2018年人教版中考数学复习《实数》专题练习题含答案
中考数学复习《实数》专项测试卷(带答案)
中考数学复习《实数》专项测试卷(带答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.与2(9)-结果相同的是( )A.3±B.|3|C.23D.方程281x =的解2.下列说法正确的是( )A.81-平方根是-B.81的平方根是9C.平方根等于它本身的数是1和0D.21a +一定是正数3.一个正方体的棱长为a ,体积为b ,则下列说法正确的是( )A.b 的立方根是a ±B.a 是b 的立方根C.a b =D.b a =4.下列关于5说法错误的是( ) A.5是无理数 B.数轴上可以找到表示5的点C.5相反数是5-D.53>5.估计11832的运算结果介于( )A.2与3之间B.3与4之间C.4与5之间D.5与6之间6.若实数a ,b 满足13a b +=( )A.a ,b 都是有理数B.a b -的结果必定为无理数C.a ,b 都是无理数D.a b -的结果可能为有理数7.如图,在ABC △中90ACB ∠=︒,AC=3,BC=1,AC 在数轴上,点A 所表示的数为1,以点A 为圆心,AB 长为半径画弧,在点A 左侧交数轴于点D ,则点D 表示的数是( )10 B.10- C.110-1018.若1014M -=,12N =则M ,N 的大小关系是( )A.M N <B.M N =C.M N >D.无法比较9.已知实数tan30sin 45cos60a b c =︒=︒=︒,,,则下列说法正确的是( )A.b a c >>B.a b c >>C.b c a >>D.a c b >>10.定义运算:若,则,例如328=,则2log 83=.运用以上定义,计算:53log 125log 81-=( )A.1-B.2C.1D.411.在下列计算中,正确的是( )A.()56+-=-B.122=C.()26⨯-=D.3sin 30︒= 12.式子52的倒数是( ) A.52 B.52- C.25+ D.52213.对于实数a 、b ,定义22()*2()a b ab a b a b ab a b a b +-≥⎧=⎨--<⎩,则结论正确的有( )①5*31=;②22272(1)*(21)451(1)m m m m m m m m ⎧-+-<-=⎨-+≥⎩; ③若1x ,2x 是方程2560x x --=的两个根,则12*16x x =或17-;④若1x ,2x 是方程210x mx m +--=的两个根12*4x x =,则m 的值为3-或.A.1个B.2个C.3个D.4个二、填空题14.在实数: 中无理数有______个.15a 是一个无理数,且13a <<,请写出一个满足条件的a 值_____.16.011|3|(3π)()tan 45162--+-+-+︒+=______. 17.若m 为7的整数部分,n 为7的小数部分,则)7m n =______. 18.实数a ,b ,c 在数轴上的点如图所示,化简222()()a a b b c +-=____________.三、解答题19.计算m a b =log (0)a b m a =>6-(1)11233- (2)12632322⨯- (3)2245tan 30cos60︒+⋅︒︒20.计算:)102cos6031(16)27--︒-+-. 21.设5a 是一个两位数,其中a 是十位上的数字(9a ≤≤).例如,当a =时5a 表示的两位数是45.尝试:①当1a =时2152251210025=⨯⨯+=;①当2a =时2256252310025==⨯⨯+;①当3a =时2351225==______;…… 归纳:()25a 与()100125a a ++有怎样的大小关系? 验证:请论证“归纳”中的结论正确.22.若正整数a 是4的倍数,则称a 为“四倍数”,例如:8是4的倍数,所以8是“四倍数”.(1)已知p 是任意三个连续偶数的平方和,设中间的数为2n (n 为整数),判断p 是不是“四倍数”,并说明理由;(2)已知正整数k 是一个两位数,且10k x y =+(19x y ≤<≤,其中x ,y 为整数),将其个位上的数字与十位上的数字交换,得到新数m .若m 与k 的差是“四倍数”,求出所有符合条件的正整数k . 参考答案1.答案:C 解析:2(9)819-==33=239=方程281x =的解为9x =±. 故选C.2.答案:D解析:A 、81-是负数,负数没有平方根,不符合题意;B 、819= 9的平方根是3±,不符合题意;C 、平方根等于它本身的数是0,1的平方根是1±,不符合题意;D 、21>0a + 正数的算术平方根大于0,符合题意.故选:D.3.答案:B 解析:一个正方体的棱长为a ,体积为b∴3b a =,即:3a b =∴a 是b 的立方根故选:B.4.答案:D 解析:①5 2.2365857......≈属于无限不循环小数 ①5是无理数,故A 选项正确;①数轴上可以表示任意实数 ①数轴上可以找到表示5的点,故B 选项正确;①5相反数是5,故C 选项正确; ①5 2.2365857......≈①53<,故D 选项错误,符合题意故选:D.5.答案:C 解析:1183232223=+33=+; 132<<4335∴<<;故选:C.6.答案:D解析:A 、当2a =时13213b ==--a 是有理数,b 是无理数,故A 错误;B 、当1322a b ==-,那么0a b -=,所以B 错误; C 、当2a =时13b =-,a 是有理数,故选项C 错误;D 、当1322a b ==-,那么0a b -=,所以选项正确,D 正确. 故选:D.7.答案:C 解析:在Rt ABC △中3AC =,BC=1 22223110AB AC BC ∴=++=∴点D 表示的数为:110故选:C.8.答案:C 解析:1014M -=12= 1011103424M N ∴-=-=103> 0M N ∴->M N ∴>.故选C.9.答案:A 解析:321tan 30sin 45cos 602a b c =︒==︒==︒= 132232<< ∴b a c >> 故选:A.10.答案:A解析:35125= 4381=5log 1253∴= 3log 814=53log 125log 81∴-34=-1=-.故选:A.11.答案:A解析:A 、5(6)561+-=-=-正确,符合题意; B 、1222=原计算错误,不符合题意; C 、3(2)6⨯-=-原计算错误,不符合题意;D 、1sin 302=︒原计算错误,不符合题意. 故选: A.12.答案:A 解析:()()1521 52525252⨯==--+式子5的倒数是52式子5的倒数是52,故选:A.13.答案:C 解析:①5*32523531=⨯+⨯-⨯=,故①正确;②当21m m ≥-时即1m ≤时()()()22*212221212422272m m m m m m m m m m m m -=+---=+--+=-+-当21m m <-时即1m >时 ()()()22*21221214221451m m m m m m m m m m m m -=----=---+=-+()()222721*21451(1)m m m m m m m m ⎧-+-≤∴-=⎨-+>⎩,故②错误; ③1x ,2x 是方程2560x x --=的两个根 125x x ∴+= 126x x =-当12x x ≥时()()121212*225616x x x x x x =+-=⨯--= 当12x x <时()()121212*226517x x x x x x =-+=⨯--=-,故③正确;④1x ,2x 是方程210x mx m +--=的两个根12x x m ∴+=- 121x x m =--当12x x ≥时()()121212*22114x x x x x x m m m =+-=----=-+= 解得:3m =-当12x x <时()()121212*221()24x x x x x x m m m =-+=⨯----=--=解得:6m =-综上可知:①③④正确 故选:C.14.答案:4 解析:3644= 其中8 ⋯ π -2是无理数,共4个 故答案为:4.15.答案:2解析:2123<< 2a ∴=.故答案:2(答案不唯一).16.答案:7 解析:0113(3π)()tan 45162-+-+-+︒+31(2)14=++-++7=.17.答案:3 解析:479<<273∴<2m ∴= 72n = )7(72)(72)743m n ==-=∴故答案为3.18.答案:0解析:由数轴可知0b c a <<<则0a b +< 0b c -<222()||()a a b c b c +---()()a a b c b c =-+++-a abc b c =--++-0=.故答案为:0.19.答案:(1)1(2)5 (3)76解析:(1)(133********===; (2)12632322⨯- 22126322⨯=+632=-+5=;(3)2245tan 30cos60︒+⋅︒︒2312222=+⨯⎝⎭ 21113=+⨯ 76=. 20.答案:532 解析:)102cos6031(16)27--︒-+- 1113133222=-+=53.21.答案:尝试3410025⨯⨯+ 归纳()()25100125a a a =++ 验证:见解析解析:尝试:当3a =时2351225==3410025⨯⨯+; 归纳:()()25100125a a a =++; 验证:等号左边222(5)(105)10010025a a a a =+=++ 等号右边2100(1)2510010025a a a a ++=++ 所以,等号左边=等号右边,等式成立,即证.22.答案:(1)p 是“四倍数”;理由见解析(2)15,19,26,37,48,59解析:(1)p 是“四倍数”,理由如下:①()()()22222222p n n n ++=+-()22128432n n =+=+①p 是“四倍数”;(2)由题意得10m y x =+,则()()10109m k y x x y y x -=+-+=-. ①19x y ≤<≤,其中x ,y 为整数①18y x ≤-≤.若()9y x -.是4的倍数,则4y x -=或8y x -=.当4y x -=时符合条件的k 是15,26,37,48,59; 当8y x -=时符合条件的k 是19.①所有符合条件的正整数k 是15,19,26,37,48,59.。
实数的运算(含二次根式 三角函数特殊值的运算)(解析版)2018年数学全国中考真题-2
2018年数学全国中考真题实数的运算(含二次根式 三角函数特殊值的运算)(试题二)解析版一、选择题 1. 计算的结果等于( ) A. 5 B. C. 9 D.【答案】C【解析】分析:根据有理数的乘方运算进行计算. 详解:(-3)2=9, 故选C .点睛:本题考查了有理数的乘方,比较简单,注意负号.2. (2018黑龙江绥化,4,3分) 下列运算正确的是( ) A.2a +3a =5a 2B.552-=-)( C.a 3·a 4=a12D.(π-3)0=1【答案】D.【解析】解:A 、235a a a +=,故错误; B 255-=(),故错误;C 、34347·a a a a +==,故错误;D 、0(3)1π-=,故正确.故选:D.【知识点】合并同类项,二次根式的性质,同底数幂的乘法,零指数幂的意义3. (湖北省咸宁市,1,3)咸宁冬季里某一天的气温为- 3℃〜2 ),则这一天的温差是( )A .1℃B .-1℃C .5℃D .-5℃ 【答案】C【解析】解:根据“温差=最高气温-最低气温”,2℃-(-3))=2℃+3℃=5℃,故选C . 【知识点】有理数的减法运算4. (2018吉林省,1, 2分)计算(﹣1)×(﹣2)的结果是( ) A .2B .1C .﹣2D .﹣3【答案】A【解析】根据“两数相乘,同号得正”即可求出(﹣1)×(﹣2)=2.故选A .【知识点】有理数的乘法5. (2018贵州铜仁,10,4)计算990013012011216121++++++ 的值为( ) A. 1100 B. 99100 C. 199D. 10099【答案】B【解析】∵21-121121=⨯=,31-2132161=⨯=,41-31431121=⨯=,51-41541201=⨯=, 61-51651301=⨯=,……,1001-90110099199001=⨯=, ∴990013012011216121++++++ =11111111111122334455699100 =1991100100.6.(2018云南省昆明市,12,4分)下列运算正确的是( )A .2193-=⎛⎫ ⎪⎝⎭B . 020181-=- C . 32326(0)a a a a -⋅=≠ D =【答案】C .【解析】A 选项是幂的乘方,213-⎛⎫ ⎪⎝⎭=(13-)×(13-)=19,故A 选项错误; B 选项02018-1-(-2)=3,故B 选项错误;3232a a -⋅=3×2·32a -=6a ,故C 选项正确是同底数幂的乘法,其法则是底数不变,指数相加,即32325a a a a +⋅==,故C 选项正确;D ==故D 选项错误,故选C .【知识点】幂的乘方;同底数幂的乘法;零指数幂;负指数幂;合并同类二次根式7. (2018湖北恩施州,16,3分)我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图6,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为 个.【答案】1838.【解析】本题为探索规律型,由题意可知,因为满六进一,从右到左依次排列的绳子分别代表绳结束乘以6的0次幂,6的1幂,6的2次幂,6的3次幂,6的4次幂.她一共采集到的野果数量为1838个.8. (2018辽宁锦州,6,3分)下列运算正确的是A 、7a -a=6B 、a 2·a 3=a 5C 、(a 3)3=a 6D 、(ab)4=ab 4【答案】B ,【解析】:根据合并同类项、幂的乘方、同底数幂的乘法、积的乘方法则进行解答. 二、填空题1. (2018湖北省江汉油田潜江天门仙桃市,12,3分)112()2--= .【答案】0【解析】直接利用二次根式的化简、绝对值的性质和负整数指数幂的性质分别化简,再计算.2323)21(23331=--+=--+-【知识点】二次根式分母有理化,绝对值,负整数指数幂2. (湖北省咸宁市,5,3)按一定顺序排列的一列数叫做数列,如数列:1111,,,,,261220则这个数列的前2018个数的和为__________. 【答案】20182019【解析】11111111,,,,,21262312342045====⨯⨯⨯⨯则第2018个数为120182019⨯ 则这个数列的前2018个数的和为111111223344520182019+++++⨯⨯⨯⨯⨯ =1111111111223344520182019-+-+-+-++- =112019-=20182019【知识点】探究规律3. (2018年黔三州,19,3)根据下列各式的规律,在横线处填空: 11+12−1=12,13+14−12=112,15+16−13=130,17+18−14=156,... (1)2017+12018− =12017×2018 . 【答案】11009【解析】按照等式顺序,第一个为11+12−1=12,第二个为13+14−1(3−1)÷2+1=13×4,第3个式子15+16−1(5−1)÷2+1=15×6,17+18−1(7−1)÷2+1=17×8,… …以此类推,12017+12018−1(2017−1)÷2+1 =12017×2018 . 【知识点】等式规律探索4. (2018江苏常州,9,2)计算:3-1-=_______. 【答案】2 【解析】21313=-=--5. (2018四川巴中,21(1),6分)(1)计算:│-2│ -2cos 60°+()-1-(2018-)0【答案】原式=2-2×+6-1=2﹣1+6﹣1=6.【解析】依据数的绝对值意义,│-2│=2;由特殊角的三角函数值得cos 60°=;由负整数指数幂的意义得()-1=611=6或者()-1=(6-1)-1=6;根据a 0=1(a ≠0)得(2018-)0=1.6.(2018广西南宁,17,3) 观察下列等式:30=1,31=3,32=9,33=27,34=81,35=243,…,根据其中规律可得30+31+32+…+32018的结果的个位数字是 . 【答案】3,【解析】∵30=1,31=3,32=9,33=27,34=81∴各位数4个数一循环, ∴(2018+1)÷4=504余3, ∴1+3+9=13∴30+31+32+…+32018的结果的个位数字3.7. (2018湖北十堰,14,3分) 对于实数a ,b ,定义运算“)”如下,a )b =a 2-ab ,例如,5)3=52-5*3=10.若(x +1))(x -2)=6,则x 的值为 . 【答案】1【解析】由于(x +1))(x -2)=6,所以(x +1)2-(x +1)(x -2)=6,即有3x +3=6,解得x =1,故答案为:1.8. (2018湖北随州11,3分)8|2-2+2tan45°=______.【答案】4.【解析】842⨯2根据“负数的绝对值等于它的相反数”可得|2-2|=22-2;熟记特殊角的三角函数值可得2tan45°=2×1=2,所以原式=222)+2=222+2=4.三、解答题1. (2018省市,题号,分值)计算:11220182-⎛⎫--+ ⎪⎝⎭【思路分析】先计算各项的值,进而求得结果,一个负数的绝对值为它的相反数,任何非零数的零次幂都为1,一个数的-1次幂相当于它的倒数 【解题过程】原式=2-1+2=3【知识点】绝对值;零指数幂和负整指数幂;有理数加减2. (2018省市,题号,分值)先化简,再求值:22221644a a a aa-+-,其中a 【思路分析】先将分式化简,再将a 值代入求值【解题过程】()()()222244216224444a a a a a a a a a a a a +--==+-+-,当a =2时,原式 【知识点】分式的乘除;二次根式3. (2018广西省桂林市,19,6分)1103)6cos 45+2---︒⎛⎫⎪⎝⎭.【思路分析】先算出每一个式子的值,再依据混合运算顺序,依次计算即可.1103)6cos 45+2---︒⎛⎫ ⎪⎝⎭=6+121232-⨯=-=. 【知识点】实数的四则运算;特殊角三角函数值的运用;负指数次幂;0次幂;二次根式的化简4. (2018黑龙江省龙东地区,21,5分) 先化简,再求值:2221(1)21a a a a a a --÷+++,其中a =sin30°. 【思路分析】先化简分式,再求a 的值,最后把a 的值代入计算即可.【解题过程】解:原式=2222(1)()(1)(1)a a a a a a a a a a ++-+-++=22(1)(1)(1)(1)a a a a a a +++-=1aa -.当a =sin30°=12时,原式=-1.【知识点】分式的化简求值;特殊角的锐角三角函数值;平方差公式;完全平方公式5. (2018山东省东营市,19①,4分) 计算:02018112133012)tan ()()--︒+-- 【思路分析】根据绝对值、0指数、三角函数、负数的偶次幂、分数的负整数指数幂的法则性质进行计算即可。
2018初三数学中考复习实数专项复习训练题含答案(最新整理)
25. 计算: |2- 3|-|1- 2|-| 2- 3|.
26. 求下列各式中的 x: (1)|-x|= 5-1;
(2)| 3-x|= 2.
3 /4
2018 初三数学中考复习 实数 专项复习训练题 含答案
参考答案: 1---17 ACBBD BDDAD CDAAD AA 18. > 19. 5-1 或- 5-1 20. ± 5 21. ③④ 22. 2,3 23. 7 24. 解:原式=2+15-20=-3. 25. 解:原式=2- 3- 2+1- 3+ 2=3-2 3. 26. (1) 解:x= 5-1 或- 5+1.
(2) 解:x= 3+ 2或 3- 2.
4 /4
1
A.3 8
B. 4
C.3
D. 2
8.在-1.732,2,π,2+ 3,3.212 212 221…(按照规律,两个 1 之间增加
一个 2)这些数中,无理数的个数为( )
A.5 个 B.2 个 C.3 个
D.4 个
9. 下列实数中最大的数是(
A.3
B.0
C. 2
) D.-4
10. 下列各组数中,互为相反数的是( )
C.1
D.2
15. 比较三个数-3,-π,- 10的大小,下列结论正确的是( )
A.-π>-3>- 10 C.- 10>-3>-π
B.- 10>结果等于(
)
A.2
B.-2
C.8
D.-8
17.化简 3- 3(1- 3)的结果是(
)
A.3 B.-3 C. 3 D.- 3
其中正确的说法有(
)
A.4 个 B.3 个 C.2 个 D.1 个
中考数学专题复习《实数》检测题真题(含答案)
中考专题复习实 数1、有理数:像3、53-、119……这样的 或 。
2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。
3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。
若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。
5、倒数: 没有倒数。
正数的倒数是正数,负数的倒数是负数。
若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。
7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。
在a n中,a 叫做 ,n 叫做 。
8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。
9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。
a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。
10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。
a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。
11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方 根是0,正数的立方根是正数,负数的立方根是负数。
3a -=3a ,a 的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。
知识回顾12、无理数:像2、33、……这样的 。
13、实数: 和 统称为实数。
实数与数轴上的点 。
1.(2017湖南长沙,1)下列实数中,为有理数的是( ) A .B .C .D .12.(2017广东广州,1)如图1,数轴上两点表示的数互为相反数,则点表示的( )A . -6B .6C . 0D .无法确定3.(2017湖南长沙,3)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( ) A .B .C .D .4.(2017山东临沂,1)的相反数是( ) A .B .C .2017D .5.(2017浙江宁波,4)实数的立方根是 .6.(2017重庆A 卷,13)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 . 7.(2017重庆A 卷,14)计算:|﹣3|+(﹣1)2= . 8.(2017江苏徐州,9)的算术平方根是 . 9.(2017浙江嘉兴,17(1))计算:.10.(2017浙江台州,17)计算:.基础检测考点精讲1.有理数概念【例题1】(2017河南,1)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.【考点】有理数的大小比较.【变式】(2017重庆A卷,14)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4【考点】有理数的混合运算.【例题2】(2017天津,1)计算的结果等于()A.2 B. C.8 D.【答案】A.【解析】根据有理数的加法法则即可得原式-2,故选A.【变式】(2017山东滨州,1)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.【例题3】(2017山东日照,3)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.4640万=4.64×107.故选:C.【考点】科学记数法—表示较大的数.【变式】(2017辽宁沈阳,3)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。
初中数学中考复习——实数专题(含答案)
初中数学中考复习——实数专题选择题下列各数中,绝对值最小的是()A. -3B. 2C. 0D. π如果一个实数的相反数是它本身,那么这个数一定是()A. 正数B. 负数C. 零D. 无法确定一个数的平方根是它本身的数有()A. 0B. 1C. -1D. A和B实数-5和7在数轴上对应的点之间的距离是()A. 2B. 12C. 10D. 14利用科学记数法表示的数,下列哪个选项是错误的()A. 350 = 3.5 × 10²B. 0.05 = 5 × 10⁻²C. 500 = 5 × 10²D. 0.0006 = 6 × 10⁻⁴下列哪个数不是无理数()A. πB. √2C. 0.333...(3无限重复)D. 22/7如果a和b是两个实数,且a的绝对值大于b的绝对值,那么|a| - |b|的值()A. 一定为正B. 一定为负C. 可能是正数或负数D. 无法确定对于实数x,以下哪个条件可以保证x² - 4x + 4 = 0()A. x = 2B. x = -2C. x = 0D. x = 4下列哪个表达式的结果不是实数()A. √16B. √(-1)C. -√(-4)D. √9如果一个数的立方根是2,那么这个数是()A. 6B. 8C. -8D. 4正确答案:CCDCBCAABC填空题实数包括有理数和无理数,其中有限小数和无限循环小数属于______。
一个数的相反数是与它符号相反的数,例如,数-7 的相反数是______。
一个数的绝对值是它到原点的距离,因此,|-5| 等于______。
如果一个数的平方根是4,则这个数的算术平方根是______。
立方根的定义是,如果一个数的立方等于a,则这个数叫做 a 的立方根。
例如,3 的立方根是______。
在实数大小比较中,数轴上右边的数总是比左边的数大。
因此,在数轴上,5 大于______。
2018年 中考数学 精选题---实数(含答案)
2018年中考数学精选题作业本实数一、选择题:1.下面说法中不正确的是( )A.6是36的平方根B.-6是36的平方根C.36的平方根是±6 D.36的平方根是62.正方体A的体积是正方体B的体积的27倍,那么正方体A的棱长是正方体B的棱长的( )A.2倍B.3倍C.4倍D.5倍3.在下列各式中:,其中正确的个数是()A.1 B.2 C.3 D.44.﹣的绝对值是()A.﹣B.﹣C.D.55.估计的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.下列各式中正确的是( )7.若2m-4与3m-1是同一个数的平方根,则m的值是()A.-3 B.1 C.-3或1 D.-18.估计+1的值()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间二、填空题:9.一个正数的平方根为﹣m﹣3和2m﹣3,则这个数为.10.的算术平方根为11.若|x|=,则x 的值等于____________.12.若x 2=9,y 3=﹣8,则x+y= .13.16的平方根是14.一个数的算术平方根是3,这个数是 . 15.是________的立方根.16.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若=2016,且AO=2BO,则a +b 的值为 .三、解答题:17.已知y x 、满足0|22|132=+-+--y x y x ,求y x 542-的平方根.18.求x 的值:16x 2-81=019.求x 的值:4(3x+1)2-1=020. 求x 的值:(x+3)3+27=021.实数a 、b 在数轴上的位置如图所示,请化简:.22.阅读理解∵<<,即2<<3.∴1<﹣1<2∴﹣1的整数部分为1.∴﹣1的小数部分为﹣2.解决问题:已知a是﹣3的整数部分,b是﹣3的小数部分,求(﹣a)3+(b+4)2的平方根.参考答案1.B2.B3.C4.B5.C6.C7.D8.A9.答案是:81.10.答案为:,11.答案为:712.答案为:﹣5或1.13.答案为:±414.答案为:9;15.答案为:-0.75.16.略17.解:由题意得:2x-3y-1=0,x-2y+2=0,解这个方程组得: x=5,y=5 则y x 542-=12所以y x 542-的平方根是±32 18.x 1=49,x 2=-49 19.20.(x+3)3=-27,x+3=-3,x=-6. 21.原式=b -a +a -(b +a)=-a22.解:∵<<, ∴4<<5, ∴1<﹣3<2,∴a=1,b=﹣4,∴(﹣a )3+(b+4)2=(﹣1)3+(﹣4+4)2=﹣1+17=16, ∴(﹣a )3+(b+4)2的平方根是:±4.。
实数的有关概念和性质(解析版)2018年数学全国中考真题-2
2018年数学全国中考真题实数的有关概念和性质(试题一)解析版一、选择题1.(2018广东省,1,3)四个实数0、13、 3.14-、2中,最小的数是A.0B.13C. 3.14-D.2【答案】C【解析】实数中,正数大于0,0大于负数,两个负数比较,绝对值大的反而小【知识点】数的大小比较2.(2018广西省桂林市,1,3分)2018的相反数是( )A.2018 B.-2018 C.12018D.-12018【答案】B【解析】2018的倒数是-2018.故选B.【知识点】相反数3.(2018广西省柳州市,1,3分)计算:0+(-2)=( )A.-2B.2C.0 D.-20【答案】A【解析】一个数与0相加,结果仍得这个数,故选A.【知识点】有理数的加法4.(2018海南省,1,3分)2018的相反数是()A.-2018 B.2018 C.-12018D.12018【答案】A【解析】∵一个数a的相反数为-a,∴2018的相反数是-2018,故选择A.【知识点】相反数5.(2018山东省东营市,1,3分)15-的倒数是()A. -5B. 5C.15- D.15【答案】A【解析】15-的倒数是-5.求一个数的倒数就是用1去除以这个数,若这个数是分数,则是分子分母颠倒位置。
故选A.【知识点】倒数的概念。
6.(2018四川乐山,1,3)-2的相反数是().A.-2B.2C.12D.12-【答案】B【解析】本题考查的是相反数的定义,∵只有符号不同的两个数互为相反数,“2”与“-2”只有符号不同,∴-2的相反数是2.故选B.一般地,我们确定一个数的相反数时,只需在这个数前面加上负号即可,即数a的相反数是-a,此题属于基础题.相反数与倒数两个概念不要混肴.互为相反数的特征是两个数的和0.【知识点】相反数7.(2018四川乐山,6,3)估计51+的值,应该在()A.1和2之间B.2和3之间C.3和4之间D.4和5之间【答案】C【解析】本题考查了无理数的估算,解题的关键是掌握估算的方法.①先找到紧挨5的两个完全平方数;②判断5夹在哪两个正整数之间;③进而判断5+1夹在哪两个正整数之间.解:因为4<5<9,所以2<5<3,所以,3<5+1<4,故选择C.【知识点】实数;无理数的估算8.估计的值在()A. 5和6之间B. 6和7之间C. 7和8之间D. 8和9之间【答案】D【解析】分析:利用“夹逼法”表示出的大致范围,然后确定答案.详解:∵64<<81,∴8<<9,故选:D.点睛:本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题9.(2018湖北省江汉油田潜江天门仙桃市,1,3分)8的倒数是()A .-8B .8C .18-D .18【答案】D【解析】乘积为1的两个数互为倒数,∵1818=⨯,∴8的倒数数是18,故选D .【知识点】倒数10. (2018黑龙江绥化,1,3分)23-的相反数是( ) A .1.5 B .32 C .-1.5 D .32- 【答案】A. 【解析】解:23-的相反数是32. 故选A.【知识点】相反数11. (2018湖北省江汉油田潜江天门仙桃市,5,3分) 点A ,B 在数轴上的位置如图所示,其对应的实数分别是a ,b ,下列结论错误的是( ) A .2b a <<B .1212a b ->-C .2a b -<<D .2a b <-<-【答案】C【解析】本题主要考查在数轴上比较数的大小. 如图,根据有理数的位置,在坐标轴上作出-a ,-b ,由数轴的概念可知a b b a -<<<<-<-<202,∵b a <<0,∴b b a a =-=,.A 项,2b a <<,a b -<<2.故A 项表述正确.B 项,1212a b ->-,根据不等式的性质,∵b a <,∴b a 22->-,1212a b ->-.故B 项表述正确.C 项,2a b -<<应是b <2<-a .故C 项表述错误.D 项,2a b <-<-.故D 项表述正确. 故选C .【知识点】在数轴上比较大小12. (2018湖南省怀化市,1,4分) -2018的绝对值是( )A .2018B .-2018C .20181D .2018± 【答案】A【解析】20182018-=,故选择A . 【知识点】绝对值的性质13. (2018年江苏省南京市,3,2分)下列无理数中,与4最接近的是( )A D 【答案】C【解析】4的平方为16 ,与16最接近的数是17与4最接近,故选C. 【知识点】无理数14. (2018贵州省毕节市,1,3分)-2018的倒数是( ) A .2018 B .-2018 C .12018D .-12018【答案】D .【解析】2018的倒数是-12018,故选D .【知识点】倒数15. (2018年黔三州,1,4)下列四个数中,最大的数是( )A.2B.-1C. 0D. √2 【答案】A【解析】实数大小比较,根据正数大于负数,正数大于0,负数小雨于0,以及对无理数的简单估算可知,2> √2>0>-1.【知识点】实数大小比较 ,无理数估算16.(2018吉林省长春市,1,3)-15的绝对值是 (A )-15 (B )15(C )-5 (D )5 【答案】B【解析】根据负数的绝对值是它的相反数,可知-15 的绝对值是15. 【知识点】绝对值17. (2018湖南娄底,1,3)2018的相反数是( )A .20181 B .2018 C .2018- D .20181-【答案】C【解析】数轴上到原点的距离相等的两个点表示的数互为相反数,故选C 【知识点】相反数18. (2018辽宁省沈阳市,1,2分)下列各数中是有理数的是( )A. πB. 0 D.【答案】B【解析】根据有理数的定义:整数和分数(有限小数和无线循环小数)统称为有理数;无理数的定义:无线不循环小数.可知:A 、C 、D 项为无理数,B 项为有理数. 故选B. 【知识点】有理数;无理数.19.(2018江苏扬州,1,3) ﹣5的倒数是( ) A .15-B .15C .5D .﹣5 【答案】A【解析】乘积为1的两个数互为倒数,所以﹣5的倒数是1÷(﹣5)= 15-,故选 A . 【知识点】倒数20. (2018山西省,1题,3分)下面有理数比较大小,正确的是( ). A .0<-2 B .-5<3 C .-2<-3 D .1<-4 【答案】B【解析】解:正数大于0,0大于负数-5<3【知识点】有理数大小比较21. (2018广西贵港,1,3分)-8的倒数是A .8B .-8C .18D .-18【答案】D【解析】根据倒数的定义可知。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018届初三数学中考复习 实数 专题练习题
1.下列各数中,最小的数是( )
A .-3
B .|-2|
C .(-3)2
D .2×105
2.(下列说法正确的是( )
A .一个数的绝对值一定比0大
B .一个数的相反数一定比它本身小
C .绝对值等于它本身的数一定是正数
D .最小的正整数是1
3.现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000000000元,将数字57000000000用科学记数法表示为( )
A .5.7×109
B .5.7×1010
C .5.7×1011
D .57×109
4.若a 与1互为相反数,则|a +1|等于( )
A .-1
B .0
C .1
D .2
5.将一组数3,6,3,23,15,…,310,按下面的方式进行排列:
3,6,3,23,15; 32,21,26,33,30;
…
若23的位置记为(1,4),26的位置记为(2,3),则这组数中最大的有理数的位置记为( )
A .(5,2)
B .(5,3)
C .(6,2)
D .(6,5)
6.计算:|3-4|-(12
)-2=__ __. 7.已知(a +6)2+b 2-2b -3=0,则2b 2-4b -a 的值为__ __.
8.将实数5,π,0,-6由小到大用“<”号连起来,可表示为__ __.
9.按照如图所示的操作步骤,若输入的值为3,则输出的值为__ __.
10.按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是__ __.
11.计算:
(1)3
27+|5-2|-(
1
3
)-2+(tan60°-1)0;
(2)(-1)2015-9 +(3-π)0+|3-3|+(tan30°)-1.
12.用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形有多少个黑色棋子?
(2)第几个图形有2016个黑色棋子?请说明理由.
13.已知数14的小数部分是b,求b4+12b3+37b2+6b-20的值.分析:因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这种涉及无理数小数部分的计算题,往往是先估计它
的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法
14.观察下列关于自然数的等式:
(1)32-4×12=5 ①
(2)52-4×22=9 ②
(3)72-4×32=13 ③
…
根据上述规律解决下列问题:
(1)完成第四个等式:92-4×()2=( );
(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.
15.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.
(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由;
(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x 为自然数),十位上的数字为y,求y与x的函数关系式.
2018届初三数学中考复习 实数 专题练习题
1.下列各数中,最小的数是( A )
A .-3
B .|-2|
C .(-3)2
D .2×105
2.(下列说法正确的是( D )
A .一个数的绝对值一定比0大
B .一个数的相反数一定比它本身小
C .绝对值等于它本身的数一定是正数
D .最小的正整数是1
3.现在网购越来越多地成为人们的一种消费方式,在2014年的“双11”网上促销活动中天猫和淘宝的支付交易额突破57000000000元,将数字57000000000用科学记数法表示为( B )
A .5.7×109
B .5.7×1010
C .5.7×1011
D .57×109
4.若a 与1互为相反数,则|a +1|等于( B )
A .-1
B .0
C .1
D .2
5.将一组数3,6,3,23,15,…,310,按下面的方式进行排列:
3,6,3,23,15; 32,21,26,33,30;
…
若23的位置记为(1,4),26的位置记为(2,3),则这组数中最大的有理数的位置记为( C )
A .(5,2)
B .(5,3)
C .(6,2)
D .(6,5)
6.计算:|3-4|-(12
)-2=.
7.已知(a+6)2+b2-2b-3=0,则2b2-4b-a的值为__12__.
8.将实数5,π,0,-6由小到大用“<”号连起来,可表示为__-6<0<5<π__.
9.按照如图所示的操作步骤,若输入的值为3,则输出的值为__55__.
10.按一定规律排列的一列数:21,22,23,25,28,213,…,若x,y,z表示这列数中的连续三个数,猜想x,y,z满足的关系式是__xy=z__.
11.计算:
(1)3
27+|5-2|-(
1
3
)-2+(tan60°-1)0;
解:原式=3+5-2-9+1=5-7
(2)(-1)2015-9 +(3-π)0+|3-3|+(tan30°)-1.
解:原式=-1-3+1+3-3+3=0
12.用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形有多少个黑色棋子?
(2)第几个图形有2016个黑色棋子?请说明理由.
解:(1)18个(2)设第n个图形中有2016颗黑色棋子,则有3+3n=2016,n=671,答:第671个图形中有2016颗黑色棋子
13.已知数14的小数部分是b,求b4+12b3+37b2+6b-20的值.
分析:因为无理数是无限不循环小数,所以不可能把一个无理数的小数部分一位一位确定下来,这种涉及无理数小数部分的计算题,往往是先估计它的整数部分(这是容易确定的),然后再寻求其小数部分的表示方法解:因为9<14<16,即3<14<4,所以14的整数部分为3.设14=3+b,两边平方得14=9+6b+b2,所以b2+6b=5.b4+12b3+37b2+6b-20=(b4+2·6b3+36b2)+(b2+6b)-20=(b2+6b)2+(b2+6b)-20=25+5-20=10
14.观察下列关于自然数的等式:
(1)32-4×12=5 ①
(2)52-4×22=9 ②
(3)72-4×32=13 ③
…
根据上述规律解决下列问题:
(1)完成第四个等式:92-4×( 4 )2=( 17 );
(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.
解:(2)第n个等式为(2n+1)2-4n2=4n+1.∵左边=4n2+4n+1-4n2=4n+1=右边,∴第n个等式成立
15.如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数叫做“和谐数”.例如:自然数64746从最高位到个位排出的一串数字是6,4,7,4,6,从个位到最高位排出的一串数字也是:6,4,7,4,6,所以64746是“和谐数”.再如:33,181,212,4664,…,都是“和谐数”.
(1)请你直接写出3个四位“和谐数”,猜想任意一个四位“和谐数”能否被11整除,并说明理由;
(2)已知一个能被11整除的三位“和谐数”,设个位上的数字为x(1≤x≤4,x 为自然数),十位上的数字为y,求y与x的函数关系式.
解:(1)四位“和谐数”:1221,1331,1111,6666;任意一个四位“和谐数”都能被11整数,理由如下:设任意四位“和谐数”形式为:abba(a ,b
为自然数),则a×103+b ×102
+b×10+a =1001a +110b ,∵1001a +110b 11=91a +10b ,∴四位“和谐数”abba 能被11整除;∴任意四位“和谐数”都可以被11整除
(2)设能被11整除的三位“和谐数”为:xyx ,则x·102+y·10+x =101x +10y ,101x +10y 11=9x +y +2x -y 11
,∵1≤x ≤4,101x +10y 能被11整除,∴2x -y =0,∴y =2x(1≤x≤4)。