材料力学 第十章 压杆稳定问题

合集下载

材料力学10压杆稳定_1欧拉公式

材料力学10压杆稳定_1欧拉公式

◆ 本例中,三杆截面面积基本相等,但由于其形状不同, Imin 不
同,致使临界力相差很大。最合理的截面形状为圆环形。
14
[例3] 图示各杆均为圆形截面细长压杆。已知各杆的材料及直径相 等。问哪个杆先失稳? 解:由于各杆的材料及 截面均相同,故只需比
1.3 a F F F
较其相当长度 l 即可
a
杆A: 2 l 2a
F
F
2 1
0.7
压杆两端固定可轴向移动:
0.5
6
上述弹性压杆临界力的计算公式称为欧拉公式
Fc r
π 2 EI
l
2
说明: 1)欧拉公式的适用范围:线弹性( ≤ p)
2)在压杆沿各个方向约束性质相同的情况下(即各个方向上 的 相等),I 应取最小值 3) l 称为压杆的相当长度
2
2000年10月25日上午10 时,南 京电视台演播中心由于脚手架 失稳使屋顶模板倒塌,导致死 6 人,伤 34 人。
3
2010年1月3日,通往昆明新机场的一座在建桥梁施工时因 支撑结构中的压杆失稳而坍塌,共导致 40 余人死伤。
4
二、压杆的临界力 使压杆由稳定向失稳转化的轴向压力的界限值称为压杆的临界力, 记作 Fcr 。即当 F < Fcr : 压杆稳定 F ≥ Fcr : 压杆失稳 亦可将压杆的临界力 Fcr 理解为使压杆失稳的最小轴向压力
hb3 1 Iy 90 403 48 108 m 4 12 12
根据欧拉公式,此压杆的临界力
Fcr
π 2 EI y l
2
23.8 kN
11
[例2] 一端固定,一端自由的中心细长压杆。已知杆长 l = 1m , 材 料的弹性模量 E = 200 GPa。当分别采用图示三种截面时,试计算 其临界力。

材料力学10压杆稳定_2经验公式

材料力学10压杆稳定_2经验公式
其中,直线公式适用的柔度的界限值 s = (a-s) / b,为材料常数
这类杆称为中长杆(或中柔度杆),亦即直线公式适用于中长杆 (或中柔度杆)
说明: 当 ≤ s,称为粗短杆,则应按强度问题处理。
三、临界应力总图
压杆的临界应力 cr 可视作压杆柔度 的分段函数,即
π2E 2
cr
查表得 a = 461 MPa、b = 2.567 MPa
临界应力 临界力
cr a b 461 2.567 64.7 294.9 MPa Fcr cr A 162.7 kN
3)由于连杆在 x-y、x-z 两个平面内的柔度 z = 64.7、y = 57.4 比

π 2 EI min
0.7l 2
870 kN
2)两端固定但可沿轴向相对移动
长度因数 = 0.5, 立柱柔度
3600
zz
s


l
imin

0.5 3600 24
75 p
此时,立柱为中柔度杆,应用直线公式计算其临界力
由表 10-2 查得 a = 304 MPa,b = 1.12 MPa
临界应力 临界力
cr a b 304 1.12 75 220 MPa Fcr cr A 220 48.541 1068 kN
[例2] 图示连杆,已知材料为优质碳钢,弹性模量 E = 210×109 GPa, 屈服极限 s = 306 MPa。试确定该连杆的临界力Fcr ,并说明横截面的 设计是否合理。
解: 由于连杆在两 个方向上的约束情 况不同,故应分别 计算连杆在两个纵 向对称平面内的柔 度,柔度大的那个 平面即为失稳平面
1)计算柔度 在 x-y 平面(弯曲中性轴为 z 轴): 两端铰支

《材料力学压杆稳定》课件

《材料力学压杆稳定》课件

05
压杆稳定性设计原则与实例
压杆稳定性设计原则
压杆稳定性是指压杆在受到外力作用 时,能够保持其原有平衡状态的能力 。
压杆稳定性设计原则是确保压杆在使 用过程中能够承受外力作用,避免发 生失稳和破坏的关键。
设计压杆时,应遵循以下原则:选择 合适的材料、确定合理的截面尺寸、 优化压杆长度和形状、避免过大的偏 心载荷等。
本课程介绍了多种稳定性分析方法,包括欧拉公式法、经验公式法、能量法等。通过这些 方法的学习和应用,我们能够根据不同情况选择合适的分析方法,对杆件进行准确的稳定 性评估。
实际应用与案例分析
本课程结合实际工程案例,对压杆稳定问题进行了深入的探讨和分析。通过这些案例的学 习,我们了解了压杆稳定问题在实际工程中的重要性和应用价值,提高了解决实际问题的 能力。
不同截面形状的压杆,其临界载荷和失稳形态 存在差异。
支撑条件
支撑刚度、支撑方式等对压杆的稳定性有重要 影响。

提高压杆稳定性的措施
选择合适的材料
选择具有高弹性模量和合适泊松 比的材料,以提高压杆的稳定性

优化截面形状与尺寸
通过改变截面形状或增加壁厚等 方法,提高压杆的稳定性。
改善支撑条件
采用具有足够刚度的支撑,并合 理布置支撑位置,以提高压杆的
的比率。
03
压杆稳定性的定义与分类
压杆稳定性的定义
压杆稳定性是指压杆在受到轴向 压力时,保持其平衡状态而不发
生弯曲或屈曲变形的能力。
压杆稳定性问题主要关注的是压 杆在轴向压力作用下,是否能够 保持直线形状而不发生弯曲变形

压杆的稳定性取决于其自身的力 学特性和外部作用力的大小和分
布。
压杆稳定性的分类

材料力学-10-压杆的稳定问题

材料力学-10-压杆的稳定问题

0 A+1 B 0 sinkl A coskl B 0
根据线性代数知识,上述方程中,常数A、B不全为零 的条件是他们的系数行列式等于零:
0
1
sinkl coskl
0
sinkl 0
第10章 压杆的稳定问题
两端铰支压杆的临界载荷欧拉公式
sinkl 0
FP k EI
第10章 压杆的稳定问题
临界应力与临界应力总图 长细比是综合反映压杆长度、约束条件、截面尺寸和截面 形状对压杆分叉载荷影响的量,用表示,由下式确定:

l
i
I A
其中,I为压杆横截面的惯性半径,由下式确定:
i
从上述二式可以看出,长细比反映了压杆长度、支承条件以 及压杆横截面几何尺寸对压杆承载能力的综合影响。
不同刚性支承条件下的压杆,由静力学平衡方法得到的平衡 微分方程和边界条件都可能各不相同,确定临界载荷的表达式亦 因此而异,但基本分析方法和分析过程却是相同的。对于细长杆, 这些公式可以写成通用形式:
FPcr
π 2 EI
l
2
这一表达式称为欧拉公式。其中l为不同压杆屈曲后挠曲线上正弦 半波的长度,称为有效长度(effective length); 为反映不同支承 影响的系数,称为长度系数(coefficient of 1ength),可由屈曲后 的正弦半波长度与两端铰支压杆初始屈曲时的正弦半波长度的比 值确定。
第10章 压杆的稳定问题
临界应力与临界应力总图
临界应力与长细比的概念
前面已经提到欧拉公式只有在弹性范围内才是适用的。这 就要求在分叉载荷即临界载荷作用下,压杆在直线平衡构形时, 其横截面上的正应力小于或等于材料的比例极限,即

材料力学之压杆稳定

材料力学之压杆稳定

25
解: 图 (a) 中, AD 杆受压
N AD
2EI
2 P1
2
2a
1 2EI
P1 22
a2
图 (b) 中, AB , BD 杆受压
N AB
NBD
P2
2EI a2
2EI
P2 a 2
26
例: 长方形截面细长压杆, b/h=1/2 ; 如果将 b 改为 h 后
仍为细长杆, 临界力 Pcr 是原来的多少倍?
解: (1).
Pcr
2EI ( l)2
2E d4
64
( l)2
1 16
(2).
2E I正
Pcr正 ( l)2 Pcr圆 2 E I 圆
I正 I圆
a4
12
d4
d
4
2
2
12
d4
3
( l)2
64
64
28
例: 三种不同截面形状的细长压杆如图所示。 试: 标出压杆失稳时各截面将绕哪根形心主惯性轴转动。
解:
2E Ib
Pcr b Pcr a
( l)2 2EIa
( l)2
Ib Ia
h4
12 hb 3
h b
3
8
12
27
例: 圆截面的细长压杆, 材料、杆长和杆端约束保持
不变, 若将压杆的直径缩小一半, 则其临界力为 原压杆的_116_; 若将压杆的横截面改变为面积相同 的正方形截面, 则其临界力为原压杆的__3 倍。
工程上要求 Pmax< Pcr
与压杆的材料、截面形式、 长度、及杆端约束有关1。8
§10-2 细长压杆的临界压力欧拉公式
一. 两端铰支细长压杆的临界压力 设: 理想的中心受压细长杆, 在最小抗弯平面内失稳。

压杆·稳定性

压杆·稳定性

=
2 ,因为 h>b ,则 I y
=
hb3 12
< bh3 12
=
Iz ,由式(10.3)得
Pcr
=
π 2 EI (μl)2
=
π2
× (200 ×103
MPa) × ( 1 × 40 mm × (20 12
(2 ×1000 mm)2
mm)3 ) ≈13200
N
= 13.2
kN
10.2.2 临界应力
当压杆受临界压力作用而维持其不稳定直线平衡时,横截面上的压应力仍然可按轴向压
10.3.2 临界应力经验公式与临界应力总图
在工程实际中,常见压杆的柔度λ 往往小于 λp ,即 λ<λp ,这样的压杆横截面上的应力 已超过材料的比例极限,属于弹塑性稳定问题。这类压杆的临界应力可通过解析方法求得, 但通常采用经验公式进行计算。常见的经验公式有直线公式与抛物线公式等,这里仅介绍直 线公式。把临界应力 σcr 与柔度λ 表示为下列直线关系称为直线公式。
式中,λ 称为压杆的柔度或长细比,为无量纲量,它综合反映了压杆的长度、约束形式及截 面几何性质对临界应力的影响。于是,式(10.4)中的临界应力可以改写为
·219·
材料力学
σ cr
=
π2E λ2
式(10.6)是欧拉公式(10.3)的另一种表达形式,两者并无实质性差别。
(10.6)
10.3 欧拉公式的适用范围·临界应力总图·直线公式
2
≤σ
p

λ≥π E σp
(10.7)

于是条件式(10.7),可以写成
λP = π
E σp
(10.8)
λ ≥ λp
(10.9)

第十章 材料力学压杆稳定

第十章 材料力学压杆稳定
2
y
即 : 189.325.612.74(1.52a/2) 时合理
a4.32 cm
求临界力:

L 0.76
i Iz 2A1

0.76 396.610 212.74104
8
106.5
2 E 220010 9 p 99.3 6 P 20010
2 EI
(2l ) 2
=1
0.7
=0.5
=2
2l
l
例1钢质细长杆,两端铰支,长l=1.5m,横截面是矩形截面, h=50 mm,b=30 mm,材料是A3钢,弹性模量E=200GPa; 求临界力和临界应力。 解:
(1)由于杆截面是矩形,杆在不同方向发生弯曲的难易程度不同, 如下图
因为 Iy<Iz,所以在各个方向上发生弯曲时约束条件相同的情况下, 压杆最易在xz平面内发生弯曲;
三、其它支承情况下,压杆临界力的欧拉公式
2 EI min Pcr ( L) 2
压杆临界力欧拉公式的一般形式
—长度系数(或约束系数)。
1.一端固定一端自由的细长压杆,它相当于两端铰支长为2l的 压杆的挠曲线的一半部分;
2 EI 2 EI
4l
2
Pcr
2l
2

P l l
2.二端固定的细长压杆,其中间部分(0.5l) 相当于两端铰支长为 0.5l的压杆;
②挠曲线近似微分方程: M P y y EI EI P y y y k 2 y0 EI P 2 其中 :k EI
y
P x
M
P
③微分方程的解: ④确定积分常数:
y Asin xBcosx y(0) y( L)0
A0B0 即 : AsinkLBcoskL0

材料力学第十章 压杆稳定性问题2

材料力学第十章 压杆稳定性问题2
在求Pcr 及 cr的基础上,进行稳定性校核。 的基础上 进行稳定性校核
Pcr P Pcr nst
nst 为稳定安全系数, 为稳定安全系数 一般大于强度安全系数 般大于强度安全系数。 由于初曲率、载荷偏差、材料不均匀、有钉子孔 等 都会降低 Pcr 。而且柔度越大,影响越大。 等,都会降低 而且柔度越大 影响越大
S
cr
max
若 P ,图中CD段选欧拉公式 若 S P ,图中 图中BC段选经验公式 若 S ,图中AB段按强度计算,即 cr
何斌
s
Page 13
Q235钢制成的矩形截面杆,两端约束以及所承受的载 荷如图示 荷如图示((a)为正视图(b)为俯视图),在AB两处为销钉 为 视图 为俯视图 在 两处为销钉 连接。若已知L=2300mm,b=40mm,h=60mm。材料的弹性模 量E=205GPa。试求此杆的临界载荷。 正视图平面弯曲截面z绕轴 正视图平面弯曲截面z 转动;俯视图平面弯曲截 面绕y 面绕 y轴转动。 轴转动 正视图:
2 对中长杆由于 cr与 P , s b 有关 2. 强度越高, cr也越高 3 对短粗杆:强度问题 3. 对短粗杆 强度问题
何斌
P

时才适用
2E P 2
2E P
E
P
P
欧拉公式适用于 P
Page 6
材料力学
第十章 压杆稳定问题
10.4 临界应力和长细比 细长杆 中长杆和短粗杆 细长杆、中长杆和短粗杆
1.细长杆: ① P 的压杆称为细长杆。 的压杆称为细长杆 ② 此类压杆只发生了弹性失稳 ③ 稳定计算:欧拉公式 稳定计算 欧拉公式
何斌

材料力学第十章压杆稳定

材料力学第十章压杆稳定


π2

200 103 108 (2 2500 )2
10 4
N

85187N
85.19kN
10-3 欧拉公式的适用范围及经验公式
1、临界应力与柔度
将临界压力除以压杆的横截面面积A,就可以得到与临界压力
对应的应力为
cr

Fcr A

π2EI
(l)2 A
cr即为临界应力。
利用惯性半径 i 和惯性矩 I 的关系:
但在已经导出 两端铰支压杆的临 界压力公式之后, 便可以用比较简单 的方法,得到其他 约束条件下的临界 力。
l 2l
F
F 一端固定,一端自由,
长为l 的的压杆的挠曲线
和两端铰支,长为2l的
压杆的挠曲线的上半部
分相同。则临界压力:
Fcr

π 2 EI (2l)2
2、其它支承情况下细长压杆的临界力
利用同样的方法得到: 两端固定的压杆的临界压力为:
F
Fcr

π 2 EI
( l ) 2
π2 200 103 48 10 4 N (2 2500 )2
b z
l h
37860N 37.86kN
y
若 h b 60mm
Iy

Iz

bh3 12

60 4 12
mm
108 10 4 mm
Fcr

π 2 EI
( l ) 2
1、计算s, p
p
π2E
p
π2 210109 280106
86
查表优质碳钢的 a、b
s
a s
b

材料力学 第10章 压杆稳定

材料力学 第10章 压杆稳定
Fcr (2l )2
μ=2
欧拉临界压力公式 :
Fcr
2 EI (l )2
应用欧拉公式时,应注意以下两点:
1、欧拉公式只适用于线弹性范围,即只适用于弹性稳定问题
2、 I 为压杆失稳发生弯曲时,截面对其中性轴的惯性矩。
对于各个方向约束相同的情形(例如球铰约束),I 取截面的 最小惯性矩,即 I=Imin;
Fcr
2 EI (l )2
压杆临界压力欧拉公式的一般形式
E——材料的弹性模量;
—长度系数(或约束系数),反映了杆端支承对临界载
荷的影响。
压杆临界力与外
l—压杆的计算长度或相当长度。 力有关吗??
l—压杆的实际长度。
I—压杆失稳发生弯曲时,截面对其中性轴的惯性矩。
适用条件:1.理想压杆;2.线弹性范围内
第10章 压杆稳定
第10章 压杆稳定
§10.1 §10.2 §10.3 §10.4 §10.5 §10.6
工程中的压杆稳定问题 理解
压杆稳定性概念 掌握
细长压杆临界压力的欧拉公式 掌握
压杆的临界应力 掌握
压杆的稳定性计算
掌握
提高压杆稳定性的措施
了解
关键术语
压杆,稳定性,屈曲,稳定失效,临界压力Fcr, 柔度λ(长细比),计算长度μl
重点 1、细长压杆临界压力的欧拉公式 2、压杆的临界应力 3、压杆临界载荷的欧拉公式的适用条件 4、压杆稳定性设计
难点 1、压杆临界压力的计算 2、压杆稳定性设计
§10.1 工程中的压杆稳定问题
构件的承载能力:
①强度 ②刚度 ③稳定性
工程中有些构件 具有足够的强度、刚 度,却不一定能安全 可靠地工作。
F
30mm

材料力学-10-压杆的稳定性问题

材料力学-10-压杆的稳定性问题
材料力学-10-压杆的稳定 性问题
欢迎来到材料力学-10-压杆的稳定性问题演示文稿。今天,我们将探讨压杆的 定义、分类以及影响其稳定性的因素。
压杆的定义和分类
压杆是一种长而细的结构元素,主要通过压力来支撑负载。根据其截面形状,压杆可以分为圆形、方形 和矩形等不同类型。
欧拉公式简介
欧拉公式是用于计算压杆的临界压力的重要公式。它基于结构的刚度和截面的几何特性,帮助我们预测 压杆在不同加载条件下的稳定性。
实例分析
通过实例分析,我们将深入探讨具体的压杆结构,并分析其稳定性问题。了 解实际案例对于理解压杆稳定性的关键因素至关重要。
结论和要点
在本演示文稿中,我们回顾了压杆的定义和分类,介绍了欧拉公式及其应用,探讨了稳定性分析的关键 因素,并通过实例分析展示了压杆的真实应用。记住这些要点,您将能够更好公式
临界压力计算公式是通过将欧拉公式代入材料的弹性模量和截面的惯性矩,从而得出压杆在理想情况下 可能失稳的临界加载。
压杆的稳定性分析
压杆的稳定性分析涉及到考虑加载条件、几何形状以及材料性质等因素。我们将使用数学模型和工程实 践来评估压杆在给定条件下的稳定性。
缺陷对稳定性的影响
压杆的稳定性可能受到结构缺陷的影响,如划伤、弯曲或异物。我们将研究 这些因素如何改变压杆的临界压力和整体稳定性。

材料力学10压杆稳定_4稳定条件_折减系数法

材料力学10压杆稳定_4稳定条件_折减系数法

7
.7
查表得折减系数 1 0.354
l
由于所得 1与 1 相差过大,故需进行第二次试算
2)第二次试算
可取折减系数
2

1
1
2

0.427 ,根据稳定条件


F A2

300 103 A2
N
≤2
0.427 170 106
Pa
5
2)确定折减系数
压杆柔度 l 1 2000 mm 80.0
i cos 30o 28.87 mm
查表得折减系数
2m
1m
0.470
30o
3)稳定计算
a
a
根据压杆的稳定条件,
AB

FAB A

3F a2

3F 0.12 m2
≤ 0.47010106 Pa


F A1

300 103 A1
N
≤1
0.5 170 106
Pa
l
求得此时压杆的横截面面积
A1 ≥ 35.3cm2 查工字钢型钢表,可选 No. 20a 工字钢 根据 No. 20a 工字钢的截面几何参数,压杆柔度
1

l
i

0.7 420 cm 2.12 cm
138.7
减系数或稳定因数
1
二、压杆的稳定条件


F A
≤[st ] [ ]
说明: 1)对于等截面压杆,满足稳定条件一定满足强度条件 2)压杆局部截面的削弱不会影响整体的稳定性,但需补充对削弱 截面进行强度校核。
2
第七节 提高压杆稳定性的措施

材料力学-10-压杆的稳定问题

材料力学-10-压杆的稳定问题
其中a和b为与材料有关的常数,单位为MPa (P247) 。
10.3 长细比与压杆分类
表10-1 常用工程材料的a和b数值 (P247)
10.3 长细比与压杆分类
3、粗短杆
——不发生屈曲,而发生屈服
s
对于粗短杆,临界应力即为材料的屈服应力:
cr s
三、 临界应力总图与P、s值的确定
π EI FPcr 2 l
10.2 细长压杆的临界荷载 欧拉公式
3.两端固定
同理
M C 0, M D 0
D
FPcr
C
π EI 2 0.5l
2
π EI FPcr 2 l
2
10.2 细长压杆的临界荷载 欧拉公式
两端铰支 =1.0
一端自由, 一端固定 =2.0
一端铰支, 一端固定 =0.7
因为
1.3a
l 1 l 2 l 3
π 2 EI l 2
a
(1)
(2)
(3)
又 故
FPcr
FPcr1 FPcr2 FPcr3
(1)杆承受的压力最小,最先失稳; (3)杆承受的压力最大,最稳定。
10.2 细长压杆的临界荷载 欧拉公式
例题 2
P
c
a\2
已知:图示压杆EI ,且 杆在B支承处不能转动。 求:临界压力。
A
π 2 EI 0.5a 2
第10章 压杆的稳定问题
10.3 长细比与压杆分类
10.3 长细比与压杆分类
一、 临界应力与长细比的概念
欧拉公式应用于线弹性范围
FPcr cr p A
σcr——临界应力(critical stress); σp——材料的比例极限。 能否在计算临界荷载之前,预先判断压杆是否 发生弹性屈曲?

材料力学10压杆稳定_3稳定条件_安全因数法

材料力学10压杆稳定_3稳定条件_安全因数法

丝杠的临界应力 丝杠的临界力
cr a b 268.4 MPa Fcr cr A 337.1 kN
3)稳定性校核 丝杠的工作安全因数
n
Fcr Fmax

337.1103 N 80103 N
4.21 nst
4
所以,丝杠稳定性满足要求。
[例2] 液压装置的活塞杆如图,已知液压缸内径 D = 65 mm,油压 p
第五节 压杆的稳定计算·安全因数法
一、压杆的稳定条件
F ≤ Fcr ns t

n

Fc r F
≥ nst
其中,nst 为规定的稳定安全因数,一般应高于强度安全因数 n 为实际的工作安全因数
说明: 1)对于等截面压杆,满足稳定条件一定满足强度条件。
2)压杆局部截面的削弱不会影响其整体的稳定性,但需补充对削 弱截面进行强度校核。
2)减小杆长 l
3)采用合理的截面形状,使压杆在各个方向上的柔度 大致相等
[例1] 千斤顶如图,已知丝杠长度 l = 375 mm,有效直径 d = 40 mm,
材料为45 钢,所受最大轴向压力 Fmax = 80 kN,规定的稳定安全系数 为 nst = 4,试校核丝杠的稳定性。
解: 1)计算丝杠柔度ຫໍສະໝຸດ 2)计算 AB 杆柔度查表得 Q235 钢的柔度界限值
p 100
AB 杆柔度
s 61.4 l 80
i
3)计算 AB 杆临界力
由于 s < < p ,AB 杆属于中长杆,

故采用直线公式计算其临界力
cr a b 214 MPa
Fcr Acr 268 kN
丝杠可简化为一端固定、一端自由的压杆

材料力学--压杆稳定问题 ppt课件

材料力学--压杆稳定问题  ppt课件


F

Fcr nst

151.47 3
50.5KN
所以起重机架的最大起重量取决于杆AC的强度,为
Fmax 26.7KN
材料力学
PPT课件
42
例8-4 图示托架结构,梁AB与圆杆BC 材料相同。梁AB为16号工字 钢,立柱为圆钢管,其外径D=80 mm,内径d=76mm,l=6m,a=3 m, 受均布载荷q=4 KN/m 作用;已知钢管的稳定安全系数nw=3,试对立
n Fcr Fp
269 150
1.793 nst 1.8
所以压杆的稳定性是不安全的.
材料力学
PPT课件
38
例8-3 简易起重架由两圆钢杆组成,杆AB:d1 30mm,杆
AC:d2 20mm,两杆材料均为Q235钢, E 200GPa, s 240MPa p 100,0 60 ,规定的强度安全系数ns 2,稳定安全系 数 nst 3,试确定起重机架的最大起重量 Fmax 。
柱进行稳定校核。
l
q
B
A
F
a
C
材料力学
PPT课件
43
压杆稳定问题/提高压杆稳定性的措施
五、提高压杆稳定性的措施
材料力学
PPT课件
44
压杆稳定问题/提高压杆稳定性的措施
1、合理选择材料
细长杆: cr与E成正比。
普通钢与高强度钢的E大致相同,但比铜、铝合金的 高,所以要多用钢压杆。
中长杆: cr随 s 的提高而提高。
压杆稳定问题/细长压杆的临界力
2) 一端固定,一端铰支
C w
BC段,曲线上凸,
1 0;

第10章 压杆稳定

第10章 压杆稳定

第10章压杆稳定学习目标:1.了解失稳的概念、压杆稳定条件及其实用计算;2.理解压杆的临界应力总图;3.掌握用欧拉公司计算压杆的临界荷载与临界应力。

对承受轴向压力的细长杆,杆内的应力在没有达到材料的许用应力时,就可能在任意外界的扰动下发生突然弯曲甚至导致破坏,致使杆件或由之组成的结构丧失正常功能,此时杆件的破坏不是由于强度不够引起的,这类问题就是压杆稳定问题。

本章主要从压杆稳定的基本概念、不同支撑条件下的临界力、欧拉公式的适用条件以及提高压杆稳定性的措施方面加以介绍。

第一节压杆稳定的概念在研究受压直杆时,往往认为破坏原因是由于强度不够造成的,即当横截面上的正应力达到材料的极限应力时,杆才会发生破坏。

实验表明对于粗而短的压杆是正确的;但对于细长的压杆,情况并非如此。

细长压杆的破坏并不是由于强度不够,而是由于杆件丧失了保持直线平衡状态的稳定性造成的。

这类破坏称为压杆丧失稳定性破坏,简称失稳。

一、问题的提出工程结构中的压杆如果失稳,往往会引起严重的事故。

例如1907年加拿大魁北克圣劳伦斯河上长达548m的大铁桥,在施工时由于两根压杆失稳而引起倒塌,造成数十人死亡。

1909年,汉堡一个大型储气罐由于其支架中的一根压杆失稳而引起的倒塌。

这种细长压杆突然破坏,就其性质而言,与强度问题完全不同,杆件招致丧失稳定破坏的压力比招致强度不足破坏的压力要少得多,同时其失稳破坏是突然性,必须防范在先。

因而,对细长压杆必须进行稳定性的计算。

二、平衡状态的稳定性压杆受压后,杆件仍保持平衡的情况称为平衡状态。

压杆受压失稳后,其变形仍保持在弹性范围内的称为弹性稳定问题。

如图110-所示,两端铰支的细长压杆,当受到轴向压力时,如果是所用材料、几何形状等无缺陷的理想直杆,则杆受力后仍将保持直线形状。

当轴向压力较小时,如果给杆一个侧向干扰使其稍微弯曲,则当干扰去掉后,杆仍会恢复原来的直线形状,说明压杆处于稳定的平衡状态(如图)-所示)。

材料力学课件第十章压杆稳定

材料力学课件第十章压杆稳定

第十章
压杆稳定
① 强度
构件的承载能力
② 刚度 ③ 稳定性
工程中有些构件 具有足够的强度、刚 度,却不一定能安全可 靠地工作.
第十章
2.工程实例
压杆稳定
工程构件稳定性实验
第十章
压杆稳定
压杆稳定性实验
第十章
压杆稳定
第十章
其他形式的稳定问题
压杆稳定
F Fcr
第十章
3.失稳破坏案例
压杆稳定
案例1 20世纪初,享有盛誉的美国桥梁学家库柏在圣劳伦斯河 上建造1907年8月29日,发生稳定性破坏,86位工人伤亡,成为
理论分析计算
压杆什么时候发生稳定性问题,什么时候产生强度问题呢?
第十章
压杆稳定
10.2 两端绞支细长压杆的临界压力
x
F
l
m w
y B
m
x y
F M(x)=-Fw
m x B m
第十章
该截面的弯矩
压杆稳定
压杆任一 x 截面沿 y 方向的位移 w f ( x )
M ( x ) Fw
F M(x)=-Fw
第十章
10.1 压杆稳定的概念
压杆稳定
1.引言
第二章中,轴向拉、压杆的强度条件为 σmax
例如:一长为300mm的钢板尺,横截面尺寸为 20mm 1 能承受的轴向压力为 [F] = A[] = 3.92 kN
FN max [σ ] A
mm.钢的许用应力为[]=196MPa.按强度条件计算得钢板尺所 实际上,其承载能力并不取决于轴向压缩的抗压强度,而是 与受压时变弯有关.当加的轴向压力达到40N时,钢板尺就突然发 生明显的弯曲变形,丧失了承载能力.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由杆,B处内力偶
MB Fcraq1 , q1
由梁,B处转角
MB Fcr a
q2

MBl 3EI
q1 B
MB MBl Fcra 3EI
3EI Fcr al
q2 C
l
Page21
第十章 压杆稳定问题
作业
10-2b,4,5,8
Page22
第十章 压杆稳定问题
§10-3 两端非铰支细长压杆的临界载荷
稳定平衡
b. F k l
临界(随遇)平衡
c. F k l
不稳定平衡
Fcr kl 临界载荷
F
k l
F 驱动力矩 k l 恢复力矩
Page 5
第十章 压杆稳定问题
(3)受压弹性杆受微干扰
F Fcr 稳定平衡 压杆在微弯位置不能平衡,要恢复直线
F >Fcr 不稳定平衡 压杆微弯位置不能平衡,要继续弯曲,导致失稳
(

w)
令 k2 F
EI
d 2w dx2

k
2w

k
2
l
l
FM w
x
F B
F

B F
Page24
第十章 压杆稳定问题
d 2w dx2

k2w

k 2
F
w

通解:
A
x
B
w Asinkx Bcoskx
l
考虑位移边界条件:
x 0, w 0,
B
x 0, q dw 0
Page31
第十章 压杆稳定问题
二、类比法确定临界载荷
l
F
1. 一端固支一端自由:
观察:受力与变形与两端 铰支压杆左半部分相同
F
F
l
l
类比:一端固支一端自由长l的压杆的临界载荷等于 长2l的对应铰支压杆的临界载荷。
2 EI 2 EI
Fcr (2l )2 4l 2
与解析法结果相同
Page32

2 EI z
l2
其中=0.5 ~1, Iy<Ix
需要判断,杆件总沿临界载荷最小的方向失稳
z
a
Iy

hb3 12
bh3 Iz 12
Page20
第十章 压杆稳定问题
习题10-3:AB刚性杆,BC弹性 梁,弯曲刚度EI,求Fcr
FF A
解:考虑梁杆结构的临界平
a
衡,B为刚性接头,在B处
q1 q2
F
EI
l
解: (1)分析失稳曲线特征: 两端转角为零,B端水平 位移不为零。
(2)类比长为2l 的两端固支杆
Page36
例: 试用类比法求临界载荷
第十章 压杆稳定问题
F
l
F
l
解:(1)分析失稳曲线特征:两端转角为零,B端水平 位移不为零。
(2)分析临界失稳的变形,类比长为2l 的两端固支杆
2 EI 2EI
4.4932 EI 2EI
Fcr
l2
(0.7l)2
思考讨论题:
力学模型(有条件的随遇平衡)、
数学方程(微分方程)、有条件的
随遇平衡的数学表达(齐次方程的 非零解)之间的对应关系。
FR F
x
l
Page30
第十章 压杆稳定问题
上一讲回顾
1.弹性平衡稳定性的概念 受压杆件保持初始直线平衡状态 的能力称为压杆的稳定性;弹性体保持初始平衡状态的能力 称为弹性平衡的稳定性。
A 问题的提出:强度条件是否适用于下列拉压杆?
F
FF
F
短粗杆
F
F
F
F
细长杆
Page 2
第十章 压杆稳定问题 工程实例:石桥、钢桥与稳定问题
左图:隋朝建成 的赵州桥
右图: Tacoma 海峡 大桥1940年破坏
Euler(1707-1783)首先从理论上研究了压杆稳定问题(Euler理论)
Page 3
Page18
第十章 压杆稳定问题
例:确定图示压杆的临界载荷(h>b)
y
O
z
xF
l
F
h
解:临界载荷
Fcr

2 EI
l2
b
y
1. 当两端的约束是球形铰。
I

Iy
2
Iz

Iy
2
Iz
cos 2a

I yz sin 2a
z
a
Iz

bh3 12
Iy

hb3 12
压杆在x-z平面内失稳
Fcr
Asin kl 0
•存在非零解的条件: sin kl 0
Page13
第十章 压杆稳定问题
•临界载荷欧拉公式
F
F
sin kl 0
kl n
k n
l
注意到: F k 2 , EI
F

n2 2EI
l2
设: n=1
2 EI
Fcr l 2
(n 1, 2 )
Page14
由对A的力矩平衡
解析法确定临界载荷:铰支-固支压杆 类比法确定临界载荷 相当长度与长度因素 例题
Page23
第十章 压杆稳定问题
一、解析法确定临界载荷
1. 固支-自由压杆
根据微弯临界平衡状态 建立微分方程
A
M(x) F( w)
d2w M(x)
dx2 EI
A
d 2w dx 2

F EI
第十章 压杆稳定问题
•刚体与变形体的稳定性
(1)刚性面上,刚性球受微干扰
F F
FR
FR
W
a. 合力FR指向平衡位置
W
b. FR为0
W
c. FR偏离平衡位置
稳定平衡
临界(随遇)平衡
不稳定平衡
Page 4
第十章 压杆稳定问题
(2)刚杆-弹簧系统受微干扰
刚杆-弹簧系统稳定性演示
a. F k l
d 2w dx 2

F EI
w

FR EI
(l

x)
x
M ( x) FR
Fw
lx
FR F
FR
F
通解:
w

A sin
kx

B cos
kx

FR EIk 2
(l

x)
(k2 F ) EI
Page27
第十章 压杆稳定问题
通解:
w

A sin
kx

B cos
kx

FR EIk 2
(l

x)
(k2 F ) EI
0 k sin kl
1 0 cos kl
l
EIk 2

1 EIk
2
0
0
Asin kl Bcos kl 0
FR
F x
l
tan kl kl
Page29
第十章 压杆稳定问题
tan kl kl
y1 tan kl y2 kl
( kl)a 4.493
F k2EI
F l 4.493 EI
比较显示了理想压杆小挠度理论的实际意义。
Page17
第十章 压杆稳定问题
例:确定图示压杆的临界载荷(h>b)
y
l
O
xF
z
解:临界载荷
Fcr

2 EI
l2
问题:结构在哪个平面内失稳? 临界载荷等于多少?
1. 当两端的约束是球形铰。
F
h
b
y
z
a
2. 当两端的约束是圆柱形铰,圆柱销轴线沿z轴。
B Fcr
0.7l B Fcr
Fc Br 0.7l
Page33
3. 两端固支压杆:
拐点
l4
l2
第十章 压杆稳定问题
拐点
Fcr l4
Fcr


(l
2 EI / 2)2
Fcr
Fcr
l2
Page34
第十章 压杆稳定问题
三、欧拉公式的统一表达式:
Fcr

2 EI
l2
1
2 EI
Fcr (2l )2
薄壁圆筒轴向受压
Page 8
•风洞颤振试验照片
第十章 压杆稳定问题
左侧为风速低于颤振速度,结构稳定; 右侧为风速等于颤振速度,结构振动发散。
Page 9
•飞机颤振问题研究
第十章 压杆稳定问题
Page10
第十章 压杆稳定问题
§10-2 两端铰支细长压杆的临界载荷
• •














考虑位移边界条件:
x 0, w 0
B
FR l EIk 2
0
x 0, w' 0
Ak
FR EIk 2
0
FR
F x
l
x l, w 0 Asin kl Bcos kl 0
Page28
第十章 压杆稳定问题
B
FR l EIk 2
0
Ak
FR EIk 2
0
•存在非零解的条件:
2
2 EI
Fcr l / 22
相关文档
最新文档