八年级数学专题训练三

合集下载

【期末复习专题卷】人教版数学八年级上册专题03 解答题测试试卷(含答案)

【期末复习专题卷】人教版数学八年级上册专题03 解答题测试试卷(含答案)

【期末复习专题卷】人教版数学八年级上册专题03 解答题一、解答题(共36小题)1.(2022秋•蕲春县期中)如图,AD是△ABC的BC边上的高,AE平分∠BAC,若∠B =40°,∠C=72°,求∠AEC和∠DAE的度数.2.(2022秋•贵州期中)如图,已知:AD、CE是△ABC的高.试判断∠1与∠2的关系.并说明理由.3.(2022秋•香坊区校级期中)如图,DE⊥AC于E,BF⊥AC于F,∠1+∠2=180°,求证:∠AGF=∠ABC.4.(2022秋•东莞市校级期中)如图,在△ABC中,∠A=40°,∠ABD=30°,∠ACB =80°,且CE平分∠ACB,求∠BEC的度数.5.(2022秋•孝义市期中)如图,已知△ABC中,AD是BC边上的高,BE平分∠ABC,AD与BE相交于点P,∠ABC=70°,∠C=40°,求∠CAD和∠DPE的度数.6.(2022秋•西乡塘区校级期中)按要求完成下列各小题.(1)一个多边形的内角和比它的外角和多900°,求这个多边形的边数.(2)如图,若正五边形ABCDE和长方形AFCG按如图方式叠放在一起,求∠EAF 的度数.7.(2022秋•西城区校级期中)三角形内角和定理的推论:三角形的一个外角等于与它不相邻的两个内角的和.请完成这个定理的证明.已知:如图,∠ACD是△ABC的一个外角.求证:∠ACD=∠A+∠B.8.(2022秋•甘井子区期中)如图,点C是∠MAN的平分线上一点,CE⊥AB于E,B、D分别在AM、AN上,且2AE=AD+AB.求证:∠1+∠2=180°.9.(2022秋•海淀区校级期中)如图.在△ABC和△AEF中,AE=AB,AC=AF,∠CAF =∠BAE.求证:△ABC≌△AEF.10.(2022秋•广安区校级期中)如图,已知DE⊥AC于点E,BF⊥AC于点F,AD=BC,DE=BF.求证:(1)△AED≌△CFB;(2)AB∥DC.11.(2022秋•通山县期中)如图,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=7,BC=24,CE=25.(1)求△ABC的周长;(2)求△ACE的面积.12.(2022秋•扬州期中)如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC=2,∠BAC=40°;(1)求∠BAD的度数;(2)若∠ADG=115°,求△CDG的面积.13.(2022秋•阳信县期中)如图,△ABC中,AB=AC,点D,E是BC上不与点B,C 重合的两点,且AD=AE.(1)求证:BD=CE.(2)过点B作BF∥AE交AD的延长线于点F,求证:△BDF是等腰三角形.14.(2022秋•北仑区期中)如图,点B,C分别在射线AM,AN上,点E,F都在∠MAN 内部的射线AD上,已知AB=AC,且∠BED=∠CFD=∠BAC.(1)求证:△ABE≌△CAF;(2)试判断EF,BE,CF之间的数量关系,并说明理由.15.(2022秋•姑苏区期中)在如图所示的正方形网格中,每个小正方形的边长都是1,已知△ABC的三个顶点的坐标分别为A(﹣3,6),B(﹣1,2),C(﹣5,4).(1)作出△ABC关于y轴对称的△A1B1C1.并写出点A1的坐标 .(2)在第(1)题的变换下,若点M(m,n)是线段AC上的任意一点,那么点M 的对应点M1的坐标为 .(3)在y轴上找一点P,使PA=PB,则P点坐标为 .16.(2022秋•扬州期中)如图,在等边△ABC中,点E在线段AB的延长线上,点D 在直线BC上,且ED=EC.若△ABC的边长为1,AE=3,求CD的长.17.(2022秋•通山县期中)如图,在△ABC中,BC=38.DG,EF分别垂直平分AB,AC,垂足分别为G,F,求△DAE的周长,18.(2022秋•阳信县期中)如图,在平面直角坐标系xOy中,点O(0,0),A(﹣1,2),B(2,1).(1)在图中画出△AOB关于y轴对称的△A1OB1,并直接写出点A1和点B1的坐标;(2)在x轴上画出点P,使得PA+PB的值最小(保留作图痕迹).19.(2022秋•鹿城区校级期中)如图,BD是等腰三角形ABC底边AC上的高线,DE∥BC,交AB于点E,求证:△BED是等腰三角形.证明:∵AB=BC,BD⊥AC∴∠1=∠ (等腰三角形 )∵ED∥BC∴∠1=∠ ( )∴∠ =∠ (等量代换)∴BE=ED(在同一个三角形中, )即△BDE是等腰三角形.20.(2022秋•临湘市期中)如图,在△ABC中,DE,DF分别为BC,AB边的垂直平分线,连接AD,CD.(1)若∠B=40°,求∠ACD的度数;(2)判断∠B与∠ACD之间的数量关系,并说明理由.21.(2022秋•北仑区期中)如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC 于点E,∠B=69°,∠FAE=18°,求∠C的度数.22.(2022秋•任城区期中)因式分解:(1)x3+10x2+25x;(2)a4﹣8a2b2+16b4.23.(2022秋•如东县期中)已知(a m)n=a4,(a m)2÷a n=a3.(1)求mn和2m﹣n的值;(2)已知4m2﹣n2=15,求m+n的值.24.(2022秋•朝阳区校级期中)(1)计算:(a4)3+a8•a4;(2)计算:[(x+y)m+n]2;(3)已知2x+3y﹣2=0,求9x•27y的值.25.(2022秋•望城区期中)望城区某居民小组正在进行美丽乡村建设,为了提升居民的幸福指数,规划将一长为(9a﹣1)米、宽为(3b﹣5)米的矩形场地打造成居民健身场所.具体规划为:在这个场地中分割出一块长为(3a+1)米、宽为b米的矩形场地建篮球场,其余的地方安装各种健身器材,其中用于作篮球场的地面铺设塑胶地面,用于安装健身器材的区域建水泥地面.(1)求安装健身器材的区域面积;(2)在做施工预算时了解到铺设塑胶地面每平方米需100元,铺设水泥地面每平方米需50元,那么当a=9,b=15时,建设该居民健身场所所需地面费用为多少?26.(2022秋•西乡塘区校级期中)完全平方公式:(a±b)2=a2±2ab+b2,适当的变形,可以解决很多的数学问题.例如:若a+b=3,ab=1,求a2+b2的值.解:因为a+b=3,所以(a+b)2=9,即:a2+2ab+b2=9,又因为ab=1,所以a2+b2=7.根据上面的解题思路与方法,解决下列问题:(1)若x+y=8,x2+y2=40,求xy的值;(2)若(4﹣x)(x﹣5)=﹣8,求(4﹣x)2+(x﹣5)2的值;(3)如图,点C是线段AB上的一点,以AC、BC为边向两边作正方形,设AB=6,两正方形的面积和S1+S2=18,求图中阴影部分面积.27.(2022秋•安溪县期中)对于形如x2+2ax+a2可用“配方法”将它分解成(x+a)2的形式,如在二次三项式x2+2ax﹣3a2中先加上一项a2,使它与x2+2xa的和成为一个完全平方式,再减去a2,它不会改变整个式子的值,其变化过程如下:x2+2ax﹣3a2=(x2+2ax+a2)﹣a2﹣3a2=(x+a)2﹣4a2=(x+a)2﹣(2a)2=(x+3a)(x﹣a).像这种“因式分解”的方法称为“配方法”.请完成下列问题:(1)利用“配方法”分解因式:x2+4xy﹣5y2;(2)已知a,b,c是△ABC的三边长,且满足a2+b2+c2+50=6a+8b+10c,求△ABC 的周长;(3)在实数范围内,请比较多项式2x 2+2x ﹣3与x 2+3x ﹣4的大小,并说明理由.28.(2022秋•鲤城区校级期中)我们知道,通过计算几何图形的面积可以解释代数恒等式的正确性,同样,利用几何图形的面积也可以解释不等式的正确性.请解答下列问题:(1)如图1,可以写出代数恒等式:(a +b +c )2= ;若a +b +c =11,ab +bc +ac =38,则a 2+b 2+c 2= ;(2)如图2,两个边长为a 、b 、c 的直角三角形和一个直角边为c 的等腰直角三角形拼成一个直角梯形,请根据梯形的面积推导a 、b 、c 之间的数量关系(要求写出推导过程);(3)如图3,已知线段的长度a 、b 、c 、a '、b '、c '满足a +a '=b +b '=c +c '=k .试画出一个几何图形,并在图形中标出线段的长度a 、b 、c 、a '、b '、c ',使得该几何图形的面积可以解释不等式ab '+bc '+a 'c <k 2.(不要求尺规作图)29.(2022秋•任城区期中)先化简,再求值:(1―x 1x 1)÷2x 2x 22x 1,x 取一个合适的值代入.30.(2022秋•西城区校级月考)计算:(1)(x 2y )2⋅xy x 2―xy 2xy 2÷2x ;(2)a 2b 3•(a 2b ﹣2)﹣2.31.(2022秋•沙坪坝区校级期中)某学校利用寒假维护其教学楼,若甲、乙两工程队合作10天可完成;若甲工程队先单独施工5天,再由乙工程队单独施工20天也可完成.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)现将该教学楼工程分成两部分,甲工程队做其中一部分工程用了m 天,每天需付施工费3万元,乙工程队做另一部分工程用了n 天,每天需付施工费1.4万元,若m ,n 都是正整数,乙工程队做的时间不到17天,求出此项工程总施工费用的最小值.32.(2022秋•贵港期中)先化简,再求值(1)(x 1x 21+x x 1)÷x 1x 22x 1,其中x =―12;(2)a 4a 24÷(4a 2―a ―2),其中a 满足a 2﹣2a ﹣1=0.33.(2022秋•文登区期中)计算:(1)x x 24―12x 4+1x 2;(2)3x 3―x 3x 3•x 23x x 26x 9;(3)(2a 1a 1―a +1)÷+1.34.(2022秋•三台县期中)我们知道:12×23=13,12×23×34=14,……,(1)12×23×34×⋯⋯×n n 1= .(2)试根据上面规律,计算:(119―1)(120―1)(121―1)……(12011―1).35.(2022秋•九龙坡区校级期中)某天运动员小伟沿平路从家步行去银行办理业务,到达银行发现没有带银行卡(停留时间忽略不计),立即沿原路跑回家,已知平路上跑步的平均速度是平路上步行的平均速度的4倍,已知小伟家到银行的平路距离为2800米,小伟从离家到返回家共用50分钟.(1)求小伟在平路上跑步的平均速度是多少?(2)小伟找到银行卡后,发现离银行下班时间仅剩半小时,为了节约时间,小伟选择另外一条近的坡路去银行,小伟先上坡再下坡,用时9分钟到达银行,已知上坡的平均速度是平路上跑步的平均速度的57,下坡的平均速度是平路上跑步的平均速度的54,且上坡路程是下坡路程的2倍,求这段坡路的总路程是多少米?36.(2022秋•淅川县期中)阅读下列文字,并解决问题.已知x 2y =3,求2xy (x 5y 2﹣3x 3y ﹣4x )的值.分析:考虑到满足x 2y =3的x ,y 的可能值较多,不可能逐一代入求解,故考虑整体思想,将x 2y =3整体代入.解:2xy (x 5y 2﹣3x 3y ﹣4x )=2x6y3﹣6x4y2﹣8x2y=2(x2y)3﹣6(x2y)2﹣8x2y=2×33﹣6×32﹣8×3=﹣24.请你用上述方法解决问题:(1)已知ab=2,求(2a3b2﹣3a2b+4a)•(﹣2b)的值;(2)已知x―1x =3,求x2+1x2的值.参考答案一、解答题(共36小题)1.解:∵∠BAC+∠B+∠C=180°,∠B=40°,∠C=72°,∴∠BAC=68°,∵AE平分∠BAC,∠BAC=34°,∴∠BAE=∠CAE=12∴∠AEC=∠B+∠BAE=74°,∵AD⊥BC,∴∠ADE=90°,∴∠DAE=90°﹣∠AEC=16°.2.解:∠1=∠2,理由如下:∵AD、CE是△ABC的高,∴∠ADB=∠CEB=90°,∴∠1+∠B=900,∠2+∠B=900,∴∠1=∠2.3.证明:∵DE⊥AC,BF⊥AC,∴∠AFB=∠AED=90°,∴BF∥DE,∴∠2+∠3=180°,又∵∠1+∠2=180°,∴∠1=∠3,∴GF∥BC,∴∠AGF=∠ABC.4.解:∵∠BDC是△ABD的外角,∠A=40°,∠ABD=30°,∴∠BDC=∠A+∠ABD=70°,∵CE平分∠ACB,∠ACB=80°,∠ACB=40°,∴∠DCE=12∴∠BEC=∠BDC+∠DCE=110°.5.解:∵△ABC中,∠ABC=70°,∠C=40°,AD是BC边上的高,∴∠ADC=90°,∴∠CAD=90°﹣∠C=90°﹣40°=50°;∵BE平分∠ABC,∴∠CBE=1∠ABC=35°,2∵∠BPD=90°﹣∠CBE=55°,∴∠DPE=180°﹣∠BPD=180°﹣55°=125°.6.解:(1)解:设边数为n,根据题意,得(n﹣2)×180°=360°+900°,所以(n﹣2)×180°=1260°,所以n﹣2=7,所以n=9.答:这个多边形的边数是9.(2)正五边形内角和为540°,∴其每个内角为540°÷5=108°.∵长方形每个内角为90°,∴∠F=90°,∴∠ABC=108°,∠ABF=180°﹣∠ABC=180°﹣108°=72°,∴∠BAF=180°﹣∠F﹣∠ABF=180°﹣90°﹣72°=18°,∠EAF=∠EAB+∠BAF=108°+18°=126°.7.证明:∵∠A+∠B+∠ACB=180°,∠ACB+∠ACD=180°,∴∠A+∠B+∠ACB=∠ACB+∠ACD,∴∠A+∠B=∠ACD.8.证:∠1与∠2互补.法1:作CF⊥AN于F(如图),∵∠3=∠4,CE⊥AM,∴CF=CE,∠CFA=∠CEA=90°,∴△ACF ≌△ACE (AAS ),∴AF =AE .∵2AE =AD +AB∴AE =12(AD +AB )=12(AF ﹣DF +AE +EB )=AE +12(BE ﹣DF ),∴BE ﹣DF =0,∴BE =DF ,∴△DFC ≌△BEC (SAS ),∴∠5=∠2,∵∠1+∠5=180°,∴∠1+∠2=180°;法2:在AM 上截取AF =AD ,连接CF (如图),∵∠3=∠4,AC 为公共边,∴△ADC ≌△AFC (SAS ),∴∠1=∠5,∵2AE =AD +AB ,∴AE =12(AD +AB )=12(AF +AE +EB )=12(AE ﹣EF +AE +EB ),∴EB ﹣EF =0,∴EF =EB ,又∵CE ⊥AB ,∴BC =FC ,∴∠2=∠6,∵∠5+∠6=180°,∴∠1+∠2=180°.9.证明:∵∠CAF=∠BAE,∴∠CAF+∠CAE=∠BAE+∠CAE,即∠EAF=∠BAC,在△ABC和△AEF中,AB=AE∠BAC=∠EAF,AC=AF∴△ABC≌△AEF(SAS).10.证明:(1)在Rt△AED与Rt△CFB中,AD=BCDE=BF,∴Rt△AED≌Rt△CFB(HL);(2)∵△AED≌△CFB,∴AE=CF,∴AF=CE,在△AFB与△CED中,AF=CE∠AFB=∠CED,DE=BF∴△AFB≌△CED(SAS),∴∠BAF=∠DCE,∴AB∥DC.11.解:(1)∵△ABC≌△CDE,CE=25,∴AC=CE=25,∵AB=7,BC=24,∴△ABC的周长=AB+BC+AC=7+24+25=56;(2)∵∠B=90°,∴∠ACB+∠BAC=90°,∵△ABC≌△CDE,∴∠ECD=∠CAB,∴∠ACB+∠ECD=90°,∴∠ACE=90°,∵AC=CE=25,∴△ACE的面积=12×25×25=6252.12.解:∵BD⊥AE于点B,DC⊥AF于点C,且DB=DC=2,∴AD是∠BAC的平分线,∠BAC=40°,∴∠BAD=∠CAD=12∠BAC=20°;(2)∵∠ADG=115°,∴∠DGC=180°﹣∠CAD﹣∠ADG=45°,在Rt△CDG中,∴∠CDG=90°﹣45°=45°,∴∠DGC=∠CDG,∴CD=CG,∵DC=2,∴CG=2,∴△CDG的面积=12×2×2=2.13.(1)证明:∵AB=AC,∴∠ABD=∠C,∵AD=AE,∴∠ADE=∠AED,∴180°﹣∠ADE=180°﹣∠AED,∴∠ADB=∠AEC,在△ABD和△ACE中,∠ADB=∠AEC∠ABD=∠CAB=AC,∴△ABD≌△ACE(AAS),∴BD=CE.(2)证明:∵BF∥AE,∴∠FBD=∠AED,∵∠FDB=∠ADE=∠AED,∴∠FBD=∠FDB,∴FB=FD,∴△BDF是等腰三角形.14.(1)证明:∵∠BED=∠BAE+∠ABE,∠BAC=∠BAE+∠CAF,∴∠ABE=∠CAF,同理:∠BAE=∠ACF,在△ABE和△CAF中,∠ABE=∠CAFAB=AC,∠BAE=∠ACF∴△ABE≌△CAF(ASA);(2)EF+CF=BE,理由如下:∵△ABE≌△CAF,∴AE=CF,BE=AF,∵AE+EF=AF,∴CF+EF=BE.15.解:(1)如图,△A1B1C1为所作,点A1的坐标为(3,6);(2)点M(m,n)关于y轴的对称点M1的坐标为(﹣m,n);故答案为:(﹣m,n);(3)P点坐标为(0,5);故答案为(0,5).16.解:过点E作EF⊥CD于点F,∵△ABC是等边三角形,边长为1,AE=3,∴BE=AE﹣AB=2,∠ABC=60°,∵EF⊥CD,∴∠EFB=90°,∴∠BEF=90°﹣60°=30°,BE=1,∴BF=12∴CF=BF+BC=2,∵ED=EC,EF⊥CD,∴DF=CF=2,∴CD=DF+CD=4.17.解:∵DG,EF分别垂直平分AB,AC,∴AD=BD,AE=EC,∴△DAE的周长=AD+DE+AE=BD+DE+EC=BC=38.18.解:(1)如图,△A1OB1为所求,A1(1,2),B1(﹣2,1);(2)如图,点P为所作.19.证明:∵AB=BC,BD⊥AC,∴∠1=∠2(等腰三角形三线合一),∵DE∥BC(已知),∴∠DBC=∠EDB(两直线平行,内错角相等),∴∠ABD=∠EDB,∴BE=DE(在同一个三角形中,等角对等边),∴△BDE是等腰三角形.故答案为:2;三线合一;3;两直线平行,内错角相等;2;3;等角对等边.20.解:(1)连接BD并延长,交AC于H,∵DE,DF分别为BC,AB边的垂直平分线,∴DA=DB,DC=DB,∴∠DAB=∠DBA,∠DCB=∠DBC,∴∠ADH=∠DAB+∠DBA=2∠DBA,∠CDH=∠DCB+∠DBC=2∠DBC,∴∠ADC=2∠ABC=80°,∵DA=DB,DC=DB,∴DA=DC,∴∠ACD=∠CAD=1(180°﹣80°)=50°;2(2)∠B+∠ACD=90°,理由如下:∵∠ACD+∠CAD+∠ADC=180°,∴2∠ACD+2∠ABC=180°,∴∠ACD+∠ABC=90°.21.解:∵DE是线段AC的垂直平分线,∴EA=EC,∴∠EAC=∠C,∴∠FAC=∠EAC+∠EAF=∠EAC+18°,∵AF平分∠BAC,∴∠BAC=2∠FAC=2∠EAC+36°=2∠C+36°,∵∠B+∠BAC+∠C=180°,∴69°+2∠C+36°+∠C=180°,解得∠C=25°.22.解:(1)原式=x(x2+10x+25)=x(x+5)2;(2)原式=(a2﹣4b2)2=(a+2b)2(a﹣2b)2.23.解:(1)∵(2m)n=4,(a m)2÷a n=a3,∴2mn=22,a2m﹣n=a3,∴mn=2,2m﹣n=3;(2)∵4m2﹣n2=15,∴(2m+n)(2m﹣n)=15,∵2m﹣n=3,∴2m+n=5,联立得2m+n=5 2m―n=3,解得m=2 n=1,∴m+n=3.24.解:(1)原式=a4×3+a8+4=a12+a12=2a12;(2)原式=(x+y)2(m+n);(3)9x•27y=(32)x•(33)y=32x•33y=32x+3y,由2x+3y﹣2=0,可得2x+3y=2,原式=32=9.25.解:(1)(9a﹣1)(3b﹣5)﹣b(3a+1)=27ab﹣45a﹣3b+5﹣3ab﹣b=24ab﹣45a﹣4b+5(平方米),答:安装健身器材的区域面积为(24ab﹣45a﹣4b+5)平方米;(2)根据题意,得需要总费用为100b(3a+1)+50(24ab﹣45a﹣4b+5)=300ab+100b+1200ab﹣2250a﹣200b+250=1500ab﹣2250a﹣100b+250,当a=9,b=15时,总费用为1500×9×15﹣2250×9﹣100×15+250=181000(元),答:建设该居民健身场所所需地面费用为181000元.26.解:(1)∵x+y=8,∴(x+y)2=64,即x2+2xy+y2=64,又∵x2+y2=40,∴2xy=64﹣40,∴xy=12,答:xy的值为12;(2)设m=4﹣x,n=x﹣5,则m+n=﹣1,mn=(4﹣x)(x﹣5)=﹣8,∴(4﹣x)2+(x﹣5)2=m2+n2=(m+n)2﹣2mn=(﹣1)2﹣2×(﹣8)=1+16=17;(3)设AE =a ,FG =b ,则AB =6=a +b ,由题意可知S 1+S 2=a 2+b 2=18,∵(a +b )2=a 2+2ab +b 2,∴36=18+2ab ,∴ab =9,∴阴影部分的面积为12ab =92,答:阴影部分的面积为92.27.解:(1)原式=x 2+4xy +4y 2﹣4y 2﹣5y 2=(x +2y )2﹣9y 2=(x +2y +3y )(x +2y ﹣3y )=(x +5y )(x ﹣y );(2)∵a 2+b 2+c 2+50=6a +8b +10c ,∴a 2﹣6a +9+b 2﹣8b +16+c 2﹣10c +25+50﹣9﹣16﹣25=0,则(a ﹣3)2+(b ﹣4)2+(c ﹣5)2=0,∵a ,b ,c 是△ABC 的三边长,∴a =3,b =4,c =5,∴C △abc =3+4+5=12;(3)2x 2+2x ﹣3﹣(x 2+3x ﹣4)=2x 2+2x ﹣3﹣x 2﹣3x +4=x 2﹣x +1=x 2―x +14―14+1=(x ―12)2+34∵(x ―12)2≥0,∴(x ―12)2+34≥34,∴2x 2+2x ﹣3>x 2+3x ﹣4.28.解:(1)图1中最大的正方形面积S =(a +b +c )2,最大的正方形面积是由3个小正方形的面积,6个小长方形的面积相加得到的,∴S =(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;当a +b +c =11,ab +bc +ac =38时,112=a 2+b 2+c 2+2×38,解得a 2+b 2+c 2=45,故答案为:a 2+b 2+c 2+2ab +2ac +2bc ,45;(2)∵S 梯形=12×(a +b )(a +b )=12(a +b )2,S 梯形=12×c 2+2×12×ab =12c 2+ab ,∴12c 2+ab =12(a +b )2,∴a 2+b 2=c 2;(3)∵a +a '=b +b '=c +c '=k ,∴以k 为边长作正方形,如图所示,∵S 正方形=k 2,∴由题可知ab '+bc '+a 'c <k 2.29.解:原式=(x 1x 1―x 1x 1)•(x 1)22(x 1)=2x 1•(x 1)22(x 1)=x 1x 1,由分式有意义的条件可知:x 可取0,∴原式=11=―1.30.解:(1)原式=x 24y 2•xyx 2―12y •x 2=x 4y ―x 4y=0.(2)原式=a2b3•(a﹣4b4)=a﹣2b7=b7a2.31.解:(1)设甲工程队单独完成此项工程需要x天,则甲工程队的工作效率为1x,乙工程队的工作效率为(110―1x),依题意得:5×1x +20(110―1x)=1,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴1÷(110―1x)=1÷(110―115)=30.答:甲工程队单独完成此项工程需要15天,乙工程队单独完成此项工程需要30天.(2)由题意得:m15+n30=1,整理得:2m+n=30,∴m=15―12n,设此项工程总施工费用为w,则w=3m+1.4n=3×(15―12n)+1.4n=﹣0.1n+45,∵﹣0.1<0,∴w随n的增大而减小,当n最大时,w最小,∵n<17,m,n都是正整数,∴n的最大值为16,∴当n=16时,w的最小值=﹣0.1×16+45=43.4,答:此项工程总施工费用的最小值为43.4万元.32.解:(1)原式=x1x(x1)(x1)(x1)⋅(x1)2x1=(x1)(x ⋅(x1)2x1=x﹣1,当x=―12时,原式=―12―1=―32;(2)原式=a 4a 24÷=a 4(a 2)(a 2)⋅a 2a 24a =a 4(a 2)(a 2)⋅a 2a(a 4) =―1a(a 2) =―1a 22a ,∵a 2﹣2a ﹣1=0,∴a 2﹣2a =1,当a 2﹣2a =1时,原式=―11=―1.33.解:(1)原式=x (x 2)(x 2)―12(x 2)+1x 2=2x 2(x 2)(x 2)―x 22(x 2)(x 2)+2x 42(x 2)(x 2) =3x 62(x 2)(x 2) =32x 4;(2)原式=3x 3―x 3x 3•x(x 3)(x 3)2=3x 3―xx 3 =3x x 3=﹣1;(3)原式=(2a 1a 1―a 21a 1)÷(a 2)2a 1+1=•a 1(a 2)2+1=a(a 2)a 1•a 1(a 2)2+1=―a a 2+a 2a 2 =―2a 2.34.解:(1)12×23×34×⋯⋯×n n 1=1n 1,故答案为:1n 1;(2)(119―1)(120―1)(121―1)……(12011―1)=(―1819)×(―1920)×(―2021)×……×(―20102011)=―182011.35.解:(1)设小伟在平路上跑步的平均速度是x 米/分钟,则小伟在平路上步行的平均速度是14x 米/分钟,依题意得:280014x +2800x =50,解得:x =280,经检验,x =280是原方程的解,且符合题意.答:小伟在平路上跑步的平均速度是280米/分钟.(2)设这段坡路的总路程是y 米,则上坡路程是23y 米,下坡路程是13y 米,依题意得:23y 57×280+13y 54×280=9,解得:y =2100.答:这段坡路的总路程是2100米.36.解:(1)∵ab =2,∴(2a 3b 2﹣3a 2b +4a )•(﹣2b )=﹣4a 3b 3+6a 2b 2﹣8ab=﹣4•(ab )3+6•(ab )2﹣8ab=﹣4×23+6×22﹣8×2=﹣4×8+6×4﹣8×2=﹣32+24﹣16=﹣24;(2)∵x ―1x =3,∴x 2+1x 2=(x ―1x )2+2=32+2=9+2=11.。

2023年暑假新八年级数学预习专题3:全等三角形及其性质(精练教师版)

2023年暑假新八年级数学预习专题3:全等三角形及其性质(精练教师版)

第 1页(共 22页)
A.AC=AF
B.∠AFC=∠AFE C.EF=BC
D.∠FAB=∠B
5.(2022 秋•袁州区月考)下列图形中被虚线分成的两部分不是全等形的是
()
A.等腰梯形
B.正方形
C.正六边形
D.正五角星
6.(2022 秋•荆州月考)如图,点 B,E,C,F 在同一直线上,△ABC≌△DEF,
△ADC≌△ADC′,△AEB≌△AEB′,且 C′D∥EB′,BE,CD 交于点 F.若
∠BAC=40°,则∠BFC 的度数为

27.(2022 春•泰州期末)一个三角形的三条边的长分别是 5,8,10,另一个三
角形的三条边的长分别是 5,4x+2,2y﹣2,若这两个三角形全等,则 x+y 的值是75°,则∠AC源自 的度数为( )A.30°
B.25°
C.20°
D.15°
二、填空题(共 10 小题)
18.(2022 秋•袁州区月考)如图,△ABC≌△DBE,点 A 和点 D 是对应顶点,
且点 C 在边 BD 上.若 AB=9,BE=3,则 CD 的长为

19.(2022 秋•新罗区校级月考)如图,若△ADB≌△EDB≌△EDC,则∠C
2023 年暑假新八年级数学预习专题 3 全等三角形及 其性质
一、选择题(共 17 小题) 1.(2022 秋•东平县校级月考)如图,△ABC≌△ADE,且∠B=25°,∠E=105°,
∠DAC=10°,则∠EAC 等于( )
A.40°
B.50°
C.55°
D.60°
2.(2022 秋•阿荣旗校级月考)如图所示,△ABC≌△ADE,若∠B=80°,∠C

八年级数学三角形专题训练

八年级数学三角形专题训练

八年级数学三角形专题训练一、三角形的基本概念1. 三角形的定义题目:下列图形中,属于三角形的是()选项:A. 由三条线段首尾顺次相接组成的封闭图形;B. 由三条线段组成的图形;C. 由不在同一直线上的三条直线组成的图形。

解析:三角形的定义是由不在同一条直线上的三条线段首尾顺次相接所组成的封闭图形。

选项B中只说三条线段组成的图形,没有强调首尾顺次相接和封闭,选项C中说三条直线是错误的,所以答案是A。

2. 三角形的分类题目:三角形按角分类可分为()选项:A. 锐角三角形、直角三角形、钝角三角形;B. 等腰三角形、等边三角形、不等边三角形;C. 直角三角形、等腰三角形、锐角三角形。

解析:三角形按角分类分为锐角三角形(三个角都是锐角)、直角三角形(有一个角是直角)、钝角三角形(有一个角是钝角)。

选项B是按边分类,选项C分类混乱,所以答案是A。

二、三角形的三边关系1. 定理内容题目:已知三角形的两边长分别为3和5,则第三边的取值范围是()解析:根据三角形三边关系,两边之和大于第三边,两边之差小于第三边。

设第三边为x,则5 3<x<5+3,即2<x<8。

2. 应用解析:对于①,3+4 = 7<8,不满足两边之和大于第三边,所以不能组成三角形。

对于②,5+6 = 11>10,6 + 10=16>5,5+10 = 15>6,且10 5 = 5<6,10 6=4<5,6 5 = 1<10,满足三边关系,可以组成三角形。

对于③,5+5 = 10<11,不满足两边之和大于第三边,所以不能组成三角形。

三、三角形的内角和定理1. 定理内容题目:三角形的内角和等于()选项:A. 90°;B. 180°;C. 360°。

解析:三角形内角和定理表明三角形的内角和等于180°,所以答案是B。

2. 应用题目:在△ABC中,∠A = 50°,∠B = 60°,求∠C的度数。

八年级数学上册第十五章 第3节 分式方程 解答题专题训练 33含答案解析.docx

八年级数学上册第十五章 第3节 分式方程 解答题专题训练 33含答案解析.docx

八年级数学上册第十五章第3节分式方程解答题专题训练(33)一、解答题x-6 x(2)已知关于x的一元二次方程-x2+-x-m^2无实数根,求m的取值范围.2 32.某书店老板去图书批发市场购买某种图书.第一次用12000元购书若干本,并按该书定价70元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用15000元所购该书数量比第一次多10本.(1)求两次购书的价格分别是多少?(2)若第二次购书按定价售出200本时,出现滞销,于是决定打折出售剩下这批书,那么该商家最低打几折才能保证剩下书的利润率不低于5% ?、 4 1 23.解方程:——-—I—= ;-2x x x-24.某校为美化校园,计划对面积为1100m2的区域进行绿化,安排甲、乙两个工程队完成. 已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为200m2区域的绿化时,甲队比乙队少用4天。

(1)求甲、乙两工程队每天能完成绿化的面积分别是多少?(2)若学校每天需付给甲队的绿化费用为0.35万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?5.足球是世界第一运动,参与足球运动可以锻炼身体,陶冶情操.“高新美少年,阳春蹴鞠忙”,让学生走出教室,走进阳光,让每一位学生健康、快乐成长,是高新一中初中校区一直秉承的理念.本月,我校第四届校园足球联赛落下了帷幕,并取得了四满成功.为了举办本次活动,我校在商场购买甲、乙两种不同的足球,购买甲种足球共花费2600元,购买乙种足球共花费1328元,购买甲种足球的数量是购买乙种足球数量的2.5倍,且购买一个乙种足球比购买一个甲种足球多花18元.求购买一个甲种足球、一个乙种足球各需多少元?6.为推进垃圾分类,推动绿色发展,某工厂购进甲乙两种型号的机器人用来进行垃圾分类,甲型机器人比乙型机器人每小时多分10kg,甲型机器人分类800千克垃圾所用的时间与乙型机器人分类600kg垃圾所用的时间相等.(1)两种机器人每小时分别分类多少垃圾?(2)现在两种机器人共同分类500kg垃圾,工作2小时后,甲型机器人因机器维修退出,求甲型机器人退出后,乙型机器人还需工作多长时间才能完成?7.解下列分式方程,、x + 1 4 1(2)------------ — = 1X-1 X' -1&某学校为鼓励学生积极参加体育锻炼,派王老师和李老师去购买一些篮球和排球.回校后,王老师和李老师编写了一道题:王老师说:"篮球的单价比排煤的单价多30元李老师说:“用1000元购买的排球个数和用】600元氏买 J的至■直个豪相等同学们,请求出篮球和排球的单价各是多少元.9.解方程(组):2x+7y=53x+y = -210.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1. 2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?11.为了迎接暑假的学生购物高峰,某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表甲乙进价(元/双)m m-20售价(元/双)240160已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.(1)求m的值(2)由于资金有限,该店能够购进的甲种运动鞋不超过105双,要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价-进价)不少于21700元,且总利润应不超过22300元,求该专卖店共有几种进货方案(只需计算种数,不用列举各种方案)?(3)在⑵的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50〈a〈70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货. 12.端午节期间,某校"慈善小组"筹集善款600元全部用于购买粽子到福利院送给老人.购买大枣粽子和豆沙粽子各花300元,已知大枣粽子比豆沙粽子每盒贵5元,结果购买的 大枣粽子比豆沙粽子少2盒.请求出两种口味的粽子每盒各多少元?13. 解方程:(每小题3分,共6分)16. 根据《佛山-环西拓规划方案》,三水区域内改造提升的道路约37公里,届时,沿线 将串联起狮山、乐平、三水新城、水都基地、白堀等城镇节点,在这项工程中,有一段 4000米的路段由甲、乙两个工程队负责完成.已知甲工程队每天完成的工作量是乙工程队 每天完成的工作量的2倍,且甲工程队单独完成此项工程比乙工程队单独完成此项工程少 用20天.求甲、乙两个工程队平均每天各完成多少米?17. 桐梓县"四抓四到位"确保教育均衡发展,加速城区新、扩建项目工程・,加快建设某间 小学,公司经过调查了解:甲、乙两个工程队有能力承包建校工程,甲工程队单独完成建 校工程的时间是乙工程队的2倍,甲、乙两队合作完成建校工程需要60•天.(1) 甲、乙两队单独完成建校工程各需多少天?(2) 若甲、乙两队共同工作了 10天后,乙队因其他工作停止施工,由甲队单独继续施 工,要使甲队总的工作量不少于乙队已做工作量的2倍,那么甲队至少再单独施工多少 天? 18. 解分式方程:(2) ---------- = ------- . 2x-l x+219. 台风“天鸽”登录珠海,距离珠海市180千米处的某武警部队立即派车前往救灾,按 原计划速度匀速行驶60千米后,接上级通知,需紧急赶往目的地.于是以原速度的1.2倍 匀速行驶,结果比原计划提前12分钟到达,求原计划的行驶速度.20. 解分式方程:,、x , 3 , 、 x+1 4 , (1) ---------- 1 — ----------- . (2) --------------- z ---- — 1. x — 1 2x — 2 x — 1 x — 121. 某校为了开展“阳光体育〃活动,购进一批体育用品.经了解,长绳的单价比短绳的单 价多5元,用12000元购进的长绳与用8000元购进的短绳的数量相等.问购进的长绳和14.按要求计算:(2)解分式方程:Y1 5+23 15.解下列方程:(1) ----------- 1 = ------ (2)— ------- =— x+2 x-2 x 2 + x x + 1小淇: 105 140------ 1 ------x 0.8%= 40;小尧:亜x0.8 14040 — y短绳的单价分别是多少元.22.甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字,则乙每分钟打________ 个字.23.关于x的方程:竺学一X-1 1-X(1)当a = 3时,求这个方程的解;(2)若这个方程有增根,求a的值.24.计算或解方程:(1)[―右]十[—六) (2)甘一士[ = 125.现用A、B两种机器人来搬运化工原料.A型机器人比B型机器人每小时少搬运3kg, A 型机器人搬运40kg与B型机器人搬运60kg所用时间相等,两种机器人每小时分别搬运多少化工原料?26.某服装店用960元购进一批服装,并以每件46元的价格全部售完•由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售.(1)该服装店第一次购买了此种服装多少件?⑵两次出售服装共盈利多少元?27.2019年8月.山西龙城将迎来全国第二届青年运动会,盛会将至,整个城市已经进入了全力准备的状态.太职学院足球场作为一个重要比赛场馆.占地面积约24300平方米.总建筑面积4790平方米,设有2476个座位,整体建筑简洁大方,独具特色.2018年3月15日该场馆如期开工,某施工队负责安装该场馆所有座位,在安装完476个座位后,采用新技术,效率比原来提升了25%.结来比原计划提前4天完成安装任务.求原计划每天安装多少个座位.28.某县为践行“绿水青山就是金山银山”的理念,保护生态环境,某村计划在荒山上植树1200棵,实际每天植树的数量是原计划的1. 5倍,结果比原计划提前了5天完成任务,求原计划每天植树多少棵?29.下面是小淇、小尧对一道中考题目的部分解答.题目:刘阿姨到超市购买大米,第一次按原价购买,用了105元.几天后,遇上这种大米8折出售,她用140元又买了一些,两次一共购买了40kg.这种大米的原价是多少?根据以上信息,解答下列问题.⑴小淇同学所列方程中的X表示 _____ ,小尧同学所列方程中的y表示_______ ;(2)在上述两个方程中任选一个求解,并回答题目中的问题.30.长春外国语学校为了创建全省“最美书屋”,购买了一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多5元.已知学校用12000元购买的科普类图书的本数与用9000元购买的文学类图书的本数相等,求学校购买的科普类图书和文学类图书平均每本的价格各是多少元?【答案与解析】一、解答题1. (1) x=-12 ; (2) m< -----18分析:(1)去分母后解整式方程即可,注意要检验;(2)根据方程无实数根,结合根的判别式即可得出关于m 的一元一次不等式,解之即可 得出结论.详解:(1)方程两边乘以x (x-6)得:90x=60(x-6),解得:x=—12.经检验:x=-12是原方程的根.分式方程的根为x=—12.(2) •••关于x 的一元二次方程丄_? +丄兀—加=2没有实数根,2 3点睛:本题考查了解分式方程以及根的判别式,熟练掌握"当厶<0时,方程没有实数根" 是解题的关键.2. (1)第一次购书的进价是50元,第二次购书的进价是60元;(2)该商家最低打九折才能保证剩下书的利润率不低于5%(1) 设第一次购书的单价为x 元,根据第一次用12000元购书若干本,第二次购书时,每 本书的批发价已比第一次提高了 20%,他用15000元所购该书的数量比第一次多10本,列 出方程,求出x 的值即可得出答案;(2) 设该商家打y 折,依题意列出不等式,解不等式即可(1)设第一次购书的单价为x 元,则第二次购书单价是(1+20%) x 元,12000 15000x +1°=(l + 20%)x解得:x = 50,经检验,x = 50是原方程的解, /.(1+20%) x=60答:第一次购书的进价是50元,第二次购书的进价是60元;(2) 150004-60=250 (本) 解:设该商家打y 折,依题意得:® 話 60)x (詈°-200),(罟200)x60x5%解得:y>9答:该商家最低打九折才能保证剩下书的利润率不低于5%.•.△=(*)2_4X *X (—加―2)<0,解得: 37 m < ------- , 18 37 的值取值范围为m<- —18根据题意得:【点睛】此题考查了分式方程的应用、不等式的应用,分析题意,找到关键描述语,找到合适的等 量关系是解决问题的关键.3. 原分式方程无解.按照去分母、移项、合并同类项的步骤求解即可.方程两边同时乘以x(x-2),得:4+(兀—2)= 2%x = 2检验:当x = 2时,x(x-2)= 0•••原分式方程无解.【点睛】此题主要考查分式方程的求解,熟练掌握,即可解题.4. (1)甲、乙两工程队每天能完成绿化的面积分别是50m\ 25m 2; (2)至少安排甲队 工作20天.(1) 设乙工程队每天能完成绿化的面积是xrr?,则甲工程队每天能完成绿化的面积是 2xm 2,根据"独立完成面积为200加$区域的绿化时,甲队比乙队少用4天"列出方程,再解 即可;(2) 根据题意可得等量关系:绿化总费用=甲队的绿化总费用+乙队的绿化总费用,根据 "使这次的绿化总费用不超过8万元"列出不等式求解即可.解:(1)设乙工程队每天能完成绿化的面积是xrrA解得:x=25, 经检验x=25是原方程的解,则甲工程队每天能完成绿化的面积是25x2=50 (m?),答:甲、乙两工程队每天能完成绿化的面积分别是50n?、25m 2;(2)设至少应安排甲队工作y 天.根据题意得:解得y>20,所以至少安排甲队工作20天.【点睛】本题考查分式方程的应用,一元一次不等式的应用.解决此题的关键是正确理解题意,找 出题目中的等量关系和不等量关系,据此列出方程或不等式.5.购买一个甲种足球、一个乙种足球各需65和83元 设一个甲种足球需要x 元,根据题意列出方程即可求出答案.解:设一个甲种足球需要x 元,根据题意得:型一型=4 x 2x0.35y + 1100 —50y25 x 0.25 <8•I 一个乙种足球需要(x+18)元,解得:x = 65, 经检验,x = 65是原方程的解, /.x+18 = 83,答:购买一个甲种足球、一个乙种足球各需65和83元【点睛】本题考查分式方程的实际应用,解题的关键是正确找出题中的等量关系,本题属于基础题 型.6. (1)甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾;(2)甲型 机器人退出后乙型机器人还需要工作12小时.(1) 设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃圾,根 据工作时间=工作总量十工作效率结合甲型机器人分类800千克垃圾所用的时间与乙型机 器人分类600kg 垃圾所用的时间相等,即可得出关于x 的分式方程,解之经检验后即可得 出结论;(2) 根据乙型机器人还需工作时间=剩余的工作总量宁乙型机器人的工作效率,即可求出 结论.解:(1)设甲型机器人每小时分类xkg 垃圾.则乙型机器人每小时分类(x- 10) kg 垃 圾, , 800 600依逆思,得: ---- =X x-10解得:x=40,经检验,x=40是原方程的根,且符合题意,.•.X - 10=40 - 10 = 30. 答:甲型机器人每小时分类40kg 垃圾.乙型机器人每小时分类30kg 垃圾.(2) [500 - (40+30) X214-30 = 12 (小时).答:甲型机器人退出后乙型机器人还需要工作12小时.【点评】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.2 7. (1) x=—; (2)无解 3(1) 先去分母化为整式方程,再解方程求出解后检验即可;(2) 先去分母化为整式方程,再解方程求出解后检验即可.3- x _ 14+7_2 2 (3-x) =4+x6-2x=4+x-3x=-2由题意可知:型竺 x % + 182x=—,3经检验,x= |•是原分式方程的解, •••原分式方程的解是x=|;(X +1)2-4= X2-1%2 + 2尢 +1 — 4 = — 12x=2x=l,检验:当x=l时,x2-l=0, /.x=l不是原分式方程的解,•••分式方程无解.【点睛】此题考查解分式方程,首先将分式方程去分母化为整式方程,求出整式方程的解后需检验是否符合分式方程,再确定分式方程的解.8.排球的单价为50元,则篮球的单价为80元.设排球的单价为x元,则篮球的单价为(x+30)元,根据总价宁单价=数量的关系建立方程求出其解即可.设排球的单价为x元,则篮球的单价为(x+30)元,根据题意,列方程得:1000 1600x x + 30解得:x=50.经检验,x=50是原方程的根,当x=50 时,x+30=80.答:排球的单价为50元,则篮球的单价为80元.【点睛】本题考查了列分式方程解实际问题的运用,分式方程的解法的运用,总价夕单价=数量的数量关系的运用,解答时根据排球和篮球的数量相等建立方程是关键.(1)利用加减消元法解方程组即可;(2)去分母、移项、解出X的值,最后验根即可.2x + 7y = 5 ①(1)\ …3x + y = -2(2)②x7-①得:19x=-19,解得x=-l把x=-l代入②解得:y=lx = -l ・・・原方程组的解为{ °卜=12x + 5 1 (2) ----- = _ x-3 2去分母得:2(2x+5)=x-3,去括号得:4x+10=x-3,移项得:3x=-13,13系数化为1得:X=-y.经检验,x=——是原方程的解.【点睛】本题考查解二元一次方程组及分式方程,解二元一次方程组的主要思想是消元,其解法有 加减消元法和代入消元法等,解分式方程主要是转化思想,把分式方程转化为整式方程求 解,注意,解分式方程时,最后要检验是否为增根.10. (1)购入B 种原料每千克的价格最高不超过10元;(2)这种产品的批发价为50 元.(1)设B 种原料每千克的价格为x 元,则A 种原料每千克的价格为(x + 10)元 根据使 每件产品的成本价不超过34元列出不等式求解即可;(2)设这种产品的批发价为a 元, 则零售价为(a + 30)元,根据“用10000元通过批发价购买该产品的件数与用16000元 通过零售价购买该产品的件数相同,”正确列出分式方程即可.(1)设B 种原料每千克的价格为X 元,则A 种原料每千克的价格为(X + 10)元, 根据题意得:1.2(兀+10)+兀34, 解得:兀,10.答:购入B 种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a 元,则零售价为(a+30)元,解得:a = 50, 经检验,a = 50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量 间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.11. (1) m=100; (2)共有11种方案;(3)①当50<a<60时,应购进甲种运动鞋 105双,购进乙种运动鞋95双;②当a=60时,所有方案获利都一样;③当60<a<70 时,应购进甲种运动鞋95双,购进乙种运动鞋105双.(1)根据用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同,构根据题意得: 10000 a 16000a + 30建方程即可解决问题;(2) 根据题意,列出不等式组即可解决问题;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105), 分三种情况:①当50<a<60时,②当a=60时,③当60<a<70时,进行讨论.解:(1)依题意得,2400 ,整理得,3000 (m-20) -2400m,解得 m=100, m m-20 经检验,m=100是原分式方程的解,所以,m=100; (2) 设购进甲种运动鞋x 双,则乙种运动鞋(200-x)双,(240 —100)x + (160 — 80)(200-%)> 21700①根据题思得,[go_go)* + (160-80)(200-x)< 22300②解不等式①得,x>95,解不等式②得,x<105,所以,不等式组的解集是95<x<105,Tx 是正整数,105-95+1=11, /.共有11种方案;(3) 设总利润为 W,则 W= (240-100-a) x+80 (200-x) = (60-a) x+16000 (95<x<105),① 当50<a<60时,60-a>0, W 随x 的增大而增大,所以,当x=105时,W 有最大值,即此时应购进甲种运动鞋105双,购进乙种运动鞋95 双; ② 当a=60时,60-a=0, W=16000, (2)中所有方案获利都一样;③ 当60<a<70时,60-a<0, W 随x 的增大而减小,所以,当x=95时,W 有最大值, 即此时应购进甲种运动鞋95双,购进乙种运动鞋105双.【点睛】本题考查一元一次不等式组的应用和分式方程的应用,解题的关键是读懂题意,掌握一元 一次不等式组的应用和分式方程的应用.12. 30; 25.试题分析:方程的应用解题关键是找出等量关系,列出方程求解.本题根据购买大枣粽子和 豆沙粽子各花300元,结果购买的大枣粽子比豆沙粽子少2盒,得到等量关系:购买豆沙 粽子的盒数-2=大枣粽子的盒数,由此列出方程,解方程即可.试题解析:设豆沙粽子每盒x 元,则大枣粽子每盒(x+5)元.解得 Xi=-30, X2=25.经检验血=-30, X2=25是原方程的解,但Xi=-30不符合题意,舍去.当 x=25 时,x+5=30.答:大枣粽子每盒30兀,51沙粽子每盒25兀.考点:分式方程的应用.13. {解析}试题分析:根据题意可知分式方程的解法步骤:去分母(同乘以最简公分母), 化为整式方程,解方程,检验,得到原方程的解.试题解析:(1)去分母,得2xx2 + 2 (x+3) =7,解得,x=-, 6经检验,x=Z 是原方程的解. 6依题意得^X300尤+5’(2)方程两边同乘(x-2)得,l-x=-l-2 (x-2), 解得,x=2.检验,当x=2时,X —2=0,所以x=2不是原方程的根,所以原分式方程无解.考点:解分式方程2a14. (1) ----------- ; (2)无解;(3) 1 a-b(1) 先把括号内的分式通分化简,再把除法运算转化为乘法运算,然后约分即可;(2) 先把分式方程化为整式方程求出x 的值,再代入最简公分母进行检验即可;(3) 根据绝对值、二次根式以及平方差公式计算,再合并即可.,2a —b b 、 2b —a (1)( ------------------ )- --------------- a + b a — b a + b_ (2a - b\a -b)- b(a + b)a +b (Q + b)(a - b) -(a - 2b)2a(a - 2b) a + b(Q + b)(o-b) a-2b laa-b (2)方程两边同乘(x-3),得 x-2 = 2(x-3)+ l,x-2 = 2x-6 +1解得:x = 3 ,检验:当x = 3时,最简公分母x-3 = 0,所以x = 3不是原方程的解,所以原方程无解;=5-2^6+276-4 =1【点睛】本题考查了分式的化简,实数的混合运算,解分式方程,解分式方程要注意:(1)解分式方 程的基本思想是“转化思想”,把分式方程转化为整式方程求解;(2)解分式方程一定注意-(3+同(3-同⑶ |2^6-5| + 12要验根.15. (1) x=— : (2)分式方程无解. 3根据解一元一次方程的方法去分母、去括号、移项、合并同类项、化系数为1的步骤求出 x 的值即可.解:(1)去分母得:x 2 - 2x - X 2+4=X +2,经检验% = |是分式方程的解;(2)去分母得:5x+2=3x,解得:x= - 1,经检验x= - 1是增根,分式方程无解.【点睛】考查分式方程的解法,熟练掌握解分式方程的步骤是解题的关键.注意检验.16.甲工程队平均每天完成200米,乙工程队平均每天完成100米.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,根据工作时间=总工作量* 工作效率结合甲工程队单独完成此项工程比乙工程队单独完成此项工程少用20天,即可得 出关于x 的分式方程,解之经检验后即可得出结论.设乙工程队平均每天完成x 米,则甲工程队平均每天完成2x 米,解得:x=100, 经检验,x=100是原分式方程的解,且符合题意,.•.2x=200. 答:甲工程队平均每天完成200米,乙工程队平均每天完成100米.【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.17. (1)甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天(2)甲队至少再单独施工30天(1)根据题意可设乙工程队单独完成建校工程需要x 天,则甲工程队单独完成建校工程需 要2x 天,利用甲乙合作工作量之和等于1,可列方程:60解得:x=90,所以 2x=180. (2)根据题意可设甲队再单独施工y 天,然后根据题意得:需兰 > 咯^,解得:y230. 180 90(1)设乙工程队单独完成建校工程需要X 天,则甲工程队单独完成建校工程需要2x 天, 根据题意得:60 (4占),=1,x 2x解得:x=90,经检验,x=90是原方程的解,且符合题意,2x=180.根据题意得: 4000 x 4000 2x'=1,答:甲工程队单独完成建校工程需要180天,乙工程队单独完成建校工程需要90天.(2)设甲队再单独施工y天,根据题意得:孕艮啓x2,180 90解得:y>30,答:甲队至少再单独施工30天.【点睛】本题主要考查分式方程的应用,不等式的应用,解决本题的关键是要熟练确定题目中的等量关系,正确列出方程和不等式.18.(1)方程无解;(2) x=13.(1)两边都乘以最简公分母(x+2) (x-2),把分式方程化为整式方程求解,求出x的值后要代入原方程验根;(2)两边都乘以最简公分母(x+2) (2x-l),把分式方程化为整式方程求解,求出x的值后要代入原方程验根(1)两边同乘以(x+2) (x-2)得:x (x+2) - (x+2) (x-2) =8,去括号,得:x2+2X-X1 +4=8,移项、合并同类项得:2x=4,解得:x=2.经检验,x=2是方程的增根,方程无解.(2)由题意可得:5 (x+2) =3 (2x-l),解得:x=13,经检验,当x=13 时,(x+2) 乂0, 2X-1H0,故x=13是原方程的解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.19.原计划的行驶速度为100千米/时.解题时利用“计划用时-实际用时小时”这一等量关系列出分式方程求解即可.60解:设原计划的行驶速度为x千米/时,, 180-60 180-60 12n则: ----------------- =一,x 1.2% 60解得x=100,经检验:x=100是原方程的解,且符合题意,所以x=100.答:原计划的行驶速度为100千米/时.【点睛】本题主要考查分式方程的应用,根据已知条件列出分式方程式解题的关键.20. (1) -; (2) x=l (是增根)4试题分析:(1)方程左右两边同时乘以2x —2,解出x 以后验证是否为增根即可;(2) 方程左右两边同时同时乘以x 2-l,解出x 以后验证是否为增根即可.试题解析:2x+2x —2=3, 4x=5,5 x 二一, 4 经检验X=』是分式方程的解;4(2)(x+1) 2-4=X 2-1, X 2+2X +1—4=x 2 —1, x=l,经检验,x=l 是分式方程的增根,所以方程无解.点睛:解分式方程先将分式方程化为整式方程,解出X 以后一定要验证X 是否为方程的增 根.21. 短绳的单价是10元,则长绳的单价是15元.设短绳的单价是x 元,用相等关系"用12000元购进的长绳与用8000元购进的短绳的数量 相等",列分式方程求解,注意检验.解:设短绳的单价是x 元,则长绳的单价是(x+5)元,由题意,得 12000x + 58000= ------- , 5 解得:x=10,经检验,x=10是原方程的根x+5=15 元,答:短绳的单价是10元,则长绳的单价是15元.22. 45设乙每分钟打字X 个,甲每分钟打(X + 5)个,根据题意可得:饕=弓,去分母可得:(1) X x-l 2x-21000x = 900(x+5),解得% = 45,经检验可得:x = 45,故答案为:45.23. (1) x=—2;(2) a=—3. Q . -1 ry (1)将沪3代入,求解丄〒一一=1的根,验根即可, x-1 1-x (2) 先求出增根是x=l,将分式化简为ax+l+2=x —1,代入x=l 即可求出a 的值.Q . 1 r\解:⑴当a=3时,原方程为上〒一一=1, x-1 1-x方程两边同乘x —1,得3x+l+2=x —1,解这个整式方程得x=—2,检验:将 x=—2 代入 x —1 = —2—1 = —3/0,•••x=—2是原分式方程的解.(2)方程两边同乘x ―1,得ax+l+2=x —1,若原方程有增根,则x —1=0,解得x=l,将x = l 代入整式方程得a+1+2=0,解得a= —3.【点睛】本题考查解分式方程,属于简单题,对分式方程的结果进行验根是解题关键.8尢424. (1) ----------- ; (2) x=l9y分析:(1)先算乘方,然后把除法转化为乘法约分化简;(2)两边都乘以最简公分母(x+l)(x-l),把分式方程转化为整式方程求解,解分式方程要验根;y 2 8x 6 8x 4二・——x --- = ------- -----9x 2 y 3 9y '(2)两边都乘以最简公分母(x+l)(x-l),得 (x + 1)2 - 4 = x 2 -1 .*.X 2+2X +1-4=X 2-1Z2x=2,x = 1.点睛:本题考查了分式的混合运算和分式方程的解法,熟练掌握分式运算的相关法则和解 分式方程的步骤是解答本题的关键.25. A 型机器人每小时搬运6千克化工原料分析:首先设A 型机器人每小时搬运x 千克化工原料,则B 型机器人每小时搬运(x+3)千克 化工原料,根据题意列出分式方程,从而得出答案.详解: (1)原式=詁。

第17章专题三 勾股定理中的翻折与动点问题-2020-2021学年人教版八年级数学下册

第17章专题三  勾股定理中的翻折与动点问题-2020-2021学年人教版八年级数学下册

专题三勾股定理中的翻折与动点问题1.如图,将等腰直角三角形ABC(∠B=90°)沿EF折叠,使点A落在BC边的中点A1处,BC=8,那么线段AE的长度为.2.如图,一张直角三角形的纸片ABC,两直角边AC=6cm,BC=8cm.现将直角边AC沿直线AD折叠,使它落在斜边AB上,且AC与AE重合,求CD的长.3.如图,长方形纸片ABCD,折叠长方形的一边AD,点D落在BC边的F处,已知AB=CD=8cm,BC=AD=10cm,求EC的长.【类型1】勾股定理中的翻折问题4.已知长方形ABCD中,AB=6,BC=8,将纸片折叠,使得点A和点C重合,折痕为EF,如图,则EF的长为多少?5.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,将△ABC折叠,使点B恰好落在边AC上,与点B′重合,AE为折痕,求EB′的长.【类型2】勾股定理中的动点问题6.如图,四边形ABCD的三边(AB、BC、CD)和BD的长度都为5厘米,动点P从A出发(A→B→D)到D,速度为2厘米/秒,动点Q从点D出发(D→C→B→A)到A,速度为2.8厘米/秒.5秒后P、Q相距3厘米,试确定5秒时△APQ的形状.7.如图所示,已知△ABC中,∠B=90°,AB=16cm,AC=20cm,P、Q是△ABC的边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B 开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.根据以上信息,回答下面问题:(1)求BC的长度;(2)当t为何值时,点P在边AC的垂直平分线上?(3)当点Q在边CA上运动时,是否存在t的值,使△BCQ为等腰三角形,若存在,请求出t的值;若不存在,请说明理由.8.已知:如图,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,动点P从点B出发沿射线BC以1cm/s的速度移动,设运动的时间为t秒.(1)求BC边的长;(2)当△ABP为直角三角形时,求t的值;(3)当△ABP为等腰三角形时,求t的值.9.如图,△ABC中,∠ACB=90°,AB=5cm,BC=3cm,若点P从点A出发,以每秒2cm 的速度沿折线A﹣C﹣B﹣A运动,设运动时间为t秒(t>0).(1)若点P在AC上,且满足P A=PB时,求出此时t的值;(2)若点P恰好在∠BAC的角平分线上,求t的值.参考答案1.解:由折叠的性质可得AE =A 1E , ∵△ABC 为等腰直角三角形,BC =8, ∴AB =8,∵A 1为BC 的中点, ∴A 1B =4,设AE =A 1E =x ,则BE =8﹣x ,在Rt △A 1BE 中,由勾股定理可得42+(8﹣x )2=x 2,解得x =5, 故答案为:5.2.解:ABC ∆是直角三角形,6AC cm =,8BC cm =,10AB cm ∴==,AED ∆是ACD ∆翻折而成,6AE AC cm ∴==,设DE CD xcm ==,90AED ∠=︒, 1064BE AB AE cm ∴=-=-=,在Rt BDE ∆中,222BD DE BE =+, 即222(8)4x x -=+, 解得3x =. 故CD 的长为3cm .3.解:依题意可得:BC =AD =AF =10,DE =EF . 在△ABF 中,∠ABF =90°.∴6BF ==,∴FC =10﹣6=4,设EC =x ,则EF =DE =8﹣x . ∵∠C =90°, ∴EC 2+FC 2=EF 2, ∴x 2+42=(8﹣x )2, 解之得:x =3,∴EC =3(cm ). 4.解:连接AE .将纸片折叠,使得点A 和点C 重合, AE CE∴=.8BC ∴=,∴设AE x =,则8BE x =-.在Rt ABE ∆中, 6AB =,8BE x =-,222AE AB BE ∴=+,即2236(8)x x =+-, 解得254x =. 在Rt ABC ∆中, 6AB =,8BC =,10AC ∴==,则5AO =.同理,在Rt AOE ∆中,154OE , EF 是折痕,1522EF OE ∴==.5.解:根据折叠可得BE =EB ′,AB ′=AB =3, 设BE =EB ′=x ,则EC =4﹣x , ∵∠B =90°,AB =3,BC =4,∴在Rt ABC ∆中,由勾股定理得,5AC ==,∴B ′C =5﹣3=2,在Rt △B ′EC 中,由勾股定理得,x 2+22=(4﹣x )2, 解得x =1.5, 故答案为:1.5.6.解:∵AB =BD =5厘米,动点P 从A 出发(A →B →D )到D ,速度为2厘米/秒, ∴5秒时P 点运动路程为2×5=10(厘米), 而AB +BD =10厘米, ∴此时P 与D 重合.∵AB =BC =CD =5厘米,动点Q 从点D 出发(D →C →B →A )到A ,速度为2.8厘米/秒,∴5秒时Q 点运动路程为2.8×5=14(厘米), 而DC +CB +BA =15厘米,∴Q 在AB 边上,且BQ =4厘米,如图.在△BPQ 中,∵BQ =4厘米,PQ =3厘米,BP =5厘米, ∴BQ 2+PQ 2=BP 2,∴△BPQ 为直角三角形,∠BQP =90°, ∴∠AQP =180°﹣∠BQP =90°, ∴△APQ 为直角三角形.7.解:(1)90B ∠=︒,16AB cm =,20AC cm =12()BC cm ∴===;(2)点P 在边AC 的垂直平分线上, PC PA t ∴==,16PB t =-,在Rt BPC ∆中,222BC BP CP +=,即22212(16)t t +-=解得:252t=;(3)存在t值,使△BCQ为等腰三角形.①当CQ=BQ时,如答图1所示,则∠C=∠CBQ,∵∠ABC=90°,∴∠CBQ+∠ABQ=90°.∠A+∠C=90°,∴∠A=∠ABQ,∴BQ=AQ,∴CQ=AQ=10,∴BC+CQ=22,∴t=22÷2=11秒;②当CQ=BC时,如答图2所示,则BC+CQ=24,∴t=24÷2=12秒;③当BC BQ=时,如答图3所示,过B点作BE AC⊥于点E,∴121648205AB BCBEAC⨯===,365CE∴==,214.4CQ CE∴==,26.4BC CQ∴+=,26.4213.2t∴=÷=秒.综上所述:当t 为11秒或12秒或13.2秒时,BCQ ∆为等腰三角形. 8.解:(1)在Rt ABC ∆中,222225316BC AB AC =-=-=, 4()BC cm ∴=;(2)由题意知BP tcm =,①当APB ∠为直角时,点P 与点C 重合,4BP BC cm ==,即4t =; ②当BAP ∠为直角时,BP tcm =,(4)CP t cm =-,3AC cm =, 在Rt ACP ∆中,2223(4)AP t =+-,在Rt BAP ∆中,222AB AP BP +=, 即:22225[3(4)]t t ++-=, 解得:254t =, 故当ABP ∆为直角三角形时,4t =或254t =;(3)①当AB BP =时,5t =;②当AB AP =时,28BP BC cm ==,8t =;③当BP AP =时,AP BP tcm ==,(4)CP t cm =-,3AC cm =, 在Rt ACP ∆中,222AP AC CP =+, 所以2223(4)t t =+-, 解得:258t =, 综上所述:当ABP ∆为等腰三角形时,5t =或8t =或258t =.9.解:(1)设存在点P ,使得PA PB =,此时2PA PB t ==,42PC t =-, 在Rt PCB ∆中,222PC CB PB +=, 即:222(42)3(2)t t -+=, 解得:2516t =, ∴当2516t =时,PA PB =; (2)当点P 在BAC ∠的平分线上时,如图1,过点P 作PE AB ⊥于点E ,2AP t =, 此时72BP t =-,24PE PC t ==-,541BE =-=, 在Rt BEP ∆中,222PE BE BP +=, 即:222(24)1(72)t t -+=-, 解得:83t =, ∴当83t =时,P 在ABC ∆的角平分线上, 当点P 运动到点A 时,也符合题意,此时6t =, 综上所述,满足条件的t 的值为83或6.。

专题三 全等三角形的判定-浙教版八年级数学上册期中复习专题训练

专题三 全等三角形的判定-浙教版八年级数学上册期中复习专题训练

浙教版数学(八上)期中复习专题三全等三角形一、选择题1. 下列命题中:①形状相同的两个三角形是全等形;①在两个全等三角形中,相等的角是对应角相等的边是对应边;①全等三角形对应边上的高、中线及对应角平分线分别相等,其中真命的个数为( )。

A.3个B.2个C.1个D.0个【答案】C2. 在下列的条件中,不能说明①ABC①①AB'C'的是( )。

A.①A=①A',①C=①C',AC=A'CB.①A=①A',AB=A'B',BC=B′C′C.①B=①B',①C=①C',AB=A'B′D. AB=A′B′,BC=B′C′,AC=A′C′【答案】B3. 有下列说法:①有一个外角是钝角的三角形是锐角三角形;①有两条边和一个角对应相等的两个三角形全等;①若三条线段ab,满足a≥b≥c,且a<b+C,则这三条线段必能组成一个三角形;①有两个角和一条边彼此相等的两个三角形全等。

其中正确的个数是( )。

A.4个B.3个C.2个D.1个【答案】D4.用尺规作一个角的平分线的示意图如图所示,则能说明①AOC=①BOC的依据是( )。

A. SSSB. ASAC. AASD.角平分线上的点到角两边距离相等【答案】A5.如图所示,点B、C、E在同一条直线上,①ABC与①CDE都是等边三角形则下列结论不一定成立的是( )。

A.①ACE①①BCDB.①BGC①①AFCC.①DCG①①ECFD.①ADB①①CEA【答案】D6.如图,已知①1=①2,则不一定能使①ABD①①ACD的条件是( )。

A. AB=ACB. BD=CDC.①B=①CD.①BDA=①CDA7. 要测量河两岸相对的两点A,B的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明①EDC①①ABC,得ED=AB,因此测得ED的长就是AB的长,判定①EDC①①ABC最恰当的理由是( )。

第19章专题12:一次函数的图像与性质(三)-通用版八年级下册数学专题练

第19章专题12:一次函数的图像与性质(三)-通用版八年级下册数学专题练

19章专题12:一次函数的图像与性质(三)1. 如图,已知直线l :y=-x+4,在直线l 上取点B 1,过B 1分别向x 轴,y 轴作垂线,交x 轴于A 1,交y 轴于C 1,使四边形OA 1B 1C 1为正方形;在直线l 上取点B 2,过B 2分别向x 轴,A 1B 1作垂线,交x 轴于A 2,交A 1B 1于C 2,使四边形A 1A 2B 2C 2为正方形;按此方法在直线l 上顺次取点B 3,B 4,…,B n ,依次作正方形A 2A 3B 3C 3,A 3A 4B 4C 4,…,A n-1A n B n C n ,则A 3的坐标为 ,B 5的坐标为 。

【答案】(27,0),(831,81)2. 直线y=x+1与x 轴交于点D ,与y 轴交于点A 1,把正方形A 1B 1C 1O 1、A 2B 2C 2C 1和A 3B 3C 3C 2按如图所示方式放置,点A 2、A 3在直线y=x+1上,点C 1、C 2、C 3在x 轴上,按照这样的规律,则正方形A 2020B 2020C 2020C 2019中的点B 2020的坐标为 。

【答案】(22020-1,22019)3. 在平面直角坐标系中,直线l :y=x-1与x 轴交于点A 1,如图所示,依次作正方形A 1B 1C 1O 、正方形A 2B 2C 2C 1、…、正方形A n B n C n C n-1,使得点A 1、A 2、A 3、…在直线l 上,点C 1、C 2、C 3、…在y 轴正半轴上,则点B 2020的横坐标是 。

【答案】220194. 已知A (x 1,y 1)、B (x 2,y 2)是一次函数y=(2-m )x+3图象上两点,且(x 1-x 2)(y 1-y 2)<0,则m 的取值范围为 。

【答案】m >2.5. 如图,平面直角坐标系中,若点A (3,0)、B (4,1)到一次函数y=kx+4(k≠0)图象的距离相等,则k 的值为 。

八年级《数学》下册尖子生强化训练题及解析答案:二次根式(3套).docx

八年级《数学》下册尖子生强化训练题及解析答案:二次根式(3套).docx

tj|r>全国重点高中提前招生考试八年级下学期同步强化训练卷(一)(二次根式的性质和化简专题测试)总分:120分时间:120分钟—、选择题(每小题5分,共30分)1.若代数式謬矗有意义,则a■的取值范围是()A. x<2020B. x<2020 且± 2019C. x<2020 且乂工2019D. x<2020 且乂工一2019(“希望杯”竞赛试题改编)2.若化简11 —X I —A/JC2-8x+16的结果为2乂一5,则x的取值范围是()A.才为任意实数B. l<x<4 D.3.把(a-b'Jb'a根号外的因式移到根号内的结果为()D. —V a—b(华中师大一附中招生试题)4.已知实数a、b满足A/(a— I)2 + V(a—6)2 = 10 — | b + 3 | — I b— 2 | ,则a2 ~\~lr的最大值为()A. 50B. 45C. 40D. 0(芜湖一中理科实验班自主招生试题)5.已知y = +』5 —2丁一3,则2.z-y 的值为()15A. —15B. 15C. —6.计算4 丿3+2 血一丿41+24© =()A. 72-1B. 1C.V2二、填空题(5分X6 = 30分)D. 2(全国初中联赛试题)7.如果实数u、b、c在数轴上的位置如图1-1所示.那么代数式-/^-\a+h\ + /G—万尹+“+c何化简为—b " 0 c图1-1(全国初中竞赛题)&若实数.r、y满足|j—4| + ^7=8=0,则以y的值为边长的等腰三角形的周长为_9. __________________________________________________________ 已知实数m满足丨2019—rn \ + Jm—2020=加,那么m— 2019?= __________________________ .(重庆市竞赛试题)11. _______________________________________________ 若工+y= J3 V5—JC—y= V3 42—75 •则xy= ____________________________________________________ ・(天津市竞赛试题)12.若77— = —2,则F的值为.77 十 --------(天津市竞赛试题)三、解答题13.(12分)若」^的整数部分是a.小数部分是儿求a2 + (l+V7)a6的值.3—7711.( 13分)(1)先化简再求值:才存缶一(1一与护),其中a = 2+尽b=2—胚(2)已知a、b、c为ZSABC 的三边,化简:丿(a+6+c)2 + 丿―严 + jQ>_a—cV15.(11分)已知正实数a』满足:a+O=l,1—专+茫+】_茫—茫=_4,求:华的值.1—Jb—Jci 1—76+Va Jb16.(12分)已知7^=石+*(0<0<1),求代数式F+JT—6 . JT+317.(12分)先阅读再化简求值.(1)在化简丿匸刀而的过程中,小王和小李的化简结果不一样:小王的化简过程如下:原式=A/2-2 /2X^+5 = 7(T2)2-2V2 - 75 + (75)2 =丿近二丽=施一岳.小李的化简过程如下:原式=V(-/2)2-2V2 • V5 + (V5)2 = 7(72-75)2 =^-V2.请判断谁的化简结果正确,并说明理由.⑵化简求值:已知乂=“6 —2腐,求(上+*) • 2乙二;)的值(结果保留根号).全国重点高中提前招生考试 八年级下学期同步强化训练卷(二)(二次根式的化简求值专题测试) 总分:120分时间:120分钟一、选择题(5分X6 = 30分)1 •计算 14 + 6 75 — 14 6 75 的值是() A. 1 B.75C. 2 75D. 5(全国初中竞赛试题)2.已知非零实数 a 、b 满足 I 2a —4 | + | b+2 I + J (a — 3)624- 4 = 2a ,则 a~\~h 等于()3.化简J1+古+(”,1)2("〉0或1)所得的结果为()tj|r>A. -1B.0C. 1D. 2A.H 1'1w+1C. 141 1n+1D. 1—丄—一*(武汉市选拔赛试题)4.已知 2x-3 /亦一2y=0(z>0),则;;二器2的值是(16 -25A-fD-27(太原市竞赛题)5•设Dr]表示最接近的整数QHx+0・ 5,77为整数),则[/TX2] + Ly2X3] + L 5/3X4] + - +E7iooxioi]的值为( )C.5150D.5151(“五羊杯”竞赛题)6. 已知,=好兀+ 石弓均为实数).则y 的最大值与最小值的差为( )A. 2^2-2B. 4-2 72C. 3—2©D. 2 V2-1二、填空题(5分X6 = 30分)7. 计算 72017X2018X2019X2020+1-20182 的结果是 ________________ .&已知 a= 72018- v /2017.Z>= 72019- 72018.c= 72020-^/硕©,则 a 、b 、c 三者的大小关 系为.(武汉市竞赛试题改编)9.若实数"』满足乂2+$2_滋_2》+5=0.则石+$ 的值是 ____________________ .V3^—2 77(“希望杯”竞赛试题)华土华】=华二理.则兰+上=V3-V2 V3+V2 y &(“希望杯”竞赛试题)A /5+2 A /6 V 7+4 V3(湖北省黄冈中学理科实验班预录试题)12. [a]表示不大于a 的最大整数,{a}=a —[a].设a =[帚+斤],6=•则^ + (1+77)ab= _________・(鄂州高中自主招生考试数学试题)三、解答题13. (12分)计算与求值.(1)已知°=宀,求护_20 + 1_绍渔土1的值.2+V3 aTa L~a(244-4)<44+4)<64+4)<8<+4-)(104+-7-)4 4 4 4 4(r+4)<34+4-)<54+4-X74+-r )(94+-r )4 4 4 44(湖北黄冈中学理科实验班预录试题)10.已知x= (2)计算:14. (12分)正数心满足,”+4厉-2扁-皿+4,尸3.求倉豐爲的值.(北京市竞赛题)⑵设⑴册'求"2"曲7 + 18「17的值.16. (12 分)设 x= — . y = jZEEElzb/E, 为何值吋.代数式 20才 + 41>ry + 20b 的值 Vi+ 1+7? Jt +l —Jt为 2001.(全国初中数学联赛试题)15. (12 分)(1)化简:用十4血+3匹松)(腐_______________ 117. (12 分)定义/(JC)=求/(l)+/(3)+/(5)H ----------------- 1-■Z?-FZr+T+ \/ x2— 1+ 步卡一2JC+1/(2怡一1)+/(999)的值.(上海市竞赛试题)5. 已知 J25—yi5-x 2=2,则丿25—F + J15—F 的值为(A. 3B. 4C. 5(山东省竞赛题)6-设$=/+*+寺+/+*+* + J1++++ +…+/+壽 +誌?,则与5最接近 的数是( )A.2017B. 2018C. 2019D. 2020二、填空题(5分X6=30分)7.若 u+b —2 Va —1~4 "―2 = 3 J c —3— c ——5,贝9 a+〃+e= _______________ .(武汉市竞赛题)9. _____________________________________________________________ 若的最大值是a,最小值是几则a 2+62的值为 _______________________________________________________ .(全国初中数学竞赛试题)10. 已知a= V7-1.则代数式3a 3 + 12a 2-6a-12的值为 ________________ .(全国初中数学联赛试题)全国重点高中提前招生考试 八年级下学期同步强化训练卷(三)(二次根式综合测试) 总分:120分时间:120分钟―、选择题(5分X6 = 30分)1.已知 7x 2-4 + 727+3^=0.则 乂一y 的值为( ) A. 2B. 6C. 2 或一22.计算(721-3)(73+ 710-77)的值等于( )A. 6^7B. -6V7C. 20 73 + 6^73. 已知/+丄=7(0VzVl ),则石一-的值为()D. 6 或一6D. 20 73-6/7B. —-75D.V5(天津市竞赛试题)4. 已知整数.r 、y 满足点+2心=丿丽,那么整数对(_r,y )的个数是(A. 0B. 1C. 2D. 3(江苏省竞赛题)D. 68-当―点时•化简牛严+今芋1的结果是11.非零实数满足(Z?+2019-J-)(+2019—y) =2019,则孟洛¥;=_(湖北省鄂州市自主招生试题改编)12.已知a、Z>为有理数分别表示5-V7的整数部分和小数部分,且a>nn+bn2 = l.则2a+b三、解答题13.(12分)化简:丿37+20站+丿37-20箱.14. (12分)先化简.再求值:(弄务 a — 1-宦,其中"=血一1・«2+4a+415.(12 分)若〃201172012-1,求m 5— 2m 4—201 lzn 3 的值. 求n 的值.16. (12 分)乂=为自然数,如果2乂2 + 197刊+2)2 = 1993成立,17. ( 12分)求和:S = J1+令+壬 + J1+贪+令 + J1+寺+壬 + J1+令+右 + …4 1224 102参考答案全国重点高中提前招生考试八年级下学期同步强化训练卷(一)(二次根式的性质和化简专题测试)(2020-Q0 (J <20201. B 提示:由条件可知:「 则:,, 故工£2020且;rH±2019.I 1^-1-2019^0, I |却工2019.2. B 提示:•・•丨 1—工| 一 J£ -8工+16= 11—工| 一 丿(乂一4严=11一工| 一 |工一41 •则丨1一却一"一4|=2工一5,I x —1^011—^| =乂一 1, — b —41 =x —4.因此即 1 £乂=4・4—4W0.3. C 提示:由条件可甸:乙」石>0,・°・b —a>0, ・°・a — b<0.故原式=—(5_0)丿方二 =_『(/>_* • =—Jb —a.故选 C.4. B 提示:化简得:\a — l| + |a — 6 | + 16+3 | + “一2 | =10,由绝对值的意义可知・lWa£6・一3Wb 《2,所以 a=6“= —3时.a 2+62有最大值且为45.(2x —5^0cc5. A 提示:由二次根式的非负性得: ・・・工=可,,=一3.故2Q=2X_yX(—3) = —15.【5—2心0, 2 26. B 提示:原式=4 7( 7FFT)2- 7(4 72+3)2 =4(72 + 1)-(4 72+3) = 1.7. —a 提示:由实数aJ )-c 在数轴上的位置口]知:XCaVOVc.且“|>c,所以/—la+引+ J (c —a)? + |b+c| =—(a+6)+ (c —a) —(6-Fc) = —a.I x —4=0.(jr=4 8. 20提示:由题意得:解得:(1)若4是腰长,则三角形三边长分别为4,4,8不能组成三角丨夕一8=0,b=&形.(2)若4是底边长,则腰长为8•能组成三角形,周长为4+8+8=20.9. 2020 提示:由条件可知加$2020,・・・2019—加V0,・•・原等式可化为加一2019+丿加—2020=加,/.丿加一2020 =2019. .\T ?7-2020=20192.故 w-20192 =2020.卡_2>05«r —4"…2_a5 z _ 1则有•r2=2*3,= 2.j?2+y = 2+22 =6.fMwo 5^—411. 用—血 提示:由Q+_y)2 —(彳―$)2=4才〃得:4才3;=(虫岛一血)_(丿17兀騎)'=3站—血一(3血—75)=4頁—4 42.故 _J2.12. —2472 提示:(石'— )2 = ( —2尸=4,即 x ---—2 = 4,乂 -- =6.・°・.才--+2 = 8,即-- )2 =&77 乂 •!•工 77J~r~\-- =2 5/2» /. J ~2— =(无+丄)■(右 -- )•(岛— )=—24 J2.77 工 工 丘 丘 呼.又 2<疗<3..・.5<3+疗<6....2<呼<3..“2.=呼-13. 解:•••占=?3=^7)=10. 6提示:因为y3+疗14.解:(1)原式=(g—b)ab(a~\~b—2ab = 2(cz—6)2a~b'2=^=^ ・・・・/ + (1+疗)肪=2'+(1+疗)><2><^^=4+(7一1) = 10.______ 2 _______ = _ _ =_V3 (2+ 站)一(2—站)_ 2侑_3'(2)由三角形三边关系可知:a-b-cV0,b —a — cV0,c —a —b<0,.・・ V(a-b~c)2 =b-\~c~a, VCb-a-c)2 =a+c~b. V(c-b~a)2=a-^b-c.:.原式= (a+b+c) + (b+c —a) + (a+(—") —(“+"—小=心・ 15.解:原式=(1—心+俾 +(1 一片皿 =_4.即2[(1—心严+(石)右=—4[(]—乔严_(岛旧,整理得: (1—V6)z —(Va)z6(1—0)2=2°,即 3(1—石)2=a ・由于 4+〃=1,・・・3(1—心)2 = 1—〃=(1一心)(1+心),整理得:(1一亦)(3— 376 — 1—76)=0,1—7^=0 或 2—476=0.当 1—心=0,即 6=1 时,a=0,不合题意.当 2 — 476 = 0,即 b=.1 丄11 a 十十〒 1 1a 2 H — +2 * =a 2 H — +2 =a 2 +2.a 2 丄1丄 1 a aa ~\ aa a17.解:(1)小李的化简正确.(2) g = V (>/5 — I )2 =4^— 1,原式=-7 = [—-- = 3 +岳 无—1 V5-1-1全国重点高中提前招生考试八年级下学期同步强化训练卷(二)(二次根式的化简求值专题测试)1. C 提示:原式=V(3+V5)2 — V (3—V5)2 = 3 +站一3 +站=275.2. C 提示:由题设可知"$3,所以题设等式可化为:2a — 4+|b + 2| + J (a —3)圧+4 = 2°,即|方十2| + J (a —3)// =0,・°・b+2 = 0 且(a —3)Z>2 =0,・°・a = 3,b= —2,・°・a+〃=l,故选 C.4. D 提示:由 2JT —3 V xy —2)=0(工〉0)得:2(V^)2 — 3 V xy —2(Vj^)2 =0, /. (2 (-Zr —2 ^/y) =0.*•*2 V7 IVy>0・・2/y = 0. /.V7=2/y. A.r=4^.故原式=(塔=普・ 5. B 提示:设 x 为正整数,考察积.r(j —Fl).Vj*2<Cx(jr +l) = (jr+0. 5)2—0. 25V(«r+0. 5)2».\x<Z A /JT (才+1) VLr+O. 5,・°・[5/工(无+1)]=不,故原式=1+2+3 +…+ 100=5050.故选 B.6. A 提7B :J /=4 + 2 J —(立一6;r+5) =4 + 2 -J —(工一3严+ 4,当工=3时,西大值=2返,当工=1或5时, »最小值=2 •所求值为2 42 — 2 ♦选A.7. 2017 提示:设工=2018,则原式=J (&—1).疋(工+1)(工+2) + 1_.z 2 = A /[(G •—1)(/+2)][工(工+1)] + 1—JT 2rs-4-丄I a+丄 +1 1 1 ca 1 a —— 1 2 1 Z 1 a 丄] a n ------ 1 a ----- a 3. C 提示:原式(1+T )2_f +(^+T7 (1+X )2_2X n±l._X_+ 册"l+十—治S>0或D •故选C.・°・原式=広=壬2+乂一 1 —工2 =乂—i=2oi8—1 = 2017,9. 3 + 2 V2 提示:由已知条件可知:(債•一2)' + (»—I 2) =0・•°・」=2・』=1.故原式=~ =—=V 3-2 72 V(72-l)2^^1 = 3+2 血.V2-110. 98 提示:乂 =冬土纟= 5 + 2 76» y =冬一李=5 — 2 用,.I 工 + y = 10,刊=1, /. — + ^-= 十必=V3-V2V3+V2,龙 对(工+孙―2 可=1O2 = 2X1 = ]OO _2=9&11.2—72*提7F: *.* J 5+2 庇=J («/^+返')?=胚~\~匝、A /7 + 4 胚=J (2+>/^)? =2+>/§".故原式= ~~ +V3+V2—=庇—41 + 2 —厄=2 —42,2+7312. 10 提示:a=2、b= 7?13. 解:(1)原式=° — 1 賈一 =a — l --.当 a = 2~4^时,代入得:a —1 — =2—后一1+2+府=3.a(a —1) a a(1X2+*)(2X3+4_)(3X4+¥)(4X5+-|-)・・・(9X1O+4~)(1OX11+-|') lOXll+与(2)原式= ---------- 台 ------- 台 -------- 台 -------- 台 ----------- f ----------------- 严一= ------ =(0XH-y)(lX2+y)(2X3+y)(3X4+y )M.(8X9+y)(9X10+y) OXl+y 221.此题用到公式”++ =(点+卡)2—沪=(〃2+卄*)(”2—卄今)=[心一i )+g_][讥卄])+*]. 14.解:原式变形为:(^frn + 2 Vn — 3)( Vm + 2石+ 1) = 0.・°・+ 2 石=3,・°・ _8_ = _A —§_斥+2 石+2002 3+20021_401-15-S?:<1'用+翁)爲+②+(用;為游:血厂用—反(2) *• a =~_-— = V 17 — 1,「•a +1 = -/17,•:/ +2a +1 = 17,故 a 2 -\~2a —16 = 0,・:原式=(a' 2d' — /I7 + 116a 3) — («3 -\~2a 2 — 16a) + (a 2 +2a —16) — l=a 3 (a? +2Q —16)—a(.a 2 +2a —16) + (/ +2a —16) — 1 = — 1.16. 解:巧/=1口+,=虹+2,于是 20K2+4Lry+20b=20Gr+y)2+Hy=20(4r+2)2+l = 2001,・・・4r+2=±10, t = 2或z =—3(舍去)・・°・£=2.17. 解:./ (.r) -^====q-^=r===^y===-____________________ ^TT — __________________________ C 敦卄1严 + »Cr+l)Cr —1)+ »Cr —1严](vCTl-8. a>b>c提不:*•* a =]72018+72017 ] .72019+72018^ 13(兀+亦扬;血 J(5)=兀;弭,…,/(999) = J •'/W. .・./(i)+f(3)-------------- ---------------------- /(999) = 全国重点高中提前招生考试八年级下学期同步强化训练卷(三)(二次根式综合测试)(无2—4:=0 (工^2 (—21.D提示:由条件可知:或故x~y=6或一6.(2工+夕=0, »=—4, »=4,2. A 提示:原式=箱(质+疗一箱)(站+ /10-V7)7T0 + (V7-V3)]E 710-(V7~V3)]=A/3[( 7T0)2-(V7-V3)2]=V3(10-10+2 721)=73X2 721 = 677,故选A.3. B 提示:(7^ )2 =工+ 2 = 5(0<«rVl),故=—A/5*.77 & 77严+4 屈=5 屈,(a,y) = (2・8)4. D 提示:质=5施・•・•- 3血+2屈=5血,・・・(工,歹)=(18・2)故(工*)的个数是3•故选D.V572+0=55/2 Cr,y)=(50・0),近寺丸^=2.故血乞+砖7=5.6.B 提示:•••V1+J+(5TP=1+V_^+i'AS=1+l_T+1+T_l+1+l_l+'"+1+2M7—金=2018—佥.故选B.提示:(Va— 1 — I)2 + ( Jb一2 — 2严+*( \/c—3—3)'=0.・°・a = 2・b=6,c=12. .•・a+Z>+c=20.提示:a = 2-A<0.原式=年书=仏二3—丄=1a—3 aka—1) a—3 a(a—1) a5.C 提示:••• E- (冒9-1 提示:由1 — Jr 0.且工0«x1,则"=*十2 一#+歩-卡=* + 27. 20a—3v 25—jc l + v 15—J?214.解:原式=[a —2a(a+2)1 . a — 4_a?—4—a?+aa+2 a (a+2)''.a+2_ ]a—4 a(.a—2) (72-1)(72-1+2)、/_Q严+寻・丁*<■!■< 1,・°・当尤=号时取最大值1 •故a = l;当/=*或取最小值g■,故b 42・2..23 =1■…E =百10.24 提示:原式=3Q(Q2+2a)+6疋一6a —12=Qa2 ~\~\2a—12 = 6X6—12 = 24.11.—1提示:由题意可知%=—』.12.y 提示:•••2</7V3・・・・一3V-V7V—2,・・・2V5—V7V3,S = 2" = 5—V7—2 = 3—V7,・・・aX2X(3—疗)+风3—疗)2 = 1,.・・4(6—2存)+久16 — 6疗)=1,・・・ 6«-2 V7a +166-6 41b= 1, A (6a+ 16Z>) - (2tz += _3_l (6a+16b=l a~~2o 166)77 = 1.根据等式两边对应系数相等,得:解得:2 ・・・2a+b=2X号一£ = 3 —l-(2a+6b)=0. . 1 2 21 _ 5~2~~2'13 .解:原式=725+20 V3 + 12 + 725-20 73 + 12 = 7(5+2 V3)2 + 丿(5—2 府严=5+2 膚+5—2 用=10.1L 5 ••20ll 2011 X ( •/20l2~\~ l) /ccr c I i •1/eel c • 2 c I i ccic15.M: . m= — = ----------- /,---- =』2012 + ]…加一1= J2012…亦一2加+] = 20]2,V2012 — 1( 72012)2-1m2—2m—2011=0. 原式=加3 (?w2—2m—2011) =0.16.解:x=(2n+l)-2 %AiG+l),_y=(2 卄1)+2 /?G+1),工+ y = 4n + 2,£y= 1,又2(工+ 3^ + 193工夕= 1993,得2(4w+2)24-193=1993,(4n+2)z=900,n>0,得宛=7.17.解:A“=Jl+* + d)2 = 1 + —^^2s=Ai +A2 +A3 H ------------------------- An, = (1+ ) + (1+ ) +9 9 9 9 9 9 9 9n-\~—----- )-1-…+O+ ---------- )= io+二 + --------- -- =1?—3 5 10 12 1 2 11 12 66°。

八年级“我爱数学”竞赛专题练习及答案

八年级“我爱数学”竞赛专题练习及答案

八年级“我爱数学”竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2+12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。

当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程有整数解x 0、y 0。

则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。

A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰a ⎩⎨⎧=+=+m y x n y 281120042003200320032003=+--+xy x y x y y x 20011198********⋯⋯++=S是某正整数的立方,则这样的数共___个。

人教版八年级数学上册专题(三) 全等三角形判定与性质的综合运用

人教版八年级数学上册专题(三) 全等三角形判定与性质的综合运用
Rt△ODE≌Rt△OCE(AAS),∴DE=CE
类型三:证明两直线平行
4.如图,AC和BD相交于点O,OA=OC,OB=OD.求证:AB∥CD.
解:在△DOC 与△BOA 中,O∠CD=OOC= A,∠BOA, OD=OB,
∴△DOC≌△BOA(SAS),∴∠D=∠B,∴AB∥CD
类型四:证明两直线互相垂直 5.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点, 将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别 与A,D重合,连接BE,EC.试猜想线段BE和EC的数量及位置关系,并证 明你的猜想. 解:BE=EC,BE⊥EC,证明:∵AC=2AB,D是AC的中点,∴AB= AD=CD,∵∠EAD=∠EDA=45°,∴∠EAB=∠EDC=135°,∵EA= ED,∴△EAB≌△EDC(SAS),∴∠AEB=∠DEC,EB=EC,∴∠BED+ ∠DEC=∠BED+∠AEB=90°,∴BE⊥EC
3.如图,AC⊥AD,BC⊥BD,OE⊥CDபைடு நூலகம்AC=BD.求证:DE=CE.
解:∵AC⊥AD,BC⊥BD,∴∠A=∠B=90°,在 Rt△ADC 和 Rt△BCD 中,DACC==CBDD,,∴Rt△ADC≌Rt△BCD(HL),∴∠ACD
=∠BDC,在 Rt△ODE 和 Rt△OCE 中,∠∠OOEDDE==∠∠OOECCE=,90°,∴ OE=OE,
∴∠A=∠D
类型二:证明两线段相等 2.如图,在四边形ABCD中,AD∥BC,∠A=90°,BD=BC, CE⊥BD于点E.求证:AD=BE. 解:∵AD∥BC,∴∠ADB=∠DBC,又CE⊥BD,∴∠BEC=90°, 又∵∠A=90°,∴∠A=∠BEC,又BD=CB,∴△ABD≌△ECB(AAS), ∴AD=BE

八年级数学专项训练

八年级数学专项训练

一、求角度1、基本图形2、方程思想的运用【例】:如图,在△ABC中,∠C=2∠A,BD是AC边上的高,BE是∠ABC的平分线,且∠DBE=18°.求△ABC的各内角的大小.3、分类思想【例】:在△ABC中,∠ABC=∠C,BD是AC边上的高,∠ABD=40°,求∠C的度数。

【练习】在△ABC中,∠A=40°,高BD、CE相交于点O,求∠BOC的度数。

二、利用全等求线段或角度【例】:如图,锐角△ABC的高AD、BE相交于F,若BF=AC,BC=7,CD=2,求AF的长【例】:如图,点M、N分别是正五边形ABCDE的边BC、CD上的点,且BM=CN,AM交BN于点P.(1)求证:△ABM≌△BCN;(2)求∠APN的度数.三、利用全等三角形证数量或位置关系【例】:如图,CA=CB,CD=CE,∠ACB=∠DCE=α,AD、BE交于点H,连CH.(1)求证:△ACD≌△BCE;(2)求证:∠AHB=∠DCE;(3)求证:CH平分∠AHE;(4)求∠CHE的度数.(用含α的式子表示)【练习】1、如图:在△ABC中,AD⊥BC于D,AD=BD,CD=DE,E是AD上一点,连结BE并延长交AC 于点F.求证:(1)BE=AC;(2)BF⊥AC.2、如图①,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点.将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图②).(1)探究DB′与EC′的数量关系,并给予证明;(2)当DB′∥AE时,求此时旋转角α的度数;(3)如图③,在旋转过程中,设AC′与DE所在直线交于点P,当△ADP成为等腰三角形时,求此时的旋转角α的度数.(直接写出结果)四,以“垂直且相等”为背景的辅助线——作垂线【教材母题】(P56第9题)如图,∠ACB=90°,AC=BC,BE⊥CE,AD⊥CE于D,AD=2.5cm,DE=1.7cm,求BE长。

人教版八年级数学上册《一线三等角模型》专项练习-附含答案

人教版八年级数学上册《一线三等角模型》专项练习-附含答案

人教版八年级数学上册《一线三等角模型》专项练习-附含答案【模型说明】 C D E BA应用:通过证明全等实现边角关系的转化 便于解决对应的几何问题;【例题精讲】例1.(基本“K ”型)如图 一个等腰直角三角形ABC 物件斜靠在墙角处(∠O =90°) 若OA =50cm OB =28cm 则点C 离地面的距离是____ cm .【答案】28【详解】解:过点C 作CD ∠OB 于点D 如图∠90CDB AOB ∠=∠=︒∠ABC ∆是等腰直角三角形∠AB =CB 90ABC ∠=︒∠90ABO CBD ∠+∠=︒又90CBD BCD ∠+∠=︒∠ABO BCD ∠=∠在ABO ∆和BCD ∆中AOB BDC ABO BCD AB CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()ABO BCD AAS ∆≅∆∠28cm CD BO ==故答案为:28.例2.(特殊“K ”型)在直线m 上依次取互不重合的三个点,,D A E 在直线m 上方有AB AC = 且满足BDA AEC BAC α∠=∠=∠=.(1)如图1 当90α=︒时 猜想线段,,DE BD CE 之间的数量关系是____________;(2)如图2 当0180α<<︒时 问题(1)中结论是否仍然成立?如成立 请你给出证明;若不成立 请说明理由;(3)应用:如图3 在ABC 中 BAC ∠是钝角 AB AC =,BAD CAE BDA AEC BAC ∠<∠∠=∠=∠ 直线m 与CB 的延长线交于点F 若3BC FB = ABC 的面积是12 求FBD 与ACE 的面积之和. 【答案】(1)DE =BD +CE(2)DE =BD +CE 仍然成立 理由见解析(3)△FBD 与△ACE 的面积之和为4【解析】(1)解:DE =BD +CE 理由如下∵∠BDA =∠BAC =∠AEC =90° ∴∠BAD +∠EAC =∠BAD +∠DBA =90° ∴∠DBA =∠EAC∵AB =AC ∴△DBA ≌△EAC (AAS )∴AD =CE BD =AE ∴DE =AD +AE =BD +CE故答案为:DE =BD +CE .(2)DE =BD +CE 仍然成立 理由如下∵∠BDA =∠BAC =∠AEC =α∴∠BAD +∠EAC =∠BAD +∠DBA =180°﹣α∴∠DBA =∠EAC∵AB =AC ∴△DBA ≌△EAC (AAS )∴BD =AE AD =CE ∴DE =AD +AE =BD +CE ;(3)解:∵∠BAD <∠CAE ∠BDA =∠AEC =∠BAC ∴∠CAE =∠ABD在△ABD 和△CAE 中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABD ≌△CAE (AAS ) ∴S △ABD =S △CAE设△ABC 的底边BC 上的高为h 则△ABF 的底边BF 上的高为h∴S △ABC =12BC •h =12 S △ABF =12BF •h∵BC =3BF∴S △ABF =4∵S △ABF =S △BDF +S △ABD =S △FBD +S △ACE =4∴△FBD 与△ACE 的面积之和为4.例3.(“K ”型培优)已知:ABC 中 90ACB ∠=︒ AC CB = D 为直线BC 上一动点 连接AD 在直线AC 右侧作AE AD ⊥ 且AE AD =.(1)如图1 当点D 在线段BC 上时 过点E 作EH AC ⊥于H 连接DE .求证:EH AC =; (2)如图2 当点D 在线段BC 的延长线上时 连接BE 交CA 的延长线于点M .求证:BM EM =;(3)当点D 在直线CB 上时 连接BE 交直线AC 于M 若25AC CM = 请求出ADB AEMS S △△的值. 【答案】(1)见解析;(2)见解析;(3)43或47【详解】证明(1)∠AE AD ⊥ 90ACB ∠=︒∠90∠=︒-∠EAH CAD 90∠=︒-∠ADC CAD EAH ADC ∴∠=∠在AHE 与DCA △中 90AHE ACB EAH ADCAE AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AHE DCA AAS ∴△≌△ EH AC ∴=; (2)如图2 过点E 作EN AC ⊥ 交CA 延长线于N∠AE AD ⊥ 90ACB ∠=︒∠90∠=︒-∠EAN CAD 90∠=︒-∠ADC CAD EAN ADC ∴∠=∠在ANE 与DCA △中 90ANE DCA ENA ACDAN AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()△≌△∴ANE DCA AAS EN AC ∴= 又∠AC BC = EN BC ∴=又在ENM 与BCM 中 90EMN BMC N BCA EN BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()△≌△∴ENM BCM AAS 则BM EM =; (3)如图 当点D 在线段BC 上时∠25AC CM = ∠可设5AC a = 2CM a =由(1)得:AHE DCA △≌△ 则AH CD = 5===EH AC BC a由∠90EHM BCM ∠=∠=︒ BMC EMH ∠=∠ ∠MHE MCB △≌△(AAS ) ∠CM HM = 即2HM CM a == ∠522AH AC CM HM a a a a =--=--= ∠3AM AH HM a CD AH a ==5EH AC a == 4BD BC CD a =-= 11454221133522△△⨯⨯⨯∴===⨯⨯⨯ADBAEM BD AC a a S S AM EH a a ; 如图 点D 在CB 延长线上时 过点E 作EN AC ⊥ 交AC 延长线于N∠25AC CM = ∠可设5AC a = 2CM a =∠EN AC ⊥ AE AD ⊥ ∠90ANE EAD ACB ∠=∠=∠=︒∠90∠=︒-∠EAN CAD 90∠=︒-∠ADC CAD EAN ADC ∴∠=∠在ANE 与DCA △中 90ANE DCA ENA ACDAN AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()△≌△∴ANE DCA AAS EN AC ∴= AN CD = 又∠AC BC = EN BC ∴=又在ENM 与BCM 中 90EMN BMC N BCA EN BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()△≌△∴ENM BCM AAS ∠2==CM NM a 5NE BC AC a === ∠9AN AC CM MN a =++=7AM AC CM a =+= 9AN CD a == ∠4BD a = 11454221177522△△⨯⨯⨯∴===⨯⨯⨯ADBAEM BD AC a a S S AM EN a a 点D 在BC 延长线上 由图2得:AC CM < ∠25AC CM =不可能 故舍去综上:ADB AEM S S △△的值为43或47 【变式训练1】如图 90,ABC FA AB ∠=⊥于点A 点D 在直线AB 上,AD BC AF BD ==.(1)如图1 若点D 在线段AB 上 判断DF 与DC 的数量关系和位置关系 并说明理由;(2)如图2 若点D 在线段AB 的延长线上 其他条件不变 试判断(1)中结论是否成立 并说明理由.【答案】(1)DF =DC DF ∠DC ;理由见解析;(2)成立 理由见解析【解析】(1)解:∠90,ABC FA AB ∠=⊥∠90ABC DAF ∠∠==在△ADF 与△BCD 中AF BD DAF ABC AD BC =⎧⎪∠=∠⎨⎪=⎩∠△ADF ∠△BCD ∠DF =DC ADF BCD ∠=∠∠∠BDC +∠BCD =90° ∠∠BDC +∠ADF =90°∠∠FDC =90° 即DF ∠DC .(2)∠90,ABC FA AB ∠=⊥∠90DBC DAF ∠∠==在△ADF 与△BCD 中AF BD DAF DBC AD BC =⎧⎪∠=∠⎨⎪=⎩∠△ADF ∠△BCD ∠DF =DC ADF BCD ∠=∠∠∠BDC +∠BCD =90° ∠∠BDC +∠ADF =90°∠∠FDC =90° 即DF ∠DC .【变式训练2】在ABC 中 90ACB ∠=︒ AC BC = 直线MN 经过点C 且AD MN ⊥于D BE MN ⊥于E .(1)当直线MN 绕点C 旋转到图1的位置时.∠请说明ADC CEB △≌△的理由;∠请说明DE AD BE =+的理由;(2)当直线MN 绕点C 旋转到图2的位置时 DE 、AD 、BE 具有怎样的等量关系?请写出等量关系 并予以证明.(3)当直线MN 绕点C 旋转到图3的位置时 DE 、AD 、BE 具有怎样的等量关系?请直接在横线上写出这个等量关系:________.【答案】(1)∠理由见解析;∠理由见解析(2)DE AD BE =- 证明见解析(3)DE BE AD =-【解析】(1)解:∠∠AD MN ⊥于D BE MN ⊥于E∠90ADC BEC ∠=∠=︒∠90ACB ∠=︒ ∠90ACD BCE ∠+∠=︒90ACD DAC ∠+∠=︒ ∠DAC BCE =∠∠在ADC 和CEB △中ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ADC CEB △≌△ ∠∠ADC CEB △≌△ ∠AD EC = CD BE =∠DC CE DE += ∠AD EB DE +=(2)结论:DE AD BE =-∠BE EC ⊥ AD CE ⊥∠90ADC BEC ∠=∠=︒∠90EBC BCE ∠+∠=︒∠90ACB ∠=︒∠90ACE BCE ∠+∠=︒∠ACD EBC ∠=∠∠ADC CEB △≌△∠AD EC = CD BE =∠DE EC CD AD EB =-=-(3)结论:DE BE AD =-∠90ACB ∠=︒∠90ACD BCE ∠+∠=︒∠BE MN ⊥ AD MN ⊥∠90ADC DEC ∠=∠=︒∠90ACD DAC ∠+∠=︒∠DAC BCE =∠∠在ADC 和CEB △中ADC BEC DAC BCE AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠ADC CEB △≌△ ∠AD EC = CD BE =∠DE CD EC EB AD =-=-.【变式训练3】(1)如图1 在∠ABC 中 ∠BAC =90° AB =AC 直线m 经过点A BD ∠直线m CE ∠直线m 垂足分别为点D 、E .求证:∠ABD ∠∠CAE ;(2)如图2 将(1)中的条件改为:在∠ABC 中 AB =AC D 、A 、E 三点都在直线m 上 并且有∠BDA =∠AEC =∠BAC =α 其中α为任意锐角或钝角.请问结论∠ABD ∠∠CAE 是否成立?如成立 请给出证明;若不成立 请说明理由.(3)拓展应用:如图3 D E 是D A E 三点所在直线m 上的两动点(D A E 三点互不重合) 点F 为∠BAC 平分线上的一点 且∠ABF 和∠ACF 均为等边三角形 连接BD CE 若∠BDA =∠AEC =∠BAC 求证:∠DEF 是等边三角形.【答案】(1)见详解;(2)成立 理由见详解;(3)见详解【详解】(1)证明:BD ⊥直线m CE ⊥直线m 90BDA CEA ∴∠=∠=︒90BAC ∠=︒ 90BAD CAE ∴∠+∠=︒90BAD ABD ∠+∠=︒ CAE ABD ∴∠=∠在ADB ∆和CEA ∆中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADB CEA AAS ∴∆∆≌;解:(2)成立 理由如下:α∠=∠=BDA BAC180α∴∠+∠=∠+∠=︒-DBA BAD BAD CAE CAE ABD ∴∠=∠在ADB ∆和CEA ∆中 ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩()ADB CEA AAS ∴∆∆≌;(3)证明:∠∠ABF 和∠ACF 均为等边三角形∠,60BF AF AB AC ABF BAF FAC ===∠=∠=∠=︒ ∠∠BDA =∠AEC =∠BAC =120°∠180120DBA BAD BAD CAE ∠+∠=∠+∠=︒-︒ ∠CAE ABD ∠=∠∠()ADB CEA AAS ∆∆≌ ∠AE BD =∠,FBD FBA ABD FAE FAC CAE ∠=∠+∠∠=∠+∠ ∠FBD FAE ∠=∠∠DBF EAF ∆∆≌(SAS ) ∠,FD FE BFD AFE =∠=∠∠60BFA BFD DFA AFE DFA DFE ∠=∠+∠=∠+∠=∠=︒ ∠∠DFE 是等边三角形.【课后作业】1.如图是高空秋千的示意图 小明从起始位置点A 处绕着点O 经过最低点B 最终荡到最高点C 处 若90AOC ∠=︒ 点A 与点B 的高度差AD =1米 水平距离BD =4米 则点C 与点B 的高度差CE 为( )A.4米B.4.5米C.5米D.5.5米【答案】B【详解】解:作AF∠BO于F CG∠BO于G∠∠AOC=∠AOF+∠COG=90° ∠AOF+∠OAF=90° ∠∠COG=∠OAF在∠AOF与∠OCG中AFO OGCOAF COGAO OC∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠AOF∠∠OCG(AAS) ∠OG=AF=BD=4米设AO=x米在Rt∠AFO中 AF2+OF2=AO2即42+(x-1)2=x2解得x=8.5.则CE=GB=OB-OG=8.5-4=4.5(米).故选:B.2.如图 ∠ABC=∠ACD=90° BC=2 AC=CD则△BCD的面积为_________.【答案】2【详解】解:如图作DE垂直于BC的延长线垂足为E∠90ACB BAC ∠+∠=︒ 90ACB DCE ∠+∠=︒ ∠BAC DCE ∠=∠在ABC 和CED 中 ∠90BAC DCE ABC CED AC CD ∠=∠⎧⎪∠==︒⎨⎪=⎩∠()ABC CED AAS ≌ ∠2BC DE == ∠122BCD S BC DE =⨯⨯= 故答案为:2.3.如图 ABC 为等边三角形 D 是BC 边上一点 在AC 上取一点F 使=CF BD 在AB 边上取一点E 使BE DC = 则EDF ∠的度数为( )A .30B .45C .60D .70【答案】C 【详解】∠ABC 是等边三角形 ∠∠B=∠C=60°在∠EDB 和∠DFC 中 60BD CF B C BE CD =⎧⎪∠=∠=︒⎨⎪=⎩∠∠EDB ∠∠DFC ∠∠BED=∠CDF ∠∠B=60° ∠∠BED+∠BDE= 120° ∠∠CDF+∠BDE= 120°∠∠EDF=180°-(∠CDF+∠BDE )=180°-120°=60°.故选C.4.已知∠ABC 中 ∠ACB =90° AC =BC .BE 、AD 分别与过点C 的直线垂直 且垂足分别为D E .学习完第十二章后 张老师首先让同学们完成问题1:如图1 若AD =2.5cm DE =1.7cm 求BE 的长;然后 张老师又提出问题2:将图1中的直线CE 绕点C 旋转到∠ABC 的外部 BE 、AD 与直线CE 的垂直关系不变 如图2 猜想AD 、DE 、BE 三者的数量关系 并给予证明.【答案】BE 的长为0.8cm ;DE =AD +BE .【详解】解:如图1 ∠∠ACB =∠BEC =∠ADC =90°∠∠ACD +∠BCE =90°=∠ACD +∠CAD ∠∠BCE =∠CAD在∠ACD 和∠CBE 中 BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ACD ∠∠CBE (AAS ) ∠AD =CE =2.5cm BE =CD∠DE =1.7cm ∠BE =CD =CE -DE =2.5-1.7=0.8cm ∠BE 的长为0.8cm ;如图2 DE =AD +BE 理由如下:∠∠ACB =∠BEC =∠ADC =90° ∠∠ACD +∠BCE =90°=∠ACD +∠CAD∠∠BCE =∠CAD在∠ACD 和∠CBE 中 BEC ADC BCE CAD BC AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ACD ∠∠CBE (AAS ) ∠AD =CE BE =CD ∠DE =AD +BE .5.如图 在ABC 中 AB BC =.(1)如图∠所示 直线NM 过点B AM MN ⊥于点M ⊥CN MN 于点N 且90ABC ∠=︒.求证:MN AM CN =+.(2)如图∠所示 直线MN 过点B AM 交MN 于点M CN 交MN 于点N 且AMB ABC BNC ∠=∠=∠ 则MN AM CN =+是否成立?请说明理由.【答案】(1)见解析;(2)MN AM CN =+仍然成立 理由见解析【详解】证明:(1)∠AM MN ⊥ ⊥CN MN∠90AMB BNC ∠=∠=︒ ∠90ABM BAM ∠+∠=︒∠90ABC ∠=︒ ∠90ABM CBN ∠+∠=︒ ∠BAM CBN ∠=∠在AMB 和BNC 中 AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()AMB BNC AAS ≅△△ ∠AM BN = BM CN = ∠BN MB MN += ∠MN AM CN =+;(2)MN AM CN =+仍然成立 理由如下:∠180AMB MAB ABM ABM ABC CBN ∠+∠+∠=∠+∠+∠=︒∠AMB ABC ∠=∠ ∠MAB CBN ∠=∠在AMB 和BNC 中 AMB BNC BAM CBN AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠()AMB BNC AAS ≅△△ ∠AM BN = NC MB =∠MN MB BN =+ ∠MN AM CN =+.6.如图 在∠ABC 中 ∠ACB =90° AC =BC 直线l 经过顶点C 过A 、B 两点分别作l 的垂线AE 、BF E 、F 为垂足.(1)当直线l 不与底边AB 相交时∠求证:∠EAC =∠BCF .∠猜想EF 、AE 、BF 的数量关系并证明.(2)将直线l 绕点C 顺时针旋转 使l 与底边AB 交于点D (D 不与AB 点重合) 请你探究直线l EF 、AE 、BF 之间的关系.(直接写出)【答案】(1)∠证明见解析 ∠EF =AE +BF ;证明见解析;(2)AE =BF +EF 或BF =AE +EF .【详解】(1)证明:∠∵AE ⊥EF BF ⊥EF ∠ACB =90°∴∠AEC =∠BFC =∠ACB =90°∴∠EAC +∠ECA =90° ∠ECA +∠FCB =90° ∴∠EAC =∠FCB∠EF =AE +BF ;证明:在△EAC 和△FCB 中 AEC CFB EAC FCB AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△EAC ≌△FCB (AAS )∴CE =BF AE =CF∴EF =CE +CF =AE +BF即EF =AE +BF ;(2)∠当AD >BD 时 如图①∵∠ACB =90° AE ⊥l 直线同理可证∠BCF =∠CAE (同为∠ACD 的余角)又∵AC =BC BF ⊥l 直线即∠BFC =∠AEC =90°∴△ACE ≌△CBF (AAS )∴CF =AE CE =BF∵CF =CE +EF =BF +EF∴AE =BF +EF ;∠当AD <BD 时 如图②∵∠ACB =90° BF ⊥l 直线同理可证∠CBF =∠ACE (同为∠BCD 的余角)又∵AC =BC BE ⊥l 直线 即∠AEC =∠BFC =90°.∴△ACE ≌△CBF (AAS )∴CF =AE BF =CE∵CE =CF +EF =AE +EF ∴BF =AE +EF .7.(1)某学习小组在探究三角形全等时 发现了下面这种典型的基本图形.如图1 已知:在ABC 中 90BAC ∠=︒ AB AC = 直线l 经过点A BD ⊥直线l CE ⊥直线l 垂足分别为点D E .求证:DE BD CE =+.(2)组员小明想 如果三个角不是直角 那结论是否会成立呢?如图2 将(1)中的条件改为:在ABC 中 AB AC = D A E 三点都在直线l 上 并且有BDA AEC BAC α∠=∠=∠= 其中α为任意锐角或钝角.请问结论DE BD CE =+是否成立?若成立 请你给出证明;若不成立 请说明理由.(3)数学老师赞赏了他们的探索精神 并鼓励他们运用这个知识来解决问题:如图3 过ABC 的边AB AC 向外作正方形ABDE 和正方形ACFG AH 是BC 边上的高.延长HA 交EG 于点I .若7AEG S =△ 则AEI S =△______. 【答案】(1)见解析;(2)结论成立 理由见解析;(3)3.5【详解】解:(1)证明:如图1中 ∠BD ∠直线l CE ∠直线l∠∠BDA =∠CEA =90°∠∠BAC =90°∠∠BAD +∠CAE =90°∠∠BAD +∠ABD =90°∠∠CAE =∠ABD在∠ADB 和∠CEA 中ABD CAE BDA CEA AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ADB ∠∠CEA (AAS )∠AE =BD AD =CE∠DE =AE +AD =BD +CE .(2)解:成立.理由:如图2中∠∠BDA =∠BAC =α∠∠DBA +∠BAD =∠BAD +∠CAE =180°-α∠∠DBA =∠CAE在∠ADB 和∠CEA 中BDA AEC DBA CAE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∠∠ADB ∠∠CEA (AAS )∠AE =BD AD =CE∠DE =AE +AD =BD +CE .(3)如图3 过E 作EM ∠HI 于M GN ∠HI 的延长线于N .∠∠EMI =∠GNI =90°由(1)和(2)的结论可知EM =AH =GN∠EM =GN在∠EMI 和∠GNI 中GIN EIM EM GNGNI EMI ∠=∠⎧⎪=⎨⎪∠=∠⎩∠∠EMI ∠∠GNI (AAS )∠EI =GI∠I 是EG 的中点.∠S △AEI =12S △AEG =3.5.故答案为:3.5.8.如图 在∠ABC 中 AB =AC =2 ∠B =∠C =40° 点D 在线段BC 上运动(点D 不与点B 、C 重合) 连接AD 作∠ADE =40° DE 交线段AC 于点E .(1)当∠BDA =105°时 ∠EDC = ° ∠DEC = °;点D 从点B 向点C 运动时 ∠BDA 逐渐变 .(填“大”或“小”)(2)当DC 等于多少时 ∠ABD ∠∠DCE ?请说明理由.(3)在点D 的运动过程中 ∠ADE 的形状可以是等腰三角形吗?若可以 请直接写出∠BDA 的度数;若不可以 请说明理由.【答案】(1)35105︒︒, 小;(2)2 理由见解析;(3)110︒或80°【详解】(1)40B C ∠=∠=︒ 40ADE ∠=︒1801804040100BAC B C ∴∠=︒-∠-∠=︒-︒-︒=︒180140ADB EDC ADE ∠+∠=︒-∠=︒180140ADB BAD B ∠+∠=︒-∠=︒180140DEC EDC C ∠+∠=︒-∠=︒BAD EDC ∴∠=∠ ADB DEC ∠=∠∴当∠BDA =105°时∴∠EDC =1801801054035BAD ADB B ∠=︒-∠-∠=︒-︒-︒=︒∠DEC =ADB ∠105=︒;当点D 从点B 向点C 运动时 BAD ∠逐渐变大 180140BDA B BAD BAD ∠=︒-∠-∠=︒-∠ 则∠BDA 逐渐变小故答案为:35105︒︒,小; (2)BAD EDC ∠=∠ ADB DEC ∠=∠当DC AB =2=时 ABD DCE ∴≌(AAS ) 2DC ∴=(3)∠ADE 的形状可以是等腰三角形 BDA ∠=110︒或80︒40B C ∠=∠=︒ 1804040100BAC ∴∠=︒-︒-︒=︒∠当DA DE =时 ()118040702DAE DEA ∠=∠=︒-︒=︒ 1007030BAD BAC DAC ∴∠=∠-∠=︒-︒=︒1801804030110BDA B BAD ∴∠=︒-∠-∠=︒-︒-︒=︒;∠当EA ED =时 ADE ∠=40,1804040100DAE DEA ∠=︒∠=︒-︒-︒=︒1004060BAD BAC DAE ∴∠=∠-∠=︒-︒=︒180180406080BDA B BAD ∴∠=︒-∠-∠=︒-︒-︒=︒∠当AE AD =时 ADE ∠=40,1804040100DEA DAE ∠=︒∠=︒-︒-︒=︒100BAC ∠=︒∴此时D 点与B 点重合由题意可知点D 不与点B 、C 重合∴此种情况不存在综上所述当∠ADE是等腰三角形时BDA∠=110︒或80︒.9.如图线段AB=6 射线BG∠AB P为射线BG上一点以AP为边做正方形APCD且点C、D与点B在AP两侧在线段DP上取一点E使得∠EAP=∠BAP直线CE与线段AB相交于点F(点F与点A、B不重合)(1)求证:△AEP∠∠CEP;(2)判断CF与AB的位置关系并说明理由;(3)△AEF的周长是否为定值若是请求出这个定值若不是请说明理由.【答案】(1)证明见解析;(2)CF∠AB理由见解析;(3)是为16.【详解】解:(1)证明:∠四边形APCD 正方形 ∠DP平分∠APC PC=P A ∠APC=90°∠∠APE=∠CPE=45°在∠AEP与∠CEP中AP CPAPE CPEPE PE=⎧⎪∠=∠⎨⎪=⎩∠∠AEP∠∠CEP(SAS);(2)CF∠AB理由如下:∠∠AEP∠∠CEP ∠∠EAP=∠ECP∠∠EAP=∠BAP ∠∠BAP=∠FCP ∠∠APC=90° ∠∠FCP+∠CMP=90° ∠∠AMF=∠CMP ∠∠AMF+∠P AB=90° ∠∠AFM=90° ∠CF∠AB;(3)过点C作CN∠PB.∠CF∠AB BG∠AB ∠∠PNC=∠B=90° FC∠BN∠∠CPN=∠PCF=∠EAP=∠P AB又AP=CP ∠∠PCN∠∠APB(AAS) ∠CN=PB=BF PN=AB∠∠AEP∠∠CEP ∠AE=CE∠∠AEF的周长=AE+EF+AF=CE+EF+AF=BN+AF=PN+PB+AF=AB+CN+AF=AB+BF+AF=16.故∠AEF的周长是否为定值为16.。

苏科版八年级数学上学期期中复习专题3 全等三角形的判定(含解析) - 副本

苏科版八年级数学上学期期中复习专题3 全等三角形的判定(含解析) - 副本

初中数学苏科版八年级上学期期中复习专题3全等三角形的判定一、选择题1.如图,CA=CB,AD=BD,M、N分别为CA、CB的中点,∠ADN=80°,∠BDN=30°,则∠CDN 的度数为()A. 40°B. 15°C. 25°D. 30°2.如图,点E,点F在直线AC上,AE=CF,AD=CB,下列条件中不能判断△ADF≌△CBE的是()A. AD//BCB. BE//DFC. BE=DFD. ∠A=∠C3.如图,△ABC中,AB=AC ,点D,E分别在AB,AC上,添加下列条件后,不能判定△ABE≌△ACD的是( )A. AD=AEB. BE=CDC. ∠ADC=∠AEBD. ∠DCB=∠EBC4.如图,已知,,添加下列条件仍不能证明的是()A. B. C. D.5.下列条件中能判定的是()A. B.C. D.6.如图,已知△ABC的六个元素,则下列甲、乙、丙三个三角形中和△ABC全等的图形是( )A. 甲B. 乙与丙C. 丙D. 乙7.如图,点E,F在BD上,AD=BC,DF=BE,添加下面四个条件中的一个,使△ADE≌△CBF的是()①∠A=∠C;②AE=CF;③∠D=∠B;④AE∥CF.A. ①或③B. ①或④C. ②或④D. ②或③8.如图,△中,、的角平分线、交于点,延长、,,,则下列结论中正确的个数是()①CP平分∠ACF;②∠ABC+2∠APC=180°;③∠ACB=2∠APB④若PM⊥BE,PN⊥BC,则AM+CN=AC;A. 1个B. 2个C. 3个D. 4个9.如图,已知等边和等边,点在的延长线上,的延长线交于点M,连,若,则()A. B. C. D.10.如图,已知△ABE与△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,连接AD,AC,BC,BD,若AD=AC=AB,则下列结论:①AE垂直平分CD,②AC平分∠BAD,③△ABD是等边三角形,④∠BCD 的度数为150°,其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题11.如图,已知在△ABD和△ABC中,∠DAB=∠CAB,点A、B、E在同一条直线上,若使△ABD≌△ABC,则还需添加的一个条件是________.(只填一个即可)12.如图,AB=AD,只需添加一个条件________,就可以判定△ABC≌△ADE.13.如图,已知AC与BF相交于点E,AB∥CF,点E为BF中点,若CF=6,AD=4,则BD=________.14.如图,某同学把一块三角形的玻璃打破成了三块,现要到玻璃店去配一块大小、形状完全相同的玻璃,那么他可以带那一块________.15.如图,在Δ中,已知点为中点,点在线段上以每秒的速度由点向点运动,同时点在线段上由点向点运动。

浙教版八年级上数学第一章训练试卷(3)

浙教版八年级上数学第一章训练试卷(3)

浙教版八年级数学训练试卷(三)一、选择题1.如图,AO,BO分别平分∠CAB,∠CBA,且点O到AB的距离OD=2,△ABC的周长为28,则△ABC的面积为()A.7 B.14 C.21 D.282.如图所示,在矩形ABCD中,E为CD的中点,连接AE并延长交BC的延长线于点F,则图中全等的直角三角形共有()A.1对B.2对C.3对D.4对3.如图,已知AB=AC,BE⊥AC于E,CF⊥AB于F,BE,CF相交于点D,则①△ABE≌△ACF,②△BDF≌△CDE,③点D在∠BAC的平分线上,以上结论正确的是()A.①②③B.②③C.①③D.①4.如图,在△ABC中,已知点P、Q分别在边AC、BC上,BP与AQ相交于点O,若△BOQ、△ABO、△APO的面积分别为1、2、3,则△PQC的面积为()A.22 B.22.5 C.23 D.23.55.如图,在△ABC中,AD,AE分别是边BC上的中线和高,点D在点E的左侧,已知AE=2,DE=1,S△ABC=8,CE=()A.1 B.2 C.3 D.6.如图,D,E,F分别是△ABC三边延长线上的点,则∠D+∠E+∠F+∠1+∠2+∠3=()A.300°B.240°C.180°D.120°7.如图,△ABC≌△ADE,AE与BC交于点G,AC与DE交于点F,DE与BC交于点H.若△ABG的面积为2S,△AFH的面积为S,△EGH的面积等于S,则△ABC的面积等于()A.6S B.5S C.4S D.无法计算8.如图,在△ABC中,按以下步骤作图:①分别以点B和C为圆心,以大于BC的长为半径作弧,两弧相交于点M和N②作直线MN交AC于点D,连接BD.若AC=6,AD=2,则BD的长为()A.2 B.3 C.4 D.69.在△ABC和△ADC中,有下列三个论断:①AB=AD;②∠BAC=∠DAC;③BC=DC.将其中两个论断作为条件,另一个论断作为结论构成三个命题:(1)若AB=AD,∠BAC=∠DAC,则BC=DC;(2)若AB=AD,BC=DC,则∠BAC=∠DAC;(3)若∠BAC=∠DAC,BC =DC,则AB=AD.其中,真命题的个数为()A.1 B.2 C.3 D.010.在△ABC中,∠B,∠C的平分线交于点O,D是外角与内角平分线交点,E是外角平分线交点,若∠BOC=120°,则∠D=()A.15°B.20°C.25°D.30°二、填空题1、如图所示,在△ABC中,AH垂直BC于H,则以AH为高线的三角形有.若E、F是BC的三等分点,则S△ABE S△AEF S△AFC(填“<”“>”或“=”)2、已知等边△ABC中,点D、E分别在边AB、BC上,把△BDE沿直线DE翻折,使点B落在点B′处,DB′、EB′分别交边AC于点F、G,若∠ADF=76°,则∠GEC的度数为.3、两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时得到如下结论:①△ABD≌△CBD;②AC垂直平分BD;③BD垂直平分AC;④四边形ABCD的面积=AC•BD,其中正确结论的序号是.4、如图,点D、E在△ABC边上,沿DE将△ADE翻折,点A的对应点为点A′,∠A′EC=α,∠A′DB=β,且α<β,则∠A等于(用含α、β的式子表示).5、在△ABC中,已知∠A=60°,∠ABC的平分线BD与∠ACB的平分线CE相交于点O,∠BOC的平分线交BC于F,则下列说法中正确的是.①∠BOE=60°,②∠ABD=∠ACE,③OE=OD④BC=BE+CD6、如图,CA⊥BC,垂足为C,AC=3cm,BC=9cm,射线BM⊥BQ,垂足为B,动点P从C点出发以1cm/s的速度沿射线CQ运动,点N为射线BM上一动点,满足PN=AB,随着P点运动而运动,当点P运动秒时,△BCA与点P、N、B为顶点的三角形全等.三、解答题1、如图,在四边形ABCD中,∠BAD=∠BCD=90°,BC=CD,延长AD到E点,使DE=AB.(1)求证:∠ABC=∠EDC;(2)连接AC,求证:AC=CE.2、如图,AD=DE=EC,F是BC中点,G是FC中点,如果三角形ABC的面积是72平方厘米,则阴影部分是多少平方厘米?3‘’如图,在梯形ABCD中,AB=DC=12cm,BC=15cm,∠B=∠C,点E为边AB上一点,且AE=5cm.点P在线段BC上以每秒3cm的速度由点B向点C运动,点Q是线段CD上一点.设点P运动时间为t秒,请回答下列问题:(1)线段BP的长为cm,CP的长为cm;(用含t的代数式表示)(2)要使以点C,Q,P为顶点的三角形与△BPE全等,求满足条件的t的值和线段BP 的长.4、综合与实践.主题:探究平行线的性质与判定.素材:一副三角尺(一块含30°,一块含45°)、两根相同的长木棒.步骤1:如图,摆放两根木棒使MN∥PQ(可上下平移调节距离).步骤2:将一副三角尺按如图方式进行摆放,恰好满足∠NAC=20°,∠MAE=∠CBQ.(1)∠ABQ的度数为,∠CBQ的度数为;(2)试判断AB与DE的位置关系,并说明理由.5、如图,已知AC=BC,点D是BC上一点,∠ADE=∠C.(1)如图1,若∠C=90°,∠DBE=135°,求证:①∠EDB=∠A;②DA=DE.(2)如图2,请直接写出∠DBE与∠C之间满足什么数量关系时,总有DA=DE成立.6、如图所示的图形,像我们常见的符号——箭号.我们不妨把这样图形叫做“箭头四角形”.探究:(1)观察“箭头四角形”,试探究图1中∠BDC与∠A,∠B,∠C之间的关系,并说明理由;应用:(2)请你直接利用以上结论,解决以下两个问题:①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B,C,若∠A=60°,则∠ABX+∠ACX=°;②如图3,∠ABE,∠ACE的二等分线(即角平分线)BF,CF相交于点F,若∠BAC=60°,∠BEC=130°,求∠BFC的度数.7、如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为t s.(1)如图①,当t=时,△APC的面积等于△ABC面积的一半;(2)如图②,在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度。

2022年精品解析北师大版八年级数学下册第三章图形的平移与旋转专题训练试卷(含答案解析)

2022年精品解析北师大版八年级数学下册第三章图形的平移与旋转专题训练试卷(含答案解析)

八年级数学下册第三章图形的平移与旋转专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列图形中,是中心对称图形的是()A.B.C.D.2、对于坐标平面内的点,先将该点向右平移1个单位,再向上平移2个单位,这种点的运动称为点的斜平移,如点P(2,3)经1次斜平移后的点的坐标为(3,5).已知点A的坐标为(2,0),点Q 是直线l上的一点,点A关于点Q的对称点为点B,点B关于直线l的对称点为点C,若点B由点A 经n次斜平移后得到,且点C的坐标为(8,6),则△ABC的面积是()A .12B .14C .16D .183、下列图形中,是中心对称图形的是( )A .B .C .D .4、下列图案中既是轴对称图形又是中心对称图形的是( )A .B .C .D .5、如图,在ABC 中,5AB =,8BC =,60B ︒∠=,将ABC 绕点A 顺时针旋转得到ADE ,当点B 的对应点D 恰好落在BC 边上时,CD 的长为( )A .3B .4C .5D .66、下列图形中,是中心对称图形的是( )A .B .C .D .7、如图,将OAB 绕点O 逆时针旋转55°得到OCD ,若20AOB ∠=︒,则BOC ∠的度数是( )A .25°B .30°C .35°D .75°8、下列图形既是轴对称图形又是中心对称图形的是( )A .B .C .D .9、下列四个图案中,是中心对称图形的是( )A .B .C .D .10、在平面直角坐标系中,点()4,1A -关于原点对称的点的坐标是( )A .()41-,B .()4,1C .()4,1-D .()4,1--第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,点P (﹣2,﹣5)关于原点对称的点的坐标是 ___________________.2、如图,在平面直角坐标系中,一次函数y =-2x +4的图像与x 轴、y 轴分别交于点A 、B ,将直线AB 绕点B 顺时针旋转45°,交x 轴于点C ,则直线BC 的函数表达式为_______.3、如图所示,将一个顶角∠B =30°的等腰三角形ABC 绕点A 顺时针旋转α(0°<α<180°),得到等腰三角形AB 'C ',使得点B ',A ,C 在同一条直线上,则旋转角α=_____度.4、在平面直角坐标系中,点P 坐标为(﹣2,3),则点P 关于x 轴对称的点的坐标为___;点P 关于原点对称的点坐标为___.5、已知点P (2,﹣3)与点Q (a ,b )关于原点对称,则a +b =_____.三、解答题(5小题,每小题10分,共计50分)1、如图1,D 为等边△ABC 内一点,将线段AD 绕点A 逆时针旋转60°得到AE ,连接CE ,BD 的延长线与AC 交于点G ,与CE 交于点F .(1)求证:BD =CE ;(2)如图2,连接FA ,小颖对该图形进行探究,得出结论:∠BFC =∠AFB =∠AFE .小颖的结论是否正确?若正确,请给出证明;若不正确,请说明理由.2、图中的小方格都是边长为1的正方形,△ABC 的顶点和O 点都在正方形的顶点上.(1)以点O 为位似中心,在方格图中将△ABC 放大为原来的2倍,得到△A B C ''';(2)将△A B C '''绕点B '顺时针旋转90°,画出旋转后得到的△A B C ''''';(3)在(2)的旋转过程中,求:点A '的运动路径长为 ,边A C ''扫过的区域面积为 .(写出解答过程,结果保留π).3、如图,△ABC 三个顶点的坐标分别为A (2,4),B (1,1),C (4,3).(1)请画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)请画出△ABC绕点B顺时针旋转90°后的△A2BC2;(3)求出(2)中△A2BC2的面积.4、如图,方格纸中的每个小方格都是边长为1的正方形,我们把以格点间连线为边的三角形称为“格点三角形”,图中的△ABC就是格点三角形,建立如图所示的平面直角坐标系,点C的坐标为(0,﹣1).(1)在如图的方格纸中把△ABC以点O为位似中心扩大,使放大前后的相似比为1:2,画出△A1B1C1,并标出△A1B1C1外接圆的圆心P,直接写出P点的坐标.(△ABC与△A1B1C1在位似中心O点的两侧,A,B,C的对应点分别是A1,B1,C1)(2)作出△ABC绕点C逆时针旋转90°后的图形△A2B2C,并求出点B经过的路径长.(结果保留根号和π)5、如图,直线CD 与EF 相交于点O ,将一直角三角尺AOB 的直角顶点与点O 重合.(1)如图1,若90EOD ∠=︒,试说明BOD EOA ∠=∠;(2)如图2,若60EOD ∠=︒,OB 平分EOD ∠.将三角尺AOB 以每秒5°的速度绕点O 顺时针旋转,设运动时间为t 秒.①042t ≤≤,当t 为何值时,直线OE 平分AOB ∠;②当1218t <<,三角尺AOB 旋转到三角POQ (A 、B 分别对应P 、Q )的位置,若OM 平分COP ∠,求AOM EOP∠∠的值.-参考答案-一、单选题1、C【分析】根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.2、A【分析】连接CQ,根据中心和轴对称的性质和直角三角形的判定得到∠ACB=90,延长BC交x轴于点E,过C 点作CF⊥AE于点F,根据待定系数法得出直线的解析式进而解答即可.【详解】解:连接CQ,如图:由中心对称可知,AQ=BQ,由轴对称可知:BQ=CQ,∴AQ=CQ=BQ,∴∠QAC=∠ACQ,∠QBC=∠QCB,∵∠QAC+∠ACQ+∠QBC+∠QCB=180°,∴∠ACQ+∠QCB=90°,∴∠ACB=90°,∴△ABC是直角三角形,延长BC交x轴于点E,过C点作CF⊥AE于点F,如图,∵A(2,0),C(8,6),∴AF=CF=6,∴△ACF是等腰直角三角形,∵18090ACE ACB,∴∠AEC=45°,∴E点坐标为(14,0),设直线BE的解析式为y=kx+b,∵C,E点在直线上,可得:140 86k bk b,解得:114kb,∴y=﹣x+14,∵点B由点A经n次斜平移得到,∴点B(n+2,2n),由2n=﹣n﹣2+14,解得:n=4,∴B(6,8),∴△ABC的面积=S△ABE﹣S△ACE=12×12×8﹣12×12×6=12,故选:A.【点睛】本题考查轴对称的性质,中心对称的性质,等腰三角形的判定与性质,求解一次函数的解析式,得到B的坐标是解本题的关键.3、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.【详解】选项A、C、D均不能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以不是中心对称图形,选项B能找到这样的一个点,使图形绕某一点旋转180︒后与原来的图形重合,所以是中心对称图形,故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、B【详解】A.是轴对称图形,不是中心对称图形,故不符合题意;B. 既是轴对称图形,又是中心对称图形,故符合题意;C.是轴对称图形,不是中心对称图形,故不符合题意;D.既不是轴对称图形,也不是中心对称图形,故不符合题意;故选B【点睛】本题考查了轴对称图形和中心对称图形的识别,熟练掌握轴对称图形和中心对称图形的定义是解答本题的关键.在平面内,一个图形经过中心对称能与原来的图形重合,这个图形叫做叫做中心对称图形;一个图形的一部分,以某条直线为对称轴,经过轴对称能与图形的另一部分重合,这样的图形叫做轴对称图形.5、A【分析】先根据旋转的性质可得AB AD =,再根据等边三角形的判定与性质可得5BD AB ==,然后根据线段的和差即可得.【详解】由旋转的性质得:5AB AD ==,60B ∠=︒,ABD ∴是等边三角形,5BD AB ∴==,8BC =,853CD BC BD ∴=-=-=.故选:A .【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.6、A【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180°,如果旋转后与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做中心对称进行解答即可.【详解】A、是中心对称图像,故该选项符合题意;B、不是中心对称图像,故该选不项符合题意;C、不是中心对称图像,故该选不项符合题意;D、不是中心对称图像,故该选不项符合题意;故选:A【点睛】本题考查了中心对称图形的识别,掌握中心对称图形的定义是关键.7、C【分析】由旋转的性质可得出答案.【详解】解:∵将△OAB绕点O逆时针旋转55°后得到△OCD,∴∠AOC=55°,∵∠AOB=20°,∴∠BOC=∠AOC-∠AOB=55°-20°=35°,故选:C.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.8、B根据轴对称图形与中心对称图形的概念求解.【详解】解:A.不是中心对称图形,也不是轴对称图形,故此选项不合题意;B.是轴对称图形,也是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不合题意;D.不是轴对称图形,是中心对称图形,故此选项不合题意.故选:B.【点睛】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形:在同一平面内,如果把一个图形绕某一点旋转180°,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.9、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.10、A【分析】关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数,根据原理直接作答即可.解:点()4,1A -关于原点对称的点的坐标是:4,1,故选A【点睛】本题考查的是关于原点成中心对称的两个点的坐标规律,掌握“关于原点成中心对称的两个点的坐标规律:横坐标与纵坐标都互为相反数”是解题的关键.二、填空题1、(2,5)【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数即可求解.【详解】解:点P (﹣2,﹣5)关于原点对称的点的坐标是(2,5)故答案为:(2,5)【点睛】本题考查了关于原点对称的两个点的坐标特征,掌握“关于原点对称的点的横坐标、纵坐标分别互为相反数”是解题的关键.2、34y x =+##【分析】先求出点A 、B 的坐标,过点A 作AF ⊥AB ,交直线BC 于点F ,过点F 作EF ⊥x 轴,垂足为E ,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F 的坐标,再利用待定系数法,即可求出答案.【详解】解:∵一次函数y =-2x +4的图像与x 轴、y 轴分别交于点A 、B 两点,∴令0x =,则4y =;令0y =,则2x =,∴点A 为(2,0),点B 为(0,4),∴2OA =,4OB =;过点A 作AF ⊥AB ,交直线BC 于点F ,过点F 作EF ⊥x 轴,垂足为E ,如图,∴90AEF AOB ∠=∠=︒,∴90FAE BAE ABO BAE ∠+∠=︒=∠+∠,∴FAE ABO ∠=∠,∵45ABE ∠=︒,∴△ABF 是等腰直角三角形,∴AF =AB ,∴△ABO ≌△FAE (AAS ),∴AO =FE ,BO =AE ,∴2FE =,4AE =,∴422OE =-=,∴点F 的坐标为(2-,2-);设直线BC 为y ax b =+,则224a b b -+=-⎧⎨=⎩,解得:34a b =⎧⎨=⎩,∴直线BC 的函数表达式为34y x =+;故答案为:34y x =+;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.3、105【分析】利用等腰三角形的性质求出∠BAC ,可得结论.【详解】解:∵BC =BA ,∠B =30°,∴∠C =∠BAC =12(180°﹣30°)=75°,∴旋转角α=180°﹣∠BAC =105°,故答案为:105.【点睛】本题考查了等腰三角形性质以及旋转的角度问题,解题的关键是理解旋转角就是对应线段的夹角.4、(﹣2,-3) (2,-3)【分析】根据关于x 轴对称点的坐标以及关于原点对称点的性质得出答案.【详解】解:点P 坐标为(﹣2,3),则点P 关于x 轴对称的点的坐标为(﹣2,-3);点P 关于原点对称的点坐标为(2,-3).故答案为:(﹣2,-3);(2,-3).【点睛】本题主要考查了关于x 轴对称点的坐标以及关于原点对称点的坐标,关键是掌握坐标的变化特点.关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于原点对称点的坐标特点:横坐标互为相反数、纵坐标互为相反数.5、1【分析】根据两点关于原点对称,横纵坐标分别互为相反数计算即可.【详解】解:∵点()2,3P -与点(),Q a b 关于原点对称,∴a =-2,b = 3,∴a +b =-2+3=1,故答案为:1.【点睛】本题考查了坐标系中两点关于原点对称的计算,代数式的值,熟练掌握两点关于原点对称时坐标之间的关系是解题的关键.三、解答题1、(1)见解析;(3)正确,见解析【分析】(1)根据旋转的性质可得AD =AE ,∠DAE =60°,结合已知条件可得∠BAC =∠DAE ,进而证明△ABD ≌△ACE ,即可证明BD =CE ;(2)过A 作BD ,CF 的垂线段分别交于点M ,N ,△ABD ≌△ACE ,BD =CE ,由面积相等可得AM =AN ,证明Rt△AFM ≌Rt△AFN ,进而证明∠BFC =∠AFB =∠AFE =60°【详解】解:证明:(1)如图1,∵线段AD 绕点A 逆时针旋转60°得到AE ,∴AD =AE ,∠DAE =60°,∵∠BAC =60°,∴∠BAC =∠DAE ,∴∠BAD =∠CAE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ACE (SAS ),∴BD =CE ,(2)由(1)可知△ABD ≌△ACE则∠ABD =∠ACE ,又∵∠AGB =∠CGF ,∴∠BFC =∠BAC =60°,∴∠BFE =120°,过A 作BD ,CF 的垂线段分别交于点M ,N ,又∵△ABD ≌△ACE ,BD =CE ,∴由面积相等可得AM =AN ,在Rt△AFM 和Rt△AFN 中,AF AF AM AN=⎧⎨=⎩, ∴Rt△AFM ≌Rt△AFN (HL ),∴∠AFM =∠AFN ,∴∠BFC =∠AFB =∠AFE =60°.【点睛】本题考查了三角形全等的性质与判定,旋转的性质,正确的添加辅助线找到全等三角形并证明是解题的关键.2、(1)见解析;(2)见解析;(3,4π.【分析】(1)反向延长OC 至C ',反向延长OA 至A ',反向延长OB 至B ',使2,22OC OC OA OA OB OB '''===,,最后连接A B C ''',,即可;(2)利用网格的特点与旋转的性质,画出点A ',C '的对应点A C '''',,再连接A B C ''''',,即可解题;(3)利用弧长公式、扇形的面积公式解题即可.【详解】解:(1)见图中△A B C ''' ;(2)见图中△A B C ''''' ;(3)90180L π= 22290906-(24)360360S ππ=⨯⨯+ 19204ππ=-⨯ 95ππ=-4π=,4π.【点睛】本题考查作图—位似变换,画位似图形的一般步骤:确定位似中心,分别连接并延长位似中心和能代表原图的关键点,再关键位似比,确定能代表所作的位似图形的关键点,最后顺次连接上述各点,得到放大或缩小的图形。

期末难点特训(三)与平行四边形有关的压轴题-【微专题】八年级数学下册常考点微专题提分精练

期末难点特训(三)与平行四边形有关的压轴题-【微专题】八年级数学下册常考点微专题提分精练

八下期末难点特训(三)与平行四边形有关的压轴题1. (1)问题背景:如图1,点E ,F 分别在正方形ABCD 的边BC ,CD 上,BE =DF ,M 为AF 的中点,求证:①∠BAE =∠DAF ;②AE =2DM .(2)变式关联:如图2,点E 在正方形ABCD 内,点F 在直线BC 的上方,BE =DF ,BE ⊥DF ,M 为AF 的中点,求证:①CE ⊥CF ;②AE =2DM .(3)拓展应用:如图3,正方形ABCD 的边长为2,E 在线段BC 上,F 在线段BD 上,BE =DF ,直接写出()2AE AF +的最小值.2. 已知:正方形ABCD 中,点E 在对角线BD 上,连接CE ,作EF CE ⊥交AB 于点F .(1)如图(1),求证:CE EF =;(2)如图(2),作EM BD ⊥交AD 于点M ,连接BM ,求证:BM =;(3)如图(3),延长CE 交DA 于点N ,若BE =6AN =,则CE =_________.3. 已知,在菱形ABCD 中,120ABC ∠=︒,6AB =,E 、F 分别为AD 、CD 上一点.(1)如图1,若60EBF ∠=︒,求证:AE DF =;(2)如图2,E 为AD 中点,1DF =,线段EG 交BC 于G ,FH 交AB 于H ,60EOF ∠=︒,若BH x =,CG y =.①求y 与x 之间的函数关系式;②若6x y +=,则HF =______.4. (1)问题背景:如图1,E 是正方形ABCD 的边AD 上的一点,过点C 作CB CD ⊥交AB 的延长线于F 求证:CE CF =;(2)尝试探究:如图2,在(1)的条件下,连接DB 、EF 交于M ,请探究DM 、BM 与BF 之间的数量关系,并证明你的结论.(3)拓展应用:如图3,在(2)的条件下,DB 和CE 交于点N ,连接CM 并延长交AB 于点P ,已知DE =,15DME ∠=︒,直接写出PB 的长________.5. 正方形ABCD 的边长为4.(1)如图1,点E 在AB 上,连接DE ,作AF D E ⊥于点F ,CG DE ⊥于点G .①求证:DF CG =;②如图2,对角线AC ,BD 交于点O ,连接OF ,若3AE =,求OF 的长;(2)如图3,点K 在CB 的延长线上,2BK =,点N 在BC 的延长线上,4CN =,点P 在BC 上,连接AP ,在AP 的右侧作PQ AP ⊥,PQ AP =,连接KQ .点P 从点B 沿BN 方向运动,当点P 运动到BC 中点时,设KQ 的中点为1M ,当点P 运动到N 点时,设KQ 的中点为2M ,直接写出12M M 的长为________.6. 如图,已知四边形ABCD ,∠A =∠C =90°,BD 是四边形ABCD 的对角线,O 是BD 的中点,BF 是∠ABE 的角平分线交AD 于点F ,DE 是∠ADC 的角平分线交BC 于点E ,连接FO 并延长交DE 于点G .(1)求∠ABC +∠ADC 的度数;(2)求证:FO =OG ;(3)当BC =CD ,∠BDA =∠MDC =22.5°时,求证:DM =2AB7. 如图,已知在ABC 和ADE 中,AB AC =.(1)如图1,若90BAC ∠=︒,=90DAE ∠︒,AD AE =,4AC =,3CE =,连接CD ,求线段CD 的长;(2)如图2,若60BAC DAB ∠=∠=︒,AD AB =,E 、F 分别为BC AB 、边上的动点,CF 与AE 相交于点M ,BCF CAE ≌,连接DM ,点N 是DM 的中点,证明:2AM CM AN +=;(3)在(2)的条件下,G 是AC 的中点,1AC =,连接GE ,H 是ABC 所在平面内一点,连接HE HG 、,HGE 和CGE 关于直线GE 成轴对称图形,连接HD ,求HD 的最小值.8. 在□ABCD 中,对角线AC AB =,且AC AB ⊥,E 为CD 边上一动点,连接BE 交AC 于点F ,M 为线段BE 上一动点,连接AM .(1)如图1,若8AB =,2CF =,M 为BF 的中点,求AM 的长;(2)如图2,若M 在线段BF 上,45AME ∠=︒,作CN AM ∥交BE 于点N ,连接AN ,求证:AN AB =;(3)如图3,若M 在线段EF 上,将△ABM 沿着AM 翻折至同一平面内,得到AB M ' ,点B 的对应点为点B '.当30ABE ∠=︒,90BMB '∠=︒时,请直接写出B M EM AM'-的值.9. 在菱形ABCD 中,点E 、F 分别为BC 、CD 边上的点,连接AC 、AF 、EF .(1)如图1,EF 与AC 交于点G ,若CE CF =,5AF =,6EF =,求AG 的长;(2)如图2,若60ABC ∠=︒,DAF EFC ∠=∠,求证:BE CF =;(3)如图3,在(2)的条件下,将BEF △沿BF 翻折至同一平面内,得到BE F ' ,连接CE '与BF 交于点O ,记CEF △、CE F ' 、BCF △的面积分别为1S 、2S 、3S ,当O 为BF 中点时,请直接写出3213S S S -的值.10. 在菱形ABCD 中,60ABC ∠=︒,E 为对角线BD 上一动点,连接AE .(1)如图1,点F 为DE 的中点,连接AF ,若BE AE =,求FAD ∠的度数;(2)如图2,BEM △是等边三角形,连接DM ,H 为DM 的中点,连接AH ,猜想线段AH 与AE 之间的数量关系,并证明.(3)在(2)的条件下,N 为AD 的中点,连接AM ,以AM 为边作等边 AMP ,连接PN ,若AD =PN 的最小值.11. 问题解决:如图1,在矩形ABCD 中,点,E F 分别在,AB BC 边上,,DE AF DE AF =⊥于点G .(1)求证:四边形ABCD 是正方形;(2)延长CB 到点H ,使得BH AE =,判断AHF △的形状,并说明理由.类比迁移:如图2,在菱形ABCD 中,点,E F 分别在,AB BC 边上,DE 与AF 相交于点G ,,60,6,2DE AF AED AE BF =∠=︒==,求DE 的长.12. 矩形ABCD 中,将矩形沿AE 、AG 翻折,点B 的对应点为点F ,点D 的对应点为点Q ,A 、F 、Q 三点在同一直线上.(1)如图1,求EAG ∠的度数;(2)如图2,当AB BC =时,连接BD ,交AE 、AG 于点M 、N ,若3BM =,4DN =,求MN 的长度;(3)如图3,当8AB =,9AD =时,连接EG ,45GEC ∠=︒,求BE 的长.13. 如图,正方形ABCD 中,6AB =,点E 在CD 边上运动(不与点C 、D 重合).过点B 作AE 的平行线交DC 的延长线于点F ,过点D 作AE 的垂线DN 分别交于AE ,BF 于点M 、N .(1)求证:四边形ABFE 是平行四边形;(2)若13DE DC =,求线段MN 的长;(3)点E 在CD 边上运动过程中,CND ∠的大小是否改变?若不变,求出该值,若改变请说明理由.14. (1)如图1,在正方形ABCD 中,AE ,DF 相交于点O 且AE ⊥DF .则AE 和DF 的数量关系为 .(2)如图2,在正方形ABCD 中,E ,F ,G 分别是边AD ,BC ,CD 上的点,BG ⊥EF ,垂足为H .求证:EF =BG .(3)如图3,在正方形ABCD中,E,F,M分别是边AD,BC,AB上的点,AE =2,BF=4,BM=1,将正方形沿EF折叠,点M的对应点与CD边上的点N重合,求CN的长度.15. 已知:在边长为6的正方形ABCD中,点P为对角线BD上一点,且BP .将三角板的直角顶点与点P重合,一条直角边与直线BC交于点E,另一条直角边与射线BA交于点F(点F不与点B重合),将三角板绕点P旋转.(1)如图,当点E、F在线段BC、AB上时,求证:PE=PF;(2)当∠FPB=60°时,求△BEP的面积;(3)当△BEP为等腰三角形时,直接写出线段BF的长.16. 已知:在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D 不与B、C重合).以AD为边作正方形ADEF,连接CF.=-.(1)如图①,当点D在线段BC上时,求证:CF BC CD(2)如图②和③,当点D在线段BC的延长线上或反向延长线上时,其它条件不变,请判断CF、BC、CD三条线段之间的关系,并证明之;(3)如图③,若连接正方形ADEF对角线AE、DF,交点为O,连接OC,探究△AOC的形状,并说明理由.17. 在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB 于E.(1)如图1,连接CE,求证:△BCE是等边三角形;(2)如图2,点M为CE上一点,连结BM,作等边△BMN,连接EN,求证:EN∥BC;(3)如图3,点P为线段AD上一点,连结BP,作∠BPQ=60°,PQ交DE延长线于Q,探究线段PD,DQ与AD之间的数量关系,并证明.18. 在菱形ABCD中,∠BAD=60°.(1)如图1,点E为线段AB的中点,连接DE,CE,若AB=4,求线段EC的长;(2)如图2,M为线段AC上一点(M不与A,C重合),以AM为边,构造如图所示等边三角形AMN,线段MN与AD交于点G,连接NC,DM,Q为线段NC 的中点,连接DQ,MQ,求证:DM=2DQ.八下期末难点特训(三)与平行四边形有关的压轴题【1题答案】【答案】(1)①见解析;②见解析;(2)①见解析;②见解析;(3)8【解析】【分析】(1)问题情景:①证明△ABE≌△ADF(SAS),由全等三角形的性质得出∠BAE=∠DAF;②由全等三角形的性质得出AE=AF,由直角三角形的性质可得出结论;(2)变式关联:①延长BE交DF于G,BG交CD于H,证明△CBE≌△CDF (SAS),由全等三角形的性质得出∠BCE=∠DCF,则可得出结论;②延长DM到N,使DM=MN,连接AN,证明△AMN≌△FMD(SAS),由全等三角形的性质得出AN=DF,证明△ABE≌△DAN(SAS),由全等三角形的性质得出AE=DN=2DM;(3)拓展应用:过点D作DP⊥DF,且使PD=AB,连接PF,PA,过点P作PQ⊥AD,交AD的延长线于点Q,证明△ABE≌△PDF(SAS),由全等三角形的性质得出AE=PF,AF+AE=AF+PF≥AP,即当A,F,P三点共线时,AE+AF的最小值为AP,求出2AP则可得出答案.【详解】解:(1)问题情景:①证明:∵四边形ABCD是正方形,∴AB=AD,∠ABE=∠ADF=90°,∵BE=DF,∴△ABE≌△ADF(SAS),∴∠BAE=∠DAF;②证明:∵△ABE≌△ADF,∴AE=AF,∵M为AF的中点,AF,∴DM=12∴AE=AF=2DM;(2)变式关联:①证明:延长BE交DF于G,BG交CD于H,∵四边形ABCD为正方形,∴∠BCD=90°,CD=CB,∵BE⊥DF,∴∠BGD=∠BCD=90°,∵∠BHD=∠CBE+∠BCD,∠BHD=∠BGD+∠CDF,∴∠CBE+∠BCD=∠BGD+∠CDF,∴∠CBE=∠CDF,又∵BE=DF,∴△CBE≌△CDF(SAS),∴∠BCE=∠DCF,∵∠BCD=90°,∴∠ECF=∠ECD+∠DCF=∠ECD+∠BCE=90°,∴CE⊥CF;②延长DM到N,使DM=MN,连接AN,∵M为AF的中点,∴AM=MF,∵MD=MN,∠AMN=∠FMD,∴△AMN≌△FMD(SAS),∴AN=DF,∵△CBE ≌△CDF ,∴BE =DF =AN ,∠NAM =∠DFM ,∴AN ∥DF ,∴∠DAN +∠ADF =180°,∵四边形ABCD 为正方形,∴∠BAD =90°,AB =DA ,∵∠BGD =90°,∴∠ABE +∠ADF =180°,∴∠ABE =∠DAN ,∴△ABE ≌△DAN (SAS),∴AE =DN =2DM ;(3)拓展应用:过点D 作DP ⊥DF ,且使PD =AB ,连接PF ,PA ,过点P 作PQ ⊥AD ,交AD 的延长线于点Q ,∴△ABE ≌△PDF (SAS),∴AE =PF ,∵∠ADB =45°,∴∠PDQ =45°,DQ =PQ ,∴AF +AE =AF +PF ≥AP ,即当A ,F ,P 三点共线时,AE +AF 的最小值为AP ,∵AD =AB =DP =2,∴PQ =DQ ,∴(2222228AP AQ QP =+=++=+∴()2AE AF +的最小值为.【点睛】本题属于四边形综合题,考查了正方形的性质,直角三角形的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【2题答案】【答案】(1)见解析(2)见解析(3)【解析】【分析】(1)过点E 作EH ⊥BC 于H ,EG ⊥AB 于G ,由“ASA ”可证△ECH =△EFG ,可得CE =EF ;(2)过点E 作EH ⊥BC 于H ,交AD 于Q ,EG ⊥AB 于G ,交CD 于P ,由正方形的性质和矩形的性质可证△CEF 是等腰直角三角形,从而得到CF =,再证得四边形AGPD 是矩形,四边形DQHC 是矩形,四边形DQEP 是矩形,从而得到DQ =QM =GF =AG ,由“SAS ”可证△ABM ≌△BCF ,可得BM =CF ,可得结论;(3)过点E 作GE ⊥AB 于点G ,EQ ⊥AD 于点Q ,可得△EGB 是等腰直角三角形,进而得到BG =EG =7,再根据四边形AGEQ 是矩形,可得AQ =EG =7,从而得到QN =1,再由勾股定理列出方程可求EF 的长.【小问1详解】证明:如图,过点E 作EH ⊥BC 于H ,EG ⊥AB 于G ,∵四边形ABCD 是正方形,∴∠ABD =∠CBD =45°,∵EG ⊥AB ,EH ⊥BC ,∠ABC =90°,∴四边形FGBH 是正方形,∴GE=EH,∠GEH=90°,∴∠CEF=∠GEH=90°,∴∠CEH=∠GEF=90°-∠HEF,在△ECH和△EFG中,∵∠CEH=∠GEF,EH=EG,∠EHC=∠EGF=90°,∴△ECH≌△EFG(ASA),∴CE=EF;【小问2详解】证明:如图,过点E作EH⊥BC于H,交AD于Q,EG⊥AB于G,交CD于P,∵四边形ABCD是正方形,∴AD∥BC,CD∥AB,∴PG⊥CD,QH⊥AD,∵CE=EF,CE⊥EF,∴△CEF是等腰直角三角形,∴CF ,∵PG⊥AB,QH⊥AD,∴∠A=∠ADC=∠DCB=∠ABC=90°,∴四边形AGPD是矩形,四边形DQHC是矩形,四边形DQEP是矩形,∴DQ=CH,DP=AG,∵∠ADB=∠CDB=45°,EQ⊥AD,EP⊥CD,∴EP=EQ,∴四边形DPEQ是正方形,∴DQ=DP=PE=QE=CH=AG,∵△ECH≌△EFG,∴GF=CH=DQ,∵ME⊥BD,∠ADB=45°,∴△DEM是等腰直角三角形,∵EQ⊥AD,∴DQ=QM,∴DQ=QM=GF=AG,∴DM=AF,∵AD=AB,∴AM=BF,又∵AB=BC,∠A=∠CBF=90°,∴△ABM≌△BCF(SAS),∴BM=CF,∴BM=;【小问3详解】解:如图,过点E作GE⊥AB于点G,EQ⊥AD于点Q,由(2)得:AG=GF=QE,∵EG⊥AB,∠ABD=45°,∴△EGB是等腰直角三角形,∵BE=,∴BG=EG=7,∵EQ⊥AD,EG⊥AB,∠A=90°,∴四边形AGEQ是矩形,∴AQ=EG=7,∵AN =6,∴QN =1,∵22222NF EN EF AN AF =+=+,222EN QE QN =+,222EF EG GF =+,∴222364149GF GF GF +=+++,∴27GF =,∴249756EF =+=,∴EF CE ==.故答案为:.【点睛】本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,矩形的判定与性质、等腰直角三角形的判定与性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.【3题答案】【答案】(1)证明见解析(2)①4y x =+;②【解析】【分析】(1)连接DB ,由菱形的性质得出∠ABD =∠BDC =60°,60,A C ∠=∠=︒证出△ABD 为等边三角形, AB =BD ,证明△ABE ≌△DBF (ASA ),由全等三角形的性质可得出结论;(2)①过点B 作,BM EG BN HF ∥∥交EG 于点I ,证明四边形BMEG 为平行四边形,由平行四边形的性质得出BG =EM =6-y ,得出AM =y -3,同理DN =1+x ,由(1)得AM =DN ,得出y -3=x +1,则可得出答案; ②过点D 作DM ⊥AB 于点M ,过点F 作FN ⊥AB 于点N ,由题意求出x =1,y =5,得出BH =1,CG =5,由直角三角形的性质求出AM =3,由勾股定理求出答案即可.【小问1详解】证明:如图1,连接DB ,∵四边形ABCD 为菱形,∠ABC =120°,∴∠ABD =∠BDC =60°,,,AB CD AD BC ∥∥60,A C ∴∠=∠=︒∴△ABD 为等边三角形,∴AB =BD ,∵∠EBF =60°,∴∠ABE =∠DBF ,在△ABE 和△DBF 中, ,ABE DBF AB BD A BDF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABE ≌△DBF (ASA ),∴AE =DF ;【小问2详解】解:①如图2,过点B 作,BM EG BN HF ∥∥交EG 于点I ,∵,AD BC BM EG ∥∥,∴四边形BMEG 为平行四边形,而6,,,AB BC CD AD CG y BH x ====== ∴BG =EM =6-y ,∵E 是AD的中点,∴3,AE DE ==∴AM =y -3, 同理DN =1+x ,∵BN HF ∥,∴∠EOF =∠EIN =60°,∵BM EG ∥,∴∠MBN =∠EIN =60°,由(1)得,AM =DN ,∴y -3=x +1,∴y =x +4;②如图3,过点D 作DM ⊥AB 于点M ,过点F 作FN ⊥AB 于点N ,由①知y =x +4,又∵x +y =6,∴x =1,y =5,∴BH =1,CG =5,∵DM ⊥AB ,AB CD ∥,∴DM ⊥CD ,∴四边形MDFN 为矩形,∴DM =NF ,DF =MN =1,∵∠A =60°,AD =6,∴AM =12AD =3,∴DM ==,∵AB =6,∴NH =AB -AM -MN -BH =6-3-1-1=1,∴HF ===,故答案为:.【点睛】本题属于四边形综合题,考查了菱形的性质,矩形的判定与性质,等边三角形的判定与性质,直角三角形的性质,全等三角形的判定和性质,勾股定理,二次根式的化简等知识,解题的关键是熟练掌握菱形的性质.【4题答案】【答案】(1)证明见解析;(2)DM=BMBF;(3【解析】【分析】(1)由“ASA”可证△CDE≌△CBF,可得CE=CF;(2)由“AAS”可证△DME≌△HMF,可得DM=MH,可得结论;(3)由直角三角形的性质可得AFAE,可求AB的长,由勾股定理可求PF的长,即可求解.【详解】(1)证明:在正方形ABCD中,DC=BC,∠D=∠ABC=∠DCB=90°,∴∠CBF=180°−∠ABC=90°,∵CF⊥CE,∴∠ECF=90°,∴∠DCB=∠ECF=90°,∴∠DCE=∠BCF,在△CDE和△CBF中,D CBF DC BCDCE BCF ∠∠⎧⎪⎨⎪∠∠⎩===∴△CDE≌△CBF(ASA),∴CE=CF;(2)DM=BMBF,理由如下:如图,过点F作FH⊥AF,交DB的延长线于H,∵△CDE≌△CBF,∴DE=BF,∵四边形ABCD是正方形,∴∠ABD=∠CBD=45°,∴∠FBH=45°,∵FH⊥AB,∴∠FBH=∠H=45°,∴BF=FH=DE,∴BH BF,∵∠EDM=∠H=45°,∠EMD=∠HMF,DE=FH,∴△DME≌△HMF(AAS),∴DM=MH,EM=MF,∴DM=MB+BH=MB BF;(3)连接EP,∵∠DME=15°,∠ABD=45°,∴∠AFE=30°,∴AF,∴AB+BF AB−DE),∴AB +=-+,∴AB =,∴AE =,AF =,∵EC =CF ,∠ECF =90°,EM =MF ,∴CP 是EF 的垂直平分线,∴EP =PF ,∵PE 2=AE 2+AP 2,∴PF 2=24+(−PF )2,∴PF =,∴PB +,【点睛】本题是四边形综合题,考查了正方形的性质,全等三角形的判定和性质,等腰直角三角形的性质等知识,灵活运用这些性质解决问题是解题的关键.【5题答案】【答案】(1)①见解析;(2)【解析】【分析】(1)①证明△ADF ≌△DCG ,即可求证;②连接OG ,由①得:△ADF ≌△DCG ,可得AF =DG ,可证得△AOF ≌△DOG ,从而得到OG =OF ,∠DOG =∠AOF ,进而得到△FOG 为等腰直角三角形,可得到OF FG =,再由1122ADE S AE AD AF DE =⨯=⨯ ,求出125DG AF ==,从而得到165DF =,进而得到FG = 45,即可求解;(2)取CK 的中点Y ,连接MY ,CQ ,可得12YM CQ =,从而得到点M 的运动轨迹为线段YM ,然后分别计算出当点P 运动到BC 中点时,当点P 运动到N 点时,YM 1,YM 2的长, 即可求解.【小问1详解】①证明:在正方形ABCD 中,AD =CD ,∠DAB =∠ADC =90°,∴∠ADF +∠CDG =90°,∵AF D E ⊥,CG DE ⊥,∴∠AFD =∠CGD =90°,∴∠ADF +∠DAF =90°,∴∠DAF =∠CDG ,∴△ADF ≌△DCG ,∴DF =CG ;②解:如图,连接OG ,在正方形ABCD 中,OA =OD ,∠BAO =∠ADO =45°,∠AOD =∠BAD =90°,∴∠DAF +∠EAF =90°,∠EAF +∠OAF =∠ODG +∠ADF =45°,由①得:△ADF ≌△DCG ,∴AF =DG ,∵AF ⊥DE ,∴∠AFD =90°,∴∠ADF +∠DAF =90°,∴∠ADF =∠EAF ,∴∠OAF =∠ODG ,在△AOF 和△DOG 中,∵AF =DG ,∠OAF =∠ODG ,OA =OD ,∴△AOF ≌△DOG ,∴OG=OF,∠DOG=∠AOF,∴∠FOG=∠AOF+∠AOG=∠DOG+∠AOG=∠AOD=90°,∴△FOG为等腰直角三角形,∴FG==,∴OF FG=,在Rt AED△中,AD=4,AE=3,∠DAE=90°,∴5DE=,∵AF⊥DE,∴1122ADES AE AD AF DE=⨯=⨯,∴125 DG AF==,∴165 DF=,∴FG=DF-DG=45,∴OF==;【小问2详解】解:如图,取CK的中点Y,连接MY,CQ,∵点M为KQ的中点,∴12YM CQ=,YM∥CQ,∴点M的运动轨迹为线段YM,如图,当点P运动到BC中点,即BP=CP=2时,过点Q作QJ⊥CN于点J,在正方形ABCD中,∠ABC=90°,∴∠BAP+∠APB=90°,∵AP⊥PQ,∴∠APQ=90°,∴∠APB+∠QPJ=90°,∴∠BAP=∠QPJ,∵∠PJQ=∠ABP=90°,AP=PQ,∴△ABP≌△PJQ,∴QJ=BP=2,PJ=AB=4,∴CJ=2,∴CQ==YM=∴1如图,当点P运动到N点,即BP=BC+CN=8时,过点Q作QL⊥CN交CN延长线于点L,同理:△ABP≌△PLQ,∴QL=BP=8,PL=AB=4,∴CL=8,∴CQ ==,∴2YM =,∴12M M 的长为21YM YM -==.故答案为:【点睛】本题主要考查了全等三角形的判定和性质,正方形的性质,三角形中位线定理,勾股定理等知识,熟练掌握全等三角形的判定和性质,正方形的性质,三角形中位线定理,勾股定理等知识是解题的关键.【6题答案】【答案】(1)180°(2)见解析(3)见解析【解析】【分析】(1)在四边形ABCD 中,内角和为360°,因为∠A =∠C =90°,所以∠ABC +∠ADC =180°;(2)由(1)可知,∠ABF +∠CBF +∠ADE +∠CDE =180°,根据BF 、DE 分别是∠ABE 、∠ADC 的角平分线,得到∠ABF +∠ADE =90°,由∠ABF +∠AFB =90°,得∠ADE =∠AFB ,求出BF ∥ED ,所以∠BFG =∠FGD ,得证BFO ∆≌DOG ∆,由此得出结论;(3)证法一:过D 点作CD 的垂线,延长BA 相交于点N ,过B 点作BK 垂直DN ,易证BCD BKD ∆≅∆,所以BK =CD ,可证∆≅∆BAD NAD ,所以2=NB AB ,由22.5∠=∠=∠=︒ABK KDA MDC ,可证∆≅∆BKN MCD ,所以2==MD BN AB ;证法二:延长DM ,延长DC ,过B 点作MD 的垂线,垂足为N ,交DC 的延长线于点L ,可得∆≅∆BAD BND ,所以=AB NB ,再由∆≅∆LND BND 得=NB NL ,所以2=BL AB ,易证LBC MDC ∠=∠,则∆≅∆LCB MCD ,所以2==BL MD AB .【小问1详解】解:∵四边形ABCD 的内角和为360°,∠A =∠C =90°,∴∠ABC +∠ADC =180°.【小问2详解】证明:由(1)可知,∠ABF +∠CBF+∠ADE +∠CDE =180°,∵BF 、DE 分别是∠ABE 、∠ADC 的角平分线∴∠ABF =∠CBF ;∠ADE =∠CDE ,∴2∠ABF +2∠ADE =180°,∴∠ABF +∠ADE =90°,又∵∠ABF +∠AFB =90°,∴∠ADE =∠AFB ,∴BF ∥ED ,∴∠BFG =∠FGD .在BFO ∆和DOG ∆中BFO DGO BO ODBOF DOG ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴∆≅∆BFO DOG ,∴OF OG =;【小问3详解】证法一:过D 点作CD 的垂线,延长BA 相交于点N ,过B 点作BK 垂直DN,∴四边形BCDK 是矩形,∵BC=CD ,∴四边形BCDK 是正方形,∴BCD BKD ∆≅∆,∴BK =CD ,∵∠BDA =∠MDC =22.5°,∠BDK =45°,∴∠ADN =22.5°=∠BDA ,在△BAD 和△NAD 中ADB ADN AD AD BAD NAD ∠=∠⎧⎪=⎨⎪∠=∠⎩∴∆≅∆BAD NAD (ASA )∴2=NB AB ,∵22.5∠=∠=∠=︒ABK KDA MDC ,在△BKN 和△MCD 中22.5ABK MDC BK CD BKN MCD ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩∴∆≅∆BKN MCD (ASA )∴2==MD BN AB ;解法二:延长DM ,延长DC ,过B 点作MD 的垂线,垂足为N ,交DC 的延长线于点L .∵BC=CD ,∠BCD =90°,∴∠CBD =∠BDC =45°,∵∠BDA =∠MDC =22.5°,∴∠BDM =22.5°,在△BAD 和△BND 中ADB BDN BD BDBAD BND ∠=∠⎧⎪=⎨⎪∠=∠⎩,BAD BND ∴∆≅∆(ASA ),AB NB ∴=,在△LND 和△BND 中90BND LDN ND ND BDN LDN ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩,LND BND ∴∆≅∆(ASA ),NB NL ∴=,2BL AB ∴=,∴LBC MDC ∠=∠,在△LCB 和△MCD 中BCL BCD BC CD LBC MDC ∠=∠⎧⎪=⎨⎪∠=∠⎩,LCB MCD ∴∆≅∆(ASA ),2BL MD AB ∴==.【点睛】本题考查了全等三角形的性质与判定,正方形的性质与判定,第(2)问作出辅助线构造全等三角形是解题的关键.【7题答案】【答案】(1(2)证明见解析(312-【解析】【分析】(1)先证明45ABC ACB ∠=∠=︒,BAD CAE ∠=∠,再证明BAD CAE ≌,得到45ABD ACE ∠=∠=︒,3BD CE ==,则90CBD ∠=︒,求出BC =CD =;(2)如图所示,延长DA 到Q 使得AD AQ =,延长ME 到H 使得MH MC =,连接QM QC CH ,,,先求出60CAQ ∠=︒,再由已知条件得到AD AB AC AQ ===,即可证明ABC ACQ △,△都是等边三角形,得到60ACB ACQ CQ AC ==︒=∠∠,,由全等三角形的性质得到CAE BCF ∠=∠,即可证明60CMH ∠=︒,推出MCH △是等边三角形,则60CM HM CH MCH ===︒,∠,证明QCM ACH △≌△得到QM AH =,再证明AN 是DMQ △的中位线,得到2QM AN =,即可证明2AM CM AN +=;(3)如图所示,连接AH CH ,,DH DG ,,根据轴对称的性质得到CG HG =,则12AG CG HG ===,由三角形三边的关系得到HD DG HG ≤-,则当D G H 、、三点共线时,HD 最小,最小值为12DG -,过点G 作GT AD ⊥交DA延长线于T ,求出14AT =,TG =54DT =,即可求出DG =,则12HD =-最小值.【小问1详解】解:如图所示,连接BD ,∵90BAC ∠=︒,=90DAE ∠︒,AB AC =,∴BAC BAE DAE BAE ∠-∠=∠-∠,45ABC ACB ∠=∠=︒,∴BAD CAE ∠=∠,又∵AD AE =,∴()SAS BAD CAE ≌△△,∴45ABD ACE ∠=∠=︒,3BD CE ==,∴90CBD ∠=︒,∵4AC =,∴BC ==,∴CD ==【小问2详解】证明:如图所示,延长DA 到Q 使得AD AQ =,延长ME 到H 使得MH MC =,连接QM QC CH ,,,∵60BAC DAB ∠=∠=︒,∴60CAQ ∠=︒,∵AD AB =,AB AC =,∴AD AB AC AQ ===,∴ABC ACQ △,△都是等边三角形,∴60ACB ACQ CQ AC ==︒=∠∠,,∵BCF CAE ≌,∴CAE BCF ∠=∠,∴60CMH CAE ACM BCF ACM ACB =+=+==︒∠∠∠∠∠∠,∴MCH △是等边三角形,∴60CM HM CH MCH ===︒,∠,∴MCH ACM ACQ ACM +=+∠∠∠∠,即QCM ACH =∠∠,∴()SAS QCM ACH △≌△,∴QM AH =,∵N 是DM 的中点,AD AQ =,∴AN 是DMQ △的中位线,∴2QM AN =,∴2AH AN =,即2AM MH AN +=,∴2AM CM AN +=;【小问3详解】解:如图所示,连接AH CH ,,DH DG ,,∵HGE 和CGE 关于直线GE 成轴对称图形,∴CG HG =,∵G 是AC 的中点,∴1122AG CG HG AC ====,∴HD DG HG ≤-,∴当D G H 、、三点共线时,HD 最小,最小值为12DG HG DG -=-,过点G 作GT AD ⊥交DA 延长线于T ,∵60BAC DAB ∠=∠=︒,∴60GAT =︒∠,∴30AGT =︒∠,∴1124AT AG ==,∴TG ==,54DT AD AT =+=,∴DG ==,∴12HD =-最小值.【点睛】本题主要考查了等边三角形的性质与判定,全等三角形的性质与判定,三角形中位线定理,勾股定理,含30度角的直角三角形的性质,轴对称图形的性质,三角形三边的关系,正确作出辅助线是解题的关键.【8题答案】【答案】(1)5;(2)证明过程见解析;(3)'B M EM AM-=.【解析】【分析】(1)先根据已知条件求出AF 的长度,再用勾股定理求出BF 的长度,最后根据直角三角形斜边中线定理求出AM 的长度即可;(2)过点A 作AG ⊥AM ,交BE 于点G ,连接CG ,先证出△ABM 和△ACG 全等,再证出BG ⊥CG ,再证出△ACG 和△ANG 全等,得到AC =AN ,即可得到结论;(3)根据已知条件使用勾股定理、等腰直角三角形的性质和直角三角形30°所对的直角边等于斜边的一半,用含有字母的代数式表示出NF 、AN 、MN 、AB 、AM 的长度,然后表示出BM 、EM 的长度,最后求出答案即可.【小问1详解】∵8AC AB ==,2CF =,∴826AF AC CF =-=-=,∵AC AB ⊥,∴在Rt ABF 中由勾股定理得:10BF ===,∵M 为BF 的中点,∴1110522AM BF ==⨯=.【小问2详解】作AG AM ⊥交BE 于点G ,连接CG ,∵AC AB ⊥,AG AM ⊥,∴1+3=90∠∠︒,2390∠+∠=︒,∴12∠=∠.∵45AME ∠=︒,∴AMG 为等腰直角三角形,∴AM AG =.在ABM 和ACG 中,∵12AB AC AM AG =⎧⎪∠=∠⎨⎪=⎩,∴ABM ≌ACG (SAS ),∴45∠=∠.∵67∠=∠,∴90CGF BAF ∠=∠=︒,∵//CN AM ,∴845AME ∠=∠=︒,∴CNG △为等腰直角三角形,∴GN CG =,∵45AGM ∠=︒,∴9135∠=︒,∴3609135AGC CGN ∠=︒-∠-∠=︒.在ACG 和ANG 中,∵9AG AG AGC CG NG =⎧⎪∠=∠⎨⎪=⎩,∴ACG ≌ANG (SAS ),∴AC AN =,∴AN AB =.【小问3详解】'B M EM AM-=.解析:作AN BE ⊥于点N ,设FN a =,∵130∠=︒,90BMB '∠=︒,∴根据折叠知2690245∠=∠=︒÷=︒,又AN ⊥BE ,∴5360∠=∠=︒,430∠=︒,∴22AF FN a ==,在Rt △AFN 中根据勾股定理得AN ==,∴AN MN ==,同理AM ==,2AB AN ==,同理3BN a ==,'3B M BM BN NM a ==+=+.∵2222BE BF EF AF FC AC AB =+=+===,∴()26BM EM BM BE BM BM BE a -=--=-=-,∴'B M EM AM -==.【点睛】本题考查了等腰直角三角形的判定和性质、直角三角形斜边中线定理、直角三角形30°所对的直角边等于斜边的一半、勾股定理、全等三角形的判定和性质;考查的内容比较多,按照阶梯难度逐级上升,熟练掌握那些定理并能画出辅助线是解决本题的关键.【9题答案】【答案】(1)4(2)证明见解析 (3)16【解析】【分析】(1)根据等腰三角形三线合一可知AG EF ⊥,EG FG =,可得132FG EF ==,根据勾股定理即可求出AG 的长;(2)在AD 上截取DH DF =,连接FH ,则AH CF =,因为60ABC ∠=︒,所以120AHF ECF ∠=∠=︒,则可证AHF △≌FCE △(ASA ),所以CE HF DF ==,又因为BC =CD ,所以BE CF =;(3)延长CE '交AB 于点I ,连接FI ,则△BOI ≌△FOC ,所以BI =CF ,又因为BI ∥CF ,所以四边形ACFI 是平行形,BFI BFC S S =△△,由BOI FOI S S =△△,''BOE FOE S S =△△,设''BE I FE I S S x ==△△,则32''CFI CE F FE I S S S S S x -=-==△△△,1'''2BCF BEF BIF BE F BE I FE I S S S S S S S x =-=-=+=△△△△△△,代入计算可得321136-=S S S .【小问1详解】解:∵在菱形ABCD 中,AC 平分BCD ∠,CE CF = ,∴AG EF ⊥,EG FG =.∵6EF =,∴116322FG EF ==⨯=在Rt AFG 中,90AGF ∠=︒,5AF =,∴4AG ===.【小问2详解】证明:在AD 上截取DH DF =,连接FH .∵在菱形ABCD 中,DA DC =,∴DA DH DC DF -=-,即AH CF =.∵60ABC ∠=︒,∴60D ABC ∠=∠=︒.∴DFH 为等边三角形.∴60DHF ∠=︒.∴180********AHF DHF ∠=︒-∠=︒-︒=︒.∵//AD BC ,∴180********BCD D ∠=︒-∠=︒-︒=︒.∴AHF ECF ∠=∠.在AHF △和FCE △中,∵DAF EFC AH FC AHF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴AHF △≌FCE △(ASA ).∴CE HF DF ==.∵BC DC =,∴BC CE DC DF -=-,即BE CF =.【小问3详解】321136-=S S S.解析:延长CE '交AB 于点I ,连接FI .∵AB ∥CD ,∴∠ABF =∠BFC ,∵点O 是BF 的中点,∴BO =FO ,∵∠BOI =∠FOC ,∴△BOI ≌△FOC ,∴BI =FC ,∴四边形ACFI 是平行形,∴BFI BFC S S =△△,∵BOI FOI S S =△△,''BOE FOE S S =△△,∴''BE I FE I S S x ==△△.∴3BCF CFI S S S ==△△.∴32''CFI CE F FE I S S S S S x -=-==△△△.∵BEF △沿BF 翻折至同一平面内得到BE F ' ,∴'BEF BE F S S =△△,∴1'''2BCF BEF BIF BE F BE I FE I S S S S S S S x=-=-=+=△△△△△△∴32113326S S x S x -==⨯.【点睛】本题考查了菱形,熟练运用菱形的性质,结合三角形的相关知识(等腰三角形、等边三角形、全等三角形等)是解题的关键.【10题答案】【答案】(1)30°;(2)AE=2AH,证明见解析;(3【解析】【分析】(1)根据菱形的性质以及等腰三角形的性质可得∠ABD=∠ADB=30°,∠EAD=∠BAD−∠BAE=90°,根据直角三角形斜边上的中线得AF=DF,即可得∠FAD=∠ADB=30°;(2)延长DA至F点,使得AF=DA,连接AM,CE,FM,证明△AMB≌△CEB (SAS),根据全等三角形的性质得AM=CE,∠MAB=∠ECB,可得出∠FAM=∠ECA,再证△FAM≌△ACE(SAS),可得MF=AE,根据三角形中位线定理即可得出结论;(3)连接NC、PC、NP,证明△AMB≌△APC(SAS),可得PC=BM=BE,∠PCA=∠BMA=30°,根据等边三角形的性质得CN⊥AD,∠ACN=∠DCN=30°,则∠PCN=∠PCA+∠ACN=60°,在点E运动过程中,当NP⊥PC时,PN 长度最短,根据含30°角的直角三角形的性质即可求解.【小问1详解】解:∵四边形ABCD为菱形,∠ABC=60°,∴AB=AD,∠ABD=∠ADB=30°,∠BAD=120°,∵BE=AE,∴∠ABE=∠BAE=30°,∴∠EAD=∠BAD−∠BAE=90°,∵点F为DE的中点,DE,∴AF=DF=12∴∠FAD=∠ADB=30°;【小问2详解】AE=2AH,证明:延长DA至F点,使得AF=DA,连接AM,CE,FM,∵∠ABC=60°,AB=BC,∴△ABC是等边三角形,∴∠ACB=60°,∵△BEM是等边三角形,∴∠ABM十∠ABE=∠ABE+∠EBC=60°,MB=BE,∴∠ABM=∠EBC,∴△AMB≌△CEB(SAS),∴AM=CE,∠MAB=∠ECB,∵AD=DC,且∠ADC=∠ABC=60°,∴△ADC为等边三角形,∴AD=AC,∵AD=AF,∴AF=AC,∵∠FAB=180°−∠BAD=60°,∴∠FAB=∠ACB=60°,∴∠FAM=∠FAB−∠MAB=∠ACB−∠ECB=∠ECA,∴△FAM≌△ACE(SAS),∴MF=AE,∵FA=AD,H为DM的中点,MF,∴AH=12∴AE=MF=2AH;【小问3详解】连接NC、PC、NP,∵△AMP为等边三角形,∴∠MAP=60°,AM=AP,∵四边形ABCD为菱形,∠ABC=60°,∴AB=BC=CD=AD,∴△ABC为等边三角形,△ADC为等边三角形,∴∠BAC=60°,AB=AC=CD,∠ACD=60°,∴∠MAB=∠MAP−∠BAP=∠BAC−∠BAP=∠PAC,∴△AMB≌△APC(SAS),∴PC=BM=BE,∠PCA=∠BMA=30°,∵AC=CD,N为AD的中点,∴CN⊥AD,∠ACN=∠DCN=30°,∴∠PCN=∠PCA+∠ACN=60°,在点E运动过程中,当NP⊥PC时,PN长度最短,∵AD=,∴DN=12AD,∴NC DN=3,∵∠PCN=60°,NP⊥PC,∴∠PNC=30°,∴PC=12NC=32,∴PN PC PN.【点睛】本题是四边形综合题,考查了菱形的性质,等边三角形的判定和性质,直角三角形的性质,全等三角形的判定和性质等,添加恰当辅助线构造全等三角形是解题的关键.【11题答案】【答案】问题解决:(1)见解析;(2)等腰三角形,理由见解析;类比迁移:8【解析】【分析】问题解决:(1)证明矩形ABCD 是正方形,则只需证明一组邻边相等即可.结合DE AF ⊥和=90DAE ∠︒可知BAF ADG ∠=∠,再利用矩形的边角性质即可证明ABF DAE ≌,即AB AD =,即可求解;(2)由(1)中结论可知AE BF =,再结合已知BH AE =,即可证明ABH DAE △≌△,从而求得AHF △是等腰三角形;类比迁移:由前面问题的结论想到延长CB 到点H ,使得6BH AE ==,结合菱形的性质,可以得到ABH DAE ∆∆≌,再结合已知60AED ∠=︒可得等边AHF ∆,最后利用线段BF 长度即可求解.【详解】解:问题解决:(1)证明:如图1,∵四边形ABCD 是矩形,90ABC DAB ∴∠=∠=︒.90BAF GAD ∴∠+∠=︒.,90DE AF ADG GAD ⊥∴∠+∠= .BAF ADG ∴∠=∠.又,,AF DE ABF DAE AB AD =∴∴= ≌.∴矩形ABCD 是正方形.(2)AHF △是等腰三角形.理由如下:,90,AB AD ABH DAE BH AE =∠=∠=︒= ,,ABH DAE AH DE ∴∴= ≌.又,DE AF AH AF =∴= ,即AHF △是等腰三角形.类比迁移:如图2,延长CB 到点H ,使得6BH AE ==,连接AH .∵四边形ABCD 是菱形,,,AD BC AB AD ABH BAD ∴=∴∠=∠∥.,BH AE ABH DAE =∴∆ ≌.,60AH DE AHB DEA ∴=∠=∠=︒.又,DE AF AH AF =∴= .60,AHB AHF ∠=︒∴ 是等边三角形,AH HF ∴=,628DE AH HF HB BF ∴===+=+=.【点睛】本题考查正方形的证明、菱形的性质、三角形全等的判断与性质等问题,属于中档难度的几何综合题.理解题意并灵活运用,做出辅助线构造三角形全等是解题的关键.【12题答案】【答案】(1)45°(2)5(3)4【解析】【分析】(1)由折叠的性质得()290EAQ GAQ ∠+∠=︒,则45EAG EAQ GAQ ∠=∠+∠=︒;(2)连接MF ,NF ,BF ,DF ,由折叠的性质知AE 垂直平分BF ,AG 垂直平分DF ,则3BM MF ==,4DN NF ==,再求出90MFN ∠=︒,利用勾股定理可得答案;(3)设BE x =,则9EC x =-,()891DG CD GC x x =-=--=-,1QF =,过点G 作GH 垂直EF 交EF 的延长线于H ,证明四边形FQGH 是矩形,求出EH ,在Rt GHE 中,利用勾股定理列方程求解可得答案.【小问1详解】解:由折叠的性质可知:BAE QAE ∠=∠,DAG QAG ∠=∠,四边形ABCD 是矩形,90BAD ∴∠=︒,90BAE QAE DAG QAG ∴∠+∠+∠+∠=︒,()290EAQ GAQ ∴∠+∠=︒,45EAG EAQ GAQ ∴∠=∠+∠=︒;【小问2详解】如图,连接MF ,NF ,BF ,DF ,若AB BC =,则四边形ABCD 是正方形,由题意可知点Q 与点F 重合,由折叠的性质可知:点B 与点F 关于AE 对称,点D 与点F 关于AG 对称,AE ∴垂直平分BF ,AG 垂直平分DF ,3BM MF ∴==,4DN NF ==,BD 为正方形ABCD 的对角线,1452MBE MFE ABC ∴∠=∠=∠=︒,1452NDG NFG ADC ∠=∠=∠=︒,18090MFN MFE NFG ∴∠=︒-∠-∠=︒,在Rt MFN 中,由勾股定理得:5MN ==.【小问3详解】设BE x =,由题意可知:45GEC ∠=︒,90ECG ∠=︒,180EGC GEC ECG ∴∠=︒-∠-∠ 1804590=︒-︒-︒ 45=︒,GEC EGC ∴∠=∠,EC CG ∴=,ECG ∴ 是等腰直角三角形,在矩形ABCD 中,9BC AD ==,8CD AB ==,BE x = ,9EC GC BC BE x ∴==-=-,()891DG CD GC x x =-=--=-,)9EG x ∴==-,由折叠的性质可知:BE EF x ==,1DG QG x ==-,90AFE ABE ∠=∠=︒,90AQG ADG ∠=∠=︒,9AQ AD ==,8AF AB ==,1QF AQ AF ∴=-=,如图,过点G 作GH 垂直EF 交EF 的延长线于H ,则90FHG HFQ FQG ∠=∠=∠=︒,∴四边形FQGH 是矩形,1FH QG x ∴==-,1GH QF ==,121EH EF FH x x x ∴=+=+-=-,在Rt GHE 中,由勾股定理得:222GH EH EG +=,即)2221(21)9]x x +-=-,整理得:()()2040x x +-=,解得4x =或20(x =-舍去),4BE ∴=.【点睛】本题是四边形综合题,主要考查了翻折的性质,矩形的判定和性质,正方形的性质,轴对称的性质,等腰直角三角形的性质,勾股定理等知识,熟练掌握翻折的性质是解题的关键,同时注意方程思想的运用.【13题答案】【答案】(1)见解析 (2)MN = (3)点E 在CD 边上运动过程中,CND ∠的大小不改变,且45CND ∠=︒【解析】【分析】(1)根据正方形的性质,得出AB CD ,再根据AE BF ∥,即可证明四边形ABFE 是平行四边形;(2)根据正方形的性质,结合勾股定理,求出AE =,再根据平行四边形的面积求出EF 的长即可;(3)在DN 上截取DG =BN ,连接CG ,根据“SAS ”证明DGC BNC ≌,得出CG =NC ,DCG BCN ∠=∠,说明△GCN 为等腰直角三角形,即可得出结果.【小问1详解】证明:∵四边形ABCD 为正方形,∴AB CD ,即AB EF ∥,∵AE BF ∥,∴四边形ABFE 是平行四边形.【小问2详解】解:∵四边形ABCD 为正方形,∴6AB BC CD AD ====,90ABC BCD CDA DAB ∠=∠=∠=∠=︒,∵123DE DC ==,∴在Rt △ADE 中根据勾股定理得:AE ===,∵ABFE S AB BC AE MN =⨯=⨯ ,∴AB BC MN AE ⨯===【小问3详解】解:点E 在CD 边上运动过程中,CND ∠的大小不改变;在DN 上截取DG =BN ,连接CG ,如图所示:∵DN ⊥AE ,∴90DME ∠=︒,∵AE BF ∥,∴90DNF DME ∠=∠=︒,∴90F NDF ∠+∠=︒,∵18090BCF BCD ∠=︒-∠=︒,∴90F FBC ∠+∠=︒,∴NDF FBC ∠=∠,∵在△DGC 和△BNC 中DC BC CDG CBN DG BN =⎧⎪∠=∠⎨⎪=⎩,∴DGC BNC ≌(SAS ),∴CG =NC ,DCG BCN ∠=∠,∴90BCN BCG BCG DCG ∠+∠=∠+∠=︒,∴190452CND CGN ∠=∠=⨯︒=︒.【点睛】本题主要考查了正方形的性质,平行四边形的判定,全等三角形的判定和性质,勾股定理,平行四边形的面积,作出辅助线,构造全等三角形,是解题的关键.【14题答案】【答案】(1)AE =DF ;(2)见解析;(3)CN 的长度为3【解析】【分析】(1)证明∠BAE =∠ADF ,则△ABE ≌△DAF (AAS ),即可求解;(2)由正方形的性质得出∠CBG =∠MEF ,证明△BCG ≌△EMF (ASA ),即可求解;(3)证明△EHF ≌△MGN (ASA ),则NG =HF ,而AE =2,BF =4,故NG =HF =4-2=2,进而求解.【详解】解:(1)∵∠DAO +∠BAE =90°,∠DAO +∠ADF =90°,∴∠BAE =∠ADF ,在△ABE 和△DAF 中,BAE ADF ABE DAF AD AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△DAF (AAS ),∴AE =DF ,故答案为:AE =DF ;(2)如图1,过点E 作EM ⊥BC 于点M ,则四边形ABME 为矩形,则AB =EM ,在正方形ABCD 中,AB =BC ,∴EM =BC ,∵EM ⊥BC ,∴∠MEF +∠EFM =90°,∵BG ⊥EF ,∴∠CBG +∠EFM =90°,。

2020-2021学年人教版八年级数学下册第19章一次函数应用之图像专题 (三)

2020-2021学年人教版八年级数学下册第19章一次函数应用之图像专题 (三)

2020-2021学年人教版八年级数学下册第19章一次函数应用之图像专题(三)1.小张骑车往返于甲、乙两地,距甲地的路程y(千米)与时间x(时)的函数图象如图所示.(1)小张在路上停留小时,他从乙地返回时骑车的速度为千米/时;(2)小王与小张同时出发,按相同路线匀速前往乙地,距甲地的路程y(千米)与时间x(时)的函数关系式为y=12x+10.请作出此函数图象,并利用图象回答:小王与小张在途中共相遇次;(3)请你计算第一次相遇的时间.2.某地长途汽车客运公司规定每位旅客可随身携带一定的行李,如果超出规定,那么需要购买行李票,行李票y(元)是行李质量x(kg)的一次函数,其图象如图.求:(1)y与x之间的函数关系式;(2)每位旅客最多可免费携带行李的千克数.3.“龟兔赛跑”的故事同学们都非常熟悉,图中的线段OD和折线OABC表示“龟兔赛跑时路程与时间的关系,请你根据图中给出的信息,解决下列问题.(1)填空:折线OABC表示赛跑过程中(填“兔子”或“乌龟”)的路程与时间的关系,赛跑的全过程是米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来后,以400米/分的速度跑向终点,结果还是比乌龟晚到了0.5分钟,请你算算兔子中间停下睡觉用了多少分钟.4.如图表示甲骑摩托车和乙驾驶汽车沿相同的路线行驶90千米,由A地到B地时,行驶的路程y(千米)与经过的时间x(小时)之间的关系.请根据图象填空:(1)摩托车的速度为千米/小时;汽车的速度为千米/小时;(2)汽车比摩托车早小时到达B地.(3)在汽车出发后几小时,汽车和摩托车相遇?说明理由.5.小泽和小帅两同学分别从甲地出发,骑自行车沿同一条路到乙地参加社会实践活动.如图折线OAB和线段CD分别表示小泽和小帅离甲地的距离y(单位:千米)与时间x(单位:小时)之间函数关系的图象.根据图中提供的信息,解答下列问题:(1)小帅的骑车速度为千米/小时;点C的坐标为;(2)求线段AB对应的函数表达式;(3)当小帅到达乙地时,小泽距乙地还有多远?6.一水果贩子在批发市场按每千克1.8元批发了若干千克的西瓜进城出售,为了方便,他带了一些零钱备用.他先按市场价售出一些后,又降价出售.售出西瓜千克数x与他手中持有的钱数y元(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)农民自带的零钱是多少?(2)降价前他每千克西瓜出售的价格是多少?(3)随后他按每千克下降0.5元将剩余的西瓜售完,这时他手中的钱(含备用的钱)是450元,问他一共批发了多少千克的西瓜?(4)请问这个水果贩子一共赚了多少钱?7.秋高气爽,宜登高望远,张老师从小区大门出发,匀速步行前往南山,出发8分钟,他发现手机落在了小区大门,立即原速返回,张老师出发8分钟时,邻居老朱也匀速步行,从小区大门出发沿相同路线前往南山,张老师回到起点后用了4分钟才找到手机,之后一路小跑去追赶老朱,最终两人同时到达南山,开始了愉快的爬山之旅,两人之间的距离y(米)与张老师出发所用时间x(分)之间的关系如图所示,结合图象信息解答下列问题:(1)张老师最初出发的速度为米/分,a=,老朱步行的速度为米/分;(2)b=,c=,张老师回到起点,找到手机之后的速度为米/分;(3)小区大门与南山之间的距离为多少?8.从甲地到乙地,先是一段上坡路,然后是一段平路,小冲骑车从甲地出发,到达乙地后休息一段时间,然后原路返回甲地.假设小冲骑车在上坡、平路、下坡时分别保持匀速前进,已知小冲骑车上坡的速度比平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km,设小冲出发xh后,到达离乙地ykm的地方,图中的折线ABCDEF表示y与x之间的函数关系.(1)求小冲在平路上骑车的平均速度以及他在乙地的休息时间;(2)分别求线段AB、EF所对应的函数关系式;(3)从甲地到乙地经过丙地,如果小冲两次经过丙地的时间间隔为0.85h,求丙地与甲地之间的路程.9.某景区售票处规定:非节假日的票价打a折售票;节假日根据团队人数x(人)实行分段售票:若x≤10,则按原展价购买;若x>10,则其中10人按原票价购买,超过部分的按原那价打b折购买.某旅行社带团到该景区游览,设在非节假日的购票款为y1元,在节假日的购票款为y2元,y1、y2与x之间的函数图象如图所示.(1)观察图象可知:a=,b=;(2)当x>10时,求y2与x之间的函数表达式;(3)该旅行社在今年5月1日带甲团与5月10日(非节假日)带乙团到该景区游览,两团合计50人,共付门票款3120元,已知甲团人数超过10人,求甲团人数与乙团人数.10.李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,多宝鱼价格z(单位:元/千克)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?11.甲乙两车从A市去往B市,甲比乙早出发了2个小时,甲到达B市后停留一段时间返回,乙到达B市后立即返回.甲车往返的速度都为40千米/时,乙车往返的速度都为20千米/时,如图是两车距A市的路程S(千米)与行驶时间t(小时)之间的函数图象,请结合图象回答下列问题:(1)A、B两市的距离是千米,甲到B市后小时乙到达B市;(2)求甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式,并写出自变量t的取值范围;(3)请直接写出甲车从B市往回返后再经过几小时两车相遇.12.周末,甲、乙两人从学校出发去公园游玩,甲骑自行车出发0.5小时后到达苏果超市,在超市里休息了一段时间,再以相同的速度前往公园.乙因为一些事情耽搁了一些时间,在甲出发小时后,乙驾驶电瓶车沿相同的路线前往公园,如图,是他们离学校的路程y (km)与行走的时间x(h)的函数图象.已知乙驾驶电瓶车的速度是甲骑自行车的2倍.(1)求甲的速度和在苏果超市休息的时间;(2)乙出发后多长时间追上甲?13.如图是一辆摩托车从家里出发,离家的距离(千米)随行驶时间(分)的变化而变化的情况:(1)摩托车从出发到最后停止共经过了多少时间?离家最远的距离是多少?(2)摩托车在哪一段时间内速度最快?最快速度是多少?14.diaoyudao自古就是中国领土,中国政府已对钓鱼开展常态化巡逻.某人,为按计划准点到达指定海拔,某巡逻艇凌晨1:00出发,匀速行驶一段时间后,因中途出现故障耽搁了一段时间,故障排除后,该艇加快速度仍匀速前进,结果恰好准点到达.如图是该艇行驶的路程y(海里)与所用时间t(小时)的函数图象,求该巡逻艇原计划准点到的时间.15.甲、乙两地相距210千米,一辆货车将货物由甲地运至乙地,卸载后返回甲地.若货车距乙地的距离y(千米)与时间t(时)的关系如图所示,根据所提供的信息,回答下列问题:(1)货车在乙地卸货停留了多长时间?(2)货车往返速度,哪个快?返回速度是多少?16.A、B两地相距600千米,甲、乙两车同时从A地出发驶向B地,甲车到达B地后立即返回,它们各自离A地的距离y(千米)与行驶时间x(时)之间的函数关系图象如图所示.(1)求甲车行驶过程中y与x之间的函数关系式;(2)当它们行驶了7小时时,两车相遇,求乙车的速度.17.周末,小明和弟弟从家出发,步行去吉林省图书馆学习.出发2分钟后,小明发现弟弟的数学书忘记带了,弟弟继续按原速前往图书馆,小明按原路原速返回家取书,然后骑自行前往图书馆,恰好与弟弟同时到达图书馆.小明和弟弟各自距家的路程y(m)与小明步行的时间x(min)之间的函数图象如图所示.(1)求a的值.(2)求小明取回书后y与x的函数关系式.(3)直接写出小明取回书后与弟弟相距100m的时间.18.随着地球上的水资源日益枯竭,各级政府越来越重视倡导节约用水.某市市民生活用水按“阶梯水价”方式进行收费,人均月生活用水收费标准如图所示,图中x表示人均月生活用水的吨数,y表示收取的人均月生活用水费(元).请根据图象信息,回答下列问题:(1)该市人均月生活用水不超过6吨时,求y与x的函数解析式;(2)该市人均月生活用水超过6吨时,求y与x的函数关系式;(3)若某个家庭有5人,六月份的生活用水费共75元,则该家庭这个月人均用了多少吨生活用水?19.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A的距离y(千米)与甲车行驶时间t(小时)之间的函数关系如图所示,根据图上信息回答.(1)A、B两城相距千米;乙车比甲车晚出发小时,却早到小时;(2)乙车出发后多少小时追上甲车?(3)多少小时甲、乙两车相距50千米时?20.甲、乙两车分别从相距480km的A、B两地相向而行,乙车比甲车先出发1小时,并以各自的速度匀速行驶,途径C地,甲车到达C地停留1小时,因有事按原路原速返回A 地.乙车从B地直达A地,两车同时到达A地.甲、乙两车距各自出发地的路程y(千米)与甲车出发所用的时间x(小时)的关系如图,结合图象信息解答下列问题:(1)图中点A表达的含义正确的是;(只填序号)①乙车出发时距离B地的路程.②甲车出发时距离A地的路程.③甲车出发时,乙车距离B地的距离.④乙车出发1小时后,距离B地的路程.(2)乙车的速度是千米/时,a=小时;甲车的速度是千米/时,t=小时.(3)在甲车到达C地之前,两车是否相遇?若相遇,求出在甲车出发后多久相遇?若没有相遇,说明理由.参考答案1.解:(1)由图象可知,小张在路上停留1小时,他从乙地返回时骑车的速度为:60÷(6﹣4)=30千米/时,故答案为:1,30;(2)如右图所示,图中虚线表示y=12x+10,由图象可知,小王与小张在途中相遇2次,故答案为:2;(3)设当2≤x≤4时,小张对应的函数解析式为y=kx+b,,得,∴当2≤x≤4时,小张对应的函数解析式为y=20x﹣20,∴,解得,,即小王与小张在途中第一次相遇的时间为小时.2.解:(1)设y与x之间的函数解析式为y=kx+b,,得,即y与x之间的函数关系式是y=x﹣6;(2)当y=0时,0=x﹣6,得x=30即每位旅客最多可免费携带行李30千克.3.解:(1)∵乌龟是一直跑的而兔子中间有休息的时刻,∴折线OABC表示赛跑过程中兔子的路程与时间的关系;由图象可知:赛跑的全过程为1500米;故答案为:兔子,1500;(2)结合图象得出:兔子在起初每分钟跑700÷2=350(米),乌龟每分钟爬1500÷50=30(米).(3)700÷30=(分钟),所以乌龟用了分钟追上了正在睡觉的兔子.(4)∵兔子跑了700米停下睡觉,用了2分钟,∴剩余800米,所用的时间为:800÷400=2(分钟),∴兔子睡觉用了:50.5﹣2﹣2=46.5(分钟).所以兔子中间停下睡觉用了46.5分钟.4.解:(1)摩托车的速度为:90÷5=18千米/小时,汽车的速度为:90÷(4﹣2)=45千米/小时,故答案为:18、45;(2)5﹣4=1,即汽车比摩托车早1小时到达B地,故答案为:1;(3)解:在汽车出发后小时,汽车和摩托车相遇,理由:设在汽车出发后x小时,汽车和摩托车相遇,45x=18(x+2)解得x=∴在汽车出发后小时,汽车和摩托车相遇.5.解:(1)由图可得,小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,点C的横坐标为:1﹣8÷16=0.5,∴点C的坐标为(0.5,0),故答案为:16千米/小时,(0.5,0);(2)设线段AB对应的函数表达式为y=kx+b(k≠0),∵A(0.5,8),B(2.5,24),∴,解得:,∴线段AB对应的函数表达式为y=8x+4(0.5≤x≤2.5);(3)当x=2时,y=8×2+4=20,∴此时小泽距离乙地的距离为:24﹣20=4(千米),答:当小帅到达乙地时,小泽距乙地还有4千米.6.解:(1)由图可得农民自带的零钱为50元,答:农民自带的零钱为50元;(2)(330﹣50)÷80=280÷80=3.5元,答:降价前他每千克西瓜出售的价格是3.5元;(3)(450﹣330)÷(3.5﹣0.5)=120÷3=40(千克),80+40=120千克,答:他一共批发了120千克的西瓜;(4)450﹣120×1.8﹣50=184元,答:这个水果贩子一共赚了184元钱.7.解:(1)由函数图象可知,张老师出发8分钟行走了480米的路程,∴张老师最初出发的速度为:480÷8=60(m/min),由函数图象知,张老师出发a分钟后,与邻居老朱相距800米,此时为张老师回到起点的时候,∴a=8×2=16(min),老朱的速度为:800÷8=100(m/min),故答案为:60;16;100;(2)根据题意和图象可知,b分钟时张老师找到了手机,∴b=a+4=16+4=20(min),∵c为张老师找到手机时,两相距的路程,∴c=100×(20﹣8)=1200(m),由函数图象知,端点为(b,c)即(20,1200)和(22.5,800)的线段是张老师找到手机后两人相距的距离与张老师出发的时间的一段函数图象,∴张老师找到手机后的速度为:=260(m/min),故答案为:20;1200;260;(3)根据题意知,张老师找到手机后一路小跑去追上老朱时,所跑步的路程全是小区到南山的距离.=1950(m).答:小区大门与南山之间的距离为1950m.8.解:(1)小冲骑车上坡的速度为:(6.5﹣4.5)÷0.2=10(km/h),平路上的速度为:10+5=15(km/h);下坡的速度为:15+5=20(km/h),平路上所用的时间为:2(4.5÷15)=0.6h,下坡所用的时间为:(6.5﹣4.5)÷20=0.1h所以小冲在乙地休息了:1﹣0.1﹣0.6﹣0.2=0.1(h);(2)由题意可知:上坡的速度为10km/h,下坡的速度为20km/h,所以线段AB所对应的函数关系式为:y=6.5﹣10x,即y AB=﹣10x+6.5(0≤x≤0.2).线段EF所对应的函数关系式为y EF=4.5+20(x﹣0.9).即y EF=20x﹣13.5(0.9≤x≤1);(3)由题意可知:小冲第一次经过丙地在AB段,第二次经过丙地在EF段,设小冲出发a小时第一次经过丙地,则小冲出发后(a+0.85)小时第二次经过丙地,6.5﹣10a=20(a+0.85)﹣13.5,解得:a=.×10=1(千米).答:丙地与甲地之间的距离为1千米.9.解:(1)门票定价为80元/人,那么10人应花费800元,而从图可知实际只花费480元,是打6折得到的价格,所以a=6;从图可知10人之外的另10人花费640元,而原价是800元,可以知道是打8折得到的价格,所以b=8,故答案为:6,8;(2)当x>10时,设y=kx+b.2∵图象过点(10,800),(20,1440),∴,解得,=64x+160 (x>10),∴y2(3)设甲团有m人,乙团有n人.由图象,得y=48x,1当m>10时,依题意,得,解得,答:甲团有35人,乙团有15人.10.解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+300.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.(3)设多宝鱼价格z与上市时间x的函数解析式为z=mx+n,当5≤x≤15时,有,解得:,∴此时多宝鱼价格z与上市时间x的函数解析式为y=﹣2x+42.当x=10时,y=10×10=100,z=﹣2×10+42=22,当天的销售金额为:100×22=2200(元);当x=12时,y=10×12=120,z=﹣2×12+42=18,当天的销售金额为:120×18=2160(元).∵2200>2160,∴第10天的销售金额多.11.解:(1)3×40=120,乙车所用时间:=6,2+6﹣3=5,答:A、B两市的距离是120千米,甲到B市后5小时乙到达B市;故答案为:120,5;(2)由题意得:A(10,120),B(13,0),设甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=kt+b,把A(10,120),B(13,0)代入得:,解得:,∴甲车返回时的路程S(千米)与时间t(小时)之间的函数关系式为:S=﹣40t+520(10≤t≤13);(3)由题意得:C(8,10),120﹣(10﹣8)×20=80,∴D(10,80),设直线CD的解析式为:S=kt+b,把C(8,120)、D(10,80)代入得:,解得:,∴直线CD的解析式为:S=﹣20t+280,则:,﹣40t+520=﹣20t+280,t=12,12﹣10=2,答:甲车从B市往回返后再经过2小时两车相遇.12.解:(1)由图象得:甲骑车速度:10÷0.5=20(km/h);由函数图象得出,在苏果超市休息的时间是1﹣0.5=0.5h;(2)乙驾车速度:20×2=40(km/h)设直线OA的解析式为y=kx(k≠0),则10=0.5k,解得:k=20,故直线OA的解析式为:y=20x.∵甲走OA段与走BC段速度不变,∴OA∥BC.设直线BC解析式为y=20x+b,1=﹣10把点B(1,10)代入得b1∴y=20x﹣10,,把点D(,0),设直线DE解析式为y=40x+b2=﹣,代入得:b2∴y=40x﹣.∴,解得:x=.∴F点的横坐标为,﹣=,则乙出发小时追上甲.13.解:(1)摩托车从出发到最后停止共经过:100分钟;离家最远的距离是:40千米.(2)摩托车在20~50分钟内速度最快;最快速度是:30÷=60(千米/小时)14.解:由图象及题意,得故障前的速度为:80÷1=80海里/时,故障后的速度为:(180﹣80)÷1=100海里/时.设航行额全程有a海里,由题意,得=2+,解得:a=480,则原计划行驶的时间为:480÷80=6小时,解法二:设原计划行驶的时间为t小时,80t=80+100(t﹣2)解得:t=6,故计划准点到达的时刻为:7:00.15.解:(1)∵4.5﹣3.5=1(小时),∴货车在乙地卸货停留了1小时;(2)∵7.5﹣4.5=3<3.5,∴货车返回速度快,∵=70(千米/时),∴返回速度是70千米/时.16.解:(1)当0≤x≤6时,设甲车行驶过程中y与x之间的函数关系式为y=mx,把(6,600)代入y=mx,6m=600,解得m=100,∴y=100x;当6<x≤14时,设甲车行驶过程中y与x之间的函数关系式为y=kx+b,把(6,600)、(14,0)代入y=kx+b,得解得,∴y=﹣75x+1 050;即甲车行驶过程中y与x之间的函数关系式为:y=;(2)当x=7时,y=﹣75x+1 050解得,y=﹣75×7+1 050=525,525÷7=75(千米/时),即乙车的速度为75千米/时.17.解:(1)a=200÷2×8=800.(2)设小明取回书后y与x的函数关系式是y=kx+b.由题意,得解得(4分)∴小明取回书后y与x的函数关系式是y=200x﹣800.(3)由题意100x﹣(200x﹣800)=100,解得x=7∴7min后小明与弟弟相距100m.18.解:(1)该市人均月生活用水不超过6吨时,设y与x的函数解析式是y=kx,则9=6k,得k=1.5,即该市人均月生活用水不超过6吨时,y与x的函数解析式是y=1.5x;(2)该市人均月生活用水超过6吨时,设y与x的函数关系式是y=mx+n,则,解得,即该市人均月生活用水超过6吨时,y与x的函数关系式是y=3x﹣9;(3)由题意可得,人均月生活用水费为:75÷5=15,将y=15代入y=3x﹣9,得15=3x﹣9,解得,x=8,即该家庭这个月人均用了8吨生活用水.19.解:(1)由图可知,A、B两城相距300千米,乙车比甲车晚出发1小时,却早到1小时,故答案为:300,1,1;(2)设甲对应的函数解析式为:y=kx,300=5k解得,k=60,即甲对应的函数解析式为:y=60x,设乙对应的函数解析式为y=mx+n,解得,,即乙对应的函数解析式为y=100x﹣100,∴解得2.5﹣1=1.5,即乙车出发后1.5小时追上甲车;(3)由题意可得,当乙出发前甲、乙两车相距50千米,则50=60x,得x =,当乙出发后到乙到达终点的过程中,则60x﹣(100x﹣100)=±50,解得,x=1.25或x=3.75,当乙到达终点后甲、乙两车相距50千米,则300﹣50=60x,得x =,即小时、1.25小时、3.75小时、小时时,甲、乙两车相距50千米.20.解:(1)点A表达的含义正确的是甲车出发时,乙车距离B地的距离或乙车出发1小时后,距离B地的路程.故答案为③④.(2)乙车的速度是60千米/小时,a ==7小时,甲的速度==120千米/小时,t ==3小时.故答案为60,7,120,3.(3)相遇.设在甲车出发x小时后相遇.由题意(120+60)x=480﹣60解得x =,答:在甲车出发小时后相遇.21。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档