第一章-晶体学基础
《结晶学基础》
.
2.鲍林第二规则---静电价规则
在一个稳定的晶体结构中,从所有相邻接的阳离 子到达一个阴离子的静电键的总强度,等于阴离子 的电荷数。
静电键强度
S= Z+ CN+
• 在离子晶体中,配位数指的是最紧邻的异号离子数,所以正、 负离子的配位数不一定是相等的。阳离子一般处于阴离子紧密堆 积阳的离空子隙还中可,能其出配现位其数 它一 的般 配为 位数4或。6. 。如果阴离子不作紧密堆积,
配位数
阴离子作正八 面体堆积,正、 负离子彼此都能 相互接触的必要
条件为r+/r=0.414。
凸几何多面体倾向。
❖ 4.对称性--晶体的物理化学性质能够在不同方
向或位置上有规律地出现,也称周期性 .
晶体的性质
❖ 5.均匀性(均一性)--一个晶体的各个部分性
质都是一样的。 这里注意:均匀性与各向异性不同,前者是指晶
体的位置,后者是指观察晶体的方向。
❖ 6. 固定熔点 ❖ 7.晶面角守恒定律--晶面(或晶棱)间的夹角
宏观晶体中对称性只有32种,根据对称型中是否存在 高次轴及数目对晶体分类
❖ 存在高次轴(n>2)且多于一个―――高级晶族 ――包括:等轴(立方)晶系
❖ 存在高次轴(n>2)且只有一个―――中级晶族 ――包括:三方、四方、六方晶系
❖ 不存在高次轴(n>2)―――低级晶族――包括: 三斜、单斜、正交晶系
第一章 结晶学基础
.
1-1 晶体的基本概念与性质
一、晶体的基本概念
➢ 人们对晶体的认识,是从石英开始的。 ➢ 人们把外形上具有规则的几何多面体形态的
(完整版)1《材料科学基础》第一章晶体学基础
晶向、晶
钯的PDF卡片-----Pd 89-4897
crystal system,space
图 2 CdS纳米棒的TEM照片(左)和 HRTEM照片(右)
图2 选区电子衍射图
图1. La(Sr)3SrMnO7的低 温电子衍射图
晶向、晶面、晶面间距
晶向:空间点阵中行列的方向代表晶体中原子排 列的方向,称为晶向。
晶面:通过空间点阵中任意一组结点的平面代表 晶体中的原子平面,称为晶面。
L M
P点坐标?
(2,2,2)或222
N
一、晶向指数
1、晶向指数:表示晶体中点阵方向的指数,由晶向上结点的 坐标值决定。
2、求法 1)建立坐标系。 以晶胞中待定晶向上的某一阵点O为原点,
联系:一般情况下,晶胞的几何形状、大小与对应的单胞是 一致的,可由同一组晶格常数来表示。
不区分 图示
晶 胞
空间点阵
单
胞
•NaCl晶体的晶胞,对应的是立方面心格子 •晶格常数a=b=c=0.5628nm,α=β=γ=90°
大晶胞
大晶胞:是相对 于单位晶胞而言 的
例:六方原始格子形式的晶胞就是常见的大晶胞
① 所选取的平行六面体应能反映整个空间点阵的对称性; ② 在上述前提下,平行六面体棱与棱之间的直角应最多; ③ 在遵循上两个条件的前提下,平行六面体的体积应最小。
具有L44P的平面点阵
单胞表
3、单胞的表征
原点:单胞角上的某一阵点 坐标轴:单胞上过原点的三个棱边 x,y,z 点阵参数:a,b,c,α,β,γ
准晶
是一种介于晶体和非晶体之间的固体。准晶具有长程定向有 序,然而又不具有晶体所应有的平移对称性,因而可以具有 晶体所不允许的宏观对称性。
结晶学基础
然两两反向平行而且相等。用它可以作为判 断晶体有无对称中心的依据。
4、旋转反伸轴(Lin)
旋转反伸轴是一根假想的直线,当晶体围 绕此直线旋转一定角度后,再对此直线上 的一个点进行反伸,才能使晶体上的相等 部分重复。 相应的对称操作是围绕一根直线的旋转和 对此直线上一个点反伸的复合操作。
只有晶体才能称为真正的固体。
5、准晶体
1985年在电子显微镜研究中,发现了一种新 的物态,其内部结构的具体形式虽然仍在探 索之中,但从其对称性可见,其质点的排列 应是长程有序,但不体现周期重复,不存在 格子构造,人们把它称为准晶体。
二、晶体的基本性质
一切晶体所共有的,并且是由晶体的格子构造所决定的性 质,称为晶体的基本性质。
晶体中对称轴举例
横截面形状
晶体对称定律:在晶体中不可能存在五次 及高于六次的对称轴。因为不符合空间格 子规律,其对应的网孔不能毫无间隙地布 满整个平面。
在一个晶体中,除L1外,可以无、也可有
一或多种对称轴,而每一种对称轴也可有一 或多个。
表示方法为3L4、4L3、6L2等。 对称轴在晶体中可能出露的位置: ⑴通过晶面的中心; ⑵通过晶棱的中点;
⑵行列:结点在直线上的排列即构成行列。
行列中相邻结点间的距离称为该行列的结点间距。 同一行列或彼此平行的行列上结点间距相等; 不同方向的行列,其结点间距一般不等。
行
列
⑶ 面网:结点在平面上的分布构成面网。 面网上单位面积内结点的数目称为网面密 度。 互相平行的面网,网面密度相同;不平行 的面网,网面密度一般不等。 相互平行的相邻两面网之间的垂直距离称 为面网间距。
晶体学基础
2020/3/3
3
1.1 晶体及其基本性质
晶体结构 = 点阵 + 结构基元
2020/3/3
4
空间点阵的四要素
1. 阵点: 空间点阵中的点; 2. 阵列: 结点在直线上的排列; 3. 阵面: 阵点在平面上的分布。
2020/3/3
5
空间点阵的四要素
4. 阵胞: 结点在三维空间形成的平行六面体。
原胞:最小的平行六面体,只考虑周期性,不考虑对称性; 晶胞:通常满足对称性的前提下,选取体积最小的平行六面体。
ur b/k
P
a/h A
v
a
2020/3/3
25
倒易点阵的应用
uur dhkl 1/ r *hkl
1、计算面间距
1
d2 hkl
r rhkl
r .rhkl
h
k
av*
l
r bcv**
av*
r b*
h
cv*
k
l
h
h
k
l
G
*
k
2020/3/3
3
c
28
倒易点阵的应用
2、计算晶面夹角
• 两晶面之间的夹角,可以用各自法线之间的夹角来表示, 或用它们的倒易矢量的夹角来表示:
c((ohhs21kk12ll12)c)osrvrv(hh2rv1kk2h1l1l21k1l1 ,hhrv21hav2avk*2*l+2+)kk21bvbv*rvv*+h+1kl12ll11cvcv*vrv*h2k2l2
4. 若已知两个晶带面,则晶带轴;
5. 已知两个不平行的晶向,可以求出过这两个晶向的晶面;
材料科学基础 第1章 晶体学基础
金刚石
Nacl
水晶
CaF2
MoS2
闪锌矿
高分辨率电镜-High Resolution Electron Microscopy (HREM)
The surface of a gold specimen, was taken with a atomic force microscope (AFM). Individual atoms for this (111) crystallographic surface plane are resolved.
底心正方和简单 正方点阵的关系
例:结构对性能的影响-Sn 1850 in Russia. The winter that year was particularly cold, and record low temperatures persisted for extended periods of time. The uniforms of some Russian soldiers had tin buttons, many of which crumbled due to these extreme cold conditions, as did also many of the tin church organ pipes. This problem came to be known as the “tin disease.”
组平行的晶面应当包含点阵所有的阵点。 ● 2、晶向(lattice or crystal directions) 通过两阵点之间的直线。 ● 3、定量表示晶面和晶向的意义 各向异性,结构分析(需要表征晶体结构内部的不同
[工学]第一章 晶体学基础-1
lattice 点阵
structural motif 结构基元
Crystal structure 晶体结构
晶体结构 = 点阵 + 结构基元
晶体结构
点 阵
结构基元
+
直线点阵 所有点阵点分布在一条直线上。 所有点阵点分布在一个平面上。
点阵
平面点阵 空间点阵
所有点阵点分布在三维空间上。
1、直线点阵:一维点阵
世界上的固态物质可分为二类,一类是晶态,
另一类是非晶态。自然界存在大量的晶体物质 ,如高山岩石、地下矿藏、海边砂粒、两极冰 川都是晶体组成。人类制造的金属、合金器材、 水泥制品及食品中的盐、糖等都属于晶体,不 论它们大至成千上万吨,小至毫米、微米,晶 体中的原子、分子都按某种规律周期性排列。 另一类固态物质,如玻璃、明胶、碳粉、塑料 制品等,它们内部的原子、分子排列杂乱无章, 没有周期性规律,通常称为玻璃体、无定形物 或非晶态物质
晶胞的两个要素: 1.
晶胞的大小与形状:
由晶胞参数a,b,c,α
,β,γ表示, a,b,c 为 六面体边长, α,β,γ 分 别是bc,ca,ab 所组成的 夹角 晶胞的内容:粒子的种类、数目及它在晶胞 中的相对位置
2.
CsCl晶体结构
上图为CsCl的晶体结构。Cl与Cs的1:1存在 若
a≠b 。 a∧b≠120
( a )NaCl
( b )Cu
二维周期排列的结构及其点阵(黑点代表点阵点)
b
a
(c)石墨 二维周期排列的结构及其点阵(黑点代表点阵点)
3、空间点阵:三维点阵特点:
①空间点阵可以分解成一组组平面点阵 ②取不在同一平面的三个向量组成平行六面
材料科学基础I 第一章(晶体学基础)
第一章 晶体学基础
1、晶面指数 、
方法和步骤与三指数时相同, 方法和步骤与三指数时相同, 只是要找出晶面 在四个坐标 轴上的截距。 轴上的截距。 例如: 例如: a3 o a1 a2
(1010) (0110) (1100)
(1010)
2、晶向指数: 、晶向指数:
四坐标晶向指数的确定方法有行走法和解析法。 四坐标晶向指数的确定方法有行走法和解析法。由于行走法 确定的晶向指数不是唯一的,所以这里仅介绍解析法 解析法。 确定的晶向指数不是唯一的,所以这里仅介绍解析法。 步骤: 步骤: 1)求出待定晶向在 1,a2,c三个坐标轴下的指数:U, V, W 求出待定晶向在a 三个坐标轴下的指数: 求出待定晶向在 三个坐标轴下的指数 2)按以下公式算出在四坐标轴下的指数:u, v, t, w 按以下公式算出在四坐标轴下的指数: 按以下公式算出在四坐标轴下的指数
多数金属和非金属材料都是晶体。因此, 多数金属和非金属材料都是晶体。因此,首先 要掌握晶体的特征及其描述方法。 要掌握晶体的特征及其描述方法。 晶体——组成晶体的质点在三维空间作周期性地、 组成晶体的质点在三维空间作周期性地、 晶体 组成晶体的质点在三维空间作周期性地 规则地排列。 规则地排列。 晶体的特点: 晶体的特点: 质点排列具有规则性、 质点排列具有规则性、周期性 有固定熔点(结晶温度) 非晶体没有固定的熔点 非晶体没有固定的熔点] 有固定熔点(结晶温度)[非晶体没有固定的熔点 各向异性(包含多种性能) 各向异性(包含多种性能)
潘金生材料科学基础(修订版)知识点笔记课后答案
第1章晶体学基础1.1复习笔记一、空间点阵1.晶体特征和空间点阵概述(1)晶体特征晶体的一个基本特征是具有周期性。
(2)空间点阵空间点阵是指用来描述晶体中原子或原子集团排列的周期性规律的在空间有规律分布的几何点的集合。
2.晶胞、晶系和点阵类型(1)晶胞①晶胞的定义空间点阵可以看成是由最小的单元——平行六面体沿三维方向重复堆积(或平移)而成。
这样的平行六面体称为晶胞。
②点阵常数a.描述晶胞的大小:三条棱的长度a,b和c;b.描述晶胞的形状:棱之间的夹角α,β和γ。
③选取晶胞的条件a.能反映点阵的周期性;b.能反映点阵的对称性;c.晶胞的体积最小。
(2)晶系按照晶胞的大小和形状的特点,或按照6个点阵常数之间的关系和特点,可以将各种晶体归为7种晶系。
表1-1 7种晶系(3)点阵类型①简单三斜点阵(如图1-1(1)所示);②简单单斜点阵(如图1-1(2)所示);③底心单斜点阵(如图1-1(3)所示);④简单斜方点阵(如图1-1(4)所示);⑤底心斜方点阵(如图1-1(5)所示);⑥体心斜方点阵(如图1-1(6)所示);⑦面心斜方点阵(如图1-1(7)所示);⑧六方点阵(如图1-1(8)所示);⑨菱方点阵(三角点阵)(如图1-1(9)所示);⑩简单正方(或四方)点阵(如图1-1(10)所示);⑪体心正方(或四方)点阵(如图1-1(11)所示);⑫简单立方点阵(如图1-1(12)所示);⑬体心立方点阵(如图1-1(13)所示);⑭面心立方点阵(如图1-1(14)所示)。
图1-1 14种空间点阵(4)布拉维点阵与复式点阵①布拉维点阵:由等同点构成的点阵;②复式点阵:由几个布拉维点阵穿插而成的复杂点阵。
二、晶面指数和晶向指数1.晶面指数和晶向指数(1)晶面指数将截距的倒数化成三个互质的整数h,k,l,则(hkl)称为待标晶面的晶面指数。
(2)晶向指数将晶向上除原点以外的任一点的坐标x,y,z化成互质整数u,v,w,得到晶向指数[uvw]。
第一章晶体学基础
隋性气体无规则排列
表示有些材料包括水蒸气和玻璃的短程有序
表示有些材料包括水蒸气和玻璃的短程有序 金属及其他许多材料的长程有序排列
图 材料中原子的排列
二氧化硅结构示意图
a)晶态
b)非晶态
3. 晶体的特征
(1)周期性(不论沿晶体的哪个方向看去,总是相隔一定 的距离就出现相同的原子或原子集团。这个距离称为周期 ) 液体和气体都是非晶体。 (2)有固定的凝固点和熔点. (3)各向异性(沿着晶体的不同方向所测得的性能通常是 不同的 :晶体的导电性、导热性、热膨胀性、弹性、强度、 光学性质 )。
(a)
Z
βα
Xb
(b) 简单立方晶体 (a) 晶体结构 (b) 晶格 (c) 晶胞
γ (c)
c aY
2.晶胞的选取原则:
(1)晶胞几何形状能够充分反映空间点阵的对称性; (2)平行六面体内相等的棱和角的数目最多; (3)当棱间呈直角时,直角数目应最多; (4)满足上述条件,晶胞体积应最小。
图 晶胞的选取
立方晶系 ( Cubic)
Simple
Body centered
Face centered
a
a
a
a a
a a
a a
a = b = c, a = b = = 90
正方晶系 ( Tetragonal )
Simple
Body centered
c
c
a a
a a
a = b c, a = b = = 90
1.2 晶体学基础 Fundamentals of crystallogphy
材料科学基础_第1章_陶杰_主编_化学工业出版社
33
几点说明: 1.hkl分别对应xyz上的截距,不可互换 2.若晶面与对应坐标平行,则在该坐标上的指数为0 3.hkl表示沿三个坐标单位长度范围内所含该晶面的个数,
即晶面线密度。 晶面指数规律: (1)某一晶面指数代表了在原点同一侧的一组相互平行且
无限大的晶面。 (2) 若晶面指数相同,但正负符号相反,则两晶面是以点
材料科学基础
第一章 晶体学基础
❖1.1 晶体的周期性和空间点阵 ❖1.2 布拉菲点阵 ❖1.3 晶向指数与晶面指数 ❖1.4 晶面间距、晶面夹角和晶带定理 ❖1.5 晶体的对称性 ❖1.6 极射投影
2
1.1 晶体的周期性和空间点阵
1.1.1 晶体与晶体学 晶体:是内部质点在三维空间成周期性重复排列的固体, 即晶体是具有格子构造的固体。 非晶体:原子无规则堆积,也称为 “过冷液体” 。
38
a3 =-(a1+a2)
六方晶系的晶面指数与晶向指数
39
三指数系统→四指数系统
(h k l) (h k il) i=-(h+k)
16
3 简单单斜点阵
a≠b≠c α=γ=90°≠β
17
4 简单正交点阵
a≠b≠c,α=β=γ= 90°
18
5 底心正交点阵
a≠b≠c,α=β=γ=90°
19
6 体心正交点阵
a≠b≠c,α=β=γ= 90°
20
7 面心正交点阵
a≠b≠c,α=β=γ= 90°
21
8 简单六方点阵
a=b≠ c,α=β=90°,γ=120°
选取晶胞的原则:
1. 要能充分反映整个空间点成的周期性和对称性; 2. 在满足1的基础上,单胞要具有尽可能多的直角; 3. 在满足上条件,晶胞应具有最小的体积。
(完整版)第1章 晶体学基础
第一篇 X射线衍射分析(15万字)1 晶体学基础1.1 晶体结构的周期性与点阵晶体是由原子、离子、分子或集团等物质点在三维空间内周期性规则排列构成的固体物质,这种周期性是三维空间的。
晶体中按周期重复的原子、分子或离子团称为结构基元,也就是重复单元。
为了描述晶体内部原子排列的周期性,总是把一个结构基元抽象地看成为一个几何点,而不考虑它的实际内容(指原子、离子或分子)。
这些几何点按结构周期排列,这种几何点的集合就称为点阵,将点阵中的每个点叫阵点。
要构成点阵,必须具备三个条件:(1)点阵点数无限多;(2)各点阵点所处的几何环境完全相同;(3)点阵在平移方向的周期必须相同。
凡是能够抽取出点阵的结构可称为点阵结构或晶体点阵。
点阵中每一阵点对应于点阵结构中的一个结构基元,在晶体中则是一些组成晶体的实物粒子,即原子、分子或离子等,或是这些微粒的集团。
这样,晶体结构与晶体点阵是两个不同的概念,其关系如图1-1所示,晶体结构可以表示为:晶体结构= 晶体点阵+ 结构基元图1-1晶体结构与点阵的关系根据点阵的性质,把分布在同一直线上的点阵称为直线点阵或一维点阵,分布在同一平面内的点阵称为平面点阵或二维点阵,分布在三维空间中的点阵称为空间点阵或三维点阵。
1.1.1 一维周期性结构与直线点阵图1-2(a)是聚乙烯分子链的结构示意图,具有一维周期结构,其结构基元(CH2CH2)周期性地排列在一个方向上。
每一个结构基元的等同位置抽象成一个几何点,可形成一条直线点阵,是等距离分布在一条直线上的无限点列,如图1-2(b)所示。
取任一阵点作为原点O ,A 为相邻的阵点,则矢量a=OA 表示重复的大小和方向,称为初基(单位)矢量或基矢,若以单位矢量a 进行平移,必指向另一阵点,而矢量的长度a a =ρ称为点阵参数。
图1-2晶体结构与点阵的关系(a )聚乙烯分子链的结构示意图;(b )等效的一维直线点阵直线点阵中任何两阵点的平移矢量称为矢径,可表示为T p = p a (0, ±1, ±2……)矢径T p 完整而概括地描述了一维结构基元排列的周期性。
第一章晶体结构(一结晶学基础知识)精选全文完整版
2. 晶体结构与空间点阵
晶体格子:把晶体中相邻质点的中心用直线联起来 构成的空间格架即晶体格子,简称晶格。
结点:质点的中心位置称为晶格的结点。 晶体点阵:由这些结点构成的空间总体称为晶体点
阵(空间格子或空间点阵)。结点又叫阵点。点阵 中结点仅有几何意义,并不真正代表任何质点。如 图1-1所示.
晶向族:晶体中原子排列周期相同的所有晶向为一个 晶向族,用〈uvw〉表示。 同一晶向族中不同晶向的指数,数字组成相同。 已知一个晶向指数后,对u、v、w进行排列组合, 就可得出此晶向族所有晶向的指数。如〈111〉晶向 族的8个晶向指数代表8个不同的晶向;〈110〉晶向 族的12个晶向指数代表12个不同的晶向。
图1-2 晶胞坐标及晶胞参数
4.晶系与点阵类型
晶格特征参数确定之后,晶胞和由它表示的晶格也随之确定, 方法是将该晶胞沿三维方向平行堆积即构成晶格。
空间点阵中所有阵点的周围环境都是相同的,或者说,所有阵 点都具有等同的晶体学位置。布拉菲(Bravais)依据晶格特征参数 之间关系的不同,把所有晶体的空间点阵划归为7类,即7个晶系, 见表1-1。按照阵点(结点)在空间排列方式不同,有的只在晶胞的 顶点,有的还占据上下底面的面心,各面的面心或晶胞的体心等位 置,7个晶系共包括14种点阵,称为布拉菲点阵(Bravais lattice )。
晶向:点阵可在任何方向上分解为相互平行的直线组, 位于一条直线上的结点构成一个晶向。
2.六方晶系的晶面指数和晶向指数 3.晶向与晶面的关系
1.晶面、晶向及其表征
晶面:晶体点阵在任何方向上可分解为相互平行的结点平面,这样 的结点平面称为晶面。 晶面上的结点,在空间构成一个二维点阵。 同一取向上的晶面,不仅相互平行、间距相等,而且结点的分 布也相同。不同取向的结点平面其特征各异。 任何一个取向的一系列平行晶面,都可以包含晶体中所有的质 点。
晶体学基础第1章-课件1
晶体学基础绪论刘彤固体中的晶体气态:内部微粒(原子、分子、离子)无规运动液态:内部微粒(原子、分子、离子)无规运动固态:内部微粒(原子、分子、离子)振动自然界中绝大多数固体物质都是晶体。
如:食盐、冰糖、金属、岩石等。
¾单质金属和合金在一般条件下都是晶体。
¾一些陶瓷材料是晶体。
¾高聚物在某些条件下也是晶体。
“德里紫蓝宝石”如何在千姿百态的晶体中发现其规律?熔体凝固液相结晶晶体并非局限于天然生成的固体人工单晶飞机发动机叶片飞机发动机晶体的共同规律和基本特征?水晶石英晶体具有规则的凸多面体外形。
α石英的内部结构大球代表小球代表晶体的概念NaCl的晶体结构晶体(crystal):其内部质点(原子、分子或离子)在3维空间周期性重复排列的固体。
也称具有格子构造的固体。
晶体材料:单晶,多晶¾在一个单晶体的范围内,晶格中的质点均呈有序分布。
多晶体内形成许多局限于每个小区域内的有序结构畴,但在畴与畴之质点的分布是无序的或只是部分有序的。
晶界(晶体缺陷)Be 2O 3非晶体Be 2O 3 晶体分子晶体(范德华力)晶体学的发展历史¾有文字记载以前,人们对矿物晶体瑰丽的色彩和特别的多面体外形引起了的注意,开始观察研究晶体的外形特征。
¾17世纪中叶,丹麦学者斯丹诺(steno)1669年提出面角守恒定律,这可以说是晶体学作为一门正式科学的标志,它找出了晶体复杂外形中的规律性,从而奠定了几何晶体学的基础。
¾1801年,法国结晶学家阿羽依(Haüy)基于对方解石晶体沿解理面破裂现象的观察,发现晶体学基本定律之一的整数定律。
¾1805-1809年,德国学者魏斯(Weiss)发现晶带定律以及晶体外形对称理论。
几何晶体学发展到了相当高的程度。
¾1830年,德国学者赫塞尔(Hessel)推导出描述晶体外形对称性的32种点群。
¾1837年,英国学者米勒(Miller)提出晶面在三维空间位置的表示方法---米勒指数。
1.晶体学基础
原子可在 顶角、线 、面、内 部。
晶胞参数:
平行六面体的三根棱长a、b、c及其夹角α、β、γ是表示它本 身的形状、大小的一组参数,称为点阵参数(晶胞参数)
依照晶胞参数之间的关系,所有晶体的空间点阵可以划分为7个晶系:
晶 系 立方晶系 四方晶系 a=b=c a=b≠c 格子常数特点 α=β=γ=90° α=β=γ=90°
晶面族指数:用晶面族中 某个最简便的晶面指数填 在大括号{ }内作为该晶面
族的指数。
晶面间距
一般是晶面指数数值越小,其面间距较大,并且其阵点密度较大
a
b
(100)
(110) (210) (4-10) (130)
晶面间距的计算
一组平行晶面的晶面间距dhkl与晶面指数和晶格常数a、b、c有下列关系:
(2)晶胞
ClNa+
空间格子+基元
●晶胞:是指晶体结构中的平行六面体单位,其形状大小与对应的 空间格子中的平行六面体一致。 ●晶胞:是描述晶体结构的基本组成单位。 ●晶胞:能够反映整个晶体结构特征的最小结构单元。
周期性、对称 性
晶胞的选取不是唯一的!
晶胞的选取原则: 1)充分表示出晶体的对称性 2)三条棱边尽量相等 3)夹角尽量为直角 4)单元体积尽可能小
晶体结构=空间点阵+结构基元
实际晶体——质点体积忽略——空间点阵——阵点连线——晶格(空间格子)
等同点: 各阵点的周围 环境完全相同, 周围阵点排布 及取向完全相 同。 A位臵
B位臵
空间格子有下列几种要素存在:
面网
平行六面体
晶面:可将晶体点阵在任意方向上分解 为相互平行的节点平面。 晶面族:对称性高的晶体中,不平行的 两组以上的晶面,它们的原子排列状况 是相同的,这些晶面构成一个晶面族。 晶向:也可将晶体点阵在任意方向上分 解为相互平行的节点直线组,质点等距 离的分布在直线上。 晶向族:晶体中原子排列周期相同的所 有晶向为一个晶向族。
晶体学基础与材料结构
晶体学基础与材料结构第⼀章晶体学基础及材料结构⽆论是⾦属材料还是⾮⾦属材料,通常都是晶体。
因此,作为材料科学⼯作者,⾸先要熟悉晶体的特征及其描述⽅法。
本章将扼要的介绍晶体学的基础知识,并了解材料结构。
1-1 晶体⼀、晶体与⾮晶体固态物质按其原⼦(或分⼦)的聚集状态⽽分为两⼤类:晶体与⾮晶体。
虽然我们看到⾃然界的许多晶体具有规则的外形(例如:天然⾦刚⽯、结晶盐、⽔晶等等),但是,晶体的外形不⼀定都是规则的,这与晶体的形成条件有关,如果条件不具备,其外形也就变得不规则。
所以,区分晶体还是⾮晶体,不能根据它们的外观,⽽应从其内部的原⼦排列情况来确定。
在晶体中,原⼦(或分⼦)在三维空间作有规则的周期性重复排列,⽽⾮晶体就不具有这⼀特点,这是两者的根本区别。
应⽤X射线衍射、电⼦衍射等实验⽅法不仅可以证实这个区别,还能确定各种晶体中原⼦排列的具体⽅式(即晶体结构的类型)、原⼦间距以及关于晶体的其他许多重要情况。
显然,⽓体和液体都是⾮晶体。
在液体中,原⼦亦处于紧密聚集的状态,但不存长程的周期性排列。
固态的⾮晶体实际上是⼀种过冷状态的液体,只是其物理性质不同于通常的液体⽽已。
玻璃就是⼀个典型的例⼦,故往往将⾮晶态的固体称为玻璃体。
从液态到⾮晶态固体的转变是逐渐过渡的,没有明显的凝固点(反之亦然,⽆明显的熔点)。
⽽液体转变为晶体则是突变的,有⼀定的凝固点和熔点。
⾮晶体的另⼀特点是沿任何⽅向测定其性能,所得结果都是⼀致的,不因⽅向⽽异,称为各向同性或等向性;晶体就不是这样,沿着⼀个晶体的不同⽅向所测得的性能并不相同(如导电性、导热性、热膨胀性、弹性、强度、光学数据以及外表⾯的化学性质等等),表现出或⼤或⼩的差异,称为各向异性或异向性。
晶体的异向性是因其原⼦的规则排列⽽造成的。
⾮晶体在⼀定条件下可转化为晶体。
例如:玻璃经⾼温长时间加热后能形成晶态玻璃;⽽通常呈晶体的物质,如果将它从液态快速冷却下来也可能得到⾮晶体。
⾦属因其晶体结构⽐较简单,很难阻⽌其结晶过程,故通常得不到⾮晶态固体,但近些年来采⽤了特殊的制备⽅法,已能获得⾮晶态的⾦属和合⾦。
1-1-晶体学基础
二、单晶体、多晶体和微晶体
15
16
三、同质多晶和类质同晶 (polymorphism and isomorphism)
17
பைடு நூலகம்
四、液晶 (liquid crystal)
性
18
第二节 晶体结构的对称性
自然界中很多事物都是对称的
如何堆积?
仅有周期性是不够的
对称性
19
人类也偏爱对称性
20
• 对称操作与对称元素 • 旋转-旋转轴
第一章 晶体学基础 引言
一、晶体的宏观特征
1 规则的几何外形: 光泽 2 有固定的熔点 3 各向异性 4 晶面角守恒
1
二、晶体学发展简史
经典晶体学 (几何晶体学)
1669 年,丹麦学者斯蒂诺对石英( SiO 2 ) 和赤铁矿Fe2O3)晶体的研究,提出了晶体
学第一定律 面角守恒定律,即“同种物
2
3
现代晶体学
1901 年 Nobel 物理奖 (首届)
4
1914年 Nobel 物理奖
5
1915 年 Nobel 物理奖
6
第一节 晶体结构的周期性
结点:晶体内部微粒占有的位置抽象成几何上的点。 点阵:结点在三维空间的规则排列所组成的几何图形。 晶胞:晶体的基本重复单位。
平行六面体单位+结构基元 = 晶胞
素晶胞 (原始晶胞)、复晶胞
晶胞参数:大小和形状 a, b, c, αβγ 分数坐标
7
Na+ 与 Cl- 之间的距离: ½ a.
Cs+ 与 Cl- 之间的距离: a .
3 2
结构基元数目:
4
1
2
8
晶体结构:空间点阵 + 结构基元
固体物理实验方法课]第1章_晶体学基础
1.2 晶体结构与空间点阵
1.2.5 晶向、晶面及晶向、晶面指数
晶向指数的确定
1. 建立坐标系,结点为原点,三棱为方向,点阵 常数为单位 ; 2. 在晶向上任两点的坐标(x1 , y1 , z1) (x2 , y2 , z2)。 ( 若平移晶向或坐标,让在第一点在原点则下 一步更简单); 3. 4. 5. 计算x2 - x1 : y2 - y1 : z2 - z1 ; 化成最小、整数比 u:v:w ;
其中,a 、b、 c;α、β、γ 为正点阵参数
1.3 倒易点阵
1.3.3 倒易点阵参数的大小和方向
(1) a* b a* c b* a b* c c* a c* b 0
因此,倒易点阵的基本矢量垂直于正点阵中异名矢量构成的平面。 a*垂直于b与c两个矢量构成的平面。同样b*(或c*)垂直于a与c(a与b) 两个矢量构成的平面。
倒易点阵是晶体结构周期性在傅立叶空间中的数学抽象。 如果把晶体点阵本身理解为周期函数,则倒易点阵就是晶体点 阵的傅立叶变换,反之晶体点阵就是倒易点阵的傅立叶逆变换。
所以,倒易点阵只是晶体点阵在不同空间 ( 波矢空间 ) 的
反映。
1.3 倒易点阵
1.3.4 倒易矢量
1、定义: 从倒易点阵原点向任一倒易阵 点所连接的矢量叫倒易矢量,表示为: r* = Ha* + Kb* + Lc*
晶包大小与形状
1.2 晶体结构与空间点阵
1.2.2 基本矢量与晶包
同一个点阵可以由不同的平行六面体晶胞 叠成。即可以任意选择不同的坐标系与基本矢 量来表示。 为了表达最简单,应该选择最理想、最适 当的基本矢量作为坐标系统。即是以结点作为 坐标原点,( 1 )选取基本矢量长度相等的数 目最多、( 2 )其夹角为直角的数目最多,且 ( 3 )晶胞体积最小。这样的基本矢量构成的 晶胞称为布拉菲(BRAVAIS)晶胞。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
32个点群是研究晶体宏观对称性的依据。 把对称类型称为点群,即对称要素所规定 的动作构成数学上群的元素,又因为在组 合中要求对称要素至少必须相交一点。
24
晶体的32种对称类型(32点群)
(100)
•••••••••
•••••••••
•••••••••
••••••••• (120)
•••••••••••••Leabharlann •••••••••••••
•••••••••
•••••••••
(010)
(320)
39
正方 abc 90
单斜 abc 90
12
对称性:几何形态在一些方向上表现出自相重 合的特性
宏观对称性:几何外形和宏观物理性质的 对称性
微观对称性:内部微观结构的对称性
13
对称:相同部分有规律的重复
对称操作:联系对称图形中各个相同部分,能够使对
称图形复原的动作
倒反,平移,旋转,反映,及其组合 对称要素:施行对称操作时所借助的要素,分为宏观
二维点阵:平行四边形
三维点阵:平行六面体顶点
性质:(1)两个阵点决定一个行列(2)三个点决定一个 面网(3)三个行列定一个空间格子(4)平移复原
9
1、平行六面体可以反映整个 空间点阵的对称性
2、不违反空间点阵对称性的 条件下,平行六面体上棱与 棱之间的直角关系尽量多
3、体积最小
六个参数,平行六面体常数
C
对称面:反映操作
P
旋转轴:绕直线旋转一定角度后自行重合
n 360 /, n 1,2,3,4,6
Ln
旋转倒反轴:先绕轴旋转,再定点倒反
17
对称中心:倒反操作
18
对称面:反映操作
19
旋转倒反轴
20
对称元素 国际符号 对称操作
对称中心
1
倒反
I
反映面(镜面)
m
反映
M
一重旋转轴
1
旋转
[111] [100] [100] [100] [010]
[110]
[110] [001]
28
最多三位记号组成,三斜、单斜一位
某一位记号表示平行于对应方向上的平行于此 方向的旋转或旋转倒反轴,或垂直于该方向的
对称面。
同时存在旋转轴和对称面时, N
没有对称要素,空缺
m
29
例: 3L4 4L36L29立PC方晶系,a a+b+c a+b
31
立方晶系a=b=c;α=β=γ=90° 3个相互垂直的4次轴或2次轴
四方晶系a=b≠c α=β=γ=90° 1个4次轴 2个正交的2次轴
32
三方及六方晶系a=b≠c α=β=90°γ=120° 3次轴,6次轴为Z轴;2次轴为X,Y,U
正交晶系a≠b≠c α=β=γ=90° 三个2次轴 或2次轴与两个对称面法线
C1 ,Ci
a b c, 26
晶族
晶系
高级晶族 (各向同性
晶体)
立方
中级晶族 (单轴晶体)
六方 三方
四方
低级晶族 (双轴晶体)
正交 单斜
三斜
对称特点(特征对称要素)
多于一 个高次
轴
一个高 次轴
立方体对角线上有4个3次旋 转轴
一个6次旋转轴 一个3次旋转轴 一个6次旋转轴
无高次 轴
有3个相互垂直的2次旋转轴 只有1个2次旋转轴
L1
二重旋转轴
2
旋转
L2
三重旋转轴
3
旋转
L3
四重旋转轴
4
旋转
L4
六重旋转轴
6
旋转
L5
四重反轴
4
旋转倒反 L4i
21
说明:
1;
2 m;
3 31
6 3 m
4 41 22
八种宏观对称要素之间究竟存在着多少种组 合方式?即晶体的宏观对称类型有多少种呢?
(1)对称要素间是相互作用的,两个对称要素相组 合,必然产生新的对称要素来;
轴 轴—面 mh
mv
C1
C2
C3
C4
C6
CS
C2h C3h
C4h
C6h
C2V C3V
C4V
C6V
无面
D2
D3
D4
D6
轴—21—面
mh
D2h D3h D4h
D6h
mv
D2d D3d
轴—m—i
Ci
C3i
S4
正四面体
T Th Td
正八面体
O Oh
25
晶体的32种对称类型(32点群)
特征对称元素中,高轴次的个数愈多,对称性高。晶系 从对称性由高到低的划分。
3个4次旋转轴,4个3次旋转轴,6个2次旋转
轴,9个对称面,1个对称中心
国际符号:
432 mm
简化符号:
m3m
30
坐标轴的选择
(1)符合晶体所固有的对称性。晶轴应与对称 轴或对称面的法线重合;若无对称轴和对称面, 晶轴可平行晶棱选取。
(2)在上述前提下,应尽可能使各晶轴相互垂 直或近于垂直,并使轴单位趋于相等(在晶体 宏观形态上是使轴率趋于1),即尽可能使之趋 于a=b=c; α=β=γ=90°。
1.1 晶体的基本概念 1.2 点阵理论和晶系划分 1.3 晶体的对称性 1.4 晶棱晶面方向的标记
1
教学目的: 掌握和理解晶体的基本特征,晶系的
划分,常见的晶体结构;理解空间点阵理 论和布拉维格子的概念;掌握晶体对称性, 描述晶体的方法和术语
2
激光晶体 半导体晶体 非线性光学晶体 调制晶体(包括电光晶体、磁光晶体、弹
面体
观
(2)母液+理想的生长条件,不规则自行生长成规则的多
察
面体 结论:晶体本身具有自发地长成规则几何多面体外形的内在能力
现象:同种晶体外形不同,但是几何多面体上相应的两个晶
测
面的夹角总是严格相等的。
量 结论:晶面角守恒识别晶体,晶体对称性
5
ab-141º47′, bc-120º00′, ac-113º08′
33
单斜晶系a≠b≠c α=γ=90°β≠90° 2次轴为Y,垂直面内两个晶棱为X,Z
三斜晶系a≠b≠c α≠β≠γ=90° 3个不在同一平面内的晶棱
34
OP ua vb wc
P点:(u,v,w)
35
(0,0,0)
(0,0,0),(1/2,1/2,1/2)
(0,0,0) (0,1/2,1/2) (1/2,0,1/2) (1/2,1/2,0)
只有1次旋转轴
27
基本对称要素:对称面m;旋转轴1,2,3, 4,6;旋转倒反轴:1, 3, 4, 6
晶系
与国际符号三个位序相应的方向
以单位平行六面体三个矢量表示
晶棱符号表示
立方 六方 三方 四方 正交 单斜 三斜
a abc ab
c
a
2a b
c
a
c
a
ab
a
b
c
b
a
[100] [001] [001] [001] [100] [010] [100]
A*
B
NaCl晶体结构(100)面示意图
均匀性:同一方向上任意两点物理性质相同
最小内能性:质点处于引力和斥力平衡,内能最小
解理性:沿某些确定方位的晶面劈裂
熔点固定:熔化过程温度不变
8
空间点阵:用抽象的几何点来代替实际晶体结 构中的微粒,使其三维重复的纯几何图形
一维点阵
b
a
晶体结构 的周期性
(2)对称要素间的组合不是任意的,需要满足:
A-参加组合的对称要素必须至少相交于一点。这是因为 晶体的外形是有限的、封闭的多面体。
B-晶体是一种点阵结构,对称要素的组合结果不容许产 生与点阵结构不相容的对称要素来。(5、7····等)
23
将八种晶体的宏观基本对称要素 i,m,1,2,3,4,6, 进行组合,一共能够得到32种 组合方式,也叫32个点群。
(有限图形中可成立)和微观要素(无限图形中可成
立)
点,线,面
14
举例:一朵花,有五个花瓣
对称图形:花 阶次:5 对称要素:直线
等同图形:一个花瓣,是相等图形 对称动作:旋转
15
举例:雪花,六角
对称图形:雪花 阶次:6 对称要素:直线
等同图形:一个角 对称动作:旋转
16
对称中心:倒反操作
M (x, y, z) M '(x, y,z)
光晶体、声光晶体)
3
建材,金属,糖,盐,化学药品
晶体结构物理性质
晶体: 长程有序
单晶体 多晶体
固体 非晶体: 不具有长程序的特点,短程有序。
准晶体: 有长程取向性,而没有长程的平移对称性。
4
具有天然的而不是经过人为加工成的 规则集合多面体外形的固体称为晶体。
现象:(1)由于外界条件限制,晶体可能不能生长成规则几何多
晶系
特征对称元素
所属点群
晶胞参数
立方晶系 六方晶系
四方晶系
三方晶系 正交晶系 单斜晶系 三斜晶系
三个 4 或四个 3
一个 6 或 6
一个 4 或 4
一个 3 或 3
三个 2 一个 2
无(仅有i )
O,Oh ,T ,Th ,Td
C6 ,C6h ,C3h ,C6v D6 , D6h , D3h C4 ,S4 ,C4h ,C4V D4 , D4h , D2d