洪水过程计算

合集下载

§45单位线法推求流域出口洪水过程工程水文学

§45单位线法推求流域出口洪水过程工程水文学

§45单位线法推求流域出口洪水过程工程水文学单位线法是流域洪水计算方法的一种常用方法,利用单位线来推算出流域洪水的产流过程。

单位线法的基本原理是假设单位面积流域产流过程与单位线相似,通过将单位线与设计降雨进行卷积运算,可以得到流域的洪峰流量和洪水过程。

下面将详细介绍单位线法的推算流程。

单位线法推求流域出口洪水过程的步骤如下:1.收集流域的基本资料:包括流域面积、长度、坡度、土地利用类型、土壤类型以及流量观测点的流量历时等。

这些资料是推算洪水过程所必需的。

2.统计分析设计雨量:通过历史降雨数据统计分析平均年雨量和频率分析,确定设计雨量。

设计雨量是指在一定平均年降雨频率下,流域内所接受的最大雨量。

3.绘制单位线图:单位线图描述了单位线的形状和时间分布,是单位线法的基础。

单位线图一般以时间为横轴,单位线值为纵轴进行绘制。

单位线的形状可以根据经验公式或者历史洪水资料进行确定。

4. 单位线图与设计雨量进行卷积运算:将单位线图与设计雨量进行卷积运算得到洪水过程。

卷积运算的结果即为流域洪水过程的单位线值。

单位线值是单位为m³/s每mm的流量,表示每单位时间单位面积的径流量。

5.根据经验参数调整单位线值:根据与流域特征相近的已知流域洪水资料或者经验参数,对单位线值进行调整。

这是为了修正单位线与实际流域特征之间的差异。

6.单位线乘以设计雨量的加权面积值:将单位线值与设计雨量的加权面积值相乘,可以得到相对于单位面积的流量过程。

加权面积值可以通过流域面积与单位线的降雨历时之积来计算。

7.洪峰流量的计算:将相对于单位面积的流量过程乘以流域的面积,即可得到流域出口的洪峰流量。

洪峰流量也可以通过流域面积和单位线的洪峰流量之积来计算。

8.绘制流域出口洪水过程曲线:将流域出口的洪水过程根据时间进行绘制,可以得到洪水过程曲线。

洪水过程曲线描述了洪水的变化规律,是洪水预报和防洪设计的重要依据。

单位线法是流域洪水计算的一种简单而常用的方法,但也有其局限性,主要是对流域属性的表示不够准确。

综合单位线法计算流域出口洪水过程

综合单位线法计算流域出口洪水过程

n=2.679(F/L2)-0.1221J-0.1134
四、综合瞬时单位线法推求设计洪水过程:步骤为 1)根据产流计算方法,由设计暴雨计算设计净雨
2)根据流域特征,由省、区水文手册查算 、m1',10 、n
3)按设计净雨计算m1、K(=m1/n) 4)按上节方法计算时段单位线 5)由设计净雨和时段单位线计算地面径流过程 6)计算地下径流 7)地面径流过程加地下径流,得设计洪水过程
§8-8 综合单位线法计算流域出口洪水过程
无资料流域洪水计算的主要方法之一
一. 综合瞬时单位线法基本概念
纳希瞬时单位线仅有两个参数n、K,它们与流域特征和净雨强度有着密切
的综合关系,这种综合关系式即反映了纳希瞬时单位线,称之为综合瞬时单位 线。由于
m1=nK, m2=1/n
(8-51、52)
m1、m2————纳希瞬时单位线的一阶、二阶原点矩,因此也常常对m1、m2 综合。 综合包括净雨强度影响和流域特征影响二个方面
该式应用时,当 i s < i临 时按 i s 计算,≥ i临 时按 is = i临 计算。
与流域面积 F(km2)、河流坡降、河长等因素有关,各省、
区的水文手册中均有公式计算,例如四川省
=0.9813-0.2109lgF
三、
m' 1,10

n
的地区综合
例如四川省
m' 1,10
=1.3456F0.228J-0.1071(F/L2)-0.041
二、m1、m2的标准化与 的地区综合
m2 基本不受净雨强度影响,因此常常只对 m1 标准化和
对净雨强度影响指数 作地区综合。
净雨强度影响如式(8-49),取净雨强度 i s =10mm/h 的 m1

暴雨洪水计算

暴雨洪水计算

时段 纵标 时段 纵标
该部分需查阅“瞬时单位线S曲线查用表”并计算总标段值
0 0
9 0.022
1 0.05 10 0.013
2 0.17
11 0.007
3 0.21
12 0.004
求1mm径流深折合流量
1*F/△t(m²/s) F为汇流面积
△t(s)
206.9444444
745
q(t)=s(t)*206.94
1 H6P-H5P
2.09
不同保证率下各时段面雨量
2
3
4
33.33 22.12
37.09 24.98
40.02 27.23
2 H4P-H3P
2.93
3 H2P-H1P
5.57
4 H1P 27.76
5
42.45 29.12
5 H3P-H2P
3.76
P=10%
1.64
2.25
4.15
第五步 产流计算 确定分区后按下列公式计算损失量
P=2%
Q1(t)=q(t)*R 清
小计
0
0
41
41
138
138
171
171
151
151
114
114
77
77
50
50
31
31
18
18
11
11
6
6
6
6
2
2
1
1
1
1
0
0
浑比,则可计算设计洪水流 该工程取值
0.82
.82,P=2%设计洪水过程计算表
4 380.45
第一步
积水面积 745

中小河流洪水计算方法

中小河流洪水计算方法

中小河流洪水计算方法洪水是水文气象学中一项重要的研究内容。

中小河流洪水的计算方法主要是基于洪水频率分析、经验公式、及物理模型。

下面将分别介绍这三种方法。

一、洪水频率分析洪水频率分析是一种常用的计算中小河流洪水量的方法。

其基本思想是利用洪水频率和流量之间的统计关系,以得出一个特定流量的洪水频率。

这里的流量是指河水在一定时间内流过某一地点的水量。

洪水频率分析通常需要以下步骤:1.收集流域的观测资料,如流量、降雨等。

2.根据历史记录绘制流量-频率曲线,利用该曲线确定某一频率下的洪水流量。

3.利用统计学方法推算其他未观测频率下的洪水流量。

洪水频率分析的主要缺点是需要大量的观测资料,并且不适用于特殊环境下的中小河流。

二、经验公式经验公式是一种简化的计算中小河流洪水量的方法。

通常基于历史上观测数据编制出来,其计算过程简单但精度较低。

下面列出两种常用的经验公式:1.范氏公式:Q=P×K该公式利用设计暴雨P和经验系数K来计算设计洪水流量Q。

其中,设计暴雨一般根据历史流量数据和气象记录来计算,经验系数则可以根据不同的环境进行调整。

2.杨氏公式:Q=C×D×(L×H+K)该公式是根据单元面积产流量与径流面积的关系而得出的。

由于径流的计算与地形、地貌、水文条件等有关,所以该公式中的C、D、L、H、K都需在实地调查中测量并推算。

三、物理模型物理模型是一种用物理原理构建的计算中小河流洪水量的方法。

主要通过对水动力学理论和水文测量数据的分析,在河道中设计特殊的测流设备来求解。

物理模型计算精度高且不依赖于历史数据,但需要昂贵的实验装备和大量的实地调查。

总结中小河流洪水计算方法主要有洪水频率分析、经验公式和物理模型等。

不同的方法有其适用的范围和精度,根据具体情况选择合适的方法进行计算。

同时,中小河流洪水预报是洪水计算的重要应用领域,它可以帮助地方政府和灾害机构做好洪水安全管理工作。

设计洪水过程线的计算

设计洪水过程线的计算

习题二:设计洪水过程线的计算
已知梅港站P = 2 %的设计洪峰流量Q m,2 %=14200 m3/s和最大1、3、7天设计时段洪量(见下表1)和典型洪水过程(见下表2),求P = 2 %的设计洪水过程线。

表1梅港站P = 2 %的洪水峰量设计值
表2梅港站1955年典型洪水过程
解:采用同频率法推求设计洪水过程线。

首先对表1所提供的洪量进行单位换算,然后经分析选定典型洪水过程线(1955年6月19日~25日),通过面积包围法计算各时段洪量,从而推算各时段放大倍比k。

其中,最大一日洪量的放大倍比k1为
k1=W1p
W1d
=1.07
最大三日洪量的放大倍比k3-1为
k3−1=W3p−W1p
W3d−W1d
=1.12
最大七日洪量的放大倍比k7-3为
k7−3=W7p−W3p
W7d−W3d
=1.34
洪峰的放大倍比k Q为
k Q=Q mp
Q md
=1.04
成果如表3所示。

表3同频率放大法倍比计算表
逐时段进行放大,由于不同历时衔接的地方放大倍比k不一致,放大后在交界处产生不连续现象,使过程线呈锯齿形,修匀成光滑曲线时保持设计洪峰和各种历时的设计洪量不变,修匀后的过程线及为设计洪水过程线,计算过程见表4,修匀后的设计洪水过程线如图1所示。

表四:同频率法设计洪水过程线计算表
图1梅港站P = 2 %的设计洪水过程线。

暴雨流量计算方法和步骤

暴雨流量计算方法和步骤

暴雨流量计算方法和步骤引言:暴雨流量是指暴雨期间单位时间内过一定涵容量的断面的径流量,是城市洪水灾害预测和防治中的重要参数。

暴雨流量计算是根据大气环流、降水形态、降水量、地表特征等因素,通过数学模型计算得出的。

本文将介绍暴雨流量计算的常用方法和步骤。

一、暴雨流量计算方法:1.单位线法:即根据不同暴雨频率及其历时,通过单位线方法揭示暴雨过程的时空分布规律和径流量的关系,然后通过设计频率的单位线乘以实际暴雨过程历时,即可计算出暴雨流量。

2.单位面积法:即根据暴雨产流过程的特点,将流域划分为一系列面积大小相等的单元,利用每个单元上的降雨量与径流量的关系,计算得到整个流域的暴雨流量。

3.经验公式法:通过历史洪水事件的统计数据和实测数据,寻找暴雨降雨量与洪水流量之间的经验公式,根据给定的暴雨降雨量,通过经验公式计算得出暴雨流量。

4.数学模型法:利用物理方程或统计模型等,通过观测数据拟合出洪水流量与降雨量之间的关系。

这种方法通常需要大量的观测数据和计算资源。

二、暴雨流量计算步骤:根据上述方法,暴雨流量计算通常包括以下步骤:1.收集数据:收集相关的气象数据、地形数据和水文数据等。

包括年降水量、暴雨频率、区域降水特征,流域面积、地形起伏以及土壤类型等信息。

2.预处理数据:对收集到的数据进行预处理和分析。

包括数据清洗、数据间的关系分析和处理,排除异常数据等。

3.选择计算方法:根据实际情况和相关要求,选择合适的计算方法。

比如单位线法适用于较大流域和流域面积分布均匀的情况,而单位面积法适用于小流域和流域面积分布不均匀的情况。

4.暴雨径流计算:根据选择的计算方法,进行暴雨径流计算。

如单位线法中,计算每个历时区间的单位线,再与实际降雨过程相乘得出单位线过程的流量,再将不同历时的单位线流量相加得到总的暴雨流量。

5.结果分析:对计算得到的暴雨流量进行分析和评估。

包括计算结果的合理性检验、灵敏性分析、计算误差的评估等。

6.结果应用:根据分析结果,对洪水防治、规划设计等工程提出建议和措施。

洪水演进计算

洪水演进计算

洪水演进计算洪水演进计算技术是一种工具,它可用于研究一次洪水过程中,洪水的演变过程。

这种技术主要用于了解洪水在流域中的波及范围,以及洪水演变带来的威胁,也可以帮助管理人员实施更有效的防洪措施。

洪水演进计算是一次洪水过程中,洪水水量分布和流量演进的数学模拟,对于模拟洪水演变过程中出现的淹水、洪水冲刷、洪峰位移等现象,具有重要的应用价值。

洪水演进计算的主要步骤包括水动力学计算、潜流计算和洪峰估算。

首先,采用水动力学计算法,确定流域内水动力条件,将其输入模型,对不同的情况进行模拟,以获得洪水初始条件的定量分析。

其次,采用潜流计算法,根据流域不同地形条件,计算出淹水情况,计算洪峰淹水位置,以及洪峰位移等情况。

最后,采用洪峰估算法,根据模拟结果,计算出具体的洪峰值,综合分析洪水落区的威胁程度。

洪水演进计算的优点是能够迅速预测出洪水可能带来的危害,及时采取防洪措施,降低洪水带来的威胁。

此外,它还能够帮助相关部门积累历史洪水信息,以便更准确地分析洪水演进特征,为未来的洪灾做好预防准备。

洪水演进计算技术对于预防洪灾至关重要,因此,我国在防洪方面已经采取了大量的法律法规。

根据《中华人民共和国水利法》和《建设项目水土保持法》的规定,在建设洪水控制工程时,一定要根据当地的洪水形势,综合利用工程状态、水文资料等,进行洪水演进计算,以确保工程的安全性。

此外,针对一次洪水过程中可能出现的洪水位移,流域管理部门也采取了相应措施,如实施洪堤升级改造等。

洪水演进计算技术在国内外已经被广泛应用,也取得了显著成效。

比如,2008年辽宁淮河洪水,经过洪水演进计算后,预测出洪峰和淹没曲线,帮助一线民众及时疏散,从而避免了更大的损失。

在灾害减灾领域,洪水演进计算技术也得到了广泛应用,并取得了良好的社会效益。

比如,我国洪水演进模型成功应用于华东等地区,取得了良好效果。

综上所述,洪水演进计算技术在防洪、减灾等方面の改善带来了重大的作用,但是这种技术也存在一定的局限性,比如说模型的精度较低,模拟结果和实际情况存在一定偏差。

洪水计算(推理公式法)

洪水计算(推理公式法)

P=00
1.32
33.93
1.80
67.87
2.40
135.74
2.94
271.48
3.78
407.21
4.80
542.95
5.93
644.76
7.19
678.69
8.39
644.76
9.77
542.95
11.81
407.21
14.81
271.48
19.66
135.74
25.18
1.998 2.121 2.305 2.734 2.118 2.212 2.335
499.41 411.02 320.79 194.33 489.36 405.92 317.23
Qm
4.73 4.50 4.23 3.73 4.70 4.49 4.22
验算
ψ
τ
τn3
Qp
0.045936341 0.052548381 0.061999459 0.086334157 0.046416195 0.052274533 0.061536412
Htp
380.79 306.67 232.49 137.59 335.79 281.41 225.67
t=1-6h
Qp
499.41 411.02 320.79 194.33 489.36 405.92 317.23
Wp(万m ³)
1376.06 1094.70 819.68 479.04 1154.25 954.94 755.85
-0.274557823 3.0716779 -0.275104022 3.1915656 -0.275803928 3.3439505 -0.278095567 3.6870571 -0.276682603 3.065531 -0.276322519 3.1814113 -0.277180269 3.3635863

洪水过程线计算步骤

洪水过程线计算步骤

洪水过程线计算步骤嘿,咱今儿就来说说洪水过程线的计算步骤哈!这可不是个简单事儿,但别怕,跟着我一步步来,你肯定能搞明白。

你想想啊,洪水就像个调皮的孩子,一会儿闹得凶,一会儿又安静点,咱得搞清楚它啥时候闹,啥时候停。

那咋搞清楚呢?这就得靠计算啦!首先呢,咱得收集一堆数据,就像给这个调皮孩子建个档案一样。

这些数据包括降雨量啦、流域特性啦等等。

这就好比你要了解一个人的脾气,得先知道他平时的生活环境和经历吧!然后呢,根据这些数据,咱要用一些公式和方法来分析。

这可有点像解方程,得动动脑筋,把那些隐藏的信息给找出来。

比如说,根据降雨量和流域面积,能算出大概会有多少水流进来。

接下来,就是考虑各种因素对洪水的影响啦。

比如说地形,有的地方高,有的地方低,水肯定流得不一样快呀!这就好像一条路有的地方平坦,有的地方坑坑洼洼,你走路的速度肯定也不一样。

再然后呢,咱得把时间因素也加进去。

洪水可不是一下子就来一下子就走的,它有个过程,就像一场表演有开场、高潮和结尾一样。

咱得把这个过程给描绘出来。

计算的过程中,可不能马虎,得仔细再仔细。

就像你做饭,盐放多了放少了味道都不一样,咱这计算要是错一点,那结果可能就差老远啦!等咱把这些都算好了,就能画出那条洪水过程线啦!看着那条线,就好像看到了洪水这个调皮孩子的表演轨迹。

你能知道它啥时候开始闹,闹得有多厉害,啥时候又慢慢安静下来。

哎呀,这洪水过程线的计算步骤虽然有点麻烦,但真的很重要啊!它能帮我们更好地了解洪水,做好应对措施,保护大家的安全。

咱可不能小瞧了它,得认真对待,就像对待一个重要的任务一样。

总之呢,只要咱有耐心,按照步骤一步一步来,肯定能算好洪水过程线。

到时候,咱就能更有把握地和洪水这个小调皮打交道啦!。

水文学设计洪水计算

水文学设计洪水计算
5
灌溉 面积 (104 亩)
150 150 ~ 50 50 ~ 5 5 ~ 0.5
0.5
GB50201-94《防洪标准》,1995年1月1日起实施
水电站装 机容量 (104KW)
120 120 ~ 30 30 ~ 5
5~1 1
其次根据工程的等级、作用和重要性确定建筑物 的级别(1~5):
工程等别
重大城镇 重大工业区 >500 重要城市 重要工业区 100~500
1~0.33 2~1
100~300 50~100
中等城市 中等工业区 2~100
5~2
20~50
一般城市 一般工业区 5~10
10~5
10~20
第二类防洪标准:
按水利水电工程的等级确定设计洪水:
首先根据工程规模、效益和在国民经济中的重要性, 确定水利水电枢纽工程等级(如下表所示):
设计洪水有二个待解决的问题:
1) 按什么标准(设计标准)来选择设计洪水; 2) 确定标准后,如何确定设计洪水的三要素。
对于第一个问题: 设计标准:
一般按工程规模、工程重要性及社会经济 等综合因素,来确定不同的频率洪水作为设计 标准。
1) 防洪设计标准
防洪设计标准:
▲ 第一类:为保障防护对象免除一定洪水 灾害的防洪标准;
2)推求设计洪水的途径:
有以下四种方法: 由流量资料推求设计洪水; 由暴雨资料推求设计洪水; 由水文气象资料推求设计洪水; 利用暴雨等值线图和一些简化公式 估算设计洪水
10. 3. 1 由流量资料推求设计洪水
当设计流域具有一定数量(n30)的实测洪水 资料时,可采用该法推求设计洪水,其推求的思 路和步骤大体与推求设计年径流类似:
洪水资料的审查,以保证资料的可靠性、 一致性和代表性;

洪水总量的计算方法

洪水总量的计算方法

洪水总量的计算方法一、洪水总量计算方法的基本概念哎呀,小伙伴们,洪水总量这个概念呢,简单来说就是一场洪水从开始到结束总共的水量啦。

这就像是你去接水,从开始放水到接满了,那桶里的水总量就是类似洪水总量的概念哦。

二、计算洪水总量的常见方法1. 流量过程线法这是个挺常用的办法呢。

咱们先得知道洪水的流量随时间的变化情况,就像看一个人跑步速度随时间的变化一样。

然后把每个时间段的流量乘以这个时间段的时长,再把这些乘积都加起来,就得到洪水总量啦。

比如说,第一个小时流量是10立方米每秒,那这一个小时的水量就是10乘以3600秒(因为1小时 = 3600秒),就得到这一个小时的水量啦。

然后按照这个方法把整个洪水过程的每个时间段都算好再加起来。

2. 降雨径流关系法这个方法呢,是根据降雨和径流之间的关系来计算洪水总量的。

一般来说,下了雨之后,一部分雨水会渗入地下,一部分会变成径流流走,变成洪水的那部分径流就是我们要关注的。

我们要先找到这个地区降雨和径流之间的关系公式或者曲线,然后根据降雨量来计算径流量,也就是洪水总量啦。

不过这个方法有点麻烦的是,不同地区的降雨径流关系可能差别很大,所以得找到适合咱们计算地区的关系才行。

3. 单位线法单位线就像是一把特殊的尺子。

它是在特定的流域条件下,单位时间内单位净雨深所产生的地表径流过程线。

我们可以根据这个单位线,再结合实际的净雨情况,来计算洪水总量。

比如说,我们知道了单位线对应的流量过程,然后乘以实际的净雨深度,再做一些调整,就可以算出洪水总量了。

三、影响洪水总量计算准确性的因素1. 数据准确性这可是很关键的一点哦。

如果我们测量流量或者降雨量的数据不准确,那算出来的洪水总量肯定就不对啦。

就像你做菜,如果盐的量称错了,菜的味道肯定就不对了。

所以测量设备要准确,测量方法也要科学。

2. 流域特性不同的流域有不同的特性,像地形啊、土壤类型啊、植被覆盖啊,这些都会影响洪水总量的计算。

比如说,植被覆盖率高的流域,雨水被植被截留和下渗的就多,洪水总量可能就相对小一些。

安徽84办法洪水计算

安徽84办法洪水计算

100 0.56 44 0.51
a24= a1=
0.98 0.98
殷坳水库 洪水计算过程: 设计频率 (%) P=2 14.5 2.15 0.25 100 0.56 44 0.51 2.62 2.42 262 106.48 256.76 104.3504 0.41 60 196.76 0.72 0.56 110 校核频率 (%) P=1 14.5 2.15 0.25 100 0.56 44 0.51 3.01 2.74 301 120.56 294.98 118.1488 0.4 60 234.98 0.71 0.55 129
基本数据(绿色区): 工程名称: 殷坳水库 地区分区: 江淮地区 地形类别: (江淮)丘陵 校核频率 1 (%) P=
设计频率 (%) P= 集雨面积(Km2) F= 干流长度(Km) L= 流域平均宽度(km) B= 干流平均坡降(‰) J=
2 14.5 6.75 2.15 0.25
H24点均= Cv24= H1点均= Cv1=
1、 流域特征值:
集雨面积(Km2) F= 流域平均宽度(km) B= 干流平均坡降(‰) J= H24点均= Cv24= H1点均= Cv1=
2、
查读流域中心处 的H及Cv值:
3、
根据P、Cv值, 查Kp值: 求点暴雨量H24 、H1:
Kp24 = Kp1= H24=Kp24 × H24点均= H1 =Kp1 × H1点均 =
计算面雨量值 4、 P24、P1:
P24=a24 × H24= P1=a1 × H1= P1/P24=
根据地形类别及 P值,查损失量 计算面净雨量 R24 由P1/P24,查n 6、 及R3/R24:
5、
Δ= R24=P24-Δ n= R3/R24= R3=R3/R24 XR计算瞬时单位线 参数k 江淮之间山丘 区:

洪水计算

洪水计算

洪水计算㈠、洪水设计标准大乐亭水库属小(二)型水利工程,其等级划分按照《水利水电工程等级划分及洪水标准》(SL252—2000),该工程为五等五级建筑,对山区、丘陵区水利水电工程永久性水工建筑的洪水标准其重视期按30—20年一遇设计,300—200年一遇校核,因此,洞甲水库采用防洪标准按30年一遇设计,300年一遇校核。

㈡、洪水复核大乐亭水库坝址以上集雨面积为1.35km2,由于集雨面积及其上下游无水文站,无法取得确切的水文资料,其洪水计算采用《贵州省暴雨洪水计算实用手册(修订本)小汇水流域部分》中简化公式进行计算。

①、洪峰流量的计算采用公式QP=ψp″F0.89式中:Qp—相应频繁下的洪峰流量(m3/S)ψp″—经验性系数(设计时为23.8,校核时为43.0)F—坝址以上集雨面积km2即设计洪峰流量为16.89m3/S,校核洪峰流量为30.51 m3/S,②、洪峰总量的计算采用公式W p=0.1CH24F式中:W p—洪水总量(万m3)C—径流系数(设计时0.86,校核时为0.88)H24—最在24小时降雨量(设计时254mm,校核时为390mm)F—集雨面积即设计洪水总量为14.85万m3,校核洪水总量为23.34万m3㈢、水库调洪计算水库流域面积小,库容也很小,暴雨汇流时间短,无合适的流量过程线可套用,因此,采用三角形概化法进行水库的调洪计算。

水库的泄洪流量按下式计算:q=MEBH3/2式中:m—流量系数,取m=0.36E—侧收缩系数,E=0.95B—溢流堰宽,B=7.6mH—堰上水头(m)水库水量平衡用下式计算:(Q1+Q2)/2▽t-(q1+q2)/2▽t=V2-V1=▽V式中:Q1、Q2—进段▽t始、未的入库流量(m3/S)q1、q2—时段▽t始、未的水库蓄水量m3▽t—计算时段(秒)水库泄流方程式:q=f(V)联解水量平衡方程和泄流高程,用公式算法,即可求得最大泄洪流量和最高洪水位,详见附表2、附表3、附表4,设计洪洪水过程公式的推求:洪水过程线采用概化三角形线,洪水历时采用下式计算:T=2W p/Q m小时式中:W—洪水总量(m3)Qm—洪峰流量(m3/S)涨洪历时t1与退洪历时t2的比例,即:t1:t2=2据此作出洪水过程线图。

水文学设计洪水计算

水文学设计洪水计算

概述: 水利工程的防洪问题可归纳为二类:
水利工程下游地区的防洪问题 水工建筑物本身的安全防洪问题
设计洪水 (Flood design)
上述的二个问题都需要对有关河段/地点按指 定标准选择出将来水利工程运行期间可能发生的 一次洪水,作为设计的依据。这种用以设计水利 工程所依据的各种标准的洪水的总称为设计洪水。 设计洪水包括设计洪峰流量、设计洪量和设计洪 水过程,常称为设计洪水三要素。
非常运用的洪水标准用以确定水利水电工 程的校核洪水位,这种标准的洪水称为校核洪 水。
实例
北京密云水库:
设计洪水标准:P=1/1000,Q =15,200 m3/s 校核洪水标准:P=1/10,000, Q =216,00 m3/s
三峡工程:
设计洪水标准:P=1/1000,Q =98,800 m3/s 校核洪水标准:P=1/10,000, Q =113,000 m3/s
① 连续系列的经验频率计算 按前述的方法计算:
m Pm n 1
式中, Pm : 大于或等于某一变量的经验频率; m : 变量由大到小排列的序号; n : 连序系列中的总项数。
② 不连续系列的经验频率计算
分别处理法
将实测系列与含特大值的系列看作从总体中 抽出的二个随机ห้องสมุดไป่ตู้序样本,各项分别在各个系列
3) 洪水资料的延展
洪峰洪量频率计算一般要求系列容量n30 ,否
则必须进行系列的插补以及尽可能地利用历史洪 水和暴雨资料展延系列,以增加洪水系列的信息 量以提高代表性,减少频率分析的抽样误差。
利用上下游测站或邻近的测站流量资料进 行插补延长;
❖ 利用本站洪峰和洪量的关系进行展延;
利用本流域暴雨资料插补延长。
文献考证期:

【doc】用退水曲线法计算设计洪水过程线

【doc】用退水曲线法计算设计洪水过程线

用退水曲线法计算设计洪水过程线用退水曲线法计算设计洪水过程线贵州省电力工业局提吴秉度要本文在综合分析洪水过程特性的基础上,提出了一新的计算设计洪过程线的方法——退永曲线法,这种计算方法不但能够同时控制设计洪水过程线的峰量六小和形状,保证计算成果的质量,而且适用范盈广,灭便于用微机进行算,很有实用价值. (一)前言设计洪水过程线,是进行调洪演算,并据确定水工建筑物规模尺寸,或者对已运行水库进行安全复核的主要依据.当利用流量资料计算设计洪水时.设计洪水过程线大都采用放大典型洪水过程线的办法推求.目前常用分时段同频率控制放大法或同倍比放大法.用分时段同频率控制放大法计算时,由于在不同的设计时段采用不同的放大系数,故设计洪水过程线在各时段交界处不能连续衔接,形状相似性很差,需要进行人为修整.用同侪比放大法计算时,出于在所有的设计时段都采用同一个放大系数故只能保证设计洪水过程线的洪峰流量或控制时段的洪量符合设计条件而其余设计时段的洪量往往与设计值相差甚多.这主要是由于计算方法还不够完善,为此笔者在综合分析洪水过程特性的基础上,设计了一种能同时控制设计洪水过程线峰量大小及形状的计算方法.实际验证表明,这种计算方法在保证设计洪水过程线质量方面有非常好的效果,特提出供参考,推广=(二)计算原理t.洪木过程特性分析各个洪水过程,不仅峰量大小各有差异,而且过程形状也不相同:但是,洪水过程都是由连续变化的涨水曲线和退水曲线所组成,这仍然是它们共同的特点:任取一个洪水过程(或某一个设计时段),如果把各时刻的流量Q从大到小编为I(I0,l,……I),分析一下Q与I之间的相关关系,则可以发现它们的相关曲线都类似于退水曲线(图1),符合指数函数的变化规律,可表示为:Q,=Q(1)式中:I——排序变:『t(,≥0):Qi——I对应的流量Q.——,一0对应的流量,即最大流量m和B是和相关曲线形状有关的两个常数,可用资料统计方法求得.其近似值则可由下式直接计算:"o7.~inin导鲁)七czB=~】Ⅱ苦一I:(3)式巾:Q,I——最小流量及其排序号;0,I——某一巾问代表性流量及其排序号.—攀I"—,-~≤iII广一c,I1103El,5【I…』圆1流量排序关系上述西数关系就是洪水过程特性的综合反映,主要表现在如下两个方面:(1)洪水过程各时刻流量的大小与此时刻的排序变量I的大小成正比关系.只要各时刻的I:值一确定则不论洪水过程的峰量大小如何变化,其洪蜂洪谷位置以及各且于刻流量Q之间的相对大小关系仍不会改变,也就是说排序变量I是反映洪水过程形状的主要参数. 如果两个洪水过程各时刻的排序变量值都相同,则它们的过程形状必定基本相似.(2)洪水过程各时刻流量Q『的犬小在Q至之间随I的变化而连续变化,其变化规律只需Q.Q,Q三个已知点就能控制.也就是说Q.,Q,Q是反映洪水过程峰量大小的主要参数.Q.是最大流量控制值,Q是退水终点的衔接条件,Q则主要与洪量直接相关.如果知道了一个洪水过程的QQ,Q,也就等于知道了此洪水过程的峰量大小.2.讦算愿理l从上述特性可以看出,如果我们能够根据已知条件确定设计洪水过程线各时划的排序变量J,及Q.,Q,Q的数值,也就能控制住设计洪水过程线的形状和峰量大小困此,设计洪水过程线的计算可按如下原理进行: (1)根据已知的典型洪水过程线资料,求出各时刻的排序变量I并将其直接引用于设计洪水过程线的计算,可保证两者在形状上保持相似.鉴于排序变量I在计算设计洪水过程线中仪起控制形状的间接作用,其绝对值大小对计算成果没有什么影响为简化计算,可把典型洪水过程线的流量排序关系曲线假设为标准指数函数形式,令m=l,B—l,则排序变量I可由下式计算,q,,"()式中:q——t时刻典型洪水过程的流量;q——典型洪水过程的最大流量.-(2利用设计洪峰流量(最大流量),设计洪量或设计时段洪量(平均流量)羽J基流量(最小流量)等条件,作为控制设计洪水过程线峰量九小的参数Q.,Q.和Q,则设计洪水过程线各时刻的流量Q就能由式(1)直接进行计算.如果计算结果有较大的洪量误差,可以用调整Q值的办法重新计算一次,直到满意为止用基流量作为退水终点衔接条件时,应攒当地实际情况取值,但事实上基流量的取值大小对计算成果影响很小,为方便通用起见,可取为大于零的定值,比如等于1(三)计算方法1.计算规则设汁洪水一般都彳『多个设汁时段从上述计算原理可知,每一个设计时段的设汁洪水过程线都是能够计算的冈此当设计洪水有多个设计时段时,可以采用分段处理的办法解决.但为了保证设计洪水过程线在各肘段交界处能连续衔接,并不至发生数学运算柏困难还应遵循以下两个规91lJ(1)把前一计算时段的边界成果和后一计算时段的平均流量作为本计算时段的边界控制条件,以保证设计洪水过程线的连续衔接(2)汁舅顺序拨设计时鞋序的遵守进行.也就是说,后一殴计时段的边界成果就足本计算时段的退水衔接条件Q,q,,前一设计时段的平均流量就是本计算}f寸段的高水衔接条件Q.,q.这种处理办法,一般都能满足吼≥q(即I≥0)的条件,敛0遥葬可顺利进行2.计算步骤按照上述原理和规则,可把具体的计算步骤归纳如下:(1)准备工作.8.根据设计时段历时,确定典型洪水过程线牛}设计时段的时序范围, 并统计出各设计时段的洪量=.计算出典型洪水过程线和设计洪水过程线}}设计时段的平均流量,(2)逐段计算设计洪水过程线..蜂量大小参数取值,耍¨计算规则2.所述把本计算时段的平均流量取为Q,的初值.这是控制时段洪量的主要参数b.f{J式(4)计算备时刻的排序变量I及I,I.c.寸算设计洪水过程线.能山Q,Q及I,I按式(2).式(3)求出参数",B;再由式(1)计算Q;最后统计本计算时段设计洪水过程线的平均流量,与设汁值进行比较.若误差△不符合精度要求,将Q值乘以(1一△)再重新计算直至满意为止.3.算倒某水库按万年一遇洪水标准进行防洪安全复核,设计洪水的峰量大小如表l所选的典型洪水过程线如表7中的"ql"栏.试求设计洪水过程线,要求时段洪量的误差小于l.解:准备工作的计算成果见表l和表2,各设计J付段设计洪水过程线计算成果见表3~表7及图2.表1各设计时段洪■参数I段.MII.^段长,设wG.8O08.0|0典W2.5753.225范围2—20D一56表2各设计时段平均流量段QMlI2典l620设4l1表5第2设计时段计算参数(第l提计算)计算'r均{_}c量=38l计算设芷6-】8457表4第2设计时段计算参数(第2扶计算)计算平均流量36l计算误差=0557375表5第1设计时段计算参数(第1次计算)0.QQIBM典l620993582o.48921.0237】_000O1.0设48|02R23】3O0n.48g2】.02371.280】】.0343 算平均流量=2fi72计算误差=1.847172表6第1设计时段计算参数(第2冼计算)计掉平均流量=2645计算误差=0.8052826厂,I囤2典型,设计洪水过程线(P一0.01j'4特殊清况的处理使用本方法计算设计洪水过程线的必要条件是I.≥0,也就是说q.的取值必须大于或等于计算时段内典型洪水过程线任一时刻的流量q.当典型洪水过程线为单峰形状肘,都能自动满足这一使用条件,但典型洪水过程线为多峰形状时,则可能会出现以下两种特殊情况,应分别进行处理:'(1)如果有一个或多个较大的次峰位于洪峰时段以外的设计时段内,则次峰有可能大于前一设计时段的平均流量.若遇到这种情况,只需将再前一个设计时段的平均流量取为吼,问题就可解决(2t)如果设计洪水的设计时段历时的划分没有充分考虑典型洪水的过程特性,则可能出现某一设计时段的时序范围刚好位于典型洪水过程线洪谷位置的情况,至使这一设计时段的平均流量小于后一设计时段的平均流量表7设计洪水过程计算成果Iicc,f.,}.,I{"cz,}Q算fQ2ln2g4Ⅱ90?887388884421303670?995778274【18503I3{1l?0989692655】690323021?190662258714目0332701?302~?546514】52n42441?1039485456I如03522L1.5029432406l2303S200I?5027385361l050371821.69a35329Ij381641?80l23062873I8O39147I.91062702j337l0d01332?n10724l22540804ll202.1_352142004800d21ug2?2(197l92179484031n22.2761178.1664760d492?671661554000d5902.1012154l4{36046842?1702142133339047792.53161331240110t8742?5970I23l1528049692.3669l14106200鲫652?2661069923105l622.7739lD【94l98052j92?82359589Ol202.I13510I80053572.~58t)9I86】l6【.9】742766:0.259S1jO054542?9I∞S680375】'.2.70.53461300555:2?94988277 4646567627755884949442』01l7O1I1320】2】42013I610141t320lj160016140D17I30018I230】9ll5020la硼2IlO00229I423810275I256jI265g2275150.65691_2056493?00927772 284580.7742g38违反了设计时段越长平均流量越小的变化规律,此时若用本方法计算设计洪水过程线,虽然不会出现数学运算的困难,但参数m变为负值,计算结果是设计洪水过程线在典型洪水过程线的洪谷位置反而出现了洪峰,破坏了形状的相似性.对于这种情况,任何计算方法都无法解决,因为它是计算条件不合理所造成的. 要避免产生这种特殊情况的发生,应该在设计时段历时划分时注意典型洪水过程的变化特性,尽量照顾峰型的完整,时段的数目也不宜过多假如在计算设计洪水过程线时才发现这个问题,则也可以用舍弃这一设计时段的办法处理,仍可取得较好的计算成果8(四)结语(1)本计算方法主要利用退水曲线特性的原理来计算设计洪水过程线,故可称为退水曲线法.由于在计算时艟同时控制设计洪水过程线的峰量大小和形状,因此比目前采用的计算方法更完善.(2)本计算方法拒保证设计洪水过程线在各设计时段交界处连续衔接,没有人为修整的任意性.计算成果比较客观.(3)用本方法计算的设计洪水过程线的质量是比较高的.不仅各设计时段的洪量能达到指定的精度,而且其过程形状也必然和典型洪水过程线的形状基本相似.(下转第28页)到爆破抛掷的巨大能量的冲击而有所压密.这次在坝基河床钻孔,进行抽水试验和挖坑取样试验:覆盖层厚度2.3~7.7m,渗透系数最大值为1.1×lO~on~/s,覆盖层结构紧密,无槊空现象,级配连续,天然容重24T/m,估计今后爆破后的坝基干容重比白龙河大坝原型探井取样试验数据更好一些柴石滩水库工程坝址,属有限深透水地基,其渗透条件与石碴坝近似.因此,坝体坝基渗漏量的计算,按石碴坝有限深地基的近似解法.当库水位在正常高l60.4m时,坝体年渗漏量为422.Yyi~t,坝基年渗漏量98万ma, 为连续级配非发展性管涌土柴石滩大坝在坝高50m处目一个30ITt宽的平台,其作用是:(1)在万一灌淤防渗失效达不到渗流控制要求时,可在平台上再作垂直防渗,直捅基岩.(2)爆坑内残留石料约400万m,为完建工作和运行安全计,是需要搬运处理的这么大的方量要运到他处堆放不如冲填至坝坡上简便(3)增加丁坝的宽度对稳定更为有利(4)便于消除大爆破带来的畸形堆积的影响;6.关于施工安排及大坝整形加高枢纽施工共安排4年工期,先搞导流泄洪洞开挖衬砌,同时开挖药室;至第2年11月起爆成坝;然后利用雨季到来之前的半年时阃,搞整形加高到拦洪高程;第4年再加高到设计至于相似的程度如何,还可以通过参数mB的大小来判断.若m值大于l,则设计洪水过程线比典型洪水过程线肥硕.若B值太于I,则设计洪水过程线比典型洪水过程线退水速度更快.反之也然如果m和B都接近于l,则两者的形状完全相似.(4)本方法适应范围广,只要各设计时段历时取得合适,能够与典型洪水过程特性相匹配,则都可以用本方法顺利进行设计洪水过程线的计算2S高程,开挖衬砌溢洪道并扫尾我们在工作中考虑到年度投资的集中和先解决主要矛盾,设想一次设计分期施工把电站隧洞及厂房划为二期工程.在施工安排上,在太爆破之后立即整理爆堆上游坝坡面,以高压水冲诜,加速坝体的早期沉降,并爆醉裸露的大块石,填平补齐,用重型碾压机具压实,为水力冲填的斜墙施工造就一个平顺稳定的床面,保证冲填斜墙厚度的均匀水力冲填初期,应尽量用稀浆,使之充分灌淤坝体,改善其水工性能,,四,结语通过柴石滩水库工程可行性研究,深深感到定向爆破筑坝是一项能节约大量资金和加快建设速度的筑坝新技术一个工程,在导流泄洪建筑物施工的周时,就可进行主体工程施工,即同时开挖药室,待泄洪建筑物完建后,即可装药爆破爆破后只需稍加整理,随着坝前库水位的上升,用水力冲填灌淤等有效方法进行坝体防渗,与此同时进行输水工程和厂房的续建和机电安装,比常规施工方法可大大提前建成投产受益因此,推广定向爆破筑坝新技术不失为一条加快我国水利水电建设之有效途径.本文在写作过程巾.褥勋莉虹尧,黄园勋,棘巷或,叠常印等同志的帮助特此称谢,(5)本计算方法全部采用计算公式计算设计洪水过程线.故便于使用计算机,提高工作效率很有实用价值参考文献:1]中华^昆共和嗣水利部,电力工业部,水衬水电工程设计水计算规范$DJ2279(试行.水利电力出版}±l0E3年.[2]华东承利学院水文系犏水文顶拉,中国工业出版社,962年.:3]华东水{ll学院主编出工设手册第二卷.水利电力出版祉.1g84年。

水库洪水计算

水库洪水计算

3.24 2.18 1.661
445 0.50 299 228
H6
KP
H6P
Cv6
Cs/Cv=3.5
p=0.33%
94.70
3.3
313 0.51
p=3.3%
94.70
2.21
209
p=10%
94.70
1.67
158
H1
KP
H1P
Cv1
Cs/Cv=3.5
p=0.33% p=3.3% p=10%
55
2.83
H1(最大 1小时点 雨量均 值)
CV1(最大1小 时点雨量变 差系数)
137.30
0.50 94.70 0.51550.43(2)从附表1查得各种历时的KP值,计算10年一遇和50 年一遇的各种历时降雨量
p=0.33% p=3.3% p=10%
H24
KP
H24P
Cv24
Cs/Cv=3.5
137.30 137.30 137.30
20
4.43 0.96
3.47
9
4.90 1.43 3.47
21
4.43 0.96
3.47
(3)①计算汇流参数m值
F=
1.5 km2
L=
1.62 km
J=
124.36 0‰
θ =L/J^(1/3 )*F^(1/4) m=0.063* θ^0.384
0.293 <1.5 0.039
(4)计算地表洪峰流量
2.3
4.9
4.9
4.9
17
18
19
20
21
11.0
11.0
4.4
4.4

福建省洪水过程线推理公式法计算

福建省洪水过程线推理公式法计算

C v10.41均值H 1(mm)57C v60.52均值H 6(mm)102C v240.54均值H 24(mm)159K P24H 24P (mm)K P6H 6P (mm)K P1H 1P (mm)2.92464.282.83288.662.35133.95n 1-60.5715H 3p (mm)214.48t13624点雨量(mm)133.95214.48288.66464.28点面折减系数at 0.8250.8590.90.954面雨量(mm)110.51184.23259.79442.92时程12345雨量 6.10 6.10 6.10 6.10 6.10时程1314151617雨量36.8636.86110.5125.1925.19净雨平均强度i(mm/小时)18.46稳定入渗率fc(mm/小时)6H 24-H 6110.5173.7375.5624小时雨型表计算分配1、查算设计流域各种历时的暴雨参数2、从附表查得各种历时的Kp值,计算各种历时降雨量3、计算1-6小时的暴雨递减指数n 1-64、计算3小时的设计降雨量5、计算各种历时面雨量(当流域面积<10km2时,可直接采用点雨量代表面雨量;当流域面积大于10km2时,需根据暴雨点面折减系数关系表,查得暴雨点面折减系数α,乘以相应的点面雨量即得)6、计算24小时设计雨量的时程分配(根据24小时设计雨型表,即附表3计算得到)H 1H 3-H 1H 6-H 3183.137、设计净雨查附图7,得fc (1)计算次净雨平均强度因不扣损,将上面所求的雨量过程就作为24小时设计净雨过程表3 24小时设计雨型表时段历时(h)662136占H1%100占(H3-H1)%100占(H6-H3)%100占(H24-H6)%204238得到)67891011126.1012.8212.8212.8212.8212.8212.821819202122232425.1911.6011.6011.6011.6011.6011.60。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档