s) C C G( s) R G( s) H ( s) C
k 1 k
1
n
k
1 [ H1 G1 G2 G1G2 G3 G3 ] G3 H1
1 H1 G1 G2 G1G2 G3 H1
P1 G1G2 P2 G3
1 1
2 1 H1
G1G2 G3 (1 H1 ) ( s ) 1 H1 G1 G2 G1G2 G3 H1
相关文档
最新文档