八年级数学上册轴对称解答题(培优篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学上册轴对称解答题(培优篇)(Word版含解析)
一、八年级数学轴对称解答题压轴题(难)
1.如图1,△ABC 中,AB=AC,∠BAC=90º,D、E 分别在 BC、AC 边上,连接 AD、BE 相
交于点 F,且∠CAD=1
2
∠ABE.
(1)求证:BF=AC;
(2)如图2,连接 CF,若 EF=EC,求∠CFD 的度数;
(3)如图3,在⑵的条件下,若 AE=3,求 BF 的长.
【答案】(1)答案见详解;(2)45°,(3)4.
【解析】
【分析】
(1)设∠CAD=x,则∠ABE=2x,∠BAF=90°-x,∠AFB=180°-2x-(90°-x)= 90°-x,进而得到∠BAF =∠AFB,即可得到结论;
(2)由∠AEB=90°-2x,进而得到∠EFC=(90°-2x)÷2=45°-x,由BF=AB,可得:
∠EFD=∠BFA=90°-x,根据∠CFD=∠EFD-∠EFC,即可求解;
(3)设EF=EC=x,则AC=AE+EC=3+x,可得BE=BF+EF=3+x+x=3+2x,根据勾股定理列出方程,即可求解.
【详解】
(1)设∠CAD=x,
∵∠CAD=1
2
∠ABE,∠BAC=90º,
∴∠ABE=2x,∠BAF=90°-x,
∵∠ABE+∠BAF+∠AFB=180°,
∴∠AFB=180°-2x-(90°-x)= 90°-x,
∴∠BAF =∠AFB,
∴BF=AB;
∵AB=AC,
∴BF=AC;
(2)由(1)可知:∠CAD=x,∠ABE=2x,∠BAC=90º,∴∠AEB=90°-2x,
∵EF=EC,
∴∠EFC=∠ECF,
∵∠EFC+∠ECF=∠AEB=90°-2x,
∴∠EFC=(90°-2x )÷2=45°-x ,
∵BF =AB ,
∴∠BFA=∠BAF=(180°-∠ABE)÷2=(180°-2x)÷2=90°-x ,
∴∠EFD=∠BFA=90°-x ,
∴∠CFD=∠EFD-∠EFC=(90°-x )-(45°-x)=45°;
(3)由(2)可知:EF =EC ,
∴设EF =EC =x ,则AC=AE+EC=3+x ,
∴AB=BF=AC=3+x ,
∴BE=BF+EF=3+x+x=3+2x ,
∵∠BAC =90º,
∴222AB AE BE +=,
∴222
(3)3(32)x x ++=+,
解得:11x =,23x =-(不合题意,舍去)
∴BF=3+x=3+1=4.
【点睛】
本题主要考查等腰三角形的性质定理和勾股定理,用代数式表示角度和边长,把几何问题转化为代数和方程问题,是解题的关键.
2.如图,在ABC △中,已知AD 是BC 边上的中线,E 是AD 上一点,且BE AC =,延长BE 交AC 于点F ,求证:AF EF =.
【答案】证明见解析
【解析】
【分析】
延长AD 到点G ,使得AD DG =,连接BG ,结合D 是BC 的中点,易证△ADC 和
△GDB 全等,利用全等三角形性质以及等量代换,得到△AEF 中的两个角相等,再根据等角对等边证得AE=EF.
【详解】
如图,延长AD 到点G ,延长AD 到点G ,使得AD DG =,连接BG .
∵AD 是BC 边上的中线,
∴DC DB =. 在ADC 和GDB △中,
AD DG ADC GDB DC DB =⎧⎪∠=∠⎨⎪=⎩
(对顶角相等), ∴ADC ≌GDB △(SAS ).
∴CAD G ∠=∠,BG AC =.
又BE AC =,
∴BE BG =.
∴BED G ∠=∠.
∵BED AEF ∠=∠
∴AEF CAD ∠=∠,即AEF FAE ∠=∠
∴AF EF =.
【点睛】
本题考查的是全等三角形的判定与性质,根据题意构造全等三角形是解答本题的关键.
3.定义:如果一条线段将一个三角形分成2个小等腰三角形,我们把这条线段叫做这个三角形的“好线”:如果两条线段将一个三角形分成3个小等腰三角形,我们把这两条线段叫做这个三角形的“好好线”.
理解:
(1)如图1,在ABC ∆中,AB AC =,点D 在AC 边上,且AD BD BC ==,求A ∠的大小;
(2)在图1中过点C 作一条线段CE ,使BD ,CE 是ABC ∆的“好好线”;
在图2中画出顶角为45的等腰三角形的“好好线”,并标注每个等腰三角形顶角的度数(画出一种即可);
应用:
(3)在ABC ∆中,27B ∠=,AD 和DE 是ABC ∆的“好好线”,点D 在BC 边上,点
E 在AC 边上,且AD BD =,DE CE =,请求出C ∠的度数.
【答案】(1)36°;(2)见详解;(3)18°或42°
【解析】
【分析】
(1)利用等边对等角得到三对角相等,设∠A=∠ABD=x ,表示出∠BDC 与∠C ,列出关于x 的方程,求出方程的解得到x 的值,即可确定出∠A 的度数.
(2)根据(1)的解题过程作出△ABC 的“好好线”;45°自然想到等腰直角三角形,过底角一顶点作对边的高,发现形成一个等腰直角三角形和直角三角形.直角三角形斜边的中线可形成两个等腰三角形;第二种情形以一底角作为新等腰三角形的底角,则另一底角被分为45°和22.5°,再以22.5°分别作为等腰三角形的底角或顶角,易得其中作为底角时所得的三个三角形恰都为等腰三角形;
(3)用量角器,直尺标准作27°角,而后确定一边为BA ,一边为BC ,根据题意可以先固定BA 的长,而后可确定D 点,再分别考虑AD 为等腰三角形的腰或者底边,兼顾A 、E 、C 在同一直线上,易得2种三角形ABC ;根据图形易得∠C 的值;
【详解】
解:(1)∵AB=AC ,
∴∠ABC=∠C ,
∵BD=BC=AD ,
∴∠A=∠ABD ,∠C=∠BDC ,
设∠A=∠ABD=x ,则∠BDC=2x ,∠C=°180-2
x 可得°180-22
x x = ∴x=36°
则∠A=36°;
(2)如图所示: