纳米固体材料.

合集下载

纳米粉体材料

纳米粉体材料

纳米粉体材料简介纳米材料分为纳米粉体材料、纳米固体材料、纳米组装体系三类。

纳米粉体材料是纳米材料中最基本的一类。

纳米固体是由分体材料聚集,组合而成。

而纳米组装体系则是纳米粉体材料的变形。

纳米粉体也叫纳米颗粒,一般指尺寸在1-100nm之间的超细粒子,有人称它是超微粒子。

它的尺度大于原子簇而又小于一般的微粒。

按照它的尺寸计算,假设每个原子尺寸为1埃,那么它所含原子数在1000个-10亿个之间。

它小于一般生物细胞,和病毒的尺寸相当。

细微颗粒一般不具有量子效应,而纳米颗粒具有量子效应;一般原子团簇具有量子效应和幻数效应,而纳米颗粒不具有幻数效应。

纳米颗粒的形态有球形、板状、棒状、角状、海绵状等,制成纳米颗粒的成分可以是金属,可以是氧化物,还可以是其他各种化合物。

纳米粉体材料的基本性质它的性质与以下几个效应有很大的关系:(1).小尺寸效应随着颗粒的量变,当纳米颗粒的尺寸与光波、传导电子德布罗意波长以及超导态的相干长度或透射深度等物理尺寸特征相当或更小时,周期边界性条件将被破坏,声、光、电、磁、热、力等特性均会出现质变。

由于颗粒尺寸变小所引起的宏观物理性质的变化成为小尺寸效应。

(2).表面与界面效应纳米微粒尺寸小、表面大、位于表面的原子占相当大的比例。

由于纳米粒径的减小,最终会引起表面原子活性增大,从而不但引起纳米粒子表面原子输送和构型的变化,同时也引起表面电子自旋构象和电子能谱的变化。

以上的这些性质被称为“表面与界面效应”。

(3)量子尺寸效应当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变成离散能级的现象成为量子尺寸效应。

具体从各方面说来有以下特性:(1)热学特性纳米微粒的熔点,烧结温度比常规粉体要低得多。

这是由于表面与界面效应引起的。

比如:大块的pb的熔点600k,而20nm球形pb微粒熔点降低288k,纳米Ag微粒在低于373k时开始融化,常规Ag的熔点远高于1173k。

还有,纳米TiO2在773k加热出现明显致密化,而大晶粒样品要出现同样的致密化需要再升温873k才能达到,这和烧结温度有很大关系。

纳米材料物理热学性质

纳米材料物理热学性质

纳米材料的热学性质纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级 ( 1 n m~1 0 0 n m)的固体材料。

由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达 l 5 ~5 0 %。

纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。

纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。

可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。

一热容1996年,在低温下测定了纳米铁随粒度变化的比热,发现与正常的多晶铁相比,纳米铁出现了反常的比热行为,低温下的电子比热系数减50 %。

1998年,通过研究了粒度和温度对纳米粒子热容的影响,建立了一个预测热容的理论模型,结果表明:过剩的热容并不正比于纳米粒子的比表面,当比表面远小于其物质的特征表面积时,过剩的热容可以认为与粒度无关。

2002年,又把多相纳米体系的热容定义为体相和表面相的热容之和,因为表面热容为负值,所以随着粒径的减小和界面面积的扩大,将导致多相纳米体系总的热容的减小,二.晶格参数,结合能,内聚能纳米微粒的晶格畸变具有尺寸效应,利用惰性气体蒸发的方法在高分子基体上制备了1. 45nm 的pd纳米微粒,通过电子微衍射方法测试了其晶格参数,发现 Pd 纳米微粒的晶格参数随着微粒尺寸的减小而降低。

结合能的确比相应块体材料的结合能要低。

通过分子动力学方法,模拟 Pd 纳米微粒在热力学平衡时的稳定结构,并计算微粒尺寸和形状对晶格参数和结合能的影响,定量给出形状对晶格参数和结合能变化量的贡献研究表明:在一定的形状下,纳米微粒的晶格参数和结合能随着微粒尺寸的减小而降低,在一定尺寸时,球形纳米微粒的晶格参数和结合能要高于立方体形纳米微粒的相应量。

纳米材料概论复习要点

纳米材料概论复习要点

一、1、纳米科技:研究由尺寸在0.1—100nm之间的物质组成体系的运动规律和相互作用以及可能的实际应用中的技术问题的科学技术。

2、纳米固体材料:又可称为纳米结构材料或纳米材料,它是由颗粒或晶粒尺寸为1~100nm的粒子凝聚而成的三维块体。

3、量子尺寸效应:当粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象,以及纳米半导体微粒存在比连续的最高被占据分子轨道和最低未被占据的分子轨道能级,这些能隙变宽现象。

4、表面效应:表面原子的活性不但引起纳米粒子表面原子的变化,同时也引起表面电子自旋构象和电子能谱的变化。

5、宏观量子隧道效应:某些宏观量如颗粒的磁化强度,量子相干器件中的磁通量等具有贯穿势垒的能力,称为宏观量子隧道效应。

6、纳米材料(广义):晶粒或晶界等显微构造能达到纳米尺寸水平的材料。

7、原子团簇:由多个原子组成的小粒子。

它们比无机分子大,但比具有平移对称性的块体材料小,它们的原子结构(键长、键角和对称性等)和电子结构不同于分子,也不同于块体。

8、Kubo理论:颗粒尺寸进入纳米级时,靠近费米面附近的能级由原来的准连续变为离散能级。

9、小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应。

10、纳米结构材料:由颗粒或晶粒尺寸为1~100nm的粒子形成的三维块体称为纳米固体(结构)材料。

其晶粒尺寸、晶界宽度、析出相分布、气孔尺寸和缺陷尺寸都在纳米数量级。

二、简答题1、冷冻干燥法制备纳米颗粒的基本原理。

先使干燥的溶液喷雾在冷冻剂中冷冻,然后在低温低压下真空干燥,将溶剂升华除去,再通过热处理得到所需的物质。

2、气相合成法制备纳米颗粒的主要过程有哪些?利用两种以上物质之间的气相化学反应,在高温下合成出相应的化合物,再经过快速冷凝,从而制备各类物质的纳米粒子。

纳米材料的热学性质

纳米材料的热学性质

纳米材料与团簇物理结课论文纳米材料的热学性质纳米材料是一种既不同于晶态,又不同于非晶态的第三类固体材料,通常指三维空间尺寸至少有一维处于纳米量级( 1 n m~1 0 0 n m)的固体材料。

由于纳米材料粒径小,比表面积大,处于粒子表面无序排列的原子百分比高达l5~5 0%。

纳米粒子的这种特殊结构导致其具有不同于传统材料的物理化学特性。

纳米材料的高浓度界面及原子能级的特殊结构使其具有不同于常规块体材料和单个分子的性质,纳米材料具有表面效应,体积效应,量子尺寸效应宏观量子隧道效应等,从而使得纳米材料热力学性质具有特殊性,纳米材料的各种热力学性质如晶格参数,结合能,熔点,熔解焓,熔解熵,热容等均显示出尺寸效应和形状效应。

可见,纳米材料热力学性质在各方面均显现出与块体材料的差异性,研究纳米材料的热力学性质具有极其重要的科学意义和应用价值。

纳米材料的热学性质概述一、纳米材料的熔点及内能材料热性能与材料中分子、原子运动行为有着不可分割的联系。

当热载子(电子、声子及光子)的各种特征尺寸与材料的特征尺寸(晶粒尺寸、颗粒尺寸或薄膜厚度)相当时,反应物质热性能的物性参数如熔化温度、热容等会体现出鲜明的尺寸依赖性。

特别是,低温下热载子的平均自由程将变长,使材料热学性质的尺寸效应更为明显。

图1 几种纳米金属粒子的熔点降低现象上图(图1)为几种纳米金属粒子的熔点降低现象。

随粒子尺寸的减小,熔点降低。

当金属粒子尺寸小于10nm后熔点急剧下降,其中3nm左右的金微粒子的熔点只有其块体材料熔点的一半,用高倍率电子显微镜观察尺寸2nm的纳米金粒子结构可以发现,纳米金颗粒形态可以在单晶、多晶与孪晶间连续转变。

这种行为与传统材料在固定熔点熔化的行为完全不同,伴随着纳米材料的熔点降低,单位质量粒子熔化时的潜热吸收(焓变)也随尺寸的减小而减少。

人们在具有自由表面的共价半导体的纳米晶体、惰性气体和分子晶体也发现了熔化的尺寸效应现象。

根据固体物理的基本原理,可以说明材料热学性质出现尺寸效应的根本原因,一般情况下,晶体材料的内能U可依据其晶格振动的波特性在德拜假设下估计出,即:(1) 式中,Θ为德拜温度;k为波矢;T为热力学温度;h为普朗克常数;k B为玻尔兹曼常数。

纳米材料的介绍

纳米材料的介绍

纳米材料的介绍一、纳米材料概述纳米材料是指纳米级尺寸的材料,具有良好的化学、光学等性能。

纳米材料泛指三维空间中至少有一维处于纳米尺寸或由它们作为基本单元构成的材料。

根据物理形态的不同,纳米材料可划分为五类:纳米薄膜、纳米粉体、纳米纤维、纳米块体、纳米相分离液体。

纳米材料的性能一般由量子力学决定,其光、电、磁、热性能与普通材料存在明显的差异。

相较于传统材料制品,纳米材料制品在光学、热学、力学、化学等性能方面具有明显优势。

从概念来说,纳米材料是由无数个晶体组成的,它的大小尺寸在1-100纳米范围内的一种固体材料。

主要包括晶态、非晶态的金属、陶瓷等材料组成。

因为它的大小尺寸已经接近电子的相干长度,它有着特殊的性质。

这些特殊性质所表现出来的有导电、导热、光学、磁性等。

目前国内、国际的科学家都在研究纳米材料,试图打造一种全新的新技术材料,将来为人类创造更大的价值。

二、纳米材料定义纳米材料是指三维空间尺度至少有一维处于纳米量级(1-100nm)的材料,它是由尺寸介于原子、分子和宏观体系之间的纳米粒子所组成的新一代材料。

由于其组成单元的尺度小,界面占用相当大的成分。

因此,纳米材料具有多种特点,这就导致由纳米微粒构成的体系出现了不同于通常的大块宏观材料体系的许多特殊性质。

纳米体系使人们认识自然又进入一个新的层次,它是联系原子、分子和宏观体系的中间环节,是人们过去从未探索过的新领域,实际上由纳米粒子组成的材料向宏观体系演变过程中,在结构上有序度的变化,在状态上的非平衡性质,使体系的性质产生很大的差别,对纳米材料的研究将使人们从微观到宏观的过渡有更深入地认识。

三、纳米材料的性质1、"强" 在电子,医保,环保,能源等领域具有更多的优势。

2、"高" 适用纳米材料制作的器材,拥有更高的耐热,导电,高磁导性,可塑性。

3、"轻" 纳米材料更加轻更加便利,体积变小的同时还可以提高效率。

第四章纳米固体材料全

第四章纳米固体材料全
为了防止无压烧结过程中晶粒的长大,在主 体粉中掺入一或多种稳定化粉体使得烧结后的 试样晶粒无明显长大并能获得高的致密度.
4.4.2 纳米金属材料的制备
目前比较成熟的纳米金属材料的制备方法主要有: 惰性气体蒸发原位加压法、高能球磨法和非晶晶化法
1.惰性气体蒸发原位加压法 一步法”的步骤是: (1)制备纳米颗粒; (2)颗粒收集; (3)压制成块体。上述步骤一般都是在真空下进行
1.红外吸收 对纳米材料红外吸收的研究表明,红外吸收谱中出现蓝移和宽化。 2.荧光现象 用紫外光激发掺Cr和Fe的纳米相Al2O3时,在可见光范围观察到新的荧 光现象 3.光致发光 光致发光是指在一定波长的光照射下,被激发到高能级的电子重新跃人 低能级,被空穴捕获而发光的微观过程。电子跃迁可分为两类:非辐射 跃迁和辐射跃迁。当能级间距很小时,电子通过非辐射跃迁而发射声子, 不能发光;只有当能级间距较大时,才有可能发射光子,实现辐射跃迁 而发光。退火温度低于673K时,纳米非晶氮化硅块体在紫外光到可见光
4.5.3 在磁学方面的应用 具有铁磁性的纳米材料(如纳米晶Ni、
Fe2O3、Fe3O4等)可作为磁性材料。铁磁 材料可分为软磁材料(既容易磁化又容易去 磁)和硬磁材料(磁化和去磁都十分困难)。 此外,纳米铁氧体磁性材料,除可作软磁
材料和硬磁材料外,还可作:旋磁材料、 矩磁材料和压磁材料。
4.5.4 在电学方面的应用 纳米材料在电学方面主要可以作为导电
范围的发光现象与常规非晶氮化硅不同,出现6个分立的发光带,
4.3.4 纳米固体材料磁学性能(自学)
1.饱和磁化强度 2.磁性转变
由于纳米材料颗粒尺寸很小,这就可能使一些抗磁 体转变为顺磁体。 3.超顺磁性 4.居里温度
居里温度:铁磁质转变为顺磁质时的温度。铁磁质 在高于居里温度时变为顺磁质。不同的铁磁质居里 温度不同。例如铁是769C;镍是358C;钴是1131C。

纳米固体材料

纳米固体材料
23
热稳定性 在一定温度范围内,晶粒尺寸保持恒定无 变化的能力。
纳米非晶Si3N4
纳米固体材料有很大比例
的界面组元区域,它们通 常处于亚稳态,若材料加 热退火,那么将有可能导 致晶粒的长大,但存在一 个临界温度。
纳米晶Ni3C
24
3、纳米固体材料的电学性能
电阻(电导) 纳米固体材料的电阻率及电阻温度系数均与 晶粒尺寸相关。
y or Hv
d
-1/2
18
蒸发凝聚原位加压法制备的 Cu纳米晶材料
y or Hv
正反混合Hall-Petch关系
dc d
-1/2
-1/2
斜率K变化Hall-Petch关系
A:以蒸发凝聚原位加压法 制备的TiO2纳米相材料 B:以非晶晶化法制备的NiP纳米晶材料
y or Hv
A B d
-1/2
采用电沉积方法制备的Ni纳 米晶材料
y or Hv
偏离Hall-Petch关系
dc d
-1/2
-1/2
19
塑性
粗晶材料的塑性随着晶粒的 减小而增大; 对于纳米固体材料,笼统地 说其塑性相对于粗晶材料相 比有很大改善,并不准确, 这与具体的材料及加载方式 密切相关; 试验表明绝大多数纳米晶体 将晶粒细化至纳米量级,通常 材料的塑性很小;且随晶粒 几乎不能变形的陶瓷或金属间 尺寸的减小而减小;原因在 化合物(如CaF2和TiO2)表现 于缺陷的增多; 出较大的塑性甚至超塑性。
纳米固体材料中的位错
观点一
认为纳米材料中存在着大量点缺陷,而无位错。 观点二 晶粒组元甚至在靠近界面的晶粒内存在着 位错,但位错的的组态和位错的运动行为都与 常规晶体的不同(例如:没有位错塞积)。

第八章纳米固体材料的微观结构PPT课件

第八章纳米固体材料的微观结构PPT课件
第八章 纳米固体材料的微观结构
1
标题添加
点击此处输入相 关文本内容
前言
点击此处输入 相关文本内容标源自添加点击此处输入相 关文本内容
点击此处输入 相关文本内容
2
主要内容
纳米固体的结构特点
纳米固体界面的结构模型
纳米固体界面的X光实验研究
界面结构的电镜观察
穆斯堡尔谱研究
纳米固体结构的内耗研究
19
由表可以看出:对应不同热处理的试样的平均键长(Si—N 键长或Si—Si键长)几乎相同。只有假设颗粒内和界面内平均 键长在一定温度范围内热处理都不发生变化的情况下才能与实 验结果相符合,因此,我们没有理由认为界面中Si—N键长或 Si—Si键长是变化的,原子排列是混乱的,而用 短 程 有 序 来 描 述纳米非晶氮化硅块材界面结构是合理的。
下面我们简述一下自1987年以来描述纳米固体 材料微结构的几个模型。
8
纳米微晶界面内原子排列既没有

类气态模型 长程序,又没有短程序,是一种

类气态的,无序程度很高的结构。




有序模型 纳米材料的界面原子排列是有序的。


构 模 型
结构特征 分布模型
纳米结构材料的界面并不是具有 单一的同样的结构,界面结构是 多种多样的。
10
如图8.2所示,非晶体的
原子径向分布概率函数第一
峰对应于最近邻原子分布,
它尖而高,位置与晶体中最
近邻原子间距一致,由峰面
积推算得最近邻原子数也与
晶体的基本一致,表明从最
近邻原子分布看,仍保持晶
体的短程有序性。但随着原
子间距r的增大。概率函数的
峰值变得越来越不显著。说

纳米固体的分类及其基本构成

纳米固体的分类及其基本构成

纳米固体的分类及其基本构成
关于构成纳米结构材料颗粒组元 尺寸范围定义: (一):临界尺寸,当颗粒尺寸减小到 纳米级某一尺寸时, (二):纳米结构的材料是以尺寸定义 的材料,由于各种材料晶胞差别较大, 一般来说对各种物质其尺寸减小到 1~100nm是合适的。
纳米固体的种类繁多,可以按多种标准进行分类划分: ◆按纳米微粒的结构形式 ◆按纳米微粒中化学键的形式 ◆按纳米微粒的相组成 ◆按空间维数
纳米固体的分类及其基本构成1、按纳米微粒ຫໍສະໝຸດ 结构形式 纳米晶体材料纳米固体
纳米非晶材料
纳米准晶材料
纳米固体的分类及其基本构成
2、按纳米微粒中化学键的形式 纳米金属材料 纳米半导体材料 纳米固体 纳米离子材料
纳米陶瓷材料
纳米固体的分类及其基本构成
3、按纳米微粒的相组成 纳米单相材料
纳米固体
纳米复相材料
纳米固体的分类及其基本构成
关于构成纳米结构材料颗粒组元 尺寸范围定义: (一):临界尺寸,当颗粒尺寸减小到纳米级某 一尺寸时, (二):纳米结构的材料是以尺寸定义的材料, 由于各种材料晶胞差别较大,一般来说对各种物 质其尺寸减小到1~100nm是合适的。
纳米固体的分类及其基本构成
纳米复相材料的分类 0-0复合
纳米复相材料
0-3复合
0-2复合
纳米固体的分类及其基本构成
4、按空间维数
二维平面的纳米薄膜
纳米固体
三维空间的纳米块体
维维之间的复合纳米材料
纳米固体的分类及其基本构成
纳米材料界面的分类 类气态模型 界面原子排列
纳米材料界面
界面缺陷态模型 界面可变结构模型
纳米固体的分类及其基本构成
纳米固体的分类及其基本构成

纳米二氧化硅固体形状

纳米二氧化硅固体形状

纳米二氧化硅固体形状
纳米二氧化硅固体是一种具有特殊形状的材料,其微观结构呈现出多样化的形态。

这些形态可以分为球形、棒状、片状和多孔状等不同类型。

球形纳米二氧化硅是最常见的一种形态。

它们的直径通常在几纳米到几百纳米之间,呈现出圆润的外观。

这些球形颗粒由无数个纳米颗粒组成,具有高度均匀的粒径分布。

由于其球形结构,这些颗粒在某些应用中具有良好的流动性和分散性。

另一种常见的形态是棒状纳米二氧化硅。

这些棒状颗粒具有高度延展的形态,其长度可以达到几百纳米,而直径则在几十纳米左右。

棒状纳米二氧化硅由于其长宽比例的不同,可以表现出不同的性质。

例如,当长宽比例较大时,棒状颗粒具有较高的比表面积,可以用于催化剂和吸附剂等领域。

片状纳米二氧化硅是一种具有扁平形态的材料。

它们的厚度通常在几纳米到几十纳米之间,而长度和宽度则可以达到几百纳米。

片状纳米二氧化硅具有较大的表面积和较好的机械性能,因此在电子器件和光学材料等领域得到了广泛的应用。

多孔状纳米二氧化硅也是一种常见的形态。

这些多孔颗粒具有大量的孔洞结构,使其具有较大的比表面积和吸附能力。

多孔状纳米二氧化硅可以用于催化剂载体、药物传输和环境污染治理等领域。

纳米二氧化硅固体形状丰富多样,不同形态的纳米二氧化硅在不同领域具有不同的应用价值。

通过对纳米二氧化硅固体形状的研究,我们可以进一步深入了解其结构与性能之间的关系,并为其在材料科学和应用技术中的应用提供理论依据。

纳米固体材料的特性及应用

纳米固体材料的特性及应用

纳米固体材料的特性及应用第一篇:纳米固体材料的特性及应用纳米固体材料的特性及应用摘要本文阐述了纳米固体材料的概念及历史,说明了纳米固体材料的结构和由它引起的特性,介绍了纳米固体材料的各种应用。

关键词:纳米固体材料特性应用纳米材料是目前材料科学研究的一个热点, 是21 世纪最有前途的领域。

由于纳米材料具有特异的光、电、磁、热、声、力、化学等性能, 广泛应用于宇航、国防工业、磁记录材料、计算机工程、环境保护、化工、医药、建材、生物工程和核工业等领域, 其市场前景相当广阔。

目前我国从事纳米材料生产的企业有100 多家, 并建立了几个纳米材料研究基地, 有关科研部门和生产企业还对纳米复合塑料、纳米涂料、纳米橡胶和纤维的改性以及纳米材料在能源和环保等方面的应用进行了深入的研究和开发, 并取得一定的成果。

近年来一些重大的研究成果不断问世, 如成功合成世界最长的碳纳米管, 制成性能优良的纳米扫描显微镜, 合成出高质量的储氢碳纳米材料等, 具有国际领先水平。

我国已能生产铁、镍、锌、银、铜、铝、钴等金属纳米粉和氧化物粉末以及陶瓷粉末等30 多种, 有些产品已达国际先进水平。

中国科学院化学研究所工程塑料国家重点实验室用天然粘土矿物蒙脱土作为分散相, 成功开发以聚酰胺、聚酯、聚乙烯、聚苯乙烯、环氧树脂、聚氨酯等为基材的一系列纳米材料, 并实现了部分纳米塑料的工业化生产。

纳米材料一般分为:纳米微粒、纳米薄膜(多层膜和颗粒膜)、纳米固体。

其中纳米固体材料是一类有广阔应用前景的新型材料,它是由纳米量级的超细微粒压制烧结而成的人工凝聚态固体。

这种材料具有新型的固态结构,其性质与处于晶态或非晶态的同种材料大不一样,因此将它称为纳米固体材料。

1963年,日本名古屋大学教授田良二首先用蒸发冷凝法获得了表面清洁的纳米粒子。

1984年,由德国H.格莱特教授领导的小组首先研制成第一批人工金属固体(Cu、Pa、Ag和Fe)。

同年美国阿贡实验室研制成TiO2纳米固体。

纳米材料的危害

纳米材料的危害
纳米材料的危害
一、纳米材料
纳米材料又称为超微颗粒材料,由纳米粒子组成, 一 般是指尺寸在1~100nm间的粒子,是处在原子簇和宏 观物体交界的过渡区域。
纳米材料可分为两个层次:纳米超微粒子与纳米固体 材料。纳米超微粒子是指粒子尺寸为1-100nm的超微 粒子,纳米固体是指由纳米超微粒子制成的固体材料。 而人们习惯于把组成或晶粒结构控制在100纳米以下 的长度尺寸称为纳米材料。
从而在光学、热学、电学、磁学、力学以及化学方面显示出许多奇异的特性。
纳米材料的生物毒性塑:料主要体现在对呼吸系统( 特别是动物肺部损伤) 及免疫系统的干扰, 微观上主要是影响细胞表面的功能结构,进而引起细胞整体代谢紊乱, 诱导细胞的凋亡或坏死。
在有机玻璃中添加纳米Al2O3既不影响透明度又提高了高温冲击韧性。
2、涂料
在各类涂料中添加纳米SiO2可使其抗老化性能、光洁度及 强度成倍地提高,涂料的质量和档次自然升级。因纳米 SiO2是一种抗紫外线辐射材料(即抗老化),加之其极微 小颗粒的比表面积大,能在涂料干燥时很快形成网络结构, 同时增加涂料的强度和光洁度。
3、各种助剂 7、 NP 对细胞产生氧化压力并破坏细胞器等; 8、 细胞内含物外泄到胞外;
二、纳米材料在精细化工中的应用
1、粘合剂和密封胶
国外已将纳米材料如纳米SiO2作为添加剂加入到粘合剂和密 封胶中,使粘合剂的粘结效果和密封胶的密封性都大大提高。 其作用机理是在纳米SiO2的表面包覆一层有机材料,使之具 有亲水性,将它添加到密封胶中很快形成一种硅石结构,即 纳米SiO2形成网络结构掏胶体流动,固体速度加快,提高粘 接效果,由于颗粒尺寸小,更增加了胶的密封性。
纳米材料由于具有极其微小的尺寸而具有普通粉体材 料所不具备的特殊性: 如小尺寸效应;表面效应;量 子尺寸效应以及宏观量子隧道效应。从而在光学、热 学、电学、磁学、力学以及化学方面显示出许多奇异 的特性。纳米材料的研究,开发和应用日益广泛,已 经应用到涂料,化妆品,催化剂,食品包装,纺织, 医学等许多领域,被科学家誉为:“21 世纪最有前途 的材料”。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
纳米固体材料界面组元的结构 纳米晶界面组元 纳米晶体界面的原子结构取决于相邻晶体的
相对取向及边界的倾角;其微观结构与长程有序 的晶粒不同,也与短程有序的非晶态不同,而是 一种新型的结构。
纳米非晶界面组元 纳米非晶结构,其颗粒组元是短程有序的非
晶态,而界面组元的原子排列是比颗粒组元内部 原子排列更为混乱的结构。
H H0 Kd 2
17
对于纳米晶块体,强度(硬度)与晶粒尺寸 之间的Hall-Petch关系主要存在五种情况:
or Hv y
正Hall-Petch关系(K>0)
用机械合金化法制备 的Fe纳米晶等纳米材料
d -1/2
反Hall-Petch关系(K<0)
or Hv y
用蒸发凝聚原位加压 法制备的Pd纳米晶材料
2
二、纳米固体材料的结构特点
1、概述
纳米固体材料的基本构成是纳米微粒加上 它们之间的界面。
由于纳米粒子尺寸小,界面所占体积分数 几乎可以与纳米微粒所占体积分数相比拟,因 此纳米固体材料的界面不能简单地像普通固体 材料那样,看作是一种缺陷,而已经成为纳米 固体材料的基本构成之一,并且影响到纳米固 体材料所表现出的特殊性能。
lp

Gb
p
d<lp,位错不稳定,离开此晶粒 d>lp,位错稳定地存在于该晶粒中
15
纳米固体材料中的三叉晶界
所谓三叉晶界,指三个或三个以上相邻晶 粒之间的交叉区域。
晶晶 Δ
计算表明:当晶粒直径从
100 nm减小到2 nm时,三叉 晶界体积分数增加3个数量
级,而晶界体积分数仅增加
晶晶
1个数量级。
Ct

4d3
3
4 d
3
4d3

3

3d
d
d3
3

61 125

48.8%
3
若取一微体积ΔV,假设单位体积内的界面组元面积为St, 则ΔV内界面组元体积为:
Vt Ct V St V
St
Ct
Hale Waihona Puke 488m2cm 3
5
纳米固体材料中界面组元的特点 原子密度降低 最近邻原子配位数发生变化
7
纳米固体材料的界面结构模型
类气态模型
Gleiter于1987年提出,称为纳米晶体界面结构模型
认为纳米微晶 界面内原子排列既 非长程有序,又非 短程有序,而是一 种类气态的,无序 程度很高的结构。
8
短程有序模型
认为纳米材料的界面排列是有序的。
但进一步研究表明,界面组元的原子排列
的有序化是局域性的,而且,这种有序排列是
有条件的,主要取决于界面的原子间距ra和颗 粒大小d,当
ra

d 2
时,界面组元的原子排列是局域有序的;反之,
界面组元则为无序结构。
9
界面可变结构模型 也称结构特征分布模型。 强调界面结构的多样性,即纳米材料的
界面不是单一的、同样的结构,界面结构是 多种多样的,因此,不能用一种简单的模型 概括所有的界面组元的特征。
12
孔洞
孔洞一般处于晶界上,其主要源于 原硬团聚中原先存在孔洞,高温烧结无法消
除硬团聚体,因此,孔洞就会被保留下来; 纳米微粒表面易吸附气体,压制过程中形成
气孔,一经烧结,气体逃逸,留下孔洞。
孔洞随退火温度的升高和退火时间的延长, 会收缩,甚至会完全消失,可达到纳米材料的 致密化。
13
纳米固体材料中的位错 观点一 认为纳米材料中存在着大量点缺陷,而无位错。
观点二 晶粒组元甚至在靠近界面的晶粒内存在着
位错,但位错的的组态和位错的运动行为都与 常规晶体的不同(例如:没有位错塞积)。
14
观点三
1990年代,高分辨率电镜在多种纳米材料 中观察到位错、孪晶,这就在实验上无可争辩 地证明纳米晶内存在位错、孪晶等缺陷。
观点四
Gryaznov提出了位错稳定存在的临界尺寸
d -1/2
18
正反混合Hall-Petch关系
蒸发凝聚原位加压法制备的 Cu纳米晶材料
斜率K变化Hall-Petch关系
A:以蒸发凝聚原位加压法 制备的TiO2纳米相材料
B:以非晶晶化法制备的NiP纳米晶材料
偏离Hall-Petch关系
采用电沉积方法制备的Ni纳 米晶材料
or Hv y
上述因素均导致纳米材料的缺陷密度比常 规晶体材料大得多。
11
纳米固体材料中的点缺陷
纳米材料中,界面体积分数比常规多晶材 料大得多,这使得空位、空位团和孔洞等点缺 陷增多。 空位
空位主要存在于晶界上,是在纳米固体由 颗粒压制成块体的过程中形成的。 空位团
空位团主要存在于三叉晶界上,其形成一 部分归结为单个空位的扩散、聚集,另一部分 是在压制块体时形成的。
or Hv y
or Hv y
d -1/2
d -1/2 c
界面缺陷态模型 其中心思想是界面包含大量缺陷,其中
三叉晶界对界面性质的影响起关键作用。
10
3、纳米固体材料中的结构缺陷
概述 在常规晶体材料中,不可避免地存在缺陷。
分别为:点缺陷(空位、间隙原子)、线缺陷 (位错)、面缺陷(晶界、亚晶界);
而纳米固体材料中,存在:
界面原子排列混乱; 界面原子配位不全; 纳米粉体压制成块体的过程中,晶格常数发生变化。
3
2、纳米固体材料的基本结构组成
纳米晶体材料=晶粒组元+晶界组元 纳米非晶材料=非晶组元+界面组元 纳米准晶材料=准晶组元+界面组元
纳米固体材料=颗粒组元+界面组元
4
3、纳米固体材料的界面组元
界面组元体积分数
假设纳米微粒的粒径d为5nm,界面平均厚度δ为1 nm, 且微粒为球体,则界面组元的体积分数Ct 为:
晶晶
三叉晶界体积分数对
晶粒尺寸的敏感度远远大
于晶界体积分数。这就意味着三叉晶界对纳米 晶体材料的性能影响是非常大的。
16
三、纳米固体材料的性能
1、纳米固体材料的力学性能
强度(硬度)
常规粗晶材料的强度(硬度)与晶粒 尺寸之间存在着Hall-Petch关系:
1
y 0 Kd 2
1
纳米固体材料
1
一、纳米固体材料的概念
纳米固体材料,又称纳米结构材料,是由 纳米微粒或纳米晶粒凝聚而成的三维块体。
按照结构状态,纳米固体材料可分为纳米 晶体、纳米非晶体和纳米准晶材料;按照相构 成,纳米固体材料可分为纳米单相材料(由单 相微粒构成的固体)和纳米复相材料(由两种 或两种以上的相微粒构成的固体)。
相关文档
最新文档