误差及其表示方法
误差理论与数据处理期末_简答
第四章
测量不确定度的基本概念:测量都有误差——测量结果具有不确定性;寻找最佳评定方式——科学评价测量质量——测量不确定度;测量不确定度小——测量质量高——使用价值高——测量水平高
测量不确定度定义:测量结果变化的不肯定,表征被测量真值在某一个范围内的一个估计,表示被测量的分散性;
一元线性回归,目的:确定两个变量之间的关系 方法:最小二乘法
变量之间的关系类型:函数关系(具有确定性,具有明确的数学表达式),相关关系(变量之间存在密切联系)
回归分析的目的:寻求多个变量之间能反映事物内部规律的数学表达式
(2)各类误差的特征及处理方法;
(3)对测量结果进行评定
第二章
随机误差产生的原因:测量装置,环境,人员因素。(均属于不确定因素)
粗大误差产生的原因:测量人员的主观原因,外界条件的客观原因
系统误差产生的原因:测量装置,环境,测量方法,测量人员
系统误差的特征:误差的绝对值和符号保持不变,条件改变时,误差按一定规律变化
5)展伸不确定度:给出一个测量结果的区间,使被测量的值大部分位于其中,为此需用展伸不确定度(也有称为扩展不确定度)表示测量结果。
展伸不确定度由合成标准不确定度,乘以包含因子k得到,记为U,即;
第五章
最小二乘法可解决的问题:参数的最可信赖估计,组合测量的数据处理,拟定经验公式,回归分析。
简述最小二乘法原理:测量结果的最可信赖值应在残余误差平方和(在不等精度应为权残余误差平方和)为最小的条件下求出,这就是最小二乘法原理。(等精度最小二乘法原理 )=最小,不等精度最小二乘法原理 =最小
5)测量的精度。
① 准确度:表征测量结果接近真值的程度。系统误差大小的反映
中学物理实验中的测量误差及其表示方法
中学物理实验中的测量误差及其表示方法在中学物理实验中,对物理量进行定性测量是十分重要的,因此,实验课中首先讲授的内容便是误差理论。
测量的本质是将被测量直接或间接的与某一同类标准量进行比较,获取测量结果,实际上是以这个标准量作为单位,读出被测量与其比值,这个比值连同单位一起即为测量的结果,通过测量,我们要得到某一客观事物某一特性的度量,但实际上,无论如何,我们只能得到这一特性在一定程度上的近似,而无法获得它的绝对真实取值。
也就是说,任何测量结果都与被测量的客观真实值存在差异,这种差异即为误差。
在现行的物理教材与教学中,对误差的知识介绍偏少,本文对中学物理实验中误差的相关知识进行探讨。
一. 物理实验中有关测量的几个概念1. 等精度测量:在同一条件下所进行的一系列重复测量称为等精度测量。
2. 非等精度测量:在多次测量中,如果对测量结果精确度有影响的一切条件不能完全维持不变的测量称为非等精度测量。
3. 真值:被测量本身具有的真正值称之为真值。
真值是一个理想的概念,一般是不知道的,但在某些特定情况下,真值又是可知的,如一个整圆圆周角为3600等。
4. 实际值:误差理论指出,在排除系统误差的前提下,对于精密测量,当测量次数无限多时,测量结果的算术平均值极接近于真值,因而可以将它视为被测量的真值。
但是测量次数是有限的,故按有限测量次数得到的算术平均值,只是统计意义上的近似值,而且由于系统误差不可能完全排除,因此通常只能把精度更高一级的标准仪器所测得的值作为真值。
为了强调它并非是真正的真值,故把它称之为实际值。
5. 标称值:测量仪器上所标出来的数值。
6. 示值:由测量仪器读数装置所指示出来的被测量的数值。
7. 测量误差:用测量仪器进行测量时,所测出来的数值与被测量的实际值(或真值)之间的差值。
二. 物理实验中误差的分类按照误差出现的规律,可把误差分为以下三类。
1. 系统误差:在同一条件下,多次测量同一量值时,所得到的测量误差的绝对值和符号保持不变,或在条件改变时按照一定规律变化的误差称之为系统误差。
第二章 误差分析
重做!
例:加错试剂,少加试剂 仰视、俯视
• 俯视
• 仰视
思考题
1.下列情况引起什么误差?如何减免? ⑴砝码受腐蚀;
系统误差,仪器校正 ⑵重量分析中,样品的非被测组分被共沉淀;
系统误差,另一方法测定。
⑶样品在称量过程中吸湿; 系统误差,将水分烘干后再称样。
⑷读取滴定管读数时,最后一位数字估计不准;
1 P
二、有限数据随机误差的t 分布(t-distribution)
1.正态分布——描述无限次测量数据
t 分布——描述有限次测量数据
2.正态分布——横坐标为 u ,t 分布—横坐标为 t
u
t
x
x
s
为总体均值
为总体标准偏差
s为有限次测量值的标准偏差
3.两者所包含面积均是一定范围内测量值出现的概率P 正态分布:P 随u 变化;
随机误差,读多次取平均值。
二、误差的表示方法
某一试样sample的真实值为μ,用同一方 法进行n 次测定,结果如下: x1、x2、x3、……xn 求得其平均值为 x 问:实验结果如何?或如何评价这一实验结果?
(1)计算结果的相对标准偏差,说明(精密度)
(2)计算结果的相对误差,说明结果的准确程度。
小结
●分析过程中的误差有系统误差和随机误差,
●对同一样品多次平行测得值的相互接近程度
用精密度(S)表示;其平均值是否接近真值, 用准确度(E)表示。
●必须消除系统误差减小随机误差,以提高
分析结果的准确度。
第二节
总体 抽样
随机误差的统计概念
样本 统计方法 观测 数据
基本概念:
总体population——研究对象的全体 个体individual——组成总体的每一个单位
误差理论
• C.引用误差:测量仪器的误差除以仪 器的特定值。实际上一种相对误差。 • ra= △/A×100%=示值误差/测量仪 器的量程
三、准确度和误差
• 1.准确度: 系指测得结果与真实值接近 的程度。 • 2.误差: 系指测得结果与真实值之差。 • 误差愈小,则准确度愈高,所以准确度 高低用误差大小来衡量。准确度除用绝 对误差表示外,更常用相对误差表示。
偏差的分类及公式
绝对偏差
d xi x
相对偏差
平均偏差
d % 100% x
d d1 d 2 d n n
d % 100% x
2 1 2 2 2 n
相对平均偏差 标准偏差
d d d S n 1
标准偏差
• 是反映一组供试品测定值离散的统计指 标。
• 8、在滴定分析法测定中出现的下列情况,哪 种属于系统误差( D )。 A、试样未经充分混匀 B、滴定管的读数读错 C、滴定时有液滴溅出 D、砝码未经校正 • 9、滴定分析中,若试剂含少量待测组分,可 用于消除误差的方法是(B )。A、仪器校 正 B、空白试验 C、对照分析 D、多测几 组 10、一个样品分析结果的准确度不好,但精密 度好,可能存在( C )。 A、操作失误 B、记录有差错 C、使用试剂不纯 D、随 机误差大
• 例:用两种方法来测量L1=100mm的尺寸, 其测量误差分别为δ1=±10μm,δ2=±8μm, 根据绝对误差大小,可知后者精度高。但若用 第三种方法测量L2=80mm的尺寸,其测量误 差分别为δ3=±7μm,此时用绝对误差就难以 评定它与前两种方法精度的高低,必须用相对 误差来评定。 • ⑴δ1/L1=±10μm/100mm=±0.01% • ⑵δ2/L2=±8μm/100mm=±0.008% • ⑶δ3/L3=±7μm/80mm=±0.009% • 由此可知,第一种方法精度最低,第二种方法 精度最高
(整理)误差及其表示方法
误差及其表示方法误差——分析结果与真实值之间的差值( > 真实值为正,< 真实值为负)一. 误差的分类1. 系统误差(systermaticerror )——可定误差(determinateerror)(1)方法误差:拟定的分析方法本身不十分完善所造成;如:反应不能定量完成;有副反应发生;滴定终点与化学计量点不一致;干扰组分存在等。
(2)仪器误差:主要是仪器本身不够准确或未经校准引起的;如:量器(容量平、滴定管等)和仪表刻度不准。
(3)试剂误差:由于世纪不纯和蒸馏水中含有微量杂质所引起;(4)操作误差:主要指在正常操作情况下,由于分析工作者掌握操作规程与控制条件不当所引起的。
如滴定管读数总是偏高或偏低。
特性:重复出现、恒定不变(一定条件下)、单向性、大小可测出并校正,故有称为可定误差。
可以用对照试验、空白试验、校正仪器等办法加以校正。
2. 随机误差(randomerror)——不可定误差(indeterminateerror)产生原因与系统误差不同,它是由于某些偶然的因素所引起的。
如:测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。
特性:有时正、有时负,有时大、有时小,难控制(方向大小不固定,似无规律)但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律(统计学正态分布),可用统计学方法来处理系统误差——可检定和校正偶然误差——可控制只有校正了系统误差和控制了偶然误差,测定结果才可靠。
二. 准确度与精密度(一)准确度与误差(accuracy and error)准确度:测量值(x)与公认真值(m)之间的符合程度。
它说明测定结果的可靠性,用误差值来量度:绝对误差 = 个别测得值 - 真实值(1)但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。
如果被称量物质的质量分别为1g和0.1g,称量的绝对误差同样是0.0001g,则其含义就不同了,故分析结果的准确度常用相对误差(RE%)表示:(2)(RE%)反映了误差在真实值中所占的比例,用来比较在各种情况下测定结果的准确度比较合理。
电工指示仪表的误差和准确度
电工指示仪表的误差和准确度•误差:在电工测量中,无论哪种电工仪表,也不论其质量多高,它的测量结果与被测量的实际值之间总会存在一定的差值,这个差值叫做误差。
•准确度:是指仪表的测量结果与实际值的接近程度.可见,仪表的准确度越高,误差越小.误差值的大小可以用来反映仪表本身的准确程度。
一、仪表的误差•基本误差:仪表在正常工作条件下,由于仪表本身的结构、制造工艺等方面的不完善而产生的误差叫基本误差。
基本误差是仪表本身所固有的误差,一般无法消除。
•附加误差:仪表因为偏离了规定的工作条件而产生的误差叫附加误差。
附加误差实际上是一种因外界工作条件改变而造成的额外误差,一般可以设法消除.二、误差的表示方法绝对误差、相对误差、引用误差绝对误差:仪表的指示值A x与被测量实际值A0之间的差值,叫做绝对误差。
△=A x-A0在计算△值时,通常可用标准表的指示值作为被测量的实际值。
将上式变形可得A0=A x-△=A x+(-△)=A x +C上式中的C=-△称为仪表的校正值。
实际中在测量同一被测量时,我们可以用绝对误差的绝对值来比较不同仪表的准确程度,越小的仪表越准确。
用一只标准电压表来校验甲、乙两只电压表,当标准表的指示值为220V时,甲、乙两表的读数分别为220。
5V和219V,求甲、乙两表的绝对误差。
解:代入绝对误差的定义式得甲表的绝对误差△1=A x1-A0 =220。
5-220=0.5V乙表的绝对误差△2=A x2-A0 =219-220=-1V相对误差•绝对误差△与被测量实际值A0比值的百分数,叫做相对误差γ,即•一般情况下实际值A0难以确定,而仪表的指示值Ax≈A0,故可用以下公式计算实际测量中,相对误差不仅常用来表示测量结果的准确程度,而且便于在测量不同大小的被测量时,对其测量结果的准确程度进行比较.已知甲表测量200V电压时△l=+2V,乙表测量10V电压时△2=+1V,试比较两表的相对误差。
解:甲表相对误差为乙表相对误差为在测量不同大小的被测量时,不能简单地用绝对误差△来判断测量结果的准确程度。
第二节 误差的产生及表示方法
若样本容量为n,平行测定数据为 若样本容量为 ,平行测定数据为x1,x2,…,xn,则此 样本平均值为: 样本平均值为: 1
x=
∑x n
i
当测定次数无限增多时, 当测定次数无限增多时,所得的平均值即称总体平 均值: 均值:µ
x=µ lim
n→ ∞
数理统计的方法已经证明, 数理统计的方法已经证明,在消除了系统误差之后 得到的总体平均值µ 实际上n>30次)即为待测组 得到的总体平均值µ (实际上 次 分的真值T。 分的真值 。
第二节 测量值的准确度与精密度
一、准确度与误差
1. 准确度 准确度(accuracy) : 测量值与真实值的接近程度 的接近程度。 测量值与真实值的接近程度。 准确度用误差表示。 准确度用误差表示。 误差小,准确度高,反之,准确度低。 误差小,准确度高,反之,准确度低。 误差的大小是衡量准确度高低的尺度。 误差的大小是衡量准确度高低的尺度。 准确度高低是系统误差和随机误差对测量结 果综合影响的结果。 果综合影响的结果。
例1
实验测得过氧化氢溶液的含量 w(H2O2)为0.2898, 若试样中过氧化氢 为 的真实值w(H2O2)为0.2902, 求绝对误 的真实值 为 差和相对误差。 差和相对误差。 解:Ea=0.2898-0.2902=-0.0004 Er=-0.0004/0.2902×100%=-0.14% ×
解:甲的测定结果
Zn% xi − x ( x i − x ) 2 Zn%
乙的测ห้องสมุดไป่ตู้结果
xi − x ( xi − x )2
0.19 0.19 0.20 0.21 0.21
x : 0.20
0.01 0.01 0.00 0.01 0.01
对实验数值误差理论和数据处理
9 平均值的有效数字位数,通常和测量值相同。 当样本容量较大,在运算过程中,为减少舍 入误差,平均值可比单次测量值多保留一位 数。
3.3实验数据的初步整理
3.3.1实验数据的列表整理
1.数据的归类整理 2.数据的分组整理
3.3.2 分布规律判断的基本方法— —统计直方图
1.统计直方图 为了对某个随机变量的分布规律作出判断,
如0.0121×25.64×1.05782,其0.0121为三 位有效数字,故计算结果宜记0.328
5 在所有计算式中,常数π ,e的数值,以及,1/2等 系数的有效数字位数,可以认为无限制,需要几位 就可以取几位。
6 在对数计算中,所取对数位数,应与真数的有效数 字位数相等。例如,pH12.25 和 [H+]=5.6×10-13M;
3.误差与数据处理
3.1 误差及其表示方法
误差来源
设备误差 环境误差 人员误差 方法误差
误差分类
系统误差、 随机误差、 过失误差
(1)系统误差
系统误差是由某种确定的因素造成的,使测定 结果系统偏高或偏低;当造成误差的因素不存 在时,系统误差自然会消失。
当进行重复测量时,它会重复出现。系统误差 的大小,正负是可以测定的,至少在理论上说 是可以测定的,系统误差的最重要特性是它具 有‘‘单向性” 。
对于舍去的数据,在试验报告中应注明舍去的原因或所 选用的统计方法。
1).4d 法检验
根据测量值的正态分布可知,偏差大于3σ的测量 值出现的概率约为0.3%,此为小概率事件,而 小概率事件在有限次实验中是不可能发生的,如 果发生了则是不正常的。
即偏差大于3σ的测量值在有限次检验中是不可能 的,如果出现则为异常值,为过失所致应舍弃。 (概率不超过5%的事件称为小概率事件)。
误差的种类及其表示方法
误差的种类及其表示方法在土工测试中,由于测试者读数和记录的严重失误,或者由于仪器仪表的突然波动以及实验条件的突然变化,都会造成异常的测试结果。
通常,把是否超过三倍标准差作为剔除数据的依据。
每一剪切试验会得到一组c、φ的测试结果。
在进行数理统计时,如果发现一组测试结果中的c(或φ)值为异常数据,是把该c(或φ)值单拙剔除而保留其φ(或c),还是应该把整纽c、φ值予以剔除?在审查时经常发现一些勘察报告的物理力学性指标统计表中c和φ的数量不一致,估计是剔除数据时把c(或φ)异常值单独剔除而保留其φ(或c)。
我个人觉得不妥,因为是用一组数据,如有异常应一起剔除。
不知道这样理解对不对。
答复:你的审图还是挺仔细的,你可以问问勘察单位为什么出现c和φ的数据量不一样的情况,同时进行正确的指导,虽然这不属于强制性条文的审查,但可以认为是一种指导和帮助吧。
你提出了资料整理的一个基本问题,即如何处理离散性比较大的数据,主要应该处理的是实测数据,而不是统计得到的指标。
试验数据是一种物理量,通常物理量的真值是不知道的,是需要测定的值。
但由于量测仪器、试验方法、试验环境、人的观察力和测量的程序等都不可能完美无缺,故真值是无法测得的。
实验科学中的真值定义为在无系统误差的条件下,用足够多次的观测,可以获得接近于真值的数值,即观测次数无限多时得到的平均值,一般称为最佳值。
观测值与真值之差称为误差。
误差分为系统误差、偶然误差和过失误差三类。
系统误差是指测定中未被发觉或未被确认的因子所引起的误差。
引起系统误差的原因一般认为是由于仪器不良,如刻度不准、砝码未校正;试验环境的变化,如温度、压力、湿度的变化;操作人员的习惯,如习惯从侧面读数等。
可以用校正仪器,控制环境和改正不良习惯来消除系统误差。
偶然误差是指在已消除系统误差的条件下,但所测的数据仍在末一位或末二位数字上有差别,则称这种误差为偶然误差。
偶然误差的特点是时大时小,时正时负,方向不一定;偶然误差产生的原因不清楚,因此无法控制。
分析化学基础知识 误差的表示方法 分析化学课件
甲、乙、丙、丁四人射箭结果如下:
甲
精密度好
准确度差
乙
精密度好
准确度好
丙
精密度差
准确度好
丁
精密度差
准确度差
准确度和精密度
准确度与精密度的关系
分析结果准确度高,要求精密度一定要高。
分析结果精密度高,准确度不一定高。
准确度和精密度
准确度与精密度的关系
测量结果的优劣
准确度
精密度
表示测量结果的准确性
称量的相对误差越小,准确度越高!
精密度与偏差
精密度
在相同的条件下,多次平行测定结果相互接近程度。
精密度的高低用偏差的大小来表示,反应测定结果的重现性
偏差越小,各测定结果之间越接近,精密度越高,反之。
精密度与偏差
偏差
指测量值与平均值之间的差值。
偏差的表示
绝对偏差、平均偏差、相对平均偏差、标准偏差、相对标准偏差。
n
标准偏差:描述有限测定数据的分散程度
( xi )2
i 1
n
S
2
(
x
x
)
i
i 1
n 1
S
相对标准偏差:标准偏差占平均值的百分率,又称变异系数 RSD 100%
x
精密度与偏差
精密度与偏差
在表示结果精密度的时候应该用谁来进行
较下列两组数据的分散程度
表示测量结果的重现性
称量A、B物体的质量分别为1.1253g,0.1125g,
而两物体的真实质量分别为1.1252g和0.1124g,求
两物体的绝对误差和相对误差。
绝对误差
A物体
0.0001g
化验员培训系列7误差分析及数据处理
▪ 但进行多次测定,便会发现偶然误差具有很多的规律性
(象核外电子运动一样),概率统计学就是研究其规律的一 门学科,后面会部分的讲授。特点:
▪ 有一矿石试样,在相同条件下用吸光光度法测定其中铜
的质量分数,共有100个测量值。
▪ a:正负误差出现的概率相等。 ▪ b:小误差出现的机会大,大误差出现的概率小。
▪ 如何尽量减少误差,误差所允许的范围有多大,误差有何
规律性,这是这一节所要学习的内容,
▪ 掌握误差的规律性,有利于既快速又准确地完成测定任务。
例如,用不同类型的天平称量同一试样,所得称量结果如 表3-1所示:
使用的仪器 误差范围(g)称量结果(g) 真值的范围 (g)
台天平
± 0.1
5.1
5.1±0.1
二、减小测量误差
▪ 由于容量分析和重量分析要求相对误差< 2 ‰ ,即要有
四位有效数字,最后一位为可疑值。根据误差传递原理 (由于结果的计算一般都有各步骤测量结果的相互乘除) 每一步测定步骤的结果都应有四位有效数字。
▪ 如称量时,分析天平的称量误差为0.0001,滴定管的读
数准确至0.01 ml, 要使误差小于1 ‰, 试样的重量和 滴定的体积就不能太小。
法进行分析以资对照,也可以用不同的分析方法,或者由 不同单位的化验人员分析同一试样来互相对照,标准试样 组成应尽量与试样组成相近。
▪ 如,在进行新的分析方法研究时,常用标准试样来检验方
法的准确度,或用国家规定的标准方法对同一试样进行分 析。
▪ 又如,在工厂的产品检验中,为了检查分析人员的操作规
范化或仪器等是否存在系统误差,常用标准试样给分析人 员做,或同一试样给不同分析人员做,这叫“内检”,将 试样送交外单位进行对照分析,这叫“外检”。
数据处理及误差
x——有限次测定平均值
ts n
t ——几率系数 n —— 测定次数
s ——标准偏差 μ——总体平均值
(2) 上式的意义:在一定置信度下(如95%),真值(
总体平均值) 将在测定平均值附近的一个区间即在
3、有限次测定的置信区间
无限次测量:、
u x
0.40
0.30
0.20
0.10
0.00
-3 -2 -1 0
1
2u 3
u 分布曲线
x 有限次测量: 、s
x-μ x-μ
t= =
sx
s
t 分布曲线
y
3、有限次测定的置信区间
讨论:
(1) 由式:t = x - μ s
n 得: x
2)乘除运算中,以有效数字位数最少的 数,即相对误差最大的数为准,来确定结 果的有效数字位数。
例: 9.25×0.21334 的结果
1.200 ×100
0.21334
× 9.25 计算器计算 = 0.0164449 106670
42668 192006
有效数字表达 = 0.0164
1.9733950
1、准确度和误差
准确度:反映测量值与真实值的接近程度。
误差—分析结果与真实值之间的差值。
绝对误差=个别测定值-真实值 E= xi-μ
相 对 误 差Er
=
绝对误差 真 实 值 ×100%
=
E μ
×100%
误差越小,准确度越高。
一、误差的表示方法
物品 测量值(x) 真值(μ)
A 0.2175g 0.2173g B 0.0217g 0.0215g
置信度与置信区间
置信度:在某一定范围内测定 值或误差出现的概率。68.3%, 95.5%, 99.7% 即为置信度。
误差 表示方式
误差表示方式
误差可以用以下几种方式进行表示:
1. 绝对误差(Absolute Error):表示实际值与标准值之间的差距,不考虑正负号。
公式为:|实际值-标准值|。
2. 相对误差(Relative Error):表示绝对误差与标准值的比值。
公式为:|实际值-标准值|/|标准值|。
3. 百分比误差(Percent Error):表示相对误差乘以100。
公式为:|实际值-标准值|/|标准值|×100%。
4. 标准差(Standard Deviation):表示数据的离散程度,即数据
的平均偏离程度。
公式为:√[Σ(xi-x̄)²/(n-1)],其中xi为每个数据点,x̄为所有数据的平均值,n为数据点个数。
5. 均方根误差(Root Mean Square Error):表示观测值和预测值
之间的误差,对绝对误差取平方后再求平均值,最后再开方。
公式为:
√[Σ(观测值-预测值)²/n]。
分析化学-误差和数据处理
2)计算 t 值
x
t
n
s
3) 查 t 值表
t 计 > t 表 ,差异有显著性 t 计 ≤t 表 , 差异没有显著性
【例2-3】某实验室测定含钾标准样(浓度为4.73
mmol/L),6次平行测定结果如下:5.20、5.01、
5.32、5.08、5.25、5.12 mmol/L。问该分析是否存
在系统误差?
值表,
t0.605,6 10 =
2.23。
t>t0.05, 10,
该新方法存在系统误差。
第 四 节 有效数字及其运算规则 Significant Data and Rules of
一 有效数字
1.有效数字 有效数字(significant digit): 指在分析过程中实
5,
,
5
表明两种方法测定结果精密度之间无显著性差异。
再进行t检验
sC
(n1 1)s12 (n2 1)s22 n1 n2 2
5 0.122 5 0.072 0.10(mg/L) 10
t x1 x2 n1n2 sC n1 n2
5.78 5.51 6 6 4.68
查t
0.10
解:两种测定方法测定值的均值和标准偏差分别为:
x1 5.78mg/L
x 2 5.51mg/L
s1 0.12mg/L
s2 0.07mg/L
先进行F 检验
F s大2 0.122 2.94 s小2 0.072
查F 值表,两组数据的自由度均为5,
F0.05, 5, 5 = 5.05。
F
<F0.05,
解:
x 5.16mmol/L
s 0.11mmol/L
t x n 5.16 4.73 6 9.57
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
误差及其表示方法误差——分析结果与真实值之间的差值( > 真实值为正,< 真实值为负)一. 误差的分类1. 系统误差(systermaticerror )——可定误差(determinateerror)(1)方法误差:拟定的分析方法本身不十分完善所造成;如:反应不能定量完成;有副反应发生;滴定终点与化学计量点不一致;干扰组分存在等。
(2)仪器误差:主要是仪器本身不够准确或未经校准引起的;如:量器(容量平、滴定管等)和仪表刻度不准。
(3)试剂误差:由于世纪不纯和蒸馏水中含有微量杂质所引起;(4)操作误差:主要指在正常操作情况下,由于分析工作者掌握操作规程与控制条件不当所引起的。
如滴定管读数总是偏高或偏低。
特性:重复出现、恒定不变(一定条件下)、单向性、大小可测出并校正,故有称为可定误差。
可以用对照试验、空白试验、校正仪器等办法加以校正。
2. 随机误差(randomerror)——不可定误差(indeterminateerror)产生原因与系统误差不同,它是由于某些偶然的因素所引起的。
如:测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。
特性:有时正、有时负,有时大、有时小,难控制(方向大小不固定,似无规律)但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律(统计学正态分布),可用统计学方法来处理系统误差——可检定和校正偶然误差——可控制只有校正了系统误差和控制了偶然误差,测定结果才可靠。
二. 准确度与精密度(一)准确度与误差(accuracy and error)准确度:测量值(x)与公认真值(m)之间的符合程度。
它说明测定结果的可靠性,用误差值来量度:绝对误差 = 个别测得值 - 真实值(1)但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。
如果被称量物质的质量分别为1g和0.1g,称量的绝对误差同样是0.0001g,则其含义就不同了,故分析结果的准确度常用相对误差(RE%)表示:(2)(RE%)反映了误差在真实值中所占的比例,用来比较在各种情况下测定结果的准确度比较合理。
(二)精密度与偏差(precision and deviation)精密度:是在受控条件下多次测定结果的相互符合程度,表达了测定结果的重复性和再现性。
用偏差表示:1. 偏差绝对偏差:(3)相对偏差:(4)2. 平均偏差当测定为无限多次,实际上〉30次时:总体平均偏差(5)总体——研究对象的全体(测定次数为无限次)样本——从总体中随机抽出的一小部分当测定次数仅为有限次,在定量分析的实际测定中,测定次数一般较小,<20次时:平均偏差(样本)(6)相对平均偏差(7)用平均偏差表示精密度比较简单,但不足之处是在一系列测定中,小的偏差测定总次数总是占多数,而大的偏差的测定总是占少数。
因此,在数理统计中,常用标准偏差表示精密度。
3. 标准偏差(1)总体标准偏差当测定次数大量时(>30次),测定的平均值接近真值此时标准偏差用s表示:(8)(2)样本标准偏差在实际测定中,测定次数有限,一般n<30 ,此时,统计学中,用样本的标准偏差S来衡量分析数据的分散程度:(9)式中(n-1)为自由度,它说明在n次测定中,只有(n-1)个可变偏差,引入(n-1),主要是为了校正以样本平均值代替总体平均值所引起的误差即(10)而S ?s(3)样本的相对标准偏差——变异系数(11)(4)样本平均值的标准偏差(12)此式说明:平均值的标准偏差按测定次数的平方根成正比例减少4. 准确度与精密度的关系精密度高,不一定准确度高;准确度高,一定要精密度好。
精密度是保证准确度的先决条件,精密度高的分析结果才有可能获得高准确度;准确度是反映系统误差和随机误差两者的综合指标。
分析数据的处理一. 有效数字及其运算规则1. 有效数字的意义和位数(1)有效数字:所有准确数字和一位可疑数字(实际能测到的数字)(2)有效位数及数据中的“ 0 ”1.0005,五位有效数字0.5000,31.05% 四位有效数字0.0540,1.86三位有效数字0.0054,0.40%两位有效数字0.5,0.002%一位有效数字2. 有效数字的表达及运算规则(1)记录一个测定值时,只保留一位可疑数据,(2)整理数据和运算中弃取多余数字时,采用“数字修约规则”:四舍六入五考虑五后非零则进一五后皆零视奇偶五前为奇则进一五前为偶则舍弃不许连续修约(3)加减法:以小数点后位数最少的数据的位数为准,即取决于绝对误差最大的数据位数;(4)乘除法:由有效数字位数最少者为准,即取决于相对误差最大的数据位数;(5)对数:对数的有效数字只计小数点后的数字,即有效数字位数与真数位数一致;(6)常数:常数的有效数字可取无限多位;(7)第一位有效数字等于或大于 8 时,其有效数字位数可多算一位;(8)在计算过程中,可暂时多保留一位有效数字;(9)误差或偏差取 1~2 位有效数字即可。
二. 可疑数据的取舍1. Q-检验法(3~10次测定适用,且只有一个可疑数据)(1)将各数据从小到大排列:x1, x2, x3……x n ;(2)计算(x大-x小),即(x n -x1);(3)计算( x可-x邻),(4)计算舍弃商Q计=?x可-x邻?/ x n -x1(5)根据 n 和P 查Q值表得Q表(6)比较Q表与Q计若:Q计3Q表可疑值应舍去Q计<Q表可疑值应保留2. G检验法(Grubbs法)设有n各数据,从小到大为x1, x2, x3,…… xn;其中x1 或x n为可疑数据:(1)计算(包括可疑值x1、 xn在)、∣x可疑-∣及S;(2)计算G:(3)查G值表得G n,P(4)比较G计与G n,P:若G计3G n,P则舍去可疑值;G计 < G n,P则保留可疑值。
三. 分析数据的显著性检验1. 平均值()与标准值(m)之间的显著性检验——检查方法的准确度(20)若t计3t0.95, n则与m有显著性差异(方法不可靠)t计 < t0.95, n则与m无显著性差异(方法可靠)2. 两组平均值的比较(1)先用F 检验法检验两组数据精密度S1(小)、S2(大)有无显著性差异(方法之间)(21)若此F计值小于表中的F(0.95)值,说明两组数据精密度S1、S2无显著性差异,反之亦反。
(2)再用t 检验法检验两组平均值之间有无显著性差异(22)查t0.95 (f=n1+n2)若t计3t0.95, n则说明两平均值有显著性差异t计 < t0.95, n则说明两平均值无显著性差异滴定分析自测题1.什么叫滴定分析?它的主要方法有哪些?2.滴定分析法的滴定方式有那几种?3.什么叫基准物质?基准物质应具备哪些条件?4.标定标准溶液的方法有几种?各有何优缺点?5.化学计量点、指示剂变色点、滴定终点有何联系?又有何区别?6.什么是滴定误差?其产生的原因主要有哪些?酸碱平衡及有关浓度计算一. 酸碱质子理论1.酸碱和共轭酸碱对凡能给予质子的物质称为酸凡能接受质子的物质称为碱由③、④式可知:一种物质( HPO42-)在不同条件下,有时可作为酸,有时可作为碱。
某一物质是酸还是碱取决于给定的条件和该物质在反应中的作用和行为。
2. 酸碱反应——两个共轭酸碱对共同作用的结果3. 溶剂的质子自递反应H2O 及能给出质子,又能接受质子,这种质子的转移作用在水分子之间也能发生:H2O + H2O? H3O+ + OH-质子自递反应——溶剂分子之间发生的质子传递作用。
此反应平衡常数称为溶剂的质子自递常数(KS )H2O: KS = [H3O+][ OH-] =KW =1.0 ′ 10-14(25℃)(1)pKW =14其它溶剂如:C2H5OHC2H5OH + C2H5OH = C2H5OH2+ + C2H5O-KS = [C2H5OH2+][ C2H5O-] = 7.9 ′ 10-20(25℃)(2)4. 酸碱强度酸碱强度取决于:酸碱本身的性质和溶剂的性质在水溶液中:酸碱的强度取决于酸将质子给予水分子或碱从水分子中夺取质子的能力的大小,通常用酸碱在水中的离解常数大小衡量:HAc+ H2O?H3O+ + Ac-(3)NH3 + H2O?OH- + NH4+(4)二. 酸碱对酸碱平衡体系中各型体分布系数的影响1. 分析浓度、平衡浓度、酸的浓度、酸度、弱酸碱的分布系数(1)分析浓度(c):单位体积溶液中含(酸或碱)的量物质的量浓度即总浓度简称浓度(2)平衡浓度[]:平衡状态时,溶液中融智存在的各种型体的浓度,单位同上例:HAc 溶液中:平衡浓度[HAc]、[ Ac-]分析浓度c == [HAc] + [ Ac-](3)酸的浓度:即酸的分析浓度(4)酸度:溶液中 H+ 的活度a H+,稀溶液中([H+ ])(5)分布系数d在弱酸碱溶液中,酸碱以各种形式存在的平衡浓度与其分析浓度的比值即各型体在总浓度中所占分数:例: HAc 溶液中:(5)(6)“d”只与溶液的酸度有关,而与其分析浓度无关;各种型体的分布系数之和为1。
2. 酸度与酸碱的分布系数以 HAc 为例:(7)c == [HAc] + [ Ac-](8)因为:(9)所以:(10)将(7)、(8)代入(9)得:(11)同理:(12)所以:由不同的pH值下的HAc溶液的d HAc和d Ac-值作出d—pH图,d图1HAc的d-pH 曲线图可见:d HAc值随pH的增大而减小;d Ac-值随pH的增大而增大。
当pH = pKa =4.74时,dHAc =dAc- = 0.5当pH > pKa 时,则dHAc > dAc同样可推导出一元弱碱的分布系数:以溶液为例: NH3为例(13)(14)(2)多元酸碱溶液的分布系数以 H2C2O4为例:(15)(16)由平衡:H2C2O4 === HC2O4- + H+(17)HC2O4- === C2O42- + H+(18)可推得:(19)同理可推得:(20)(21)对其它多元酸或碱,溶液中存在(n+1) 中型体,用类似方法可导出各型体的d 值。
三. 酸碱溶液中酸碱度的计算处理酸碱溶液的方法:质子条件酸碱溶液的实质是质子传递,考虑溶液作为参与反应的一组分,利用酸碱反应中质子传递的平衡关系式即质子条件来处理:质子条件:酸碱溶液中得质子产物得到质子的摩尔数与失质子产物失去质子的摩尔数应该相等,这种数量关系称为“质子平衡”或“质子条件”质子条件表达式称为质子等衡式 PBE:酸给出质子的总数 = 碱得到质子的总数质子等衡式可根据酸碱平衡体系的组成直接写出:其要点是:一参与质子反应的“大量物质”作基准物“通常是原始的酸碱组分”,根据的是质子的等衡原理写出例1:写出 Na2S 质子等衡式。