铝合金轮毂热处理相关知识
铝合金轮毂热处理相关知识
铝合金轮毂热处理相关知识1、铝合金轮毂热处理过程及重要性热处理就是以一定的加热速度,升到某一温度下保温一定时间并以一定的速度冷却,得到某种合金组织和性能要求的一种加工方法。
其主要目的是:提高力学性能,增强耐腐性能,改善加工性能,获得尺寸的稳定性。
铸造铝合金轮毂选用的材料是A356铝合金(美国牌号),对应的国内合金牌号为ZL101,属铝-硅系铸造合金,通常采用T6热处理工艺,含义如下表:表1 热处理状态代号、名称及特点铝合金轮毂的热处理强化的主要方法是固溶淬火加人工时效。
在Al-Si-Mg 合金中,固溶处理的实质在于:将合金加热到尽可能高的温度,并在该温度下保持足够长的时间,使强化相Mg2Si充分溶入α-Al固溶体,随后快速冷却,使高温时的固溶体呈过饱和状态保留到室温。
温度愈高,愈接近固相线温度,则固溶处理的效果愈好。
固溶处理也会改变共晶Si的形态,随着固溶保持时间的延长,Si相有一个缓慢球化和不断粗化的过程,这种过程随固溶温度的提高而增强。
一般铝合金轮毂的固溶温度选择在535--545℃之间,时间为6小时。
固溶温度对Si相形态的影响要比保温时间的影响大得多,通过参照相关理论和试验发现,550℃保温100分钟后的Si相形态等同于540℃保温300分钟后的形态,目前中信戴卡公司热处理工序步进式连续炉,除特殊产品有明确要求外,均采用固溶550℃保温140分钟左右的热处理工艺。
当然,选择的是较高的固溶温度,对设备稳定性的要求也很高,炉膛内各部温度要均匀,否则局部温度过高,会导致部分产品过热、过烧。
铝合金轮毂淬火时的水温一般选择在60--80℃之间,而且水的状态对机械性能也有一定影响,这是因为轮毂淬火时水温升高,工件表面局部水气化的可能性增大,一旦气囊形成,冷速就明显降低,这会使机械性能降低,因而在工件淬火的情况下,必须要开启水循环装置(搅拌器、循环泵等),使水箱内的水处于流动状态,水温均匀,工件表面没有形成气囊的机会,保持一定的冷却速度,确保淬火效果。
铝合金轮毂低压铸造的热处理工艺及其性能分析
收稿日期:2019 12 07作者简介:李 莎(1986—),女,硕士,讲师,研究方向为金属材料与热处理及表面技术.DOI:10 3969/j issn 1002 1639 2020 08 006铝合金轮毂低压铸造的热处理工艺及其性能分析李 莎(陕西工业职业技术学院,陕西 咸阳 712000)摘要:针对A356 2铝合金轮毂采取固溶措施,在此基础上通过人工时效24h、自然时效48h方式处理,展开力学性能检测,同时检测通过涂装处理后的成品。
经分析结果得知,T4(自然时效24h)热处理在屈服强度上有所下降,相较于T6热处理而言降幅约20%~30%,除此之外在抗拉强度与硬度两项指标上也出现下降趋势,分别为5%~10%、10%~20%,较特殊的是伸长率,提升幅度达到70%~100%。
在采取涂装措施后,基于合金检测结果得知,伸长率有所下降,强度与硬度均有所提升。
总体上,T4热处理可行性更佳,所得合金力学性能更为良好。
关键词:A356 2铝合金;热处理;轮毂中图分类号:TG156 文献标志码:A 文章编号:1002 1639(2020)08 0020 03HeatTreatmentProcessandPerformanceAnalysisofAluminumAlloyWheelHubUnderLowPressureCastingLISha(ShaanxiPolytechnicInstitute,Xianyang712000,China)Abstract:ThesolidsolutionmeasuresweretakenforA356 2aluminumalloyhub Onthisbasis,themechanicalpropertiesofA356 2alumi numalloywheelsweretestedbyartificialagingfor24handnaturalagingfor48h,andthefinishedproductstreatedbycoatingweretestedatthesametime TheresultsshowthattheyieldstrengthofT4(naturalaging24h)heattreatmentdecreasesbyabout20%to30%comparedwithT6heattreatment Inaddition,thetensilestrengthandhardnessalsoshowadownwardtrend,whichare5%~10%and10%~20%,respectivelyandextensionrateis70%~100%,respectivelythemorepeculiaristheelongationwhichisincreasedby70%to100% Afterthecoatingmeasuresweretaken,basedontheresultsofalloytesting,itwasfoundthattheelongationdecreasedandthestrengthandhardnessincreased Generallyspeaking,theheattreatmentofT4ismorefeasibleandthemechanicalpropertiesofthealloyarebetter.KeyWords:A356 2aluminumalloy;heattreatment;hub 铝合金是现代工业的重要材料,兼具质量轻、成形性好等多重特点,应用于汽车工业中可以达到降低车辆自重、优化操作性等效果[1-3]。
铝合金轮毂制作工艺
铝合金轮毂制作工艺引言铝合金轮毂广泛应用于汽车、摩托车等交通工具中,它具有轻质、高强度、耐腐蚀等优点,成为现代车辆的重要组成部分。
本文将详细介绍铝合金轮毂制作工艺,包括材料选择、铸造工艺、加工工艺等内容,以期为读者深入了解铝合金轮毂制作工艺提供有效的参考。
材料选择铝合金轮毂的材料选择是制作工艺的首要考虑因素。
常见的铝合金材料有A356、A357、6061等,这些铝合金具有良好的加工性能、强度和耐腐蚀性。
根据使用环境、车辆类型和制造成本等因素,选择合适的铝合金材料非常重要。
铸造工艺铸造是铝合金轮毂制作的主要工艺之一。
铸造工艺可以根据具体要求分为压力铸造和重力铸造两种类型。
压力铸造压力铸造是将熔化的铝合金通过高压注入模具中,在短时间内冷却凝固形成轮毂的工艺。
该工艺具有高生产效率、良好的铸件表面质量和一致性等优点。
具体步骤如下:1.准备工作:准备好模具、铸造设备和熔炉等。
2.加热熔化:将铝合金料加入炉内进行加热熔化,控制好熔化温度和时间。
3.注入模具:熔化的铝合金通过喷射系统,高压注入模具中,填充整个模腔。
4.冷却凝固:注入模具后,通过冷却系统冷却轮毂,使其凝固成型。
5.模具开启:等待轮毂完全凝固后,打开模具取出轮毂。
重力铸造重力铸造是利用重力作用使熔化的铝合金流入模腔中形成轮毂的工艺。
相比于压力铸造,重力铸造工艺成本较低,适用于制作较大尺寸的轮毂。
具体步骤如下:1.准备工作:准备好模具、铸造设备和熔炉等。
2.加热熔化:将铝合金料加入炉内进行加热熔化,控制好熔化温度和时间。
3.浇注:熔化的铝合金通过铸造设备,由上方浇注入模具中,利用重力作用填充整个模腔。
4.冷却凝固:注入模具后,通过冷却系统冷却轮毂,使其凝固成型。
5.模具开启:等待轮毂完全凝固后,打开模具取出轮毂。
加工工艺铝合金轮毂制作完成后,还需要进行进一步的加工工艺,以提高轮毂的精度和表面质量。
常见的加工工艺包括机加工、热处理和喷涂等。
机加工机加工是通过机械设备对铝合金轮毂进行精细加工的工艺。
铝合金轮毂热处理工艺节能探讨
期每6 个 月对热处理炉加热区有效性和仪 表精 度进 行检测 ,热 电偶用的 Ⅱ级K型也应按规定每6 个月
进行 检 定 ,而 后再 确 定 最佳 工 艺温 度 才 能更 科 学 、 更合 理 。就 产 品 结构 而 言 ,为 了 使 固溶 体达 到 一 定 程 度所 需要 一 定 的保 温 时 间 ,随 着铝 合 金轮 毂 厚 度
ZA1 S i 7 Mg 铸 造 铝 合 金 的 凝 固范 围为 5 5 0 ~6 1 0  ̄ C,
速地 由固溶体 内析出 ,提高铝合金的强度 ,时效强
化 后 在 室温 条 件 下正 常 冷却 。
有部分 铝合金 轮毂生产 工厂认 为A 3 5 6 . 2 铸 造 铝 合金轮 毂的T 6 热处 理规 范为 :固溶处理 ( 5 3 5 ±5 )℃ ,保 温3 ~4 h ,淬火冷却介 质为水 ,温 度
6 0 ℃,淬火转移时 间小于 1 5 s ;时 效 处 理 ( 1 6 5 ±
所 以 在 确 定 铸 造 铝 合 金 轮 毂 固溶 温 度 时 不 能 超 过 5 5 0 ℃ ,否 则 就 有 产 品 热 处 理 过烧 的风 险 ,而 6 0 6 1 锻 造 铝合 金 的 凝 固范 围 下 限要 较 Z A 1 S i 7 Mg 铸 造 铝
用 。但如 果 从 既满 足 力 学性 能 要 求 又节 能 的 角度 , 就 应该 有 更深 层次 的试 验 研 究 。
的时 间进 入到 固溶 体 中 ,通 过在淬火 液 中快速 冷
却 ,使 可 溶成 分 以 过 饱和 状 态 存在 于 固溶 体 中 。人 工时 效 是 在温 度 较 高状 态 下 使 过饱 和 的 合 金元 素 迅
2 . 工艺节能的探讨
( 1 )工艺简述 铝 合金轮毂一般要 经过T 6 热
ZL101A铝合金车轮热处理工艺的优化实验
ZL101A铝合金车轮热处理工艺的优化实验摘要: 汽车车轮是车辆承载的重要安全部件。
铝合金以其优异的比强度和比刚度,成为汽车轻量化的首选材料,使用比例逐年提高。
本文以某公司现有较为成熟的ZL101A铝合金车轮T6热处理工艺为基础,参照国内外热处理经验,通过调整热处理工艺参数,合理安排工艺,确保铝合金车轮原有性能不变或有所提高。
通过实验确定较为合适的固溶加热温度为535℃~540℃,在535℃、540℃固溶时,分别保温6h、5h可获得更高的力学性能;最适宜的时效温度是130℃、140℃,最佳时效保温时间为3.5h、4h。
关键词:ZL101A铝合金车轮;T6热处理工艺;固溶;时效Abstract:Wheel is an important safety component of vehicles. Aluminum alloy with its excellent specific strength and stiffness has been selected to use widely by cars as a lightweight material.Taking a more mature T6 heat treatment for ZL101A alloy wheels reference from a company, based on experience at home and abroad about the heat treatment process, by adjusting the heat treatment parameters, a reasonable arrangement process, to ensure that the performance of the original aluminum alloy wheels maintained or improved .Experimental results showed that a more appropriate solution to determine the heating temperature is 535~540 ℃. at 535 ℃, 540 ℃solution, respectively, insulation 6h, 5h obtain higher mechanical properties; and the most appropriate in this aging temperature is 130 ℃, 140 ℃;the optimum holding time is 3.5h and 4h.Key words: ZL101A aluminum alloy wheels; T6 heat treatment; solution; aging目录1 绪论 (1)1.1 铝合金车轮概述 (1)1.2 国内外铝合金车轮制造业现状 (1)1.2.1 国外铝合金车轮制造业现状 (1)1.2.2 国内铝合金车轮制造业现状 (2)1.3 铝车轮热处理工艺的研究背景及意义 (2)2. ZL101A铝合金车轮的生产工艺概况 (3)2.1 熔炼 (3)2.2 变质 (4)2.2.1 变质方法 (4)2.2.2 孪晶凹谷机制变质机理 (4)2.3 晶粒细化 (5)2.3.1 细化方法 (5)2.3.2 晶粒细化的机理 (5)2.4 铸造 (5)2.4.1 低压铸造的基本原理 (6)2.4.2 低压铸造的工艺流程 (6)3. ZL101A力学性能的主要影响因素 (7)3.1 合金元素的影响 (7)3.2 微观组织的影响 (8)3.3 熔体处理及热处理的影响 (8)4 ZL101A常见的冶金缺陷分析 (8)4.1缩孔 (8)4.2疏松 (9)4.3裂纹 (9)4.4偏析 (10)4.5夹杂 (11)4.6淬火加热过烧 (11)4.7针孔 (11)4.8气孔(气泡) (12)4.9固溶强化相溶解不完全 (13)4.10变质处理不足和变质过度(过变质) (13)5. ZL101A铝合金车轮热处理工艺的优化实验 (13)5.1 铝合金热处理工艺概述 (13)5.2 铝车轮热处理工艺优化试验方案的设计 (15)5.3 实验材料的制备 (16)5.4 实验设备的校验 (17)5.5优化试验工艺参数的确定 (19)5.6 实验制度的确定 (20)5.6.1 固溶制度的确定 (20)5.6.2 时效制度的确定 (21)5.7 实验结果分析 (23)5.7.1固溶实验结论与分析 (23)5.7.2时效实验结论与分析 (23)5.7.3综合实验结论与分析 (23)6.优化实验工艺与原试验工艺比较 (24)6.1化学成分的测定 (24)6.2力学性能的测定 (24)6.3金相组织检验 (25)7.结论与展望 (26)参考文献 (27)1 绪论1.1 铝合金车轮概述汽车车轮是车辆承载的重要安全部件。
a356铝合金摩托车轮毂热处理设计课设
a356铝合金摩托车轮毂热处理设计课设热处理是指通过控制金属材料的加热、保温和冷却过程,以改变其微观组织和性能的方法。
在铝合金摩托车轮毂的制造过程中,热处理是一个非常重要的环节,可以显著提高轮毂的强度、硬度和耐磨性,同时提高其整体性能和使用寿命。
铝合金是一种具有优良性能的轻质合金材料,具有优异的机械性能、热传导性能和电传导性能,被广泛应用于各个领域。
然而,纯铝材料的强度较低,往往无法满足实际应用的要求。
通过添加其他合金元素和热处理工艺,可以大大提高铝合金的强度和硬度。
针对a356铝合金摩托车轮毂的热处理设计,首先需要了解该合金的组成和热处理工艺。
a356铝合金主要由铝、硅、镁和铜等元素组成。
在热处理过程中,一般分为固溶处理和时效处理两个阶段。
固溶处理是将合金加热到高温,使其固溶体中的固溶元素均匀分布。
对于a356铝合金,一般将其加热到500-520℃,保持一定时间,使铜和镁等固溶元素溶解在铝基体中。
然后通过迅速冷却,使溶解的固溶元素保持在铝基体中,形成固溶体。
时效处理是在固溶处理后,将合金再次加热到较低的温度,使固溶体中的固溶元素重新组织和析出,形成硬化相。
对于a356铝合金,一般将其加热到150-180℃,保持一定时间,使铜和镁元素重新析出,形成硬化相。
根据以上热处理工艺,可以设计出一种合理的热处理方案。
首先确定合适的固溶处理温度和保温时间,保证固溶元素的充分溶解。
然后通过迅速冷却,使固溶元素保持在铝基体中,形成固溶体。
在时效处理阶段,确定合适的时效处理温度和保温时间,使固溶体中的固溶元素重新组织和析出,形成硬化相。
通过调整时效处理的温度和时间,可以控制硬化相的成分和尺寸,从而调节合金的力学性能。
此外,为了进一步提高铝合金摩托车轮毂的硬度和耐磨性,还可以考虑进行表面处理。
常见的表面处理方法包括阳极氧化、电泳涂装等。
阳极氧化是一种在阳极上形成氧化膜的电化学过程,可以有效提高合金的耐蚀性和硬度。
电泳涂装是将涂料通过电泳的方式附着在合金表面,形成一层均匀的保护膜,提高合金的耐磨性和外观质量。
铝合金热处理标准
铝合金热处理标准铝合金是一种轻质、高强度的金属材料,广泛应用于航空航天、汽车制造、建筑等领域。
然而,铝合金的热处理对其性能和用途至关重要。
本文将介绍铝合金热处理的标准及相关知识。
首先,铝合金的热处理标准主要包括时效硬化、固溶处理和淬火。
时效硬化是指在固溶处理后,将合金在较低的温度下保温一段时间,通过析出细小的析出相颗粒来提高合金的硬度和强度。
固溶处理是将合金加热至固溶温度,使合金中的溶解相完全溶解,然后迅速冷却到室温。
淬火是指将固溶处理后的合金快速冷却,以获得高强度和硬度。
其次,铝合金热处理的温度控制非常关键。
不同种类的铝合金对应不同的固溶温度和时效温度,温度控制的不当将导致合金的性能下降甚至失效。
因此,在进行热处理时,必须严格按照标准要求进行温度控制,以确保合金的性能达到设计要求。
另外,热处理过程中的冷却速度也需要严格控制。
过快或过慢的冷却速度都会对合金的性能产生不利影响。
合金的淬火速度要根据具体合金的性能要求进行合理选择,以确保合金在热处理后能够达到设计要求的硬度和强度。
最后,热处理过程中的环境条件也需要重视。
合金的热处理通常在控制气氛炉或真空炉中进行,以避免合金表面的氧化和污染。
此外,热处理过程中还需要注意处理工艺中的气氛气体成分和气氛气氛流速等因素,以确保合金表面的质量和性能。
综上所述,铝合金热处理标准涉及到时效硬化、固溶处理、淬火等多个方面,温度、冷却速度和环境条件都对合金的性能产生重要影响。
只有严格按照标准要求进行热处理,才能确保铝合金的性能达到设计要求,从而保证其在各个领域的应用安全可靠。
轮毂铝合金生产工艺
轮毂铝合金生产工艺轮毂铝合金生产工艺轮毂是汽车的重要组成部分,它不仅能够支撑车辆的重量,还可以承受路面的冲击和转动力矩,因此轮毂的质量对于汽车的操控性能至关重要。
近年来,轮毂铝合金得到了广泛应用,因其具有优异的轻量化性能和良好的强度、耐磨性等特点。
以下将介绍轮毂铝合金的生产工艺。
轮毂铝合金的生产工艺主要包括铸造、热处理和机械加工三个方面。
首先是铸造过程。
轮毂铝合金的铸造可以采用压力铸造或重力铸造两种方法。
压力铸造是将液态铝合金注入金属型腔中,通过高压力使其充满整个空腔,经过冷却后得到成型的轮毂。
重力铸造则是将液态铝合金直接倒入铸型中,通过自重力流动充满空腔,再经过冷却得到成型的轮毂。
铸造过程中需要控制好冷却速度和温度,以获得均匀细密的组织结构和合理的力学性能。
接下来是热处理过程。
热处理是提高铝合金性能的重要一环。
轮毂铝合金一般需要经过固溶处理和时效处理两个步骤。
固溶处理是将铝合金加热到固溶温度,使硬质相完全溶解。
然后迅速冷却使其快速固化,通过这一步骤可以获得较高的强度和优良的塑性。
时效处理是将已固溶处理的轮毂再次加热到一定温度,使固溶相分解并沉淀出细小的弥散硬质相,这能进一步提高轮毂的强度和硬度。
不同型号的铝合金需要根据其具体材料特性和应用要求来确定热处理工艺参数。
最后是机械加工过程。
机械加工包括车削、磨削、铣削、冲压等工艺,用于对轮毂进行细节加工和提供特定形状。
机械加工可以去除铸造过程中的缺陷和表面粗糙度,提高轮毂的精度和表面质量。
同时,机械加工还可以进行孔加工、螺纹加工等特殊工艺,以方便安装和使用。
综上所述,轮毂铝合金的生产工艺主要包括铸造、热处理和机械加工三个方面。
通过合理控制工艺参数和工艺流程,可以获得质量优良、性能稳定的轮毂铝合金产品。
随着材料科学和生产技术的不断进步,相信轮毂铝合金在未来会有更广泛的应用。
a356铝合金摩托车轮毂热处理设计课设
a356铝合金摩托车轮毂热处理设计课设摩托车轮毂是摩托车的重要部件之一,其质量和性能的好坏直接影响到整车的安全性和操控性能。
铝合金轮毂具有重量轻、刚性好、抗腐蚀性强等优点,因此在摩托车上得到了广泛应用。
为了进一步提高轮毂的性能,热处理是一个重要的工艺步骤。
热处理是通过改变材料的组织结构和性能,以达到提高材料硬度、强度、耐磨性等目的的过程。
对于铝合金轮毂来说,常用的热处理工艺有时效处理和强化处理。
时效处理是指通过在高温下保持一定时间,然后在常温下冷却的过程。
时效处理可以改善铝合金轮毂的强度和韧性。
在时效处理过程中,首先要确定合适的时效温度和时间。
一般来说,时效温度在100℃到200℃之间,时效时间在几小时到几十小时之间。
在选择时效温度和时间时,需要考虑到材料的成分和硬度要求等因素。
强化处理是指通过加热合金到高温,然后迅速冷却的过程。
强化处理可以增加铝合金轮毂的硬度和抗腐蚀性能。
在强化处理过程中,加热温度要高于合金的固溶温度,通常在500℃到550℃之间。
迅速冷却可以选择水冷、油冷等方式。
强化处理后的铝合金轮毂具有良好的硬度和耐磨性,适用于复杂的路面条件。
在热处理设计中,需要考虑到轮毂的形状和尺寸,以及材料的成分和要求。
合理的热处理工艺可以优化轮毂的性能,提高其使用寿命和安全性。
同时,热处理过程中需要注意控制加热温度和时间,确保轮毂的整体性能得到最大程度的提升。
总之,铝合金摩托车轮毂的热处理设计是一个重要的课设内容。
通过选择合适的热处理工艺和参数,可以改善铝合金轮毂的性能,提高其安全性和耐久性。
在设计中需要综合考虑轮毂的形状、尺寸、材料成分和要求等因素,确保热处理过程的可行性和有效性。
只有掌握了合适的热处理工艺,才能有效地提高铝合金摩托车轮毂的质量和性能。
铝合金轮毂工艺流程
铝合金轮毂工艺流程
《铝合金轮毂工艺流程》
铝合金轮毂是一种轻质、耐用、外观漂亮的汽车零部件,其制作工艺复杂,需要经过多道工序才能完成。
下面就是铝合金轮毂的工艺流程。
第一道工序是铝合金锻压。
首先将铝合金锭放入加热炉中进行加热,然后通过锻压机进行锻压。
这一步是为了将铝合金锭变成轮毂的初步形状。
第二道工序是精密锻造。
经过第一道工序,轮毂的形状已经初步成型,但是还需要进行精密锻造,以确保轮毂的强度和密度。
第三道工序是精密车削。
在这个工序中,需要使用数控车床对轮毂进行精细加工,以确保其符合设计要求的尺寸和形状。
第四道工序是热处理。
经过精密车削后的轮毂需要进行热处理,以提高其硬度和耐磨性。
第五道工序是喷涂。
在这一步,需要对轮毂进行喷涂,以增强其表面的耐腐蚀性和抗氧化性。
第六道工序是组装。
最后,将轮毂的其他配件如轮胎和轴承组装到轮毂上,完成整个制作过程。
通过以上工艺流程,铝合金轮毂制作完成。
这些工序各自都十
分关键,需要严格控制,以确保最终的产品符合质量要求和使用要求。
铝合金轮毂热处理工艺
铝合金轮毂热处理工艺
铝合金轮毂以其质量轻、散热快、减震性好、轮胎寿命长、外观美丽、图案丰富多彩、尺寸精确、平衡性好、操作轻快等优点,作为钢制轮毂的良好替代品,已广泛应用于轿车和客车上。
纯铝的强度低,不宜用来制作承受载荷的结构零件,向铝中加入适量的合金元素,可以制成较高强度的铝合金。
铝合金密度低,但强度比较高,接近或超过优质钢,塑性好。
如再经冷变形强化或热处理,可进一步提高强度。
铝合金的热处理工艺由固溶处理和时效处理组成。
1. 固溶处理:是将铝合金加热到高温单相区恒温保持,随后迅速水冷使过剩相充分溶解到固溶体中,以得到过饱和固溶体。
固溶处理可以提高铝合金的强度和塑性,使合金中各种相充分溶解,强化固溶体,并提高韧性及抗蚀性能,消除应力与软化,以便继续加工或成型。
2. 时效处理:经固溶处理后的铝合金组织不稳定,过饱和固溶体有分解出强化相达到稳定状态的倾向。
将工件在室温下放置一定时间或加热到一定温度保温一定时间后,强度和硬度会明显提高,这种现象称为时效。
自然时效时间较长,实际生产中采用加热到一定温度并较短时间进行时效的人工时效处理。
时效处理后可获得机械性能稳定,尺寸形状精度高的产品。
通过热处理工艺,可明显改善合金的组织结构,提高合金的力学性能,增强耐腐蚀性能,改善加工性能,获得尺寸的稳定性。
zl101a铝合金车轮热处理工艺的优化与研究
zl101a铝合金车轮热处理工艺的优化与研究
铝合金车轮热处理工艺的优化与研究是针对提高铝合金车轮性能和延长使用寿命的关键研究方向。
优化研究主要包括以下方面:
1. 材料选择:研究不同品种的铝合金材料的性能,选择适合车轮的材料,比如常用的A356和A357铝合金。
2. 合金配方:根据车轮的工作环境和要求,优化铝合金的配方,调整合金元素的含量和比例,以提高车轮的强度、硬度和耐腐蚀性能。
3. 预处理:在车轮加工前对铝合金进行预处理,如去除表面氧化层、清洗、除油等,以减少车轮在加工过程中的变形和表面缺陷。
4. 热处理工艺:确定适宜的热处理工艺参数,包括加热温度、保温时间和冷却速度等,以获得理想的组织和性能。
常用的热处理工艺包括固溶处理、时效处理和球化处理等。
5. 热处理设备:选择适当的热处理设备,如电阻炉、盐浴炉或气氛炉等,以保证热处理工艺的可行性和稳定性。
研究热处理工艺的目的是为了获得以下效果:
1. 提高车轮的强度和硬度,增加承载能力和抗疲劳性能。
2. 改善车轮的耐腐蚀性能,抵抗酸碱腐蚀、高温氧化和盐雾腐蚀等。
3. 控制车轮的组织结构,实现晶粒精细化和相组织的均匀分布,以提高材料的塑性、可加工性和密度。
4. 减少车轮的变形和残余应力,提高车轮的尺寸精度和外观质量。
5. 延长车轮的使用寿命,提高整体经济效益。
总而言之,铝合金车轮热处理工艺的优化与研究是为了提高车轮的性能、延长使用寿命和保证产品质量,促进铝合金车轮行业的健康发展。
浅谈铝合金轮毂热处理的质量控制
产品内在质量缺陷,有化学成分不合格、金相组织不合格 等。化学成分对铝合金轮毂的热处理性能有直接影响,合金元 素含量是在熔炼工序,按照产品标准加以控制的。要消除金相
(下转第 183 页)
169
《装备制造技术》2010 年第 7 期
不适合于工作频率高、压差小及无泄漏液压系统,也不适合用 于吸收液压系统的脉动和液压冲击。
外观质量缺陷中的轮毂磕碰伤,可以通过员工培训、相关 防护、改善工装、适当打磨等方法进行控制。
对于铝合金轮毂圆度变形的控制,首先要控制热处理加 热升温的速度不宜过快;其次要选择合适的工装料架,减少轮 毂之间的相互挤压;第三在保证淬火转移时间的前提下,要使 工件缓慢入水,而且水温控制在工艺范围内的上半区;对于变 形的产品,使用专门的校正仪器进行校正复圆。热处理工序产 生的裂纹,通常分布在轮毂的中心孔周围,主要是由冲床去冒 口时产生的,控制办法是选择合适的冲床刀具,或是使用车 床、钻床进行加工。
工序的自检,是由现场操作者完成的。自检的项目有:每个 热处理批次的表面硬度检查、产品变形的检查、外观检查等。
汽车轮毂热处理技术的研究
汽车轮毂热处理技术的研究随着人们对汽车性能和安全性的要求日益提高,汽车轮毂的材料与制造工艺也在不断更新和提升。
其中,热处理技术作为一种关键工艺,被广泛应用于现代汽车轮毂制造中。
本文将对汽车轮毂热处理技术的研究进行探讨,以期探寻其在汽车轮毂制造中所起的重要作用。
一、汽车轮毂的重要性汽车轮毂是连接车轮和车辆的重要部件,对于汽车性能和安全性有着重要的影响。
在汽车行驶过程中,轮毂不仅要承受动力、制动、悬挂等多种力的作用,还要承受路面冲击与行驶阻力的影响,因此对轮毂的质量要求十分严格。
在这个过程中,如何保证轮毂的强度、韧性和耐磨性等性能指标,就成为了一个重要的问题。
二、轮毂材料的选择轮毂材料的选择是决定其性能的重要因素。
目前,常用的轮毂材料有铝合金、镁合金、高强度钢、碳纤维等等。
其中,铝合金轮毂因其重量轻、强度高、成形性好等特点,成为了注重轻量化和高性能的汽车轮毂材料首选。
三、轮毂制造工艺与热处理技术轮毂制造工艺通常包括铸造、锻造、挤压、板材成型、焊接、粘接等多种方式。
而这些制造工艺的不同,也决定了轮毂的性能和成本。
在这其中,热处理技术作为一项重要的工艺,对轮毂的材料强度、韧性、抗疲劳性等性能指标有着明显的提升作用。
轮毂热处理技术是指通过控制轮毂材料的显微结构和组织,调整其力学性能水平的工艺。
常用的轮毂热处理技术包括固溶处理、时效处理、淬火处理、回火处理等等。
其中,固溶处理以及时效处理被广泛应用于铝合金轮毂的制造中。
固溶处理是指将铝合金轮毂加热到一定温度,使其析出的硬质相溶解在铝基体中。
通过控制加热时间和温度等条件,使硬质相完全或部分溶解在铝基体中,从而提高铝合金轮毂的塑性和韧性等性能指标。
时效处理是将固溶处理后的铝合金轮毂在一定的温度下保温一定时间,使硬质相沉淀并进一步析出,提高轮毂的硬度和强度等性能指标。
除此之外,淬火处理和回火处理也在轮毂制造过程中得到了广泛的应用。
淬火处理是指将轮毂快速冷却,在短时间内使轮毂的显微组织发生改变,进而提高轮毂的硬度和强度等性能指标。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝合金轮毂热处理相关知识1、铝合金轮毂热处理过程及重要性热处理就是以一定的加热速度,升到某一温度下保温一定时间并以一定的速度冷却,得到某种合金组织和性能要求的一种加工方法。
其主要目的是:提高力学性能,增强耐腐性能,改善加工性能,获得尺寸的稳定性。
铸造铝合金轮毂选用的材料是A356铝合金(美国牌号),对应的国内合金牌号为ZL101,属铝-硅系铸造合金,通常采用T6热处理工艺,含义如下表:表1 热处理状态代号、名称及特点铝合金轮毂的热处理强化的主要方法是固溶淬火加人工时效。
在Al-Si-Mg 合金中,固溶处理的实质在于:将合金加热到尽可能高的温度,并在该温度下保持足够长的时间,使强化相Mg2Si充分溶入α-Al固溶体,随后快速冷却,使高温时的固溶体呈过饱和状态保留到室温。
温度愈高,愈接近固相线温度,则固溶处理的效果愈好。
固溶处理也会改变共晶Si的形态,随着固溶保持时间的延长,Si相有一个缓慢球化和不断粗化的过程,这种过程随固溶温度的提高而增强。
一般铝合金轮毂的固溶温度选择在535--545℃之间,时间为6小时。
固溶温度对Si 相形态的影响要比保温时间的影响大得多,通过参照相关理论和试验发现,550℃保温100分钟后的Si相形态等同于540℃保温300分钟后的形态,目前中信戴卡公司热处理工序步进式连续炉,除特殊产品有明确要求外,均采用固溶550℃保温140分钟左右的热处理工艺。
当然,选择的是较高的固溶温度,对设备稳定性的要求也很高,炉膛内各部温度要均匀,否则局部温度过高,会导致部分产品过热、过烧。
铝合金轮毂淬火时的水温一般选择在60--80℃之间,而且水的状态对机械性能也有一定影响,这是因为轮毂淬火时水温升高,工件表面局部水气化的可能性增大,一旦气囊形成,冷速就明显降低,这会使机械性能降低,因而在工件淬火的情况下,必须要开启水循环装置(搅拌器、循环泵等),使水箱内的水处于流动状态,水温均匀,工件表面没有形成气囊的机会,保持一定的冷却速度,确保淬火效果。
控制淬火的转移时间对Mg2Si强化相的分布很重要,转移时间长会使强化元素扩散析出而降低合金的力学性能,所以转移时间越短越好,这也是生产实际中为什么要求转移时间控制在20s之内的原因。
淬火后人工时效温度的选择,对轮毂机械性能的影响非常明显,较高的时效温度下,屈服强度σ0.2随时效时间的增加而提高,延伸率δ则会降低,硬度升高。
相反较低的时效温度和较短时效的时间,屈服强度σ0.2会偏低,而延伸率δ升高,硬度降低。
目前时效温度通常选择130--160℃之间,时间为150分钟左右。
根据热处理工序特点及质量特性,热处理工序被定为T特性工序。
铝合金轮毂热处理的重要性在于,产品能否满足安全使用要求。
其质量特性不能用肉眼直观的进行判别,各项性能指标需要借助专门的检验仪器和设备,对轮毂进行各类检测而获得,由于受到检测频率和检测部位的限制,对于每一炉产品,甚至对每一个产品,检测都只是个别的、局部的,无论如何都不能达到对热处理质量100%的检测,检验也不能完全反映整批产品或整个产品的热处理质量;而且由于热处理过程特点是连续生产,批量投入,一旦出现热处理质量问题,对整个工序的影响面很大;另外热处理的产品是经过了熔炼、铸造、X光等工序的轮毂半成品,如果出现热处理质量问题,其损失也是不言而喻的;更主要的是轮毂热处理缺陷的漏检,很容易引发严重的质量事故,给企业带来无法估量的损失。
2、影响铝合金轮毂热处理性能的因素首先是热处理工序对性能的影响(工艺参数是前提,工艺执行是过程);其次是化学成分的影响(合金元素的含量控制,尤其是有害元素Fe的控制);第三是熔炼过程中铝液的净化(除渣、除气)、晶粒细化(常用细化剂AL-TI-B)、变质效果(常用变质剂Sr);第四是铸造过程中的产生的疏松、夹杂、气孔、偏析等缺陷,都会造成热处理机械性能不合格。
3、操作人员对热处理质量的影响整个热处理过程实际上就是贯彻热处理工艺技术标准的过程。
由于热处理生产过程的每一步骤都需要操作者操作完成,让每一个操作者掌握和了解各步骤的操作及工作原理,对稳定热处理产品质量至关重要,所以现场操作人员必须要经过各方面的培训,在达到一定素质和具备了相应的热处理实践经验后,才可安排在热处理生产线上从事相关工作。
一个合格热处理操作者除了要熟知铝合金轮毂热处理工序质量控制要点,还要知晓影响控制要点的各类因素;不但能够熟练的操作和维护设备,而且还能够及时发现设备运转过程中的一些异常;不仅要掌握质量管理基本知识,也要明了产品工艺标准和相关技术指令。
一个优秀的操作者应该不断的学习业务知识、汲取工作失误的教训,并学会总结经验,在自身素质不断提高的同时,还能够做好新员工的培训,起到传、帮、带的作用。
人员稳定是工序质量稳定的前提。
操作人员对T特性的重要性,必须有清晰的认识,明白自己在生产中所承担的相关责任,这既是对自己负责,也是对企业负责、对国家负责。
所以操作人员不能轻视热处理工作中的任何影响质量的细节。
让质量第一的原则,始终贯穿热处理工作的全过程。
所以经常的组织员工接受各类培训(工艺文件、质量意识、设备操作、安全生产、产品处置、各种事故总结分析等),对稳定工序质量有积极意义。
由于人员的疏忽,造成热处理产品异常的事件很多,带给企业的损失也是较大的,个别企业人员并没有意识到操作的随意性(淬火、出炉前开启炉门等)带来的质量隐患。
另外,每个企业在生产中都会出现磕碰伤产品,细细想来大部分磕碰伤都是错误的操作造成的。
4、影响热处理工艺稳定的因素铝合金轮毂的热处理质量在很大程度上,依赖于设备及仪表控制系统和合理的热处理工艺。
直接体现设备稳定的标准就是热处理工艺稳定。
要控制铝合金轮毂热处理质量,首先要消除影响工艺稳定的因素,这些影响因素主要有:仪表与热电偶的工作状态、加热系统工作效率、风机循环系统工作状况、炉体的密封与保温效果等等;4.1、仪表与热电偶的工作状态直接反映温度波动情况,所以首先要确保补偿导线与仪表、热电偶连接可靠。
控温仪表参数设置要与工艺标准一致,而且具备相应的报警功能,并能实现加热过程中温度自动调节。
固定在炉体上的热电偶不得松动,热电偶扣罩端密封要好,并且确保偶芯与保护管无有短路现象,同时要注意插入炉膛内部热电偶的深度,避免刮蹭工件或料架,造成热电偶弯曲受损,影响温度正常显示。
4.2、加热系统工作效率由于受仪表控温系统控制,所以热电偶位置及控温仪表参数设置,都会影响加热时间和炉膛温度稳定。
对于燃气(油)热处理设备,燃气(油)的流量和压缩空气流量的调整,必须以炉温跟踪仪实际检测的炉膛温度曲线为依据,最终锁定满足工艺稳定的合理流量,这样既充分发挥了加热系统工作效率,又减少了不必要的能耗,最关键的是减小了连续生产时的温度波动。
4.3、风机循环系统工作状况关系到铝合金轮毂是否均匀受热,所以风机循环必须要实现时时监控,当转速低于设定的下限值时,要有报警提示,以便及时检查风机状况,调整或更换风机三角带,始终保持炉内风循环量,最大限度的保证铝合金轮毂热处理性能均匀一致。
4.4、炉体的密封与保温效果会影响炉膛温度均匀,不但会造成轮毂性能的不稳定,还会带来二次处理所造成各类损失,而且由于炉门密封不严或局部保温不好,还会带来较大动力消耗,增加生产成本。
炉体的密封与保温效果良好,是稳定工艺和设备调整的基础。
5、异常情况下的处置措施当产品出现质量异常时,必须执行相关的报废、返工、流转等处理流程;设备异常时,也要严格执行应急处理及重新启动的规定,并对受影响的产品采取一定的措施。
6、工艺过程控制当设备处于良好的工作状态时,铝合金轮毂会在稳定的工艺条件下完成热处理过程。
但是当设备出现异常情况,导致工艺波动时,仅仅要求操作者做到及时的发现,是远远不够的。
为确保过程控制的稳定性,这就要求从设备控制方面完善各类报警,如超温(低温)报警、风机转速报警、加热系统(断电、断路、熄火)报警、驱动停止报警、淬火转移时间超时报警、水温水位报警等,这些报警通过声光的形式,能够直接被现场操作者接收到,以便及时采取应对措施,在最短的时间内恢复设备正常运行。
为确保每一只铝合金轮毂正常完成热处理过程,操作者要按照一定的时间间隔,进行工艺、设备巡检,在生产质量记录单上要记录详细的产品规格、生产批号、数量、工艺过程及操作者姓名,该记录作为热处理工艺过程控制的原始数据,必须要整理存档以备追溯。
为更好的跟踪产品性能情况,工作现场要建立每台设备的产品性能波动图,通过统计过程控制,可及时的发现和消除性能异常波动的因素。
为了确保工艺过程的稳定,每2个月一次的炉温检测是十分必要的,对于连续式生产作业炉,要使用炉温跟踪仪全程检测工艺情况。
当实际测温曲线与工艺曲线有差异时,必须对设备进行相应的调整,最终达到测温曲线波动范围在工艺设定的范围之内。
质量检验铝合金轮毂在热处理工序的质量检验有:产品的专检和自检两大类,此外还应包括检验设备的校准与检定,热处理生产设备上的控温仪表、热电偶、记录仪、压力表等的检定。
产品专检是由质检部门借助专门的实验设备对铝合金轮毂的热处理质量进行验证,如机械性能检验、金相分析等。
铝合金轮毂在热处理完成之后,必须要按照送检频次进行机械性能检验,检验部门根据相关的产品标准,对指定部位进行检测,主要项目有:屈服强度、抗拉强度、延伸率和硬度,并通过产品过程控制标准与实际检测值的对比,出具相应的性能检验报告单。
当产品质量出现异常时,检验部门必须对异常产品做化学成分分析,以判定合金成分是否符合产品标准的要求,并且通过金相分析,确认热处理后铝合金轮毂的内部显微组织形态及分布状况,依据金相图谱判定级别,出具金相分析报告单,为消除异常、改进工艺、稳定质量指明方向。
工序的自检是由现场操作者完成的,自检的项目有:每个热处理批次的表面硬度检查、产品变形的检查、外观检查等。
表面硬度检查是使用便携式硬度检测仪,在工作现场对每个批次的产品随机抽取一只进行检验,发现硬度异常时可增加专门的性能检验,表面硬度检查是性能专检的延伸与补充。
产品变形检查主要是轮毂的圆度检查,并对存在变形的产品进行校正复圆。
热处理产品下线后,操作者要对产品外观进行检查,在确认没有磕碰伤、裂纹、表皮起泡、颜色发暗等缺陷异常后,在产品指定的位置打上热处理批号,流转下道工序。
试验设备必须是经过相关检验部门检定合格,并在检定有效使用期内,按照标准进行校准后,满足使用,检测数据能够真实反映产品状态。
热处理设备上所有的控温仪表、记录仪、热电偶、压力表等同样是经过检验部门检定合格的,并确保在有效期内。
※该资料为简单热处理知识,相关工艺参数不能作为指导生产的依据,热处理的生产应以各投资企业设备状况和实际工艺卡片要求为准。