人教版八年级下册数据的分析练习
人教版八年级下册第二十章数据的分析单元练习题(含答案)课件.doc
第二十章数据的分析一、选择题1.从某市 5 000 名初一学生中,随机抽取100 名学生,测得他们的身高数据,得到一个样本,那么这个样本数据的平均数、中位数、众数、方差四个统计量中,服装厂最感兴趣的是( )A.平均数B.中位数C.众数D.方差2.某市一周的日最高气温如下图,那么该市这周的日最高气温的众数是( )A.25B.26C.27D.283.要从百米赛跑成绩各不一样的9 名同学中选 4 名参加4×100 米接力赛,而这9 名同学只知道自己的成绩,要想知道自己是否入选,只需要知道他们成绩的( )A.平均数B.中位数C.众数D.方差4.甲、乙二人在一样条件下各射靶10 次,每次射靶成绩如下图,经计算得甲=乙=7,=1.2,=5.8,那么以下结论中不正确的选项是( )A.甲、乙的总环数相等B.甲的成绩稳定C.甲、乙的众数一样D.乙的开展潜力更大5.假设一组数据3,x,4,2 的众数和平均数相等,那么这组数据的中位数为( )A.3B.4C.2D.2.56. “倡导全民阅读〞、“推动国民素质和社会文明程度显著提高〞已成为“十三五〞时期的重要工作.教育主管部门对某学校青年学校青年教师2021 年度阅读情况进展了问卷调查,并将收集的数据统计如表,根据表中的信息判断,以下结论错误的选项是( )A.该学校中参与调查的青年教师人数为40 人B.该学校中青年教师2021 年平均每人阅读8 本书C.该学校中青年教师2021 年度看书数量的中位数为 4 本D.该学校中青年教师2021 年度看书数量的众数为 4 本7.校园文化艺术节期间,有19 位同学参加了校十佳歌手比赛,所得的分数互不一样,取前10 位同学获得十佳歌手称号,某同学知道自己的分数后,要判断自己是否获得十佳歌手称号,他只需知道这19 位同学的( )A.平均数B.中位数C.众数D.方差8.笑笑统计了 3 月份某天全国8 个城市的空气质量指数,并绘制了折线统计图(如图),那么这8 个城市的空气质量指数的中位数是( )A.59B.58C.50D.42二、填空题9.李明同学进展射击练习,两发子弹各打中 5 环,四发子弹各打中8 环,三发子弹各打中9 环.一发子弹打中10 环,那么他射击的平均成绩是________环.10.某校在“保护地球绿化祖国〞的创立活动中,组织学生开展植树造林活动.为了解全校学生的植树情况,学校随机抽查了100 名学生的植树数量情况,将调查数据整理如下表:________棵.100名同学平均每人植树那么这11.一次比赛中,5位裁判分别给某位选手打分的情况是:有2人给出9.1分,有2人给出9.3分,这位选手的平均得分是________分.么有1人给出9.7分,那12.有5个数据的平均数为81,其中一个数据是85,那么另外四个数据的平均数是________.13.灯泡厂为测量一批灯泡的使用寿命,从中抽查了100只灯泡,它们的使用寿命如下表:批灯泡的平均使用寿命是________.那么这14.一组数据a、b、c、d、e的平均数是m,那么a+1、b-3、c+5、d-7、e+9的平均数是________.15.一组数据的中位数为80,可知这组数据中大于或小于这个中位数的数据各占________,中位数有________个.16.为了调查某小区居民的用水情况,随机抽查了假设干户家庭月用水量,结果如表:假设干户家庭的月用水量,中位数是________吨,月平均用水________吨.那么关于这三、解答题17.某公司欲招聘工人,对甲、乙应聘者进展三项测试:语言、创新、综合知识,并按测试得分1∶4∶3的比例确定测试总分,甲三项得分分别为86,70,70,乙三项得分分别为84,75,60,请将被录取?,看看谁计算甲、乙两人各自的平均成绩18.从某食品厂生产的袋装食品中抽出样品20袋,检测各袋的质量是否符合标准,超过或缺乏的部分用正、负数表示,记录如下表:这批样品的平均质量比标准质量多还是少?19.某工厂有15名工人,某月这15名工人加工的零件数统计如下表:求这15名工人该月加工的零件数的平均数.20.为提高居民的节水意识,向阳小区开展了“建立节水型社区,保障用水平安〞为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进展了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如以下图所示.(1)试估计该小区5月份用水量不高于12吨的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计该小区5月份的用水量.21.有关部门准备对某居民小区的自来水管网系统进展改造,为此,需了解该小区的自来水用水的情况.该部门通过随机抽样,调查了其中的20户家庭,这20户家庭的月用水量见下表:求这20户家庭的户均月用水量.答案解析1.【答案】C【解析】服装厂最感兴趣的是哪种尺码的服装售量较多,也就是需要参照指标众数.由于众数是数据中出现次数最多的数,故服装厂最感兴趣的指标是众数.应选 C.2.【答案】A【解析】一组数据中出现次数最多的数据叫做众数,依此求解即可.由图形可知,25出现了3次,次数最多,所以众数是25.应选 A.3.【答案】B【解析】总共有9名同学,只要确定每个人与第五名的成绩的多少即可判断,然后根据中位数定义即可判断.知道自己是否入选,只需知道第五名的成绩,即中位数.应选 B.4.【答案】C【解析】分别求出甲、乙的总环数,以及众数就可以解决.A.甲的总环数=7×10=70;乙的总环数=7×10=70∴甲、乙的总环数相等B.∵<∴甲的成绩稳定.C.由图可知:甲中7出现次数最多,一共出现4次,∴甲的众数为7;乙中8出现次数最多,一共出现3次,∴乙的众数为8.甲、乙的众数不一样.D.因为乙超过8环的次数多,所以乙的开展潜力更大.应选 C.5.【答案】A【解析】根据众数和平均数相等,得出x只能是3,再根据中位数的定义即可得出答案.当众数是3时,那么x=3,这组数据的平均数是(3+3+4+2)÷4=3,这组数据为:2,3,3,4,∴中位数为(3+3)÷2=3.当众数是4时,那么x=4,这组数据的平均数是(3+4+4+2)÷4=,这与众数和平均数相等不符,所以x不是4;当众数是2时,那么x=2,这组数据的平均数是(3+2+4+2)÷4=,这与众数和平均数相等不符,所以x不是2;那么x的值只能是3,中位数是3;应选 A.6.【答案】B【解析】根据统计表可得出每个月课外阅读书籍的数量,即可求得平均数;出现次数最多的数据是众数;将这些数据按大小顺序排列,中间两个数的平均数为中位数;依此即可求解.A.8+6+5+10+4+7=40(人),故该学校中参与调查的青年教师人数为40人是正确的,不符合题意;B.平均数为:×(15×8+11×6+8×5+4×10+3×4+2×7)=7.3,原来的说法错误,符合题意;C.中间两个数都是4,所以中位数为4,故该学校中青年教师2021 年度看书数量的中位数为4意;本,是正确的,不符合题D.4 出现的次数最多,是10 次,众数为4,故该学校中青年教师2021 年度看书数量的众数为4本,是正确的,不符合题意.应选B.7.【答案】 B即可,此题得以解【解析】根据题意,可知19 名学生取前10 名,只需要知道第10 名同学的成绩决.意可得,19 位同学取前10 名,只要知道这19 名同学的中位数,即排名第10 的同学的成绩即由题可,应选B.8.【答案】 B两个数的平均数,即可得出些数从小到大排列,再找出最中间【解析】根据中位数的定义先把这答案.:28,36,42,58,58,70,75,83,些数从小到大排列为把这两个数的平均数是:(58+58) 2÷=58,最中间量指数的中位数是:58;8个城市的空气质那么这应选B.9.【答案】7.9【解析】在求n 个数的平均数时,如果x1 出现f1 次,x2 出现f2 次,x3 出现f3 次,⋯,xk 出现f k 次(这里f1+f2+f3+⋯+fk=n),那么这n个数的平均数=.所以,李明同学射击的平均成绩是.=7.9环10. 【答案】 5.8:【解析】100 名同学每人植树的平均数为(4 ×30+5×22+6×25+8×15+10×8) ÷100=580 ÷100=5.8(棵).11. 【答案】9.3【解析】根据加权平均数的计算方法列式即可算出平均数.所以,平均得分是:(9.1 2×+9.3 2×+9.7 1×) ÷5=9.3.12. 【答案】80【解析】先由 5 个数据的平均数为81,得出 5 个数据的和为81 ×5=405,再减去85,得出另外 4 个数据的和,再除以 4 即可.因为 5 个数据的平均数为81,所以 5 个数据的和是:81 ×5=405,因为其中一个数据为85,所以另外 4 个数据的和为:405-85=320,那么另外 4 个数据的平均数是:320 ÷4=80.13. 【答案】 1 680 小时【解析】在统计调查中,有时候从总体中抽取个体的试验带有破坏性,这种情况下一般都是用样本的情况去估计总体的情况.根据题意得:(800 1×0+1200 1×9+1 600 2×4+2 000 3×5+2 400 1×2)=1 680(小时);那么这100 只灯泡的平均使用寿命约是 1 680 小时.14. 【答案】m +1【解析】求平均数只要求出数据之和再除以总个数即可.∵数据a、b、c、d、e 的平均数是m ,∴a+b+c+d+e=5m,∴(a+1+b-3+c+5+d-7+e+9)=[(a+b+c+d+e)+(1-3+5-7+9)]=×5m+×5= m+1.15.【答案】一半;一于中称处么【解析】将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,那这组数称中间两个数据的平均数为间位置的数为么这组数据的中位数,如果数据的个数是偶数,那据的中位数;中位数只有一个.16.【答案】5,4.6:3,3,4,4,4,5,5,5,5,5,8,【解析】将所有数据按照从小到大的顺序排列为那么中位数为:5,:≈ 4.6.平均数为:5,4.6.故答案为17.【答案】甲的平均成绩为=72,乙的平均成绩为=70.5.所以甲被录用.【解析】根据各项所占比例不同,分别求出即可判断.18.【答案】解:这批样品的平均质量是:==0.7(克),量多0.7克.量比标准质批样所以,这品的平均质量,然后再进展品的平均质比拟即可.批样【解析】首先根据加权平均数的定义求出这19.【答案】解:这15名工人该月加工的零件数的平均数是:==26(件).展计算即可.,根据加权平均数的概念进【解析】加工的零件数是数据,人数就是其对应的权20.【答案】解:(1)根据题意得:×100%=52%;数占小区总户数的百分比是52%;小区5月份用水量不高于12吨的户答:该#g4*,,t1&、 (2)根据题意得: [300 ×(3 ×6+ 9×20+15×12+21×7+27×5) ÷50]=3 960(吨),答:该小区 5 月份的用水量是3 960吨. 【解析】 (1)用用水量不高于12 吨的户数除以抽查的总的户数即可求出该小区 5 月份用水量不高于 12 吨的户数占小区总户数的百分比;(2)用该组的中间值乘以户数,求出总的用水量,再除以抽查的户数求出每户的平均用水量,最后 乘以该小区总的户数即可得出答案.21. 【答案】解:这20户家庭的户均月用水量是:==15.5(m 3). 【解析】在求 n 个数的平均数时,如果 x 1 出现f 1 次, x 2 出现f 2 次, x 3 出现f 3 次, ⋯ ,xk 出现f k 次(这里 f 1+f 2+f 3+⋯ + fk =n ),那么这n 个数的平均数= .。
新人教版八年级下第二十章《数据的分析》章节练习题(含答案)
第二十章数据的分析姓名 _____ 班别 _____ 学号_____1.一组数据:10、5、15、5、20,则这组数据的平均数和中位数分别是()A. 10,10 B。
10, 12.5 C. 11,12.5 D。
11,102.实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A.4,5 B.5,4 C.4,4 D.5,53。
在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的().A。
众数 B.方差 C。
平均数 D.中位数4.一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是 .5.某老师为了了解学生周末利用网络进行学习的时间,在所任教班级随机调查了10名学生,其统计数据如表:时间(单位:小时) 4 3 2 1 0人数 2 4 2 1 1则这10名学生周末利用网络进行学习的平均时间是小时.6。
甲乙两种水稻实验品种连续5年的平均单位面积产量如下(单位:吨/公顷):品种第1年第2年第3年第4年[来]第5年甲9.8 9。
9 10。
1 10 10。
2 乙9。
4 10.3 10.8 9.7 9。
8经计算,x甲=10,x乙=10,试根据这组数据估计__________种水稻品种的产量比较稳定.7。
如图,四边形ABCD是等腰梯形,∠ABC=60°,若其四边满足长度的众数为5,平均数为,上、下底之比为1:2,则BD= .8。
某单位招聘员工,采取笔试与面试相结合的方式进行,两项成绩的原始分均为100分.前6名选手的得分如下:1 2 3 4 5 6 笔试成绩/分 85 92 84 90 84 80 面试成绩/分908886908085根据规定,笔试成绩和面试成绩分别按一定的百分比折和成综合成绩(综合成绩的满分仍为100分) (1)这6名选手笔试成绩的中位数是 分,众数是 分. (2)现得知1号选手的综合成绩为88分,求笔试成绩和面试成绩各占的百分比. (3)求出其余五名选手的综合成绩,并以综合成绩排序确定前两名人选.9. 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生即将所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型校服的学生有多少? (2)在条形统计图中,请把空缺部分补充完整.(3)在扇形统计图中,请计算185型校服所对应的扇形圆心角的大小; (4)求该班学生所穿校服型号的众数和中位数.答案第二十章 数据的分析练习题序号项目1.D 解析:10515520115x ++++==,这组数据从小到大排列:5、5、10、15、20.所以中位数是10.2。
(常考题)人教版初中数学八年级数学下册第五单元《数据的分析》测试(包含答案解析)
一、选择题1.某中学足球队的18名队员的年龄情况如下表:则这些队员年龄的众数和中位数分别是( ) A .15,15 B .15,15.5C .15,16D .16,152.若一组数据2,3,4,5,x 的方差与另一组数据5,6,7,8,9的方差相等,则x 的值为( ). A .1 B .6 C .1或6 D .5或63.小亮同学想知道自己的体重在班级中是否属于中等水平,则需了解全班同学体重的( ) A .平均数 B .中位数C .众数D .极差4.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( ) A .50B .52C .48D .25.如果将所给定的数据组中的每个数都减去一个非零常数,那么该数组的 ( ) A .平均数改变,方差不变 B .平均数改变,方差改变C .平均数不变,方差改变 D .平均数不变,方差不变 6.给出下列命题:①三角形的三条高相交于一点;②如果一组数据中有一个数据变动,那么它的平均数、众数、中位数都随之变动; ③如果不等式()33m x m ->-的解集为1x <,那么3m <;④如果三角形的一个外角等于与它相邻的一个内角则这个三角形是直角三角形; 其中正确的命题有( ) A .1个B .2个C .3个D .4个7.为了让市民享受到更多的优惠,相关部门拟确定一个折扣线,计划使50%左右的人获得折扣优惠.某市针对乘坐地铁的人群进行了调查.调查小组在各地铁站随机调查了该市1000人上一年乘坐地铁的月均花费(单位:元),绘制了频数分布直方图,如图所示.下列说法正确的是( )①每人乘坐地铁的月均花费最集中的区域在80~100元范围内;②每人乘坐地铁的月均花费的平均数范围是40~60元范围内;③每人乘坐地铁的月均花费的中位数在60~100元范围内;④乘坐地铁的月均花费达到80元以上的人可以享受折扣.A.①②④B.①③④C.③④D.①②8.已知数据x,4,0,3,-1的平均数是1,那么它的众数是()A.4 B.0 C.3 D.-19.有一组数据:1,1,1,1,m.若这组数据的方差是0,则m为()A.4-B.1-C.0 D.110.某小组7名学生的中考体育分数如下:37,40,39,37,40,38,40,该组数据的众数、中位数分别为()A.40,37B.40,39C.39,40D.40,3811.下表记录了甲、乙、丙、丁四名同学最近几次数学考试成绩的平均数与方差:要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择( )A.甲B.乙C.丙D.丁12.为了解某小区“全民健身”活动的开展情况,随机对居住在该小区的40名居民一周的体育锻炼时间进行了统计,结果如下表:锻炼时间(时)34567人数(人)6131452这40名居民一周体育锻炼时间的众数和中位数是( )A.14,5 B.14,6 C.5,5 D.5,6第II卷(非选择题)请点击修改第II卷的文字说明参考答案二、填空题13.据统计,某车间10名员工的日平均生产零件个数为8个,方差为2.5个2,引入新技术后,每名员工每天都比原先多生产1个零件,则现在日平均生产零件个数为______个,方差为______个2.14.如图是甲、乙两人6次投篮测试(每次投篮10个)成绩的统计图,甲、乙两人测试成绩的方差分别记作2S 甲、2S 乙,则2S 甲____2S 乙.(填“>”,“=”或“<”)15.若这8个数据-3, 2,-1,0,1,2,3,x 的极差是11,则这组数据的平均数是______. 16.已知一组数据-1,x ,0, 1,-2的平均数是0,这组数据的极差和标准差分别是 _____17.若一组数据4,,5,,7,9x y 的平均数为6,众数为5,则这组数据的方差为__________. 18.某校在“爱护地球,绿化祖国“的创建活动中,组织了100名学生开展植数造林活动,其植树情况整理如下表: 植树棵数(单位:棵) 4 5 6 8 10 人数(人)302225158则这100名学生所植树棵数的中位数为_____.19.一组数据:1,2,x ,y ,4,6,其中x <y ,中位数是2.5,众数是2.则这组数据的平均数是______;方差是______.20.某同学记录了自己一周每天的零花钱(单位:元),分别如下:5,4.5,5,5.5,5.5,5,4.5这组数据的众数和平均数分别是_______和_______.三、解答题21.“绿水青山就是金山银山”,北京市民积极参与义务植树活动.小武同学为了了解自己小区300户家庭在2018年4月份义务植树的数量,进行了抽样调查,随即抽取了其中30户家庭,收集的数据如下(单位:棵): 1 1 2 3 2 3 2 3 3 4 3 3 4 3 3 5 3 4 3 4 4 5 4 5 3 4 3 4 5 6(1)对以上数据进行整理、描述和分析:①绘制如下的统计图,请补充完整;②求这30户家庭2018年4月份义务植树数量的平均数是和中位数分别是多少?(2)“互联网+全民义务植树”是新时代首都全民义务植树组织形式和尽责方式的一大创新,2018年首次推出义务植树网上预约服务,小武同学所调查的这30户家庭中有7户家庭采用了网上预约义务植树这种方式,由此可以估计该小区采用这种形式的家庭有多少户?22.在全民读书月活动中,某校随机抽样调查了一部分学生本学期计划购买课外书的费用情况,根据图中的相关信息,解答下面问题;(1)这次调查获取的样本容量是________;(2)由统计图可知,这次调查获取的样本数据的众数是________;中位数是________;(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.23.某校学生会向全校2400名学生发起了爱心捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如下统计图1和图2,请根据相关信息,解答系列问题:(1)本次接受随机抽样调查的学生人数为人,图1中m的值是;(2)求本次调查获取的样本数据的平均数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.24.某校八年级有800名学生,在一次跳绳模拟测试中,从中随机抽取部分学生,根据其测试成绩制作了下面两个统计图,请根据相关信息,解答下列问题:(1)本次抽取到的学生人数为______,扇形统计图中m的值为______.(2)本次调查获取的样本数据的众数是_____(分),中位数是_____(分).(3)根据样本数据,估计我校八年级模拟体测中得12分的学生约有多少人?25.某市射击队为从甲、乙两名运动员中选拔一人参加省比赛,对他们进行了六次测试,测试成绩如下表(单位:环):第1次第2次第3次第4次第5次第6次甲10988109乙101081079根据表格中的数据,可计算出甲、乙两人的平均成绩都是9环.(1)分别计算甲、乙六次测试成绩的方差;(2)根据数据分析的知识,你认为选______名队员参赛.26.八(2)班组织了一次经典朗读比赛,甲、乙两队各10人的比赛成绩如下表(单位:分):)甲队成绩的中位数是分,乙队成绩的众数是分;(2)计算乙队的平均成绩和方差;(3)已知甲队成绩的方差是1.4 分2,则成绩较为整齐的是队.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据众数和中位数的定义求解即可.【详解】解:这组数据按从小到大顺序排列为:14,14,14,15,15,15,15,15,15,16,16,16,16,17,17,17,17,18,则众数为:15,中位数为:(15+16)÷2=15.5.故答案为B.【点睛】本题考查了众数和中位数的知识,属于基础题,解答本题的关键是掌握众数和中位数的定义.2.C解析:C【解析】根据数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同这个结论即可解决问题.解:∵一组数据2,2,4,5,x的方差与另一组数据5,6,7,8,9的方差相等,∴这组数据可能是2,3,4,5,6或1,2,3,4,5,∴x=1或6,故选C.“点睛”本题考查方差、平均数等知识,解题的关键领域结论:数据x1,x2,…x n与数据x1+a,x2+a,…x n+a的方差相同解决问题,属于中考常考题型.3.B解析:B【分析】根据中位数的定义进行解答即可. 【详解】∵小亮同学想知道自己的体重在班级中是否属于中等水平, ∴需了解全班同学体重数据的中间的数据,即中位数, 故选:B . 【点睛】本题主要考查统计的有关知识,中位数是一组数据中,最中间的数据;对统计量进行合理的选择和恰当的运用是解题关键.4.B解析:B 【详解】解:由题意知,新的一组数据的平均数=1n[(1x ﹣50)+(2x ﹣50+…+(n x ﹣50)]= 1n[(12x x ++…+n x )﹣50n]=2, ∴1n(12x x ++…+n x )﹣50=2, ∴1n(12x x ++…+n x )=52, 即原来的一组数据的平均数为52. 故选B .5.A解析:A 【解析】试题分析:根据平均数、方差的计算公式即可判断. 由题意得该数组的平均数改变,方差不变,故选A. 考点:本题考查的是平均数,方差点评:数学公式的计算与应用是初中数学学习中的一个基本能力,此类问题往往考查学生对数学公式的理解能力,难度不大.6.B解析:B 【分析】根据三角形的高、平均数、众数、中位数的定义、不等式的基本性质和邻补角的定义逐一判断即可. 【详解】①钝角三角形的三条高不相交(三条高所在的直线交于一点),故错误;②如果一组数据中有一个数据变动,那么它的平均数会随之变动,但众数和中位数不一定变动,故错误;③如果不等式()33m x m ->-的解集为1x <,可得m -3<0,那么3m <,故正确;④如果三角形的一个外角等于与它相邻的一个内角,根据邻补角的定义可得这个外角和与它相邻的一个内角之和为180°, ∴三角形的这个内角为180°÷2=90° 则这个三角形是直角三角形,故正确. 综上:正确的有2个 故选B . 【点睛】此题考查的是三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质,掌握三角形的相关性质、定义、数据的平均数、众数、中位数的定义和不等式的基本性质是解决此题的关键.7.C解析:C 【分析】根据频数分布直方图中的数据,求得众数,平均数,中位数,即可得出结论. 【详解】解:①根据频数分布直方图,可得众数为60−80元范围,故每人乘坐地铁的月均花费最集中的区域在60−80元范围内,故①不正确;②每人乘坐地铁的月均花费的平均数=876001000=87.6=87.6元,所以每人乘坐地铁的月均花费的平均数范围是80~100元,故②错误;③每人乘坐地铁的月均花费的中位数约为80元,在60~100元范围内,故③正确;④为了让市民享受到更多的优惠,若使50%左右的人获得折扣优惠,则乘坐地铁的月均花费达到80元以上的人可以享受折扣,故④正确. 故选:C 【点睛】本题主要考查了频数分布直方图,平均数以及中位数的应用,将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.D解析:D 【分析】先根据平均数的定义求出x .这组数据中出现次数最多的数是众数. 【详解】∵x ,4,0,3,-1的平均数是1, ∴403115x +++-=⨯ ∴1x =-∴这组数据是14031--,,,, ∴众数是1-故选:D.【点睛】本题考查了平均数的定义和确定一组数据的众数的能力.要明确定义,找到这组数据中出现次数最多的数.9.D解析:D【分析】方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【详解】依题意可得,平均数:45mx∴224441555m mm解得m=1,故选D.【点睛】本题考查了方差,熟练运用方差公式是解题的关键.10.B解析:B【分析】根据众数和中位数的概念求解可得.【详解】将数据重新排列为37,37,38,39,40,40,40所以这组数据的众数为40,中位数为39,故选B.【点睛】本题考查了中位数和众数的概念,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.11.C解析:C【解析】【分析】方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,选出方差最小,而且平均数较大的同学参加数学比赛.【详解】∵3.6<7.4<8.1,∴甲和丙的最近几次数学考试成绩的方差最小,发挥稳定,∵95>92,∴丙同学最近几次数学考试成绩的平均数高,∴要选择一名成绩好且发挥稳定的同学参加数学比赛,应该选择丙.故选C.【点睛】此题主要考查了方差的含义和求法,要熟练掌握,解答此题的关键是要明确:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.12.C解析:C【解析】【分析】众数是一组数据中出现次数最多的数据,中位数是将一组数据按大小依次排列,把处在最中间位置的一个数据或者最中间两个数据的平均数叫这组数据的中位数.本组数据中,把数据按照从大到小的顺序排列,最中间的两个数的平均数即为中位数.【详解】由统计表可知:体育锻炼时间最多的是5小时,故众数是5小时;统计表中是按从小到大的顺序排列的,最中间两个人的锻炼时间都是5小时,故中位数是5小时.故选C.【点睛】本题考查了确定一组数据的众数和中位数的能力.将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数,则找中间两位数的平均数.二、填空题13.925【分析】根据平均数与方差的定义计算即可得答案【详解】∵每名员工每天都比原先多生产1个零件∴现在日平均生产零件个数为=9设原先每人日生产零件的个数为:x1x2x3……x10∴原先的方差为=25∴解析:9 2.5【分析】根据平均数与方差的定义计算即可得答案.【详解】∵每名员工每天都比原先多生产1个零件,∴现在日平均生产零件个数为8101010⨯+=9, 设原先每人日生产零件的个数为:x 1、x 2、x 3、……x 10,∴原先的方差为22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, ∴现在的方差为22212101(19)(19)(19)10x x x ⎡⎤+-++-++-⎣⎦…+=22212101(8)(8)(8)10x x x ⎡⎤-+-+-⎣⎦…+=2.5, 故答案为:9,2.5【点睛】本题考查平均数与方差,熟练掌握定义与计算公式是解题关键.14.【分析】先分别求出甲乙的平均数再根据方差公式计算各自的方差进行比较即可得【详解】即故答案为【点睛】本题考查了方差的计算熟练掌握方差的计算公式是解题的关键解析:<【分析】先分别求出甲、乙的平均数,再根据方差公式计算各自的方差,进行比较即可得.【详解】87869823==63x +++++甲, 74795713==62x +++++乙, 222221232323238S =38769=633339⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦甲, 2222211313131331S =37459=6222212⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⨯-+-+-+-⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦乙, 831912<, 即22S S <甲乙,故答案为<.【点睛】本题考查了方差的计算,熟练掌握方差的计算公式是解题的关键.15.15或-05【分析】根据极差的概念求出x 的值然后根据平均数的概念求解【详解】一组数据-32-10123x 的极差是11当x 为最大值时x ﹣(﹣3)=11x=8平均数是:;当x 是最小值时3﹣x=11解得:解析:1.5或-0.5【分析】根据极差的概念求出x 的值,然后根据平均数的概念求解.【详解】一组数据-3, 2,-1,0,1,2,3,x 的极差是11,当x 为最大值时,x ﹣(﹣3)=11,x=8,平均数是:[3+ 2+1+0+1+2+3+8]8 1.5--÷=() ;当x 是最小值时,3﹣x=11,解得:x=﹣8,平均数是:[3+ 2+1+0+1+2+3+(8)]80.5--÷=-()-,故答案为:1.5或-0.5【点睛】本题考查了极差和平均数,掌握平均数是所有数据的和除以数据的个数;极差就是这组数中最大值与最小值的差,是解题的关键16.4【解析】试题解析:4【解析】试题∵x=0-(-1+0-2+1),解得x=2,故极差为:2-(-2)=4,则方差s 2=15[(-1-0)2+(2-0)2+(0-0)2+(1-0)2+(-2-0)2]=2,.17.【分析】根据平均数的计算公式可得再根据众数是5所以可得xy 中必须有一个5则另一个就是6通过方差的计算公式计算即可【详解】解:∵一组数据的平均数为6众数为5∴中至少有一个是5∵一组数据的平均数为6∴∴ 解析:83【分析】根据平均数的计算公式,可得11x y +=,再根据众数是5,所以可得x,y 中必须有一个5,则另一个就是6,通过方差的计算公式计算即可.【详解】解:∵一组数据4,,5,,7,9x y 的平均数为6,众数为5,∴,x y 中至少有一个是5,∵一组数据4,,5,,7,9x y 的平均数为6, ∴()4579166x y +++++=,∴11x y +=,∴,x y 中一个是5,另一个是6,∴这组数据的方差为()()()()()22222846256661[]676963-+-+-+-+-=; 故答案为83. 【点睛】 本题是一道数据统计中的综合性题目,涉及知识点较多,应当熟练掌握,特别是记忆方差的计算公式.18.5【解析】【分析】直接利用中位数定义求解【详解】第50个数和第55个数都是5所以这100名学生所植树棵数的中位数为5(棵)故答案为5【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排解析:5【解析】【分析】直接利用中位数定义求解.【详解】第50个数和第55个数都是5,所以这100名学生所植树棵数的中位数为5(棵).故答案为5.【点睛】考查了中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.19.3【解析】【分析】由中位数及众数的定义和给定的条件求出xy 的值然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差【详解】由一组数据12xy46的中位数是25众数是2则有x=2y=3∴这解析:3 83【解析】【分析】由中位数及众数的定义和给定的条件求出x ,y 的值,然后根据平均数的定义求出平均数即可;利用方差公式计算即可求出方差.【详解】由一组数据1,2,x ,y ,4,6的中位数是2.5,众数是2,则有x=2,y=3,,∴这组数据的平均数为:12234636+++++=.∴这组数据的平均数为3; 这组数据的方差为:22222218(13)(23)(23)(33)(43)(63)63⎡⎤-+-+-+-+-+-=⎣⎦. ∴这组数据的方差为83. 故答案为3;83. 【点睛】本题考查数据的平均数、中数、方差,掌握平均数、中数、方差的的定义是解题的关键. 20.55【解析】【分析】根据众数和平均数的定义求解【详解】解:5出现了三次出现次数最多所以这组数据的众数是5这组数据的平均数=(5+45+5+55+55+5+45)=5故答案为:5;5【点睛】本题考查平解析:5 5【解析】【分析】根据众数和平均数的定义求解.【详解】解:5出现了三次,出现次数最多,所以这组数据的众数是5,这组数据的平均数=17(5+4.5+5+5.5+5.5+5+4.5)=5. 故答案为:5;5.【点睛】本题考查平均数的求法以及众数的定义:一组数据中出现次数最多的数据叫做众数. 三、解答题21.(1)①补图见解析;②这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵;(2)估计该小区采用这种形式的家庭有70户.【分析】(1)①由已知数据知3棵的有12人、4棵的有8人,据此补全图形可得;②根据平均数和众数的定义求解可得;(2)用总户数乘以样本中采用了网上预约义务植树这种方式的户数所占比例可得.【详解】(1)①由已知数据知3棵的有12人、4棵的有8人,补全图形如下:②这30户家庭2018年4月份义务植树数量的平均数是1223312485461 3.430⨯+⨯+⨯+⨯+⨯+⨯=(棵) 中位数:从小到大排列,中位数应为第15位和第16位的数的平均值:3332+=(棵) 答:这30户家庭2018年4月份义务植树数量的平均数是3.4棵,中位数是3棵. (2)估计该小区采用这种形式的家庭有300×730=70户, 答:估计该小区采用这种形式的家庭有70户.【点睛】 本题主要考查了频数分布直方图,中位数、平均数的定义及样本估计总体思想的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.22.(1)40;(2)30元,50元;(3)50500元.【分析】(1)根据条形统计图的信息把计划购买课外书的不同费用的人数相加计算即可; (2)根据众数的定义,中位数的定义,逐一进行求解即可;(3)先根据条形统计图展现的数据,计算样本中每个学生平均花费,再用全校总人数×每个学生平均花费,即可估算全校购买课外书的总花费.【详解】解:(1)6121084=40++++(2)购买30元课外书的人数最多,所以这次抽样的众数是30元;购买课外书排第20,第21的费用均为50元,所以这次抽样的中位数是50元; (3)样本中平均每个学生的费用是620123010508804100=50.56121084⨯+⨯+⨯+⨯+⨯++++(元) 因此该校1000学生购买课外书的总花费约为100050.5=50500⨯(元)答:该校本学期计划购买课外书的总花费约为50500元.【点睛】本题主要考查抽样调查中样本容量,众数,中位数的定义及由样本数据估算总体数量的知识.23.(1)50,32;(2)16,15;(3)768.【分析】(1)根据题意由5元的人数及其所占百分比可得抽样调查的学生人数,用10元人数除以抽样调查的学生人数可得m 的值;(2)由题意根据统计图可以分别得到本次调查获取的样本数据的平均数和中位数;(3)由题意根据全校总人数捐款金额为10元的学生人数所占乘以抽样调查的学生人数的比例,即可估计该校本次活动捐款金额为10元的学生人数.【详解】解:(1)本次接受随机抽样调查的学生人数为4÷8%=50人, ∵16100%32%50⨯=, 32m ∴=.故答案为:50;32.(2)本次调查获取的样本数据的平均数是:451610121510208301650⨯+⨯+⨯+⨯+⨯=(元); 本次调查获取的样本数据的中位数是:15元.(3)估计该校本次活动捐款金额为10元的学生人数为2400×32%=768人.【点睛】本题考查条形统计图和扇形统计图、用样本估计总体、平均数、中位数,解题的关键是明确题意,找出所求问题需要的条件.24.(1)50;28;(2)12,11;(3)八年级模拟体测中得12分的学生约有256人.【分析】(1)根据得8分的学生人数和所占的百分比可以求得本次调查的人数,然后根据扇形统计图中的数据可以求得m 的值;(2)根据统计图中的数据可以求得本次调查获取的样本数据的众数和中位数;(3)根据统计图中的数据可以计算出我校九年级模拟模拟体测中得12分的学生约有多少人.【详解】:(1)本次抽取到的学生人数为:4÷8%=50,m%=1-8%-10%-22%-32%=28%,故答案为:50,28;(2)本次调查获取的样本数据的众数是12分,中位数是11分;(3)800×32%=256人;答:八年级模拟体测中得12分的学生约有256人;【点睛】此题考查扇形统计图、条形统计图、用样本估计总体、中位数、众数,解题的关键是明确题意,利用数形结合的思想解答.25.(1)甲、乙六次测试成绩的方差分别是223S =甲,243S =乙;(2)甲【分析】(1)根据方差的定义,利用方差公式分别求出甲、乙的方差即可;(2)根据平均数相同,利用(1)所求方差比较,方差小的成绩稳定,即可得答案.【详解】(1)甲、乙六次测试成绩的方差分别是: (222222212[(109)(99)(89)(89)(109)99)63S ⎤=⨯-+-+-+-+-+-=⎦甲, (222222214[(109)(109)(89)(109)(79)99)63S ⎤=⨯-+-+-+-+-+-=⎦乙, (2)推荐甲参加全国比赛更合适,理由如下:∵两人的平均成绩相等,∴两人实力相当;∵甲的六次测试成绩的方差比乙小,∴甲发挥较为稳定,∴推荐甲参加比赛更合适.故答案为:甲【点睛】 本题考查方差的求法及利用方差做决策,方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立;熟练掌握方差公式是解题关键.26.(1)9.5,10;(2)9分,1分2;(3)乙【分析】(1)根据中位数的定义求出最中间两个数的平均数;根据众数的定义找出出现次数最多的数即可;(2)先求出乙队的平均成绩,再根据方差公式进行计算;(3)先比较出甲队和乙队的方差,再根据方差的意义即可得出答案.【详解】(1)把甲队的成绩从小到大排列为:7,7,8,9,9,10,10,10,10,10,最中间两个数的平均数是(9+10)÷2=9.5(分),则中位数是9.5分;乙队成绩中10出现了4次,出现的次数最多,则乙队成绩的众数是10分;故答案为:9.5,10;(2)乙队的平均成绩是:()104827939110⨯+⨯++⨯=⨯(分), 则方差是:()()()()22224109211089793991⎡⎤⨯-+⨯-+-+⨯-=⎣⎦⨯(分2) ; (3)∵甲队成绩的方差是1.4,乙队成绩的方差是1,∴成绩较为整齐的是乙队;故答案为:乙.【点睛】本题考查方差、中位数和众数:中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),一般地设n 个数据x 1,x 2,…x n 的平均数为x ,则方差S 2=()()()()22221231n x x x x x x x x n ⎡⎤-+-+-++-⎣⎦,它反映了一组数据的波动大小,方差越大,波动性越大.。
人教版八年级数学下册第二十章数据的分析练习(包含答案)
第二十章数据的剖析一、单项选择题1.已知一组数据x1, x2, x3, x4, x5的均匀数是2,方差是1,那么另一组数据3x1 2 ,33x2 2 , 3x3 2 , 3x42, 3x5 2 ,的均匀数和方差分别是() .A .2,1B.2,1C.4,2D.4,3 332.某中学规定学生的学期体育成绩满分为100 分,此中课外体育占20% ,期中考试成绩占30%,期末考试成绩占50%.小彤的这三项成绩(百分制)分别为95 分, 90 分, 88 分,则小彤这学期的体育成绩为()A . 89 分B. 90 分C.92 分D. 93 分3.在一次体育测试中,小芳所在小组8 个人的成绩分别是:46,47,48,48,49,49,49,50.则这 8 个人体育成绩的中位数是()A . 47B. 48C.48.5D. 4942甲172,S2乙256,.某次知识比赛中,两组学生成绩以下表,经过计算可知两组的方差为以下说法:①两组的均匀数同样;①甲组学生成绩比乙组学生成绩稳固;①甲构成绩的众数>乙构成绩的众数;①两构成绩的中位数均是80,但成绩80 的人数甲比乙组多,从中位数来看,甲构成绩总体比乙组好;①成绩高于或等于90 分的人数乙组比甲组多,高分段乙构成绩比甲组好.此中正确的有()个A . 2B. 3C.4D. 55.某铁工艺品商城某天销售了110 件工艺品,其统计如表:货种A B C D E销售量(件)10 40 30 10 20该店长假如想要认识哪个货种的销售量最大,那么他应当关注的统计量是()A .均匀数B.众数C.中位数D.方差6.从一组数据1, 2, 2, 3 中随意取走一个数,剩下三个数不变的是()A .均匀数B.众数C.中位数D.方差7.假如一组数据2, 3, 4, 5,x的方差与另一组数据101, 102, 103, 104,105 的方差相等,那么 x 的值()A . 6B. 1C.6 或 1D.没法确立8.甲、乙、丙、丁四位选手各10 次射击成绩的均匀数和方差以下表:选手甲乙丙丁均匀数 (环 )9.29.29.29.2方差 (环2)0.0350.0150.0250.027则这四人中成绩发挥最稳固的是()A .甲B.乙C.丙D.丁9.在一次捐钱活动中,某学习小组共有13 人参加捐钱,此中小王的捐钱数比13 人捐钱的均匀数多 2 元,据此可知,以下说法错误的选项是()A.小王的捐钱数不行能最少B.小王的捐钱数可能最多C.将捐钱数按从少到多摆列,小王的捐钱数可能排在第12 位D.将捐钱数按从少到多摆列,小王的捐钱数必定比第7 名多10.多多班长统计昨年1~8 月“书香校园”活动中全班同学的课外阅读数目(单位:本),绘制了如图折线统计图,以下说法正确的选项是()A .极差是47B .众数是42C.中位数是58D.每个月阅读数目超出40 的有 4 个月二、填空题11.九年级某班40 位同学的年纪如表所示:年纪(岁) 13141516人数316192则该班 40 名同学年纪的众数是_____.12.某校初三年级共有四个班,各班会考的均匀成绩挨次是82 分, 79 分, 81 分, 78 分.(1)假如各班的人数都是50 人,则会考的均匀成绩为__________.(2)假如各班的人数挨次为46 人;48 人;54 人;52 人;则该校会考的均匀成绩为_________ .13.某小组计划在本周的一个下午借用 A 、B、 C 三个艺术教室此中的一个进行元旦节目的彩排,他们去教课处查察了上一周 A 、B、 C 三个艺术教室每日下午的使用次数(一节课记为一次)状况,列出以下统计表:经过检查,本次彩排安排在礼拜______ 的下午找到空教室的可能性最大.14.一组数据3, 4, 6, 7, x 的均匀数为 6,则这组数据的方差为_____.15.有两名学员小林和小明练习飞镖,第一轮10 枚飞镖掷完后两人命中的环数以下图,已知生手的成绩不太稳固,那么依据图中的信息,预计小林和小明两人中生手是______ ;这名选手的10 次成绩的极差是______.三、解答题16.我们商定:假如身高在选定标准的± 2%范围以内都称为“普启遍身高”.为了认识某校九年级男生中拥有“广泛身高”的人数,我们从该校九年级男生中随机抽出 10 名男生,分别丈量出他们的身高 (单位: cm) ,采集并整理以下统计表:男生①①①①①①①①①①序号身高163171173159161174164166169164x(cm)依据以上信息,解答以下问题:(1)计算这组数据的三个统计量:均匀数、中位数、众数;(2) 请你选择此中一个统计量作为选定标准,找出这10 名男生中拥有“广泛身高”是哪几位男生?17.在全民念书月活动中,某校随机抽样检查了一部分学生本学期计划购置课外书的花费情况,依据图中的有关信息,解答下边问题;(1)此次检查获得的样本容量是;(2)由统计图可知,此次检查获得的样本数据的众数是;中位数是;(3)求此次检查获得的样本数据的均匀数;(4)若该校共有 1000 名学生,依据样本数据,预计该校本学期计划购置课外书的总花销.18.为了庆贺新中国建立70 周年,某校组织八年级全体学生参加“恰同学少年,忆峥嵘光阴”新中国建立70 周年知识比赛活动.将随机抽取的部分学生成绩进行整理后分红 5 组, 50~60 分( 50x60 )的小组称为“学童”组,60~70分 ( 60x 70 )的小组称为“秀才”组,70~x90 )的小组称为“进士”组, 90~80 分 ( 70x 80 )的小组称为“举人”组, 80~90 分( 80100 分 ( 90x100 )的小组称为“翰林”组,并绘制了不完好的频数散布直方图以下,请结合供给的信息解答以下问题:(1)在此次比赛中,抽取学生的成绩的中位数在组;(2)学校决定对成绩在70~100 分 ( 70x 100 )的学生进行奖赏,若八年级共有336 名学生,请经过计算说明,大概有多少名学生获奖?19.某中学展开“数学史”知识比赛活动,八年级(1)、(2)班依据初赛成绩,各选出 5 名选手参加复赛,两个班各选出的 5 名选手的复赛成绩(满分为100 分)以下图:(1)依据图示填写下表a、 b、 c 的值:统计量均匀数(分)中位数(分)众数(分)班别八年( 1)班a85c八年( 2)班85b100(2)联合两班复赛成绩的均匀数和中位数,剖析哪个班的选于复赛成绩较好;(3)经过计算八年(1)班 5 名选手的复赛成绩的方差S 八(1)2= 70,请你计算八年(2)班5名选手复赛成绩的方差并判断哪个班的选手复赛成绩较为平衡.20.省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩以下表(单位:环):第一次第二次第三次第四次第五次第六次甲10898109乙107101098(1)依据表格中的数据,计算出甲的均匀成绩是环,乙的均匀成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)依据( 1)、( 2)计算的结果,你以为介绍谁参加全国比赛更适合,请说明原因.(计算方差的公式:s2=[])答案1. D2. B3. C4. C5. B6. C7. C8. B9. D10. C11. 1512. 8079.9713.三14. 615.小林,9 环16.( 1)均匀数166.4(cm),中位数165,众数164;( 2)①①①①①男生的身高拥有“广泛身高”.17.( 1)40( 2)30,50( 3)均匀数是 50.5 元( 4)该校本学期计划购置课外书的总花销为50500 元18.( 1) 70~80 或“举人”;(2) 231.19.( 1) a= 85 分; b= 80 分; c= 85 分;( 2)八年( 1)班成绩好些;( 3)八年( 2)班20.解:( 1) 9; 9.(2) s2甲=2;3s2乙=4.3(3)介绍甲参加比赛更适合。
人教版八年级下册数学第二十章 数据的分析含答案
人教版八年级下册数学第二十章数据的分析含答案一、单选题(共15题,共计45分)1、一组数据1,2,3,3,4,5.若添加一个数据3,则下列统计量中,发生变化的是( )A.平均数B.众数C.中位数D.方差2、3月,我市某区一周天气质量报告中某项污染指标的数据是:60、60、90、100、90、70、90,则下列关于这组数据表述正确的是( )A. 众数是60B.中位数是100C.极差是40D.平均数是783、如图是成都市某周内日最高气温的折线统计图,关于这7天的日最高气温的说法正确的是()A.极差是8℃B.众数是28℃C.中位数是24℃D.平均数是26℃4、把5个整数从小到大排列,其中位数是4,如果这5个整数中的唯一众数是6,则这5个整数可能的最大的和是()A.21B.22C.23D.245、为调查某班学生每天使用零花钱的情况,张华随机调查了20名同学,结果如下表:每天使用零花钱(单位:元) 10 15 20 25 30人数 1 3 6 5 5则这20名同学每天使用的零花钱的中位数是( )A.17.5元B.20元C.22.5元D.25元6、某市5月上旬前5天的最高气温如下(单位:℃):28、29、31、29、33,对这组数据,下列说法错误的是()A.平均数是30B.众数是29C.中位数是31D.极差是57、某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如表:该店主决定本周进货时,增加了一些尺码的衬衫,影响该店主决策的统计量是( )A.众数B.方差C.平均数D.中位数8、“恒盛”超市购进一批大米,大米的标准包装为每袋30kg,售货员任选6袋进行了称重检验,超过标准重量的记作“+”,不足标准重量的记作“-”,他记录的结果是+0.5,-0.5,0,-0.5,-0.5,+1,那么这6袋大米重量的平均数和极差分别是()A.0,1.5B.29.5,1C.30,1.5D.30.5,09、某校有25名同学参加某比赛,预赛成绩各不相同,取前13名参加决赛,其中一名同学已经知道自己的成绩,能否进入决赛,只需要再知道这25名同学成绩的( )A.最高分B.平均数C.中位数D.方差10、一名射击运动员20次射击的成绩如下(单位:环):4,6,8,7,10,10,8,7,8,9,8,7,9,10,8,7,9,8,8,9.该运动员射击一次的成绩可能性最大的环数是()A.7B.8C.9D.1011、某班篮球爱好小组10名队员进行定点投篮练习,每人投篮10次,将他们投中的次数进行统计,制成下表:则关于这10名队员投中次数组成的数据,下列说法错误的是()A.平均数为5B.中位数为5C.众数为5D.方差为512、中考体育测试前,某校为了了解选报引体向上的九年级男生的成绩情况,随机抽测了部分九年级男生引体向上的成绩,并将测试的成绩制成了如下的统计表:个数13 14 15 16人数3 5 1 1依据上表提供的信息,下列判断正确的是()A.众数是5B.中位数是14.5C.平均数是14D.方差是813、一组数据1、2、2、3、4、5、6的中位数是()A.1B.2C.3D.414、甲、乙、丙、丁四人参加训练,近期的10次百米测试平均成绩都是13.2秒,方差如表选手甲乙丙丁方差(秒2)0.020 0.019 0.021 0.022则这四人中发挥最稳定的是()A.甲B.乙C.丙D.丁15、下列说法正确的是()A.“明天降雨的概率是50%”表示明天有半天都在降雨B.数据4,4,5,5,0的中位数和众数都是5C.要了解一批钢化玻璃的最少允许碎片数,应采用普查的方式 D.若甲、乙两组数中各有20个数据,平均数=,方差S甲2=1.25,S乙2=0.96,则说明乙组数据比甲组数据稳定二、填空题(共10题,共计30分)16、3,5,8,9,7,6,2的中位数是________.17、甲乙两人进行射击比赛,在相同条件下各射击10次,他们平均成绩均为8环,10次射击成绩的方差分别是:S甲2=1.5,S乙2=1.2,则射击成绩较稳定的是________.(选填“甲”或“乙”)18、如下图是我市某连续 7 天的最高气温与最低气温的变化图,根据图中信息可知,这 7 天中最大的日温差是________℃19、为了调查甲、乙两台包装机分装标准质量为400g奶粉的情况,质检员进行了抽样调查,过程如下,请补全表一、表二中的空白,并回答提出的问题.收集数据:从甲、乙包装机分装的奶粉中各自随机抽取10袋,测得实际质量(单位:g)如下:甲:400,400,408,406,410,409,400,393,394,395乙:403,404,396,399,402,402,405,397,402,398整理数据:表一质量(g)频数种类393≤x<396396≤x<399399≤x<402402≤x<405405≤x<408408≤x<411甲 3 0 ________ 0 1 3 乙0 ________ 1 5 ________ 0分析数据:表二种类平均数中位数众数方差甲401.5 ________ 400 36.85乙400.8 402 ________ 8.56得出结论:包装机分装情况比较好的是________(填甲或乙),说明你的理由.20、某餐厅供应单价为10元、18元、25元三种价格的抓饭,如图是该餐厅某月销售抓饭情况的扇形统计图,根据该统计图可算得该餐厅销售抓饭的平均单价为________元.21、甲、乙、丙、丁参加体育训练,近期10次跳绳的平均成绩每分钟175个,其方差如下表所示:选手甲乙丙丁方差0.023 0.017 0.021 0.019则这10次跳绳中,这四个人中发挥最稳定的是________.22、某校在进行“阳光体育活动”中,统计了7位原来偏胖的学生的情况,他们的体重分别降低了5,9,3,10,6,8,5(单位:kg),则这组数据的中位数是________.23、数据3、1、0、-1、-3的方差是________.24、某次检测中,一个10人小组,其中6人的平均成绩是80分,其余4人的平均成绩是90分,那么这个10人小组的平均成绩是________分.25、一组数据的方差s2= [(x1﹣3)2+(x2﹣3)2+…+(x20﹣3)2],则这组数据的平均数是________.三、解答题(共6题,共计25分)26、射击集训队在一个月的集训中,对甲、乙两名运动员进行了10次测试,成绩如下:甲:9,6,6,8,7,6,6,8,8,6;乙:4,5,7,6,8,7,8,8,8,9.如果你是教练员,会选择哪位运动员参加比赛?请说明理由.27、某一企业集团有15个分公司,他们所创的利润如下表所示:公司数 1 1 2 4 2 2 3分公司年利润(百万元)6 1.9 2.5 2.1 1.4 1.6 1.2(1)每个分公司所创利润的平均数是多少?(2)该集团公司各分公司所创年利润的中位数是多少?(3)在平均数和中位数中,你认为应该用哪一个来描述该集团公司每个分公司所创年利润的一般水平?为什么?28、阅读下列材料:北京市统计局发布了人口抽样调查报告,首次增加了环线人口分布数据.调查数据显示,北京市超过一半的常住人口都住在了远离城区的五环以外.事实上,北京市的中心城区人口从上世纪80年代起就持续下降,越来越多的人向郊区迁移.根据人口抽样调查结果发现,本市三环至六环间,聚集了1226.9万人的常住人口,占全市的57.1%;四环至六环间聚集了941万人的常住人口,占全市的43.8%;五环以外有1098万人的常住人口,占全市的51.1%.在进行人口分布研究时,北京通常被划分为四个区域,城市功能拓展区包括:朝阳、海淀、丰台、石景山四个区;城市发展新区包括:通州、顺义、大兴、昌平、房山五个区和亦庄开发区;首都功能核心区包括:东城区和西城区;生态涵养发展区包括:门头沟、平谷、怀柔、密云、延庆五个区县.从常住人口分布上看:城市功能拓展区常住人口最多,占全市总量的49%;城市发展新区常住人口约为684万人;首都功能核心区常住人口约为221万人;生态涵养发展区常住人口约为191万人.从常住外来人口分布上看:城市功能拓展区常住外来人口最多,约为436万人;城市发展新区常住外来人口约为297万人;首都功能核心区常住外来人口约为54万人;生态涵养发展区常住外来人口约为32万人.根据以上材料回答下列问题:(1)估算北京市常住人口约为多少万人.(2)选择统计表或统计图,将北京市按四个区域的常住人口和常住外来人口分布情况表示出来.29、两组数据:3,m,2n,5与m,6,n的平均数都是6,若将这两组数据合并为一组数据,求这组新数据的中位数、众数、方差.30、某单位欲从内部公开选拔一名管理人员,对甲、乙、丙三名候选人进行了笔试面试两项测试,三人的测试成绩如下表所示:测试项目测试成绩/分甲乙丙笔试75 80 90面试93 70 68根据录用程序,组织400名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图,每得一票记作1分.(1)请算出三人的民主评议得分;(2)根据实际需要,单位将笔试、面试、民主评议三项测试得分按5:3:2的比例确定个人成绩(精确到0.1分),那么谁将被录用?参考答案一、单选题(共15题,共计45分)1、D2、C4、A5、C6、C7、A8、C9、C10、B11、D12、C13、C14、B15、D二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共6题,共计25分)26、27、28、30、。
人教版八年级数学下册数据的分析 典型例题讲解+练习及答案.doc
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】数据的分析责编:杜少波【学习目标】1. 了解加权平均数的意义和求法,会求实际问题中一组数据的平均数,体会用样本平均数估计总体平均数的思想.2. 了解中位数和众数的意义,掌握它们的求法.进一步理解平均数、中位数和众数所代表的不同的数据特征.3. 了解极差和方差的意义和求法,体会它们刻画数据波动的不同特征.体会用样本方差估计总体方差的思想,掌握分析数据的思想和方法.4. 从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度. 【要点梳理】【 数据的分析 知识要点】要点一、算术平均数和加权平均数一般地,对于n 个数123n x x x x 、、、…,我们把()1231n x x x x n⋅⋅⋅++++叫做这n 个数的算术平均数,简称平均数,记作x .计算公式为()1231n x x x x x n=⋅⋅⋅++++. 要点诠释:平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势.(1)当一组数据较大时,并且这些数据都在某一常数a 附近上、下波动时,一般选用简化计算公式x x a '=+.其中x '为新数据的平均数,a 为取定的接近这组数据的平均数的较“整”的数. (2)平均数的大小与一组数据里的每个数据均有关系,其中任一数据的变动都会相应引起平均数的变动.所以平均数容易受到个别特殊值的影响. 若n 个数12n x x x 、、…的权分别是12n w w w 、、…、,则112212......n nnx w x w x w w w w ++++++叫做这n 个数的加权平均数.要点诠释:(1)相同数据i x 的个数i w 叫做权,i w 越大,表示i x 的个数越多,“权”就越重. 数据的权能够反映数据的相对“重要程度”.(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算.要点二、中位数和众数1.中位数的概念:将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数称为这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数称为这组数据的中位数.要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中.(2)由一组数据的中位数可以知道中位数以上和以下数据各占一半.2.众数的概念:一组数据中出现次数最多的数据称为这组数据的众数.要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个;如果所有数据出现的次数都一样,那么这组数据就没有众数. (2)众数是一组数据中出现次数最多的数据而不是数据出现的次数.要点三、平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是用来描述数据集中趋势的量,其中以平均数最为重要. 区别:平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动,当一组数据中有个别数据太高或太低,用平均数来描述整体趋势则不合适,用中位数或众数则较合适.中位数与数据排列位置有关,个别数据的波动对中位数没影响;众数主要研究各数据出现的频数,当一组数据中不少数据多次重复出现时,可用众数来描述. 要点四、极差、方差和标准差用一组数据中的最大值减去最小值所得的差来反映这组数据的变化范围,用这种方法得到的差称为极差,极差=最大值-最小值.要点诠释:极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.一组数据极差越小,这组数据就越稳定.方差是反映一组数据的整体波动大小的特征的量.方差2s 的计算公式是:()[]222212)(...)(1x x x x x x nS n -++-+-=要点诠释:(1)方差反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变.(3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k 倍.方差的算术平方根叫做这组数据的标准差,用符号s 表示,即:;标准差的数量单位与原数据一致.要点五、极差、方差和标准差的联系与区别联系:极差与方差、标准差都是表示一组数据离散程度的特征数.区别:极差表示一组数据波动范围的大小,它受极端数据的影响较大;方差反映了一组数据与其平均值的离散程度的大小.方差越大,稳定性也越小;反之,则稳定性越好.所以一般情况下只求一组数据的波动范围时用极差,在考虑到这组数据的稳定性时用方差. 要点六、用样本估计总体在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差.要点诠释:(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.(2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价.【典型例题】类型一、利用概念求平均数、中位数、众数1、(2015春•东莞期末)一家鞋店在一段时间内销售了某种女鞋20双,各种尺码鞋的销售量如表:鞋号 23.5 24 24.5 25 25.5 26 人数 3 4 4 7 1 1 (1)求出这些尺码鞋的平均数,中位数,众数.(2)如果你是老板,去鞋厂进货时哪个尺码的鞋子可以多进一些.为什么? 【思路点拨】(1)直接利用平均数公式求出即可,再利用中位数以及众数的定义得出答案; (2)利用众数的意义得出答案. 【答案与解析】 解:(1)这组数据的平均数是:=(23.5×3+24×4+24.5×4+25×7+25.5+26)=24.55,中位数是:24.5,众数是25;(2)去鞋厂进货时25尺码型号的鞋子可以多进一些,原因是这组数据中的众数是25,故销售的女鞋中25尺码型号的鞋卖的最好.【总结升华】此题主要考查了众数、中位数的定义以及平均数求法,正确掌握中位数的定义是解题关键.举一反三:【 数据的分析 例8】【变式】若数据3.2,3.4,3.2,x ,3.9,3.7的中位数是3.5,则其众数是________,平均数是________.【答案】3.2;3.5; 解:由题意3.43.5, 3.62x x +==,所以众数是3.2,平均数是3.5.类型二、利用三数——平均数、众数、中位数解决问题2、某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目 测试成绩甲 乙 丙 教学能力 85 73 73 科研能力 70 71 65 组织能力647284(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5:3:2的比例确定每人的成绩,谁将被录用,说明理由. 【思路点拨】(1)运用求平均数公式()1231n x x x x n⋅⋅⋅++++即可求出三人的平均成绩,比较得出结果;(2)将三人的成绩按比例求出测试成绩,比较得出结果. 【答案与解析】解:(1)甲的平均成绩为:(85+70+64)÷3=73,乙的平均成绩为:(73+71+72)÷3=72, 丙的平均成绩为:(73+65+84)÷3=74, ∴ 候选人丙将被录用.(2)甲的测试成绩为:(85×5+70×3+64×2)÷(5+3+2)=76.3,乙的测试成绩为:(73×5+71×3+72×2)÷(5+3+2)=72.2, 丙的测试成绩为:(73×5+65×3+84×2)÷(5+3+2)=72.8,∴ 候选人甲将被录用.【总结升华】5、3、2即各个数据的“权”,反映了各个数据在这组数据中的重要程度,按加权平均数来录用. 举一反三:【 数据的分析 例10】【变式】小王在八年级第一学期的数学成绩分别为:测验一得89分,测验二得78分,测验三得85分,期中考试得90分,期末考试得87分,如果按照平时、期中、期末的10%、30%、60%量分,那么小王该学期的总评成绩应该为多少?【答案】解:小王平时测试的平均成绩897885843x ++==(分). 所以8410%9030%8760%87.610%30%60%⨯+⨯+⨯=++(分). 答:小王该学期的总评成绩应该为87.6分. 【 数据的分析 例11】3、下表是七年级(2)班30名学生期中考试数学成绩表(已破损).已知该班学生期中考试数学成绩平均分是76分. (1)求该班80分和90分的人数分别是多少?(2)设此班30名学生成绩的众数为a ,中位数为b ,求a b +的值. 【答案与解析】解:(1)设该班得80分的有x 人,得90分的有y 人.根据题意和平均数的定义,得257330,763050260570780901003,x y x y +++++=⎧⎨⨯=⨯+⨯+⨯+++⨯⎩整理得13,89109,x y x y +=⎧⎨+=⎩ 解得8,5.x y =⎧⎨=⎩即该班得80分的有8人,得90分的有5人.(2)因为80分出现8次且出现次数最多.所以a =80,第15、16两个数均为80分,所以b =80,则a b +=80+80=160.【总结升华】本题为统计题,考查平均数、众数与中位数的意义.解题的关键是准确理解题意,建立等量关系. 举一反三:【变式】某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计图表如图所示的统计图.零花钱数额(元) 5 10 15 20学生个数(个)a15 20 5请根据图表中的信息,回答以下问题.(1)求a的值;(2)求这50名学生每人一周内的零花钱额的众数和平均数.【答案】解:(1) a=50-15-20-5=10.(2)众数是15.平均数为150(5×10+10×15+15×20+20×5)=12.类型三、极差、方差与标准差4、某社区准备在甲乙两位射箭爱好者中选出一人参加集训,两人各射了5箭,他们的总成绩(单位:环)相同,小宇根据他们的成绩绘制了尚不完整的统计图表,并计算了甲成绩的平均数和方差(见小宇的作业).第1次第2次第3次第4次第5次甲成绩9 4 7 4 6乙成绩7 5 7 a7(1)a=_____;=_______;(2)请完成图中表示乙成绩变化情况的折线;(3)①观察图,可看出______的成绩比较稳定(填“甲”或“乙”).参照小宇的计算方法,计算乙成绩的方差,并验证你的判断.②请你从平均数和方差的角度分析,谁将被选中. 【思路点拨】(1)根据他们的总成绩相同,得出a =30-7-7-5-7=4,进而得出=30÷5=6;(2)根据(1)中所求得出a 的值进而得出折线图即可;(3)①观察图,即可得出乙的成绩比较稳定;②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 【答案与解析】解:(1)由题意得:甲的总成绩是:9+4+7+4+6=30,则a =30-7-7-5-7=4, =30÷5=6,故答案为:4,6; (2)如图所示:;(3)①观察图,可看出乙的成绩比较稳定, 故答案为:乙;2222221=7676676=1.65s ⎡⎤-++-+-+-⎣⎦乙()(5-6)()(4)() 由于2s乙<2s 甲,所以上述判断正确.②因为两人成绩的平均水平(平均数)相同,根据方差得出乙的成绩比甲稳定,所以乙将被选中. 【总结升华】此题主要考查了方差的定义以及折线图和平均数的意义,根据已知得出a 的值进而利用方差的意义比较稳定性即可. 举一反三:【 数据的分析 例12】【变式】某工厂甲、乙两名工人参加操作技能培训.现分别从他们在培训期间参加的若干次甲 95 82 88 81 93 79 84 78 乙8375808090859295(1)请你计算这两组数据的平均数、中位数;(2)现要从中选派一人参加操作技能比赛,从统计学的角度考虑,你认为选派哪名工人参加合适?请说明理由.【答案】解:1(9582888193798478)858x =+++++++=甲(分), 1(8375808090859295)858x =+++++++=乙(分).甲、乙两组数据的中位数分别为83分、84分. (2)由(1)知85x x ==甲乙分,所以22221[(9585)(8285)(7885)]35.58s =-+-++-=甲, 22221[(8385)(7585)(9585)]418s =-+-++-=乙.①从平均数看,甲、乙均为85分,平均水平相同; ②从中位数看,乙的中位数大于甲,乙的成绩好于甲;③从方差来看,因为x x =甲乙,22s s <乙甲,所以甲的成绩较稳定;④从数据特点看,获得85分以上(含85分)的次数,甲有3次,而乙有4次,故乙的成绩好些;⑤从数据的变化趋势看,乙后几次的成绩均高于甲,且呈上升趋势,因此乙更具潜力. 综上分析可知,甲的成绩虽然比乙稳定,但从中位数、获得好成绩的次数及发展势头等方面分析,乙具有明显优势,所以应派乙参赛更有望取得成绩.类型四、统计思想5、(2016•广陵区二模)中考体育测试前,某区教育局为了了解选报引体向上的初三男生的成绩情况,随机抽测了本区部分选报引体向上项目的初三男生的成绩,并将测试得到的成绩绘成了下面两幅不完整的统计图:请你根据图中的信息,解答下列问题:(1)写出扇形图中a= %,并补全条形图;(2)在这次抽测中,测试成绩的众数和中位数分别是 个、 个.(3)该区体育中考选报引体向上的男生共有1800人,如果体育中考引体向上达6个以上(含6个)得满分,请你估计该区体育中考中选报引体向上的男生能获得满分的有多少名?【思路点拨】(1)用1减去其他天数所占的百分比即可得到a的值,用360°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;(2)根据众数与中位数的定义求解即可;(3)先求出样本中得满分的学生所占的百分比,再乘以1800即可.【答案与解析】解:(1)扇形统计图中a=1﹣30%﹣15%﹣10%﹣20%=25%,设引体向上6个的学生有x人,由题意得=,解得x=50.条形统计图补充如下:(2)由条形图可知,引体向上5个的学生有60人,人数最多,所以众数是5;共200名同学,排序后第100名与第101名同学的成绩都是5个,故中位数为(5+5)÷2=5故答案为:5,5.(3)×1800=810(名).答:估计该区体育中考选报引体向上的男生能获得满分的同学有810名.【总结升华】本题为统计题,考查众数与中位数的意义.一组数据中出现次数最多的数据叫做众数;将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数)叫做这组数据的中位数.也考查了条形统计图、扇形统计图与用样本估计总体.举一反三:【变式】4月23日是“世界读书日”,向阳中学对在校学生课外阅读情况进行了随机问卷调查,共发放100份调查问卷,并全部收回.根据调查问卷,将课外阅读情况整理后,制成表格如下:月阅读册数(本) 1 2 3 4 5被调查的学生数(人)20 50 15 10 5请你根据以上信息,解答下列问题:(1)被调查的学生月平均阅读册数为本;(2)被调查的学生月阅读册数的中位数是;(3)在平均数、中位数这两个统计量中,更能反映被调查学生月阅读的一般水平;(4)若向阳中学共有学生1600人,求四月份该校学生共阅读课外书籍多少本?【答案】解:(1)平均阅读册数为:=2.3(本);(2)∵共有100名学生,∴第50和51为同学的阅读量的平均数为中位数:=2;(3)在平均数、中位数这两个统计量中,中位数更能反映被调查学生月阅读的一般水平;(4)2.3×1600=3680(本).中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.已知一组数据:12,5,9,5,14,下列说法不正确的是( ) A .平均数是9B .中位数是9C .众数是5D .极差是52.在方差的计算公式s 2=110[(x 1-20)2+(x 2-20)2+……+(x 10-20)2]中,数字10和20分别表示的意义可以是( ) A .数据的个数和方差 B .平均数和数据的个数 C .数据的个数和平均数D .数据组的方差和平均数3.某校八年级(1)班全体学生进行了第一次体育中考模拟测试,成绩统计如下表:根据上表中的信息判断,下列结论中错误的是( ) A .该班一共有42名同学B .该班学生这次考试成绩的众数是8C .该班学生这次考试成绩的平均数是27D .该班学生这次考试成绩的中位数是27分4.若一组数据12345,,,,x x x x x 的方差是3,则1234523,23,23,23,23x x x x x -----的方差是( ) A .3B .6C .9D .125.某市6月份某周气温(单位:℃)为23、25、28、25、28、31、28,则这组数据的众数和中位数分别是( ) A .25、25B .28、28C .25、28D .28、316.中国六个城市某日的污染指数如下表:在这组数据中的中位数是( ) 城市 北京 合肥 南京 哈尔滨 成都 郑州 污染指数 342 163 165 45 227 163 A .105B .163C .164D .1657. 一组数据1,4,5,2,8,它们的数据分析正确的是( )A.平均数是5 B.中位数是4 C.方差是30 D.极差是68.九年级1班30位同学的体育素质测试成绩统计如表所示,其中有两个数据被遮盖成绩24 25 26 27 28 29 30人数▄▄ 2 3 6 7 9下列关于成绩的统计量中,与被遮盖的数据无关的是()A.平均数,方差B.中位数,方差C.中位数,众数D.平均数,众数9.河南省旅游资源丰富,2013~2017年旅游收入不断增长,同比增速分别为:15.3%,12.7%,15.3%,14.5%,17.1%.关于这组数据,下列说法正确的是()A.中位数是12.7% B.众数是15.3%C.平均数是15.98% D.方差是010.某球员参加一场篮球比赛,比赛分4节进行,该球员每节得分如折线统计图所示,则该球员平均每节得分为()A.7分B.8分C.9分D.10分11.数据2,2,6,2,3,4,3,2,6,5,4,5,4的众数是().A.2 B.3 C.4 D.612.小华续五次数学测验成绩与班级每次测试成绩平均分的差值分别为0,1,-1,3,2;与小华同班的小梅这五次数学测验成绩的方差为15,小华与小梅这五次数学测试的平均成绩恰好相等,则下列说法正确的是()A.小华的数学成绩更稳定B.小梅的数学成绩更稳定C.小华与小梅的数学成绩一样稳定D.无法判定谁的成绩更稳定二、填空题13.李老师为了了解学生的数学周考成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表:则这10名学生的数学周考成绩的中位数是________分. 14.已知一组数据2,3,4,5,x 2的众数为4,则x=________. 15.某种蔬菜按品质分成三个等级销售,销售情况如表:则售出蔬菜的平均单价为________元/千克.16.在今年“全国助残日”捐款活动中,某班级第一小组7名同学积极捐出自己的零花钱,奉献自己的爱心.他们捐款的数额分别是(单位:元)50,20,50,30,25,55,25,这组数据的众数_____.17.一组数据-1、-2、x 、1、2其中x 是小于10的非负整数,且数据的方差是整数,则数据的标准差是_______________18.某中学随机调查了15名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:那么这15名学生这一周在校参加体育锻炼的时间的中位数是 小时.19.甲、乙两人参加某网站的招聘测试,测试由网页制作和语言两个项目组成,他们各自的成绩(百分制)如下表所示:乙 70 80该网站根据成绩在两人之间录用了甲,则本次招聘测试中权重较大的是_____项目. 20.甲乙两组数据的平均数相同,方差分别为2=0.26S 甲和2=0.18S 乙,甲乙两组数据那一组数据较为稳定 .(填甲或乙)三、解答题21.某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,表--是 成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,而冠军只能有一个,怎样才能确定冠军呢?此时有学生建议,可通过考查数据中的其他信息作为参考进行名次排列.请你完成下列解答:(1)根据表中提供的数据求出表二中a 1、b 1、c 1、a 2、b 2、c 2数据; (2)根据表二信息,你认为应该把冠军奖状发给哪一个班级?简述理由.22.为了让同学们了解自己的体育水平,初二1班的体育刘老师对全班45名学生进行了一次体育模拟测试(得分均为整数),成绩满分为10分,1班的体育委员根据这次测试成绩,制作了统计图和分析表如下:初二1班体育模拟测试成绩分析表平均分方差中位数众数男生________ 2 8 7女生7.92 1.99 8 ________根据以上信息,解答下列问题:(1)这个班共有男生________人,共有女生________人;(2)补全初二1班体育模拟测试成绩分析表;(3)你认为在这次体育测试中,1班的男生队、女生队哪个表现更突出一些?并写出一条支持你的看法的理由.23.某校围绕“扫黑除恶”专项斗争进行了普法宣传,然后在各班级分别随机抽取了5名同学进行了测试.规定:95分或以上为优秀。
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.初三•一班五个劳动竞赛小组一天植树的棵数是:10,10,12,x,8,如果这组数据的众数与平均数相等,那么这组数据的中位数是()A.12 B.10 C.9 D.82.在社会实践活动中,某同学对甲、乙、丙、丁四个城市一至五月份的白菜价格进行调查.四个城市5个月白菜的平均值均为3.50元,方差分别为S甲2=18.3,S乙2=17.4,S丙2=20.1,S丁2=12.5.一至五月份白菜价格最稳定的城市是()A.甲B.乙C.丙D.丁3.某班派9名同学参加红五月歌咏比赛,他们的身高分别是(单位:厘米):167,159,161,159,163,157,170,159,165.这组数据的众数和中位数分别是()A.159,163 B.157,161 C.159,159 D.159,1614.为了预防新冠病毒,6名学生准备了口罩,口罩数量(单位:个)分别为:87、88、73、88、79、85,这组数据的众数是()A.79 B.87 C.88 D.855.2011年春季因干旱影响,政府鼓励居民节约用水,为了解居民用水情况,在某小区随机抽查了20户家庭的月用水量,结果如下表:则关于这20户家庭的月用水量,下列说法错误的是()A.中位数是6吨B.平均数是5.8吨C.众数是6吨D.极差是4吨6.数据5,2,3,0,5的众数是( )A.0 B.3 C.6 D.57.某同学在一次期末测试中,七科的成绩分别是92,100,96,93,96,98,95,则这位同学成绩的中位数和众数分别是().A.93,96 B.96,96 C.96,100 D.93,1008.从整体中抽取一个样本,计算出样本方差为1,可以估计总体方差()A.一定大于1 B.约等于1 C.一定小于1 D.与样本方差无关9.甲、乙两台机床同时生产一种零件,在5天中,两台机床每天出次品的数量如下表:甲0 1 2 0 2乙 2 1 0 1 1关于以上数据的平均数、中位数、众数和方差,说法不正确...的是( )A.甲、乙的平均数相等B.甲、乙的众数相等C.甲、乙的中位数相等D.甲的方差大于乙的方差10.如图是我市4月1日至7日一周内“日平均气温变化统计图”,在这组数据中,众数和中位数分别是()A.13;13 B.14;10 C.14;13 D.13;1411.为了迎接2022年的冬奥会,中小学都积极开展冰上运动,小明和小刚进行米短道速滑训练,他们的五次成绩如下表所示:设两个人的五次成绩的平均数依次为、,方差依次为、,则下列判断正确的是()A.B.C.D.12.某中学为了解学生参加“青年大学习”网上班课的情况,对九年级6个班的学习人数进行了统计,得到各班参加班课的人数数据为5,10,10,12,14,9.对于这组数据,下列说法错误的是()A.平均数是10B.众数是10C.中位数是11D.方差是23 3二、填空题13.某衬衫店为了准确进货,对一周中商店各种尺码的衬衫的销售情况进行统计,结果如下:38码的5件、39码的3件、40码的6件、41码的4件、42码的2件、43码的1件.则该组数据中的中位数是码.14.某校九年级“诗歌大会”比赛中,各班代表队得分如下(单位:分):9,7,8,7,9,7,6,则各代表队得分的中位数是______.15.在学校艺术节文艺汇演中,甲、乙两个舞蹈队队员的身高的方差依次是1.5、2.5,那么身高更整齐的是______队(填“甲”或“乙”).16.某班10名学生校服尺寸与对应人数如图所示,那么这10名学生校服尺寸的中位数为_____cm.17.热爱劳动,劳动最美!某合作学习小组6名同学一周居家劳动的时间(单位:h),分别为:4,3,3,5,5,6.这组数据的中位数是________.18.一组数据3,4,x,6,7的平均数为5.则这组数据的方差是______.19.数据组:26,28,25,24,28,26,28的众数是.20.若一组数据1,3,5,x,的众数是3,则这组数据的方差为______.三、解答题21.在“停课不停学”期间,某中学要求学生合理安排学习和生活,主动做一些力所能及的家务劳动,并建议同学们加强体育锻炼,坚持做“仰卧起坐”等运动项目.开学后,七年级甲、乙两班班主任想了解学生做“仰卧起坐”的情况,他们分别在各自班中随机抽取了5名女生和5名男生,测试了这些学生一分钟所做“仰卧起坐”的个数,测试结果统计如表:甲班组别个数x 人数A 25≤x<30 1B 30≤x<35 3C 35≤x<40 4D 40≤x<45 2请根据图中提供的信息,回答下列问题:(1)测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在哪个组?(2)求测得的乙班这10名学生所做“仰卧起坐”个数的平均数;(3)请估计这两个班中哪个班的学生“仰卧起坐”做得更好一些?并说明理由.22.某中学为了培养学生的社会实践能力,今年“五一”长假期间要求学生参加一项社会调查活动.为此,小明在他所居住小区的600个家庭中,随机调查了50个家庭在新工资制度实施后的收入情况,并绘制了如下的频数分布表和频数分布直方图(收入取整数,单位:元).请你根据以上提供的信息,解答下列问题: (1)补全频数分布表和频数分布直方图;(2)这50个家庭收入的中位数落在 小组; (3)请你估算该小区600个家庭中收入较低(不足1400元)的家庭个数大约有多少?23.某市开展“环境治理留住青山绿水,绿色发展赢得金山银山”活动,对其周边的环境污染进行综合治理.2018年对A 、B 两区的空气量进行监测,将当月每天的空气污染指数(简称:API )的平均值作为每个月的空气污染指数,并将2018年空气污染指数绘制如下表.据了解,空气污染指数50≤时,空气质量为优:50<空气污染指数100≤时,空气质量为良:100<空气污染指数150≤时,空气质量为轻微污染.月份地区12 3 4 5 6 7 8 9 10 11 12A 区115 108 85 100 95 5080 70 50 50 100 45 B 区1059590 80 90 60 9085 60709045(1)请求出A 、B 两区的空气污染指数的平均数;(2)请从平均数、众数、中位数、方差等统计量中选两个对A区、B区的空气质量进行有效对比,说明哪一个地区的环境状况较好.24.在全民读书月活动中,某校随机调查了部分同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题.(1)这次调查获取的样本容量是.(直接写出结果)(2)这次调查获取的样本数据的众数是,中位数是.(直接写出结果)(3)若该校共有1000名学生,根据样本数据,估计该校本学期计划购买课外书的总花费.25.在“新冠肺炎防控”知识宣传活动中,某社区对居民掌握新冠肺炎防控知识的情况进行调查.其中A、B两区分别有500名居民,社区从中各随机抽取50名居民进行相关知识测试,并将成绩进行整理得到部分信息:(信息一)A小区50名居民成绩的频数直方图如图(每一组含前一个边界值,不含后一个边界值);(信息二)图中,A小区从左往右第四组的成绩如下75 75 79 79 79 79 80 8081 82 82 83 83 84 84 84(信息三)A、B两小区各50名居民成绩的平均数、中位数、众数、优秀率(80分及以上为优秀)、方差等数据如下(部分空缺):小区平均数中位数众数优秀率方差A75.1 79 40%277B75.1 77 76 45%211根据以上信息,回答下列问题:(1)求A小区50名居民成绩的中位数;(2)请估计A小区500名居民中能超过平均数的有多少人?(3)请尽量从多个角度比较、分析A,B两小区居民掌握新冠防控知识的情况.26.某市甲、乙两个汽车销售公司,去年一至十月份每月销售同种品牌汽车的情况如图所示:(1)请你根据左图填写右表:销售公司平均数方差中位数众数甲9乙9 17.0 8(2)请你从以下两个不同的方面对甲、乙两个汽车销售公司去年一至十月份的销售情况进行分析:①从平均数和方差结合看;②从折线图上甲、乙两个汽车销售公司销售数量的趋势看(分析哪个汽车销售公司较有潜力).27.某中学由6名师生组成一个排球队.他们的年龄(单位:岁)如下:15 16 17 17 17 40 (1)这组数据的平均数为,中位数为,众数为.(2)用哪个值作为他们年龄的代表值较好?28.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.29.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:(1)根据上述信息可知:甲命中环数的众数是环;(2)通过计算说明甲、乙两人的成绩谁比较稳定.(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会.(填“变大”、“变小” 或“不变”)参考答案1.B2.D3.D4.C5.D6.D7.B8.B9.B10.C11.B12.C13.40.14.715.甲16.17017.4.518.219.28.20.221.(1)∵甲班共有10名学生,处于中间位置的是第5、第6个数的平均数,∴测得的甲班这10名学生所做“仰卧起坐”个数的中位数落在C组;(2)乙班这10名学生所做“仰卧起坐”个数的平均数是:110(22+30×3+35×4+37+41)=33(个);(3)甲班的平均数是:110(27×1+32×3+37×4+42×2)=35.5(个),乙班的平均数是:110(22+30×3+35×4+37+41)=33(个),∵35.5>33,∴甲班的学生“仰卧起坐”的整体情况更好一些.22.(1)A区的空气污染指数的平均数是:112(115+108+85+100+95+50+80+70+50+50+100+45)=79;B区的空气污染指数的平均数是:112(105+95+90+80+90+60+90+85+60+70+90+45)=80;(2)∵A区的众数是50,B区的众数是90,∴A地区的环境状况较好.∵A区的平均数小于B区的平均数,∴A区的环境状况较好.24.(1)40;(2)30,50;(3)50500元25.(1)75;(2)240人;(3)从平均数看,两个小区居民对新冠肺炎防控知识掌握情况的平均水平相同;从方差看,B小区居民新冠肺炎防控知识掌握的情况比A小区稳定;从中位数看,B小区至少有一半的居民成绩高于平均数.26.(1)(2)①甲、乙两个汽车销售公司去年一至十月份的销售平均数一样,都是9辆,但甲销售公司的方差较小,说明甲销售公司的销售情况更稳定。
人教版八年级下册数学:数据的分析习题训练共23页
36、“不可能”这个字(法语是一个字 ),只 在愚人 的字典 中找得 到。--拿 破仑。 37、不要生气要争气,不要看破要突 破,不 要嫉妒 要欣赏 ,不要 托延要 积极, 不要心 动要行 动。 38、勤奋,机会,乐观是成功的三要 素。(注 意:传 统观念 认为勤 奋和机 会是成 功的要 素,但 是经过 统计学 和成功 人士的 分析得 出,乐 观是成 功的第 三要素 。
▪
28、知之者不如好之者,好之者不如乐之者。——孔子
▪
29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
▪
30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
23
39、没有不老的誓言,没有不变的承 诺,踏 上旅途 ,义无 反顾。 40、对时间的价值没有没有深切认识 的人, 决不会 坚韧愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭
▪
27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)
人教版八年级数学下册第二十章《数据的分析》单元练习题(含答案)一、单选题1.如图是嘉淇同学完成的作业,则他做错的题数是()A.0个B.1个C.2个D.3个2.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下:分数50 60 70 80 90 100人数 1 2 8 13 14 4 则该班学生成绩的中位数和众数分别是()A.70,80 B.70,90 C.80,90 D.80,1003.射击训练中,甲、乙、丙、丁四人每人射击10次,平均环数均为8.7环,方差分别为S甲2=0.51,S乙2=0.62,S丙2=0.48,S丁2=0.45,则四人中成绩最稳定的是( )A.甲B.乙C.丙D.丁4.为了解学校九年级学生某次知识问卷的得分情况,小红随机调查了50名九年级同学,结果如表:知识问卷得分(单位:分)65 70 75 80 85人数 1 15 15 16 3则这50名同学问卷得分的众数和中位数分别是()A.75,75 B.75,80 C.80,75 D.80,855.某校规定学生的学期数学成绩由研究性学习成绩与期末卷面成绩共同确定,其中研究性学习成绩占40%,期末卷面成绩占60%,小明研究性学习成绩为80分,期末卷面成绩为90分,则小明的学期数学成绩是()A.80分B.82分C.84分D.86分6.某课外小组的同学们在社会实践活动中调查了20户家庭莱月的用电量,如表所示则这20户家庭该月用电量的众数和中位数、平均数分别是()A.180,160,164 B.160,180;164 C.160,160,164 D.180,180,164 7.为参加电脑汉字输入比赛,甲和乙两位同学进行了6次测试,成绩如下表:甲和乙两位同学6次测试成绩(每分钟输入汉字个数)及部分统计数据表第1次第2次第3次第4次第5次第6次平均数方差甲134 137 136 136 137 136 136 1.0乙135 136 136 137 136 136 136有四位同学在进一步算得乙测试成绩的方差后分别作出了以下判断,其中说法正确的是()A.甲的方差小于乙的方差,所以甲的成绩比较稳定;B.乙的方差小于甲的方差,所以乙的成绩比较稳定;C.甲的方差大于乙的方差,所以甲的成绩比较稳定;D.乙的方差大于甲的方差,所以乙的成绩比较稳定;8.已知一组数据:46,44,x,50,48,42的众数是46,则这组数据的平均数和中位数分别()A.44,43 B.43,45C.46,46 D.45,449.某校八年级共有四个班,在一次英语测试中四个班的平均分与各班参加考试的人数如表:班级一班二班三班四班参加人数51 49 50 60班平均分/分83 89 82 79.5则该校八年级参加这次英语测试的所有学生的平均分约为(精确到0.1)()A.83.1分B.83.2分C.83.4分D.83.5分10.某班50名学生的一次安全知识竞赛成绩分布如表所示(满分10分)这次安全知识竞赛成绩的众数是( ) A .5分B .6分C .9分D .10分11.下列说法正确的是( )A .中位数就是一组数据中最中间的一个数B .8,9,9,10,10,11这组数据的众数是9C .如果x 1,x 2,x 3,…,x n 的平均数是x ,那么()()()12n x x x x x x 0-+-+⋅⋅⋅+-=D .一组数据的方差是这组数据的极差的平方12.九年级(1)班15名男同学进行引体向上测试,每人只测一次,测试结果统计如下:这15名男同学引体向上数的中位数是( ) A .2 B .3C .4D .5二、填空题13.已知1x ,2x ,3x ,...,20x 的平均数是5,方差是2,则132x +,232x +,332x +, (2032)x +的平均数是_____,方差是____.14.五名学生一分钟跳绳的次数分别为189,195,163,184,201,该组数据的中位数是______. 15.某公司销售部有五名销售员,2007年平均每人每月的销售额分别是6,8,11,9,8(万元),现公司需增加一名销售员,三人应聘试用三个月,平均每人每月的销售额分别为:甲是上述数据的平均数,乙是中位数,丙是众数,最后录用三人中平均月销售额最高的人是___. 16.某校合唱团成员的年龄分布如下表:对于不同的x,则表中数据的中位数是______.17.一组数据-4,-2,0,2,4的方差是.18.甲、乙、丙三种糖果售价分别为每千克6元,7元,8元,若将甲5kg种,乙种10kg,丙种10kg混在一起,则售价应定为每千克__________.19.某中学八年级开展“光盘行动”宣传活动,6个班级参加该活动的人数统计结果为:52,60,62,54,58,62,对于这组统计数据的众数是_____.20.如图,是某班50名同学的视力频数分布直方图,则这个班同学的视力众数为_______.三、解答题21.初二(1)班对数学期末总评成绩规定如下:总评成绩由考试成绩和平时成绩(满分120分)两部分组成,其中考试成绩占80%,平时成绩占20%,且总评成绩大于或等于100分时,该生综合评定为A等.(1)小敏的考试成绩为90分,它的综合评定有可能达到A等吗?为什么?(2)小浩的平时成绩为120分,综合评定若要达到A等,他的考试成绩至少要多少分?22.在学校组织的科学常识竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分以上(包括70分)的人数为;(2)请你将表格补充完整:平均数(分)中位数(分)众数(分)一班77.6 80二班90(3)请从不同角度对这次竞赛成绩的结果进行分析.(至少两个角度)23.甲、乙两校参加市教育局举办的初中生英语口语竞赛,两校参赛人数相等.比赛结束后,发现学生成绩分别为7分、8分、9分、10分(满分为10分).依据统计数据绘制了如下尚不完整的统计图表.分数7分8分9分10分人数11 0 8(1)请将甲校成绩统计表和图2的统计图补充完整;(2)经计算,乙校的平均分是8.3分,中位数是8分,请写出甲校的平均分、中位数;并从平均分和中位数的角度分析哪个学校成绩较好.24.为了参加“中小学生诗词大会”,某校八年级的两班学生进行了预选,其中班上前5名学生的成绩(百分制)分别为:八(1)班:85,86,82,91,86,八(2)班:80,85,85,92,88,通过数据分析,列表如下:(1)直接写出表中a,b,c,d的值;(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?请说明理由.25.某校举办的八年级学生数学素养大赛共设3个项目:七巧板拼图,趣题巧解,数学应用,每个项目得分都按一定百分比折算后计入总分,总分高的获胜,下表为小米和小麦两位同学的得分情况(单位:分):七巧板拼图趣题巧解数学应用小米809088小麦908685()1若七巧板拼图,趣题巧解,数学应用三项得分分别40%,20%,40%按折算计入总分,最终谁能获胜?()2若七巧板拼图按20%折算,小麦(填“可能”或“不可能”)获胜.26.城南中学九年级共有12个班,每班48名学生,学校要对该年级学生数学学科学业水平测试成绩进行抽样分析,请按要求回答下列问题:收集数据(1)若要从全年级学生中抽取一个48人的样本,你认为以下抽样方法中比较合理的有.①随机抽取一个班级的48名学生;②在全年级学生中随机抽取48名学生;③在全年级12个班中分别各随机抽取4名学生.整理数据(2)将抽取的48名学生的成绩进行分组,绘制出的频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①C类和D类部分的圆心角度数分别为;;②估计全年级A、B类学生大约一共有名.成绩(单位:分)频数频率分析数据(3)教育主管部门为了解学校教学情况,将同层次的城南、城北两所中学的抽样数据进行对比,得下表:你认为哪所学校的教学效果较好?结合数据,请提出一个解释来支持你的观点.27.某公司销售部有营业员15人,该公司为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励,为了确定一个适当的月销售目标,公司有关部门统计了这15人某月的销售量,如下表所示:(1)直接写出这15名营业员该月销售量数据的平均数、中位数、众数;(2)如果想让一半左右的营业员都能达到月销售目标,你认为(1)中的平均数、中位数、众数中,哪个最适合作为月销售目标?请说明理由.温馨提示:确定一个适当的月销售目标是一个关键问题;如果目标定得太高,多数营业员完不成任务,会使营业员失去信心;如果目标定得太低,不能发挥营业员的潜力.28.下面的表格是李刚同学一学期数学成绩的记录,根据表格提供的信息回答下面的问题考试类别平时期中考试期末考试第一单元第二单元第三单元第四单元成绩88 86 90 92 90 96(1)李刚同学6次成绩的极差是.(2)李刚同学6次成绩的中位数是.(3)李刚同学平时成绩的平均数是.(4)如果用下图的权重给李刚打分,他应该得多少分?(满分100分,写出解题过程)29.某企业生产部统计了15名工人某月加工的零件数:(1)写出这15人该月加工的零件数的平均数、中位数和众数;(2)若生产部领导把每位工人的月加工零件数定为260件,你认为是否合理,为什么?参考答案1.C2.C3.D4.C5.D6.A7.B8.C9.B11.C12.C13.17 1814.18915.甲16.1417.818.7.2元.19.6220.4.421.(1)设小敏的平时成绩为x分,根据题意得:90×80%+20%x≥100,解得:x≥140,∵满分是120分,∴小敏的综合评定不可能达到A等;(2)设小浩的考试成绩为x,根据题意得:80%x+20%×120≥100,解得:x≥95,∴他的考试成绩至少要95分.22.(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×84%=21人;(2)二班成绩的平均数:90×44%+80×4%+70×36%+60×16%=77.6(分);二班成绩的中位数:70(分);一班成绩的众数:80(分).填表如下:平均数(分)中位数(分)众数(分)一班77.68080二班77.6 70 90(3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.23.(1)根据已知10分的有5人,所占扇形圆心角为90°,可以求出总人数为:5÷90360=20(人),即可得出8分的人数为:20-8-4-5=3(人),画出图形如图:甲校9分的人数是:20-11-8=1(人),(2)甲校的平均分为=120(7×11+8×0+9×1+10×8)=8.3分,分数从低到高,第10人与第11人的成绩都是7分,∴中位数=12(7+7)=7(分);平均分相同,乙的中位数较大,因而乙校的成绩较好.24.(1)86,86,85,8.4;(2)八(1)班前5名同学成绩较好25.(1)小麦获胜;(2)不可能26.(1)②、③;(2)432;(3)本题答案不唯一27.(1)平均数为278,中位数为180,众数为90;(2)中位数最适合作为月销售目标,理由见解析.28.(1)10分;(2)90分;(3)89分;(4)93.5分29.(1)平均数为260(件);中位数为240件;众数为240件;(2)不合理。
八年级数学下册《第二十章-数据分析》练习题附答案-人教版
八年级数学下册《第二十章数据分析》练习题附答案-人教版一、选择题1.将一组数据中的每一个数减去50后,所得新的一组数据的平均数是2,则原来那组数据的平均数是( )A.50B.52C.48D.22.为鼓励市民珍惜每一滴水,某居委会表扬了100个节约用水模范户,8月份节约用水的情况如下表:每户节水量(单位:吨) 1 1.2 1.5节水户数52 30 18那么,8月份这100户平均节约用水的吨数为(精确到0.01t) ( )A.1.5tB.1.20tC.1.05tD.1t3.某校把学生的纸笔测试、实践能力、成长纪录三项成绩分别按50%、20%•、•30%的比例计入学期总评成绩,90分以上为优秀.甲、乙、•丙三人的各项成绩如下表(单位:分),学期总评成绩优秀的是( )纸笔测试实践能力成长记录甲 90 83 95乙 98 90 95丙 80 88 90A.甲B.乙丙C.甲乙D.甲丙4.某校男子足球队的年龄分布如图所示,则根据图中信息可知这些队员年龄的平均数,中位数分别是( )A.15.5,15.5B.15.5,15C.15,15.5D.15,155.如图所示为根据某市某天七个整点时的气温绘制成的统计图,则这七个整点时气温的中位数和众数分别是( )A.30 ℃,22 ℃B.26 ℃,22 ℃C.28 ℃,22 ℃D.26 ℃,26 ℃6.“保护水资源,节约用水”应成为每个公民的自觉行为.下表是某小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是( )月用水量(吨) 4 5 6 9户数(户) 3 4 2 1A.中位数是5吨B.众数是5吨C.极差是3吨D.平均数是5.3吨7.已知A组四人的成绩分别为90、60、90、60,B组四人的成绩分别为70、80、80、70,用下列哪个统计知识分析区别两组成绩更恰当( )A.平均数B.中位数C.众数D.方差8.2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:队员1 队员2 队员3 队员4平均数(秒)51 50 51 50方差s2(秒2) 3.5 3.5 14.5 15.5)A.队员1B.队员2C.队员3D.队员49.甲、乙两班举行电脑汉字输入速度比赛,参赛学生每分钟输入汉字的个数经统计计算后结果如下表:班级参加人数中位数方差平均数甲 55 149 191 135乙 55 151 110 135(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数;(每分钟输入汉字≥150个为优秀)(3)甲班成绩的波动情况比乙班成绩的波动小上述结论中正确的是( )A.(1)(2)(3)B.(1)(2)C.(1)(3)D.(2)(3)二、填空题10.某日天气预报说今天最高气温为8℃,气温的极差为10℃,则该日最低气温为_____.11.一组数据2,4,a,7,7的平均数x=5,则方差s2=.12.某计算机程序第一次算得m个数据的平均数为x,第二次算得另外n个数据的平均数为y,则这m+n个数据的平均数等于 .13.一家公司打算招聘一名英文翻译,对甲、乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试者听说读写甲85 83 78 75乙73 80 85 82如果这家公司想招一名口语能力较强的翻译,听、说、读、写成绩按照3∶3∶2∶2的比确定,则甲的得分为,乙的得分为,应该录取 .14.春节期间,重庆某著名旅游景点成为热门景点,大量游客慕名前往,市旅游局统计了春节期间5天的游客数量,绘制了如图所示的折线统计图,则这五天游客数量的中位数为.15.将5个整数从大到小排列,中位数是4;如果这个样本中的惟一众数是6,则这5个整数可能的最大的和是_____.三、解答题16.饮料店为了了解本店罐装饮料上半年的销售情况,随机调查了8天该种饮料的日销售量,结果如下(单位:听):33,32,28,32,25,24,31,35.(1)这8天的平均日销售量是多少听?(2)根据上面的计算结果,估计上半年(按181天计算)该店能销售这种饮料多少听?17.某公司招聘人才,对应聘者分别进行了阅读能力、思维能力和表达能力三项测试,其中甲、乙两人的测试成绩(百分制)如下表:(单位:分)(1)若根据三项测试的平均成绩在甲、乙两人中录用一人,那么谁将被录用?(2)若将阅读能力、思维能力和表达能力三项测试得分按1:3:1的比确定每人的最后成绩,谁将被录用?18.某中学对全校学生60秒跳绳的次数进行了统计,全校学生60秒跳绳的平均次数是100次,某班体育委员统计了全班50名学生60秒跳绳的成绩,列出的频数分布直方图如图所示(每个分组包括左端点,不包括右端点).(1)该班学生60秒跳绳的平均次数至少是多少?是否超过全校平均次数?(2)该班一个学生说:“我的跳绳成绩在我班是中位数.”请你给出该生跳绳成绩所在的范围.19.某校举办“校园唱红歌”比赛,选出10名同学担任评委,并事先拟定从如下四种方案中选择合理的方案来确定演唱者的最后得分(每个评委打分最高为10分).方案一:所有评委给分的平均分;方案二:在所有评委中,去掉一个最高分和一个最低分,再计算剩余评委的平均分;方案三:所有评委给分的中位数;方案四:所有评委给分的众数.为了探究上述方案的合理性,先对某个同学的演唱成绩进行统计实验,下图是这个同学的得分统计图:(1)分别按上述四种方案计算这个同学演唱的最后得分.(2)根据(1)中的结果,请用统计的知识说明哪些方案不适合用来确定这个同学演唱的最后得分?20.某中学的国旗护卫队需从甲、乙两队中选择一队身高比较整齐的队员担任护旗手,每队中每个队员的身高(单位:cm)如下表及图1所示:甲队178 177 179 179 178 178 177 178 177 179图1分析数据:两组样本数据的平均数、中位数、众数、方差如表所示:整理、描述数据:平均数中位数众数方差甲队178 178 b 0.6乙队178 a 178 c=,=,=;(2)根据表格中的数据,你认为选择哪个队比较好?请说明理由.21.今年五一旅游黄金周期间,某旅游区的开放时间为每天10小时,并每小时对进入旅游区的游客人数进行一次统计,下表是5月2日对进入旅游区人数的7次抽样统计数据.记数的次数第1次第2次第3次第4次第5次第6次第7次每小时进入旅游区的人318 310 310 286 280 312 284 数(1)(2)若旅游区的门票为60元/张,则5月2日这一天门票收入是多少?(3)据统计,5月1日至5月5日,每天进入旅游区的人数相同,5月6日和5月7日这两天进入旅游区的人数分别比前一天减少10%和20%,那么从5月1日至5月7日旅游区门票收入是多少?22.某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数 2 m 10 6 2 1b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代码A B C D E F G H实心球8.1 7.7 7.5 7.5 7.3 7.2 7.0 6.5一分钟仰卧起坐* 42 47 * 47 52 * 49其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.参考答案1.【答案】B2.【答案】C3.【答案】C4.【答案】D.5.【答案】B6.【答案】C7.【答案】D.8.【答案】B9.【答案】B. 10.【答案】﹣2•℃ 11.【答案】3.6. 12.【答案】mx +nym +n13.【答案】81,79.3,甲 14.【答案】23.4. 15.【答案】21,20.16.【答案】解:(1)18×(33+32+28+32+25+24+31+35)=30(听).(2)181×30=5 430(听). 17.【答案】解:(1)∵=(85+90+80)÷3=85(分),=(95+80+95)÷3=90(分)∴<,∴乙将被录用;(2)根据题意得:==87(分),==86(分);∴>,∴甲将被录用.18.【答案】解:(1)该班学生60秒跳绳的平均次数至少是:(60×4+80×13+100×19+120×7+140×5+160×2)÷50=100.8(次). 因为100.8>100 所以超过全校平均次数.(2)这个学生的跳绳成绩在该班是中位数由4+13+19=36,可知该生跳绳成绩一定在100~120次范围内.19.【答案】解:(1)方案一最后得分为110(3.2+7.0+7.8+3×8+3×8.4+9.8)=7.7(分);方案二最后得分为18(7.0+7.8+3×8+3×8.4)=8(分);方案三最后得分为8分;方案四最后得分为8分或8.4分.(2)因为方案一中的平均数受极端数值的影响,不能反映这组数据的“平均水平”,所以方案一不适合用来确定最后得分.因为方案四中的众数有两个,众数失去了实际意义所以方案四也不适合用来确定最后得分.20.解:(1)乙队共10名队员,中位数落在第3组,为178,即a=178;甲队178出现的次数最多,故众数为178,即b=178;c=110×[(176﹣178)2×2+(177﹣178)2+(178﹣178)2×4+(179﹣178)2+(180﹣178)2×2]=1.8;(2)选甲队好.∵甲队的方差为0.6,乙队的方差为1.8∴甲队的方差小于乙队的方差∴甲队的身高比乙队整齐,故选甲队比较好.21.【答案】解:(1)=17(318+310+310+286+280+312+284)=300(人);(2)300×10×60=180 000(元);(3)5月1日至5月5日每天进入旅游区的人数为300×10=3 000(人);5月6日进入旅游区的人数为3 000×90%=2 700(人);5月7日进入旅游区的人数为2 700×80%=2 160(人);5月1日至5月7日进入旅游区的人数共为3 000×5+2 700+2 160=19 860(人);门票收入为19 860×60=1 191 600(元)22.【答案】解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3∴实心球成绩在7.0≤x<7.4这一组优秀的有4人∴全年级女生实心球成绩达到优秀的人数是:65答:全年级女生实心球成绩达到优秀的有65人;②同意理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第4题图
4元3元
2元③②①八年级数学第二十章数据的分析测试题(人教版)
一、 选择题(本大题共分12小题,每小题2分共24分)
1.某班七个兴趣小组人数分别为:3,3,4,4,5,5,6,则这组数据的中位数是( ) A. 2 B. 4 C. 4.5 D. 5
2.数据2、4、4、5、5、3、3、4的众数是( )
A. 2
B. 3
C. 4
D. 5
3.已知样本x 1,x 2,x 3,x 4的平均数是2,则x 1+3,x 2+3,x 3+3,x 4+3的平均数是( ) A. 2 B. 2.75 C. 3 D. 5
4.学校食堂有2元,3元,4元三种价格的饭菜供师生选择(每人限购一份).如图是某月的销售情况统计图,则该校师生购买饭菜费用的平均数和众数是( ) A. 2.95元,3元 B. 3元,3元
C. 3元,4元
D. 2.95元,4元 5.如果a 、b 、c 的中位数与众数都是5,平均数 是4,那么a 可能是( ) A. 2 B. 3 C. 4 D. 5
6.已知甲、乙两组数据的平均数相等,若甲组数据 的方差
=0.055,乙组数据的方差
=0.105,则( )
A.甲组数据比乙组数据波动大
B. 乙组数据比甲组数据波动大
C.甲组数据与乙组数据的波动一样大
D. 甲、乙两组数据的数据波动不能比较 7.样本数据3,6,a ,4,2的平均数是4,则这个样本的方差是( )
A. 2
B.
C. 3
D. 2
8.某同学5次上学途中所花的时间(单位:分钟)分别为x ,y ,10,11,9,已知这组数据的平均数为10,方差为2,则的值为( )
A. 1
B. 2
C. 3
D. 4
9.若样本x 1+1,x 2+1,x 3+1,…,x n +1的平均数为18,方差为2,则对于样本x 1+2,x 2+2,x 3+2,…,x n +2,下列结论正确的是( )
A.平均数为18,方差为2
B.平均数为19,方差为3
C.平均数为19,方差为2
D.平均数为20,方差为4
10.小波同学将某班级毕业升学体育测试成绩(满分30分)统计整理,得到下表,则下列说法错误的是( )
A.该组数据的众数是24分
B.该组数据的平均数是25分
C.该组数据的中位数是24分歧
D.该组数据的极差是8分
11.为了解某校计算机考试情况,抽取了50名学生的计算机考试进行统计,统计结果如下表所示,则50名学生计算机考试成绩的众数、中位数分别为(
A.20,16
B.16,20
C.20,12
D.16,12
12.如果将一组数据中的每一个数都乘以一个非零常数,那么该组数据的( ) A.平均数改变,方差不变 B.平均数改变,方差改变 C.平均数不变,方差改变 D.平均数不变,方差不变 二、填空题(本大题共8小题,每小题3分,共24分)
13.有10个数据的平均数为12,另有20个数据的平均数为15,那么所有这30个数据的平均数是 . 14.若x 1,x 2,x 3的平均数为7,则x 1+3,x 2+2,x 3+4的平均数为 . 15.一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是 .
16. 五个数1,2,4,5,a 的平均数是3,则a = ,这五个数的方差为 .
第18题图
分数/分
小时()7
17.若10个数的平均数是3,极差是4,则将这10个数都扩大10倍,则这组数据的平均数是 ,极差是 .
18.如图是某同学6次数学测验成绩统计表,则该同学6次成绩的中位数是 .
19. 已知数据3x 1,3x 2,3x 3,…,3x n 的方差为3,则一组新数据6x 1,6x 2,…,6x n 的方差是 . 20.已知样本99,101,102,x ,y (x ≤y )的平均数为100,
方差为2,则x = ,y = . 三、 解答题(本大题共52分)
21.计算题(每小题6分,共12分)
(1)若1,2,3,a 的平均数是3;4,5,a ,b 的平均数是5.
求:0,1,2,3,4,a ,b 的方差是多少
(2)有七个数由小到大依次排列,其平均数是38,如果这组数的前四位数的平均数是33,后四个数的平均数是
42.
求它们的中位数.
22.(本小题10分)如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么该班学生每周锻炼时间
的中位数是多少?
36
次
甲乙
23.(本小题10分)如图是某中学乒乓球队队员年龄分布的条形图. ⑴计算这些队员的平均年龄; ⑵大多数队员的年龄是多少?
⑶中间的队员的年龄是多少?
24.(本小题10分)甲、乙两人在相同的条件下各射靶5次,每次射靶的成绩情况如图所示:
⑴ 你根据图中的数据填写下表:
.
(2)从平均数和方差相结合看,分析谁的成绩好些
25.(本小题10分)为了普及环保知识,增强环保意识,某中学组织了环保知识竞赛,初中三个年级根据初赛成绩
⑴ 请你填写下表:
⑵ 请
从以下两个不同的角度对三个年级的决赛
成绩进行分析:
① 从平均数和众数相结合看(分析哪个年级成
绩好些);
② 从平均数和中位数相结合看(分析哪个年级成绩好些)
③ 如果在每个年级分别选出3人参加决赛,你认为哪个年级的实力更强一些?并说明理由.。