孪生素数猜想与弱波林那克猜想的证明
孪生素数猜想证明
Bounded gaps between primesYitang ZhangAbstractIt is proved that(p n+1−p n)<7×107,lim infn→∞where p n is the n-th prime.Our method is a refinement of the recent work of Goldston,Pintz and Yildirim on the small gaps between consecutive primes.A major ingredient of the proof is a stronger version of the Bombieri-Vinogradov theorem that is applicable when the moduli are free from large prime divisors only(see Theorem2below),but it is adequate for our purpose.Contents1.Introduction22.Notation and sketch of the proof33.Lemmas74.Upper bound for S1165.Lower bound for S222binatorial arguments247.The dispersion method278.Evaluation of S3(r,a)299.Evaluation of S2(r,a)3010.A truncation of the sum of S1(r,a)3411.Estimation of R1(r,a;k):The Type I case3912.Estimation of R1(r,a;k):The Type II case4213.The Type III estimate:Initial steps4414.The Type III estimate:Completion48References5511.IntroductionLet p n denote the n-th prime.It is conjectured thatlim infn→∞(p n+1−p n)=2.While a proof of this conjecture seems to be out of reach by present methods,recently Goldston,Pintz and Yildirim[6]have made significant progress toward the weaker con-jecturelim infn→∞(p n+1−p n)<∞.(1.1) In particular,they prove that if the primes have level of distributionϑ=1/2+ for an (arbitrarily small) >0,then(1.1)will be valid(see[6,Theorem1]).Since the result ϑ=1/2is known(the Bombieri-Vinogradov theorem),the gap between their result and (1.1)would appear to be,as said in[6],within a hair’s breadth.Until very recently,the best result on the small gaps between consecutive primes was due to Goldston,Pintz andYildirim[7]that giveslim infn→∞p n+1−p n√log p n(log log p n)2<∞.(1.2)One may ask whether the methods in[6],combined with the ideas in Bombieri,Fried-lander and Iwaniec[1]-[3]which are employed to derive some stronger versions of the Bombieri-Vinogradov theorem,would be good enough for proving(1.1)(see Question1 on[6,p.822]).In this paper we give an affirmative answer to the above question.We adopt the following notation of[6].LetH={h1,h2,...,h k}(1.3) be a set composed of distinct non-negative integers.We say that H is admissible if νp(H)<p for every prime p,whereνp(H)denotes the number of distinct residue classes modulo p occupied by the h i.Theorem 1.Suppose that H is admissible with k0≥3.5×106.Then there are infinitely many positive integers n such that the k0-tuple{n+h1,n+h2,...,n+h k}(1.4) contains at least two primes.Consequently,we havelim infn→∞(p n+1−p n)<7×107.(1.5) The bound(1.5)results from the fact that the set H is admissible if it is composed of k0distinct primes,each of which is greater than k0,and the inequalityπ(7×107)−π(3.5×106)>3.5×106.2This result is,of course,not optimal.The condition k 0≥3.5×106is also crude and there are certain ways to relax it.To replace the right side of (1.5)by a value as small as possible is an open problem that will not be discussed in this paper.2.Notation and sketch of the proofNotationp −a prime number.a ,b ,c ,h ,k ,l ,m −integers.d ,n ,q ,r −positive integers.Λ(q )−the von Mangoldt function.τj (q )−the divisor function,τ2(q )=τ(q ).ϕ(q )−the Euler function.µ(q )−the M¨o bius function.x −a large number.L =log x .y,z −real variables.e (y )=exp {2πiy }.e q (y )=e (y/q ).||y ||−the distance from y to the nearest integer.m ≡a (q )−means m ≡a (mod q ).¯c /d −means a/d (mod 1)where ac ≡1(mod d ).q ∼Q −means Q ≤q <2Q .ε−any sufficiently small,positive constant,not necessarily the same in each occur-rence.B −some positive constant,not necessarily the same in each occurrence.A −any sufficiently large,positive constant,not necessarily the same in each occur-rence.η=1+L −2A .κN −the characteristic function of [N,ηN )∩Z . ∗l (mod q )−a summation over reduced residue classes l (mod q ).C q (a )−the Ramanujan sum∗l (mod q )e q (la ).We adopt the following conventions throughout our presentation.The set H given by(1.3)is assumed to be admissible and fixed.We write νp for νp (H );similar abbreviations will be used in the sequel.Every quantity depending on H alone is regarded as a constant.For example,the absolutely convergent productS = p1−νp p 1−1p −k 03is a constant.A statement is valid for any sufficiently smallεand for any sufficiently large A whenever they are involved.The meanings of“sufficiently small”and“sufficiently large”may vary from one line to the next.Constants implied in O or ,unless specified,will depend on H,εand A at most.Wefirst recall the underlying idea in the proof of[6,Theorem1]which consists in evaluating and comparing the sumsS1=n∼xλ(n)2(2.1)andS2=n∼x k0i=1θ(n+h i)λ(n)2,(2.2)whereλ(n)is a real function depending on H and x,andθ(n)=log n if n is prime, 0otherwise.The key point is to prove,with an appropriate choice ofλ,thatS2−(log3x)S1>0.(2.3) This implies,for sufficiently large x,that there is a n∼x such that the tuple(1.4) contains at least two primes.In[6]the functionλ(n)mainly takes the formλ(n)=1(k0+l0)!d|P(n)d≤Dµ(d)logDdk0+l0,l0>0,(2.4)where D is a power of x andP(n)=k0j=1(n+h j).Let∆(γ;d,c)=n∼xn≡c(d)γ(n)−1ϕ(d)n∼x(n,d)=1γ(n)for(d,c)=1,andC i(d)={c:1≤c≤d,(c,d)=1,P(c−h i)≡0(mod d)}for1≤i≤k0.4The evaluations of S1and S2lead to a relation of the formS2−(log3x)S1=(k0T∗2−LT∗1)x+O(x L k0+2l0)+O(E)for D<x1/2−ε,where T∗1and T∗2are certain arithmetic sums(see Lemma1below),andE=1≤i≤k0d<D2|µ(d)|τ3(d)τk0−1(d)c∈C i(d)|∆(θ;d,c)|.Let >0be a small constant.IfD=x1/4+ (2.5) and k0is sufficiently large in terms of ,then,with an appropriate choice of l0,one can prove thatk0T∗2−LT∗1L k0+2l0+1.(2.6)In this situation the error E can be efficiently bounded if the primes have level of distri-butionϑ>1/2+2 ,but one is unable to prove it by present methods.On the other hand,for D=x1/4−ε,the Bombieri-Vinogradov theorem is good enough for bounding E, but the relation(2.6)can not be valid,even if a more general form ofλ(n)is considered (see Soundararajan[12]).Ourfirst observation is that,in the sums T∗1and T∗2,the contributions from the termswith d having a large prime divisor are relatively small.Thus,if we impose the constraint d|P in(2.4),where P is the product of the primes less than a small power of x,the resulting main term is still L k0+2l0+1with D given by(2.5).Our second observation,which is the most novel part of the proof,is that with D given by(2.5)and with the constraint d|P imposed in(2.4),the resulting error1≤i≤k0d<D2d|Pτ3(d)τk0−1(d)c∈C i(d)|∆(θ;d,c)|(2.7)can be efficiently bounded.This is originally due to the simple fact that if d|P and d is not too small,say d>x1/2−ε,then d can be factored asd=rq(2.8) with the range for rflexibly chosen(see Lemma4below).Thus,roughly speaking,the characteristic function of the set{d:x1/2−ε<d<D2,d|P}may be treated as a well factorable function(see Iwaniec[10]).The factorization(2.8)is crucial for bounding the error terms.It suffices to prove Theorem1withk0=3.5×1065which is henceforth assumed.Let D be as in(2.5)with=1 1168.Let g(y)be given byg(y)=1(k0+l0)!logDyk0+l0if y<D,andg(y)=0if y≥D,wherel0=180.WriteD1=x ,P=p<D1p,(2.9)D0=exp{L1/k0},P0=p≤D0p.(2.10)In the case d|P and d is not too small,the factor q in(2.8)may be chosen such that (q,P0)=1.This will considerably simplify the argument.We chooseλ(n)=d|(P(n),P)µ(d)g(d).(2.11)In the proof of Theorem1,the main terms are not difficult to handle,since we deal with afixed H.This is quite different from[6]and[7],in which various sets H are involved in the argument to derive results like(1.2).By Cauchy’s inequality,the error(2.7)is efficiently bounded via the followingTheorem2.For1≤i≤k0we haved<D2 d|Pc∈C i(d)|∆(θ;d,c)| x L−A.(2.12)The proof of Theorem2is described as follows.First,applying combinatorial argu-ments(see Lemma6below),we reduce the proof to estimating the sum of|∆(γ;d,c)| with certain Dirichlet convolutionsγ.There are three types of the convolutions involved in the argument.Writex1=x3/8+8 ,x2=x1/2−4 .(2.13) In thefirst two types the functionγis of the formγ=α∗βsuch that the following hold.(A1)α=(α(m))is supported on[M,ηj1M),j1≤19,α(m) τj1(m)L.6(A2)β=(β(n))is supported on[N,ηj2N),j2≤19,β(n) τj2(n)L,x1<N<2x1/2.For any q,r and a satisfying(a,r)=1,the following”Siegel-Walfisz”assumption is satisfied.n≡a(r) (n,q)=1β(n)−1ϕ(r)(n,qr)=1β(n) τ20(q)N L−200A.(A3)j1+j2≤20,[MN,η20MN)⊂[x,2x).We say thatγis of Type I if x1<N≤x2;we say thatγis of Type II if x2<N<2x1/2.In the Type I and II estimates we combine the dispersion method in[1]with the factorization(2.8)(here r is close to N in the logarithmic scale).Due to the fact that the modulo d is at most slightly greater than x1/2in the logarithmic scale,after reducing the problem to estimating certain incomplete Kloosterman sums,we need only to save a small power of x from the trivial estimates;a variant of Weil’s bound for Kloosterman sums(see Lemma11below)will fulfill it.Here the condition N>x1,which may be slightly relaxed,is essential.We say thatγis of Type III if it is of the formγ=α∗κN1∗κN2∗κN3such thatαsatisfies(A1)with j1≤17,and such that the following hold.(A4)N3≤N2≤N1,MN1≤x1.(A5)[MN1N2N3,η20MN1N2N3)⊂[x,2x).The Type III estimate essentially relies on the Birch-Bombieri result in the appendix to[5](see Lemma12below),which is employed by Friedlander and Iwaniec[5]and by Heath-Brown[9]to study the distribution ofτ3(n)in arithmetic progressions.This result in turn relies on Deligne’s proof of the Riemann Hypothesis for varieties overfinitefields (the Weil Conjecture)[4].We estimate each∆(γ;d,c)directly.However,if one applies the method in[5]alone,efficient estimates will be valid only for MN1 x3/8−5 /2−ε. Our argument is carried out by combining the method in[5]with the factorization(2.8) (here r is relatively small);the latter will allow us to save a factor r1/2.In our presentation,all theα(m)andβ(n)are real numbers.3.LemmasIn this section we introduce a number of prerequisite results,some of which are quoted from the literature directly.Results given here may not be in the strongest forms,but they are adequate for the proofs of Theorem1and Theorem2.Lemma1.Let 1(d)and 2(d)be the multiplicative functions supported on square-free integers such that1(p)=νp, 2(p)=νp−1.7LetT∗1=d0d1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2)andT∗2=d0d1d2µ(d1d2) 2(d0d1d2)ϕ(d0d1d2)g(d0d1)g(d0d2).We haveT∗1=1(k0+2l0)!2l0l0S(log D)k0+2l0+o(L k0+2l0)(3.1)andT∗2=1(k0+2l0+1)!2l0+2l0+1S(log D)k0+2l0+1+o(L k0+2l0+1).(3.2)Proof.The sum T∗1is the same as the sum T R(l1,l2;H1,H2)in[6,(7.6)]with H1=H2=H(k1=k2=k0),l1=l2=l0,R=D,so(3.1)follows from[6,Lemma3];the sum T∗2is the same as the sum˜T R(l1,l2;H1,H2,h0)in[6,(9.12)]withH1=H2=H,l1=l2=l0,h0∈H,R=D, so(3.2)also follows from[6,Lemma3].2Remark.A generalization of this lemma can be found in[12].Lemma2.LetA1(d)=(r,d)=1µ(r) 1(r)rg(dr)andA2(d)=(r,d)=1µ(r) 2(r)ϕ(r)g(dr).Suppose that d<D and|µ(d)|=1.Then we haveA1(d)=ϑ1(d)l0!SlogDdl0+O(L l0−1+ε)(3.3)andA2(d)=ϑ2(d)(l0+1)!SlogDdl0+1+O(L l0+ε),(3.4)whereϑ1(d)andϑ2(d)are the multiplicative functions supported on square-free integerssuch thatϑ1(p)=1−νpp−1,ϑ2(p)=1−νp−1p−1−1.8Proof.Recall that D 0is given by (2.10).Since 1(r )≤τk 0(r ),we have triviallyA 1(d ) 1+ log(D/d ) 2k 0+l 0,so we may assume D/d >exp {(log D 0)2}without loss of generality.Write s =σ+it .Forσ>0we have(r,d )=1µ(r ) 1(r )r1+s =ϑ1(d,s )G 1(s )ζ(1+s )−k 0whereϑ1(d,s )=p |d1−νpp 1+s−1,G 1(s )= p 1−νpp 1+s1−1p 1+s −k 0.It follows thatA 1(d )=12πi(1/L )ϑ1(d,s )G 1(s )ζ(1+s )k 0(D/d )s dss k 0+l 0+1.Note that G 1(s )is analytic and bounded for σ≥−1/3.We split the line of integration into two parts according to |t |≤D 0and |t |>D 0.By a well-known result on the zero-free region for ζ(s ),we can move the line segment {σ=1/L ,|t |≤D 0}toσ=−κ(log D 0)−1,|t |≤D 0 ,where κ>0is a certain constant,and apply some standard estimates to deduce thatA 1(d )=12πi |s |=1/L ϑ1(d,s )G 1(s )ζ(1+s )k 0(D/d )s ds s k 0+l 0+1+O (L −A).Note that ϑ1(d,0)=ϑ1(d )andϑ1(d,s )−ϑ1(d )=ϑ1(d,s )ϑ1(d )l |dµ(l ) 1(l )l(1−l −s ).If |s |≤1/L ,then ϑ1(d,s ) (log L )B ,so that,by trivial estimation,ϑ1(d,s )−ϑ1(d ) L ε−1.On the other hand,by Cauchy’s integral formula,for |s |≤1/L we haveG 1(s )−S 1/L .It follows that12πi |s |=1/L ϑ1(d,s )G 1(s )ζ(1+s )k 0(D/d )s ds s k 0+l 0+1−12πi ϑ1(d )S|s |=1/L(D/d )s ds s l 0+1 L l 0−1+ε.9This leads to(3.3).The proof of(3.4)is analogous.We have only to note thatA2(d)=12πi(1/L)ϑ2(d,s)G2(s)ζ(1+s)k0−1(D/d)s dss k0+l0+1withϑ2(d,s)=p|d1−νp−1(p−1)p s−1,G2(s)=p1−νp−1(p−1)p s1−1p1+s1−k0,and G2(0)=S.2Lemma3.We haved<x1/4 1(d)ϑ1(d)d=(1+4 )−k0k0!S−1(log D)k0+O(L k0−1)(3.5)andd<x1/4 2(d)ϑ2(d)ϕ(d)=(1+4 )1−k0(k0−1)!S−1(log D)k0−1+O(L k0−2),(3.6)Proof.Noting thatϑ1(p)/p=1/(p−νp),forσ>0we have∞ d=1 1(d)ϑ1(d)d1+s=B1(s)ζ(1+s)k0,whereB1(s)=p1+νp(p−νp)p s1−1p1+sk0.Hence,by Perron’s formula,d<x1/4 1(d)ϑ1(d)d=12πi1/L+iD01/L−iD0B1(s)ζ(1+s)k0x s/4sds+O(D−1L B).Note that B1(s)is analytic and bounded forσ≥−1/3.Moving the path of integration to[−1/3−iD0,−1/3+iD0],we see that the right side above is equal to1 2πi|s|=1/LB1(s)ζ(1+s)k0x s/4sds+O(D−1L B).Since,by Cauchy’s integral formula,B1(s)−B1(0) 1/L for|s|=1/L,andB1(0)=ppp−νp1−1pk0=S−1,10it follows thatd<x1/4 1(d)ϑ1(d)d=1k0!S−1L4k0+O(L k0−1).This leads to(3.5)since L/4=(1+4 )−1log D by(2.5).The proof of(3.6)is analogous.We have only to note that,forσ>0,∞ d=1 2(d)ϑ2(d)ϕ(d)p s=B2(s)ζ(1+s)k0−1withB2(s)=p1+νp−1(p−νp)p s1−1p1+sk0−1,and B2(0)=S−1.2Recall that D1and P are given by(2.9),and P0is given by(2.10).Lemma4.Suppose that d>D21,d|P and(d,P0)<D1.For any R∗satisfyingD21<R∗<d,(3.7)there is a factorization d=rq such that D−11R∗<r<R∗and(q,P0)=1.Proof.Since d is square-free and d/(d,P0)>D1,we may write d/(d,P0)asd (d,P0)=nj=1p j with D0<p1<p2<...<p n<D1,n≥2.By(3.7),there is a n <n such that(d,P0)nj=1p j<R∗and(d,P0)n +1j=1p j≥R∗.The assertion follows by choosingr=(d,P0)nj=1p j,q=nj=n +1p j,and noting that r≥(1/p n +1)R∗.2Lemma5.Suppose that1≤i≤k0and|µ(qr)|=1.There is a bijectionC i(qr)→C i(r)×C i(q),c→(a,b)11such that c(mod qr)is a common solution to c≡a(mod r)and c≡b(mod q).Proof.By the Chinese remainder theorem.2The next lemma is a special case of the combinatorial identity due to Heath-Brown[8].Lemma6Suppose that x1/10≤x∗<ηx1/10.For n<2x we haveΛ(n)=10j=1(−1)j−110jm1,...,m j≤x∗µ(m1)...µ(m j)n1...n j m1...m j=nlog n1.The next lemma is a truncated Poisson formula.Lemma7Suppose thatη≤η∗≤η19and x1/4<M<x2/3.Let f be a function of C∞(−∞,∞)class such that0≤f(y)≤1,f(y)=1if M≤y≤η∗M,f(y)=0if y/∈[(1−M−ε)M,(1+M−ε)η∗M],andf(j)(y) M−j(1−ε),j≥1,the implied constant depending onεand j at most.Then we havem≡a(d)f(m)=1d|h|<Hˆf(h/d)ed(−ah)+O(x−2)for any H≥dM−1+2ε,whereˆf is the Fourier transform of f,i.e.,ˆf(z)=∞−∞f(y)e(yz)dy.Lemma8.Suppose that1≤N<N <2x,N −N>xεd and(c,d)=1.Then for j,ν≥1we haveN≤n≤N n≡c(d)τj(n)νN −Nϕ(d)L jν−1,the implied constant depending onε,j andνat most.Proof.See[11,Theorem1].2The next lemma is(essentially)contained in the proof of[5,Theorem4].Lemma9Suppose that H,N≥2,d>H and(c,d)=1.Then we haven≤N (n,d)=1minH,||c¯n/d||−1(dN)ε(H+N).(3.8)12Proof.We may assume N≥H without loss of generality.Write{y}=y−[y]and assumeξ∈[1/H,1/2].Note that{c¯n/d}≤ξif and only if bn≡c(mod d)for some b∈(0,dξ],and1−ξ≤{c¯n/d}if and only if bn≡−c(mod d)for some b∈(0,dξ],Thus, the number of the n satisfying n≤N,(n,d)=1and||c¯n/d||≤ξis bounded byq≤dNξq≡±c(d)τ(q) dεN1+εξ.Hence,for any interval I of the formI=(0,1/H],I=[1−1/H,1),I=[ξ,ξ ]or I=[1−ξ ,1−ξ]with1/H≤ξ<ξ ≤1/2,ξ ≤2ξ,the contribution from the terms on the left side of (3.8)with{c¯n/d}∈I is dεN1+ε.This completes the proof.2Lemma10.Suppose thatβ=(β(n))satisfies(A2)and R≤x−εN.Then for any q we haver∼R 2(r)∗l(mod r)n≡l(r)(n,q)=1β(n)−1ϕ(r)(n,qr)=1β(n)2 τ(q)B N2L−100A.Proof.Since the inner sum is ϕ(r)−1N2L B by Lemma8,the assertion follows by Cauchy’s inequality and[1,Theorem0].2Lemma11Suppose that N≥1,d1d2>10and|µ(d1)|=|µ(d2)|=1.Then we have, for any c1,c2and l,n≤N (n,d1)=1 (n+l,d2)=1ec1¯nd1+c2(n+l)d2(d1d2)1/2+ε+(c1,d1)(c2,d2)(d1,d2)2Nd1d2.(3.9)Proof.Write d0=(d1,d2),t1=d1/d0,t2=d2/d0and d=d0t1t2.LetK(d1,c1;d2,c2;l,m)=n≤d(n,d1)=1(n+l,d2)=1ec1¯nd1+c2(n+l)d2+mnd.We claim that|K(d1,c1;d2,c2;l,m)|≤d0|S(m,b1;t1)S(m,b2;t2)|(3.10) for some b1and b2satisfying(b i,t i)≤(c i,d i),(3.11)13where S(m,b;t)denotes the ordinary Kloosterman sum.Note that d0,t1and t2are pairwise coprime.Assume thatn≡t1t2n0+d0t2n1+d0t1n2(mod d)andl≡t1t2l0+d0t1l2(mod d2).The conditions(n,d1)=1and(n+l,d2)=1are equivalent to(n0,d0)=(n1,t1)=1and(n0+l0,d0)=(n2+l2,t2)=1 respectively.Letting a i(mod d0),b i(mod t i),i=1,2be given bya1t21t2≡c1(mod d0),a2t1t22≡c2(mod d0),b1d20t2≡c1(mod t1),b2d2t1≡c2(mod t2),so that(3.11)holds,by the relation1 d i ≡¯tid0+¯dt i(mod1)we havec1¯n d1+c2(n+l)d2≡a1¯n0+a2(n0+l0)d0+b1¯n1t1+b2(n2+l2)t2(mod1).Hence,c1¯n d1+c2(n+l)d2+mnd≡a1¯n0+a2(n0+l0)+mn0d0+b1¯n1+mn1t1+b2(n2+l2)+m(n2+l2)t2−ml2t2(mod1).From this we deduce,by the Chinese remainder theorem,thatK(d1,c1;d2,c2;l,m)=e t2(−ml2)S(m,b1;t1)S(m,b2;t2)n≤d0(n,d0)=1(n+l0,d0)=1e da1¯n+a2(n+l0)+mn,whence(3.10)follows.By(3.10)with m=0and(3.11),for any k>0we havek≤n<k+d(n,d1=1 (n+l,d2)=1ec1¯nd1+c2d2≤(c1,d1)(c2,d2)d0.14It now suffices to prove(3.9)on assuming N≤d−1.By standard Fourier techniques, the left side of(3.9)may be rewritten as−∞<m<∞u(m)K(d1,c1;d2,c2;l,m)withu(m) minNd,1|m|,dm2.(3.12)By(3.10)and Weil’s bound for Kloosterman sums,wefind that the left side of(3.9)isd0|u(0)|(b1,t1)(b2,t2)+(t1t2)1/2+εm=0|u(m)|(m,b1,t1)1/2(m,b2,t2)1/2.This leads to(3.9)by(3.12)and(3.11).2 Remark.In the case d2=1,(3.9)becomesn≤N (n,d1)=1e d1(c1¯n) d1/2+ε1+(c1,d1)Nd1.(3.13)This estimate is well-known(see[2,Lemma6],for example),and it willfind application somewhere.Lemma12.LetT(k;m1,m2;q)=l(mod q)∗t1(mod q)∗t2(mod q)e q¯lt1−(l+k)t2+m1¯t1−m2¯t2,whereis restriction to(l(l+k),q)=1.Suppose that q is square-free.Then we haveT(k;m1,m2;q) (k,q)1/2q3/2+ε.Proof.By[5,(1.26)],it suffices to show thatT(k;m1,m2;p) (k,p)1/2p3/2.In the case k≡0(mod p),this follows from the Birch-Bombieri result in the appendix to[5](the proof is straightforward if m1m2≡0(mod p));in the case k≡0(mod p),this follows from Weil’s bound for Kloosterman sums.2154.Upper bound for S1Recall that S1is given by(2.1)andλ(n)is given by(2.11).The aim of this section is to establish an upper bound for S1(see(4.20)below).Changing the order of summation we obtainS1=d1|Pd2|Pµ(d1)g(d1)µ(d2)g(d2)n∼xP(n)≡0([d1,d2])1.By the Chinese remainder theorem,for any square-free d,there are exactly 1(d)distinct residue classes(mod d)such that P(n)≡0(mod d)if and only if n lies in one of these classes,so the innermost sum above is equal to1([d1,d2])[d1,d2]x+O( 1([d1,d2])).It follows thatS1=T1x+O(D2+ε),(4.1)whereT1=d1|Pd2|Pµ(d1)g(d1)µ(d2)g(d2)[d1,d2]1([d1,d2]).Note that 1(d)is supported on square-free integers.Substituting d0=(d1,d2)and rewriting d1and d2for d1/d0and d2/d0respectively,we deduce thatT1=d0|Pd1|Pd2|Pµ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).(4.2)We need to estimate the difference T1−T∗1.We haveT∗1=Σ1+Σ31,whereΣ1=d0≤x1/4d1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2),Σ31=x1/4<d0<Dd1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).In the case d0>x1/4,d0d1<D,d0d2<D and|µ(d1d2)|=1,the conditions d i|P,i=1,2 are redundant.Hence,T1=Σ2+Σ32,16whereΣ2=d0≤x1/4d0|Pd1|Pd2|Pµ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2),Σ32=x1/4<d0<Dd0|Pd1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).It follows that|T1−T∗1|≤|Σ1|+|Σ2|+|Σ3|,(4.3)whereΣ3=x1/4<d0<Dd0 Pd1d2µ(d1d2) 1(d0d1d2)d0d1d2g(d0d1)g(d0d2).First we estimateΣ1.By M¨o bius inversion,the inner sum over d1and d2inΣ1is equal to1(d0) d0(d1,d0)=1(d2,d0)=1µ(d1) 1(d1)µ(d2) 1(d2)d1d2g(d0d1)g(d0d2)q|(d1,d2)µ(q)=1(d0)d0(q,d0)=1µ(q) 1(q)2q2A1(d0q)2.It follows thatΣ1=d0≤x1/4(q,d0)=11(d0)µ(q) 1(q)2d0q2A1(d0q)2.(4.4)The contribution from the terms with q≥D0above is D−10L B.Thus,substitutingd0q=d,we deduce thatΣ1=d<x1/4D0 1(d)ϑ∗(d)dA1(d)2+O(D−1L B),(4.5)whereϑ∗(d)=d0q=dd0<x1/4q<D0µ(q) 1(q)q.By the simple boundsA1(d) L l0(log L)B(4.6) which follows from(3.3),ϑ∗(d) (log L)B17andx1/4≤d<x1/4D0 1(d)dL k0+1/k0−1,(4.7)the contribution from the terms on the right side of(4.5)with x1/4≤d<x1/4D0is o(L k0+2l0).On the other hand,assuming|µ(d)|=1and noting thatq|d µ(q) 1(q)q=ϑ1(d)−1,(4.8)for d<x1/4we haveϑ∗(d)=ϑ1(d)−1+Oτk0+1(d)D−1,so that,by(3.3),ϑ∗(d)A1(d)2=1(l0!)2S2ϑ1(d)logDd2l0+Oτk0+1(d)D−1L B+O(L2l0−1+ε).Inserting this into(4.5)we obtainΣ1=1(l0!)2S2d≤x1/41(d)ϑ1(d)dlogDd2l0+o(L k0+2l0).(4.9)Together with(3.5),this yields|Σ1|≤δ1k0!(l0!)2S(log D)k0+2l0+o(L k0+2l0),(4.10)whereδ1=(1+4 )−k0.Next we estimateΣ2.Similar to(4.4),we haveΣ2=d0≤x1/4d0|P(q,d0)=1q|P1(d0)µ(q) 1(q)2d0q2A∗1(d0q)2.whereA∗1(d)=(r,d)=1r|Pµ(r) 1(r)g(dr)r.In a way similar to the proof of(4.5),we deduce thatΣ2=d<x1/4D0d|P 1(d)ϑ∗(d)dA∗1(d)2+O(D−1L B).(4.11) 18Assume d|P.By M¨o bius inversion we haveA∗1(d)=(r,d)=1µ(r) 1(r)g(dr)rq|(r,P∗)µ(q)=q|P∗1(q)qA1(dq),whereP∗=D1≤p<Dp.Noting thatϑ1(q)=1+O(D−11)if q|P∗and q<D,(4.12) by(3.3)we deduce that|A∗1(d)|≤1l0!Sϑ1(d)logDdl0q|P∗q<D1(q)q+O(L l0−1+ε).(4.13)If q|P∗and q<D,then q has at most292prime factors.In addition,by the prime number theorem we haveD1≤p<D 1p=log293+O(L−A).(4.14)It follows thatq|P∗q<D 1(q)q≤1+292ν=1((log293)k0)νν!+O(L−A)=δ2+O(L−A),say.Inserting this into(4.13)we obtain|A∗1(d)|≤δ2l0!Sϑ1(d)logDdl0+O(L l0−1+ε).Combining this with(4.11),in a way similar to the proof of(4.9)we deduce that|Σ2|≤δ22(l0!)2S2d<x1/41(d)ϑ1(d)dlogDd2l0+o(L k0+2l0).Together with(3.5),this yields|Σ2|≤δ1δ22k0!(l0!)2S(log D)k0+2l0+o(L k0+2l0).(4.15) 19We now turn toΣ3.In a way similar to the proof of(4.5),we deduce thatΣ3=x1/4<d<D 1(d)˜ϑ(d)dA1(d)2,(4.16)where˜ϑ(d)=d0q=dx1/4<d0d0 P µ(q) 1(q)q.By(4.6)and(4.7),wefind that the contribution from the terms with x1/4<d≤x1/4D0 in(4.16)is o(L k0+2l0).Now assume that x1/4D0<d<D,|µ(d)|=1and d P.Noting that the conditions d0|d and x1/4<d0together imply d0 P,by(4.8)we obtain˜ϑ(d)=d0q=dx1/4<d0µ(q) 1(q)q=ϑ1(d)−1+Oτk0+1(d)D−1.Together with(3.3),this yields˜ϑ(d)A1(d)2=1(l0!)2S2ϑ1(d)logDd2l0+Oτk0+1(d)D−1L B+O(L2l0−1+ε).Combining these results with(4.16)we obtainΣ3=1(l0!)2S2x1/4D0<d<Dd P1(d)ϑ1(d)dlogDd2l0+o(L k0+2l0).(4.17)By(4.12),(4.14)and(3.5)we havex1/4<d<Dd P 1(d)ϑ1(d)d≤d<D1(d)ϑ1(d)dp|(d,P∗)1≤D1≤p<D1(p)ϑ1(p)pd<D/p1(d)ϑ1(d)d≤(log293)δ1(k0−1)!S−1(log D)k0+o(L k0)Together with(4.17),this yields|Σ3|≤(log293)δ1(k0−1)!(l0!)2S(log D)k0+2l0+o(L k0+2l0).(4.18)20Since1k0!(l0!)2=1(k0+2l0)!k0+2l0k02l0l0,it follows from(4.3),(4.10),(4.15)and(4.18)that|T1−T∗1|≤κ1(k0+2l0)!2l0l0S(log D)k0+2l0+o(L k0+2l0),(4.19)whereκ1=δ1(1+δ22+(log293)k0)k0+2l0k0.Together with(3.1),this implies thatT1≤1+κ1(k0+2l0)!2l0l0S(log D)k0+2l0+o(L k0+2l0).Combining this with(4.1),we deduce thatS1≤1+κ1(k0+2l0)!2l0l0S x(log D)k0+2l0+o(x L k0+2l0).(4.20)We conclude this section by giving an upper bound forκ1.By the inequalityn!>(2πn)1/2n n e−nand simple computation we have1+δ22+(log293)k0<2((log293)k0)292292!2<1292π(185100)584andk0+2l0k0<2k2l0(2l0)!<1√180π(26500)360.It follows thatlogκ1<−3500000log 293292+584log(185100)+360log(26500)<−1200.This givesκ1<exp{−1200}.(4.21)21。
孪生素数猜想
孪生素数猜想1849年,波林那克提出孪生素数猜想(the conjecture of twin primes),即猜测存在无穷多对孪生素数。
孪生素数即相差2的一对素数。
例如3和5 ,5和7,11和13,…,10016957和10016959等等都是孪生素数。
孪生素数是有限个还是有无穷多个?这是一个至今都未解决的数学难题.一直吸引着众多的数学家孜孜以求地钻研.早在20世纪初,德国数学家兰道就推测孪生素数有无穷多.许多迹象也越来越支持这个猜想.最先想到的方法是使用欧拉在证明素数有无穷多个所采取的方法.设所有的素数的倒数和为:s=1/2+1/3+1/5+1/7+1/11+...如果素数是有限个,那么这个倒数和自然是有限数.但是欧拉证明了这个和是发散的,即是无穷大.由此说明素数有无穷多个.1919年,挪威数学家布隆仿照欧拉的方法,求所有孪生素数的倒数和:b=(1/3+1/5)+(1/5+1/7)+(1/11+1/13)+...如果也能证明这个和比任何数都大,就证明了孪生素数有无穷多个了.这个想法很好,可是事实却违背了布隆的意愿.他证明了这个倒数和是一个有限数,现在这个常数就被称为布隆常数:b=1.90216054...布隆还发现,对于任何一个给定的整数m,都可以找到m个相邻素数,其中没有一个孪生素数.1966年,中国数学家陈景润在这方面得到最好的结果:存在无穷多个素数p,使p+2是不超过两个素数之积。
若用p(x)表示小于x的孪生素数对的个数.下表是1011以下的孪生素数分布情况:x p(x)1000 3510000 205100000 12241000000 816910000000 58980100000000 4403121000000000 342450610000000000 27412679100000000000 224376048迄今为止在证明孪生素数猜想上的成果大体可以分为两类。
第一类是非估算性的结果,这一方面迄今最好的结果是一九六六年由已故的我国数学家陈景润(顺便说一下,美国数学学会在介绍Goldston 和Yildirim 成果的简报中提到陈景润时所用的称呼是“伟大的中国数学家陈”) 利用筛法(sieve method) 所取得的。
孪生素数猜想初等证明详解
孪生素数猜想初等证明详解齐宸孪生素数是指相差2的素数对,例如3和5,5和7,11和13…。
孪生素数猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以这样描述:存在无穷多个素数p,使得p + 2是素数。
素数对(p, p + 2)称为孪生素数。
孪生素数由两个素数组成,相差为2。
为了证明孪生素数猜想,无数的数学家曾为之奋斗,但美丽的公主仍然犹抱琵琶半遮面。
1.孪生素数分类及无个位表示方法孪生素数按两个素数个位不同划分3类(不包括10以下的3-5、5-7),分别是:1、孪生素数中两个素数个位为1和3,如11-13,41-43等;2、孪生素数中两个素数个位为7和9,如17-19,107-109等;3、孪生素数中两个素数个位为9和1,如29-31,59-61等。
三类孪生素数中个位为1和3的第一类是我们需要重点研究的,其他两类可以忽略不计。
因为只要第一类孪生素数无限,也就等价于证明了孪生素数猜想。
自有孪生素数概念以来它们就是由两个素数表示的。
若是能简化成一个数字那孪生素数猜想这一世界数学难题也许就向前迈进了一步。
无论这一步是一小步,还是一大步。
但毕竟能将两个素数组成的孪生素数降格成了像素数那样的单个数字。
分析一下个位为1和3的这一类孪生素数,如41-43这对孪生素数。
首先,分别去掉个位1和3后,可以看到剩下了两个数字4和4。
用这两个数字完全可以表示一对孪生素数,当然我们心里要想着在这两个数字后面是有个位1和3的。
其次,这两个去掉个位的数字又是完全相同的,都是一个数字“4”。
这样也就完全可以用一个数字“4”来表示一对孪生素数,也可以说4是一个单数字无个位孪生素数。
当然表面上看只有第一类、第二类孪生素数可以用一个数字表示(实际上第三类也可以)。
为什么一定要去掉个位呢?可将自然数变成互为补集的两类:孪生素数和非孪生素数。
并利用一种简单的筛法,将自然数中的非孪生素数及其补集孪生素数分开。
而且这个筛法所要得到的是非孪生素数。
关于孪生素数猜想的一个证明
科技视界
关于孪生素数猜想的一个证明
张跃 渊湖南师范大学物理系袁湖南 长沙 410081冤
揖摘 要铱根据计算机的整数取值有限袁本文提出了一个基本假设遥 在此假设的基础上袁利用 C 语言编程袁证明了院对应于无穷多个素数 p袁 存在无穷多个 p+2 的素数曰即孪生素数猜想遥
3 冷再生混合料性能验证
采用 F2 配方的乳化沥青袁 按照 叶公路沥青路面再生技术规范曳 渊JTG F41-2008冤中规定的方法袁最终结果见表 5尧表 6遥
表 5 最佳乳化沥青用量及含水量试验结果
混合料类 型
最佳乳化 沥青掺量
渊%冤
最佳含水 率渊%冤
毛体积相 对密度渊g/
cm3冤
实测最大理 论相对密度
在假设中袁显然袁R(k+1)劢R(k)袁R(k+1)原R(k)=k+1袁仅仅多一个 k+1 的数字遥 如果计算机对整数的取值范围没有限制袁可以设 k 为任意大 的整数袁但是不会当 k 大到某一整数之后袁j以i袁因为素数 p 有无穷多 个袁可能成为素数的 k+1 的数也有无穷多个袁故 j逸i 的情形有无穷多遥
由于计算机的二进制运算仅与逻辑电路或者布尔代数有关系袁其 运算规则和结果不因计算机的二进制数码的位数多少而引起变化遥 因 此袁可以作以下假设遥
假设院已知计算机限制的整数的最大取值为 n袁p 为无穷多个素数 p1约p2约噎约pn噎的集合遥 任意取一个整数 k渊k约n冤袁命 R(k)={pr+2} (r=1, 噎, i; pi+2臆k)为所有小于或者等于 k 的 i 个 p+2 的素数组成的集合袁 如果 R(k+1)={pt+2}(t=1,噎,j;pj+2臆k+1)为所有小于或者等于 k+1渊k+ 1臆n冤的 j 个 p+2 的素数组成的集合袁且 j逸i 恒成立袁则表明所有 p+2 的素数组成一个无穷集合遥
孪生素数猜想证明简述
孪生素数猜想证明简述一:逻辑证明(最简单,但逻辑思维要求高)根据素数新定义:从祖素数2开始,素数倍数后不连续的数即为素数。
易知素数除了2以外全是奇数,所以在奇数数轴上研究素数会有奇效。
奇数数轴:3,5,7,9,11,13,15,17,19,21,23,25,27,29,31......,无数对相差为2(相连)的数;假设只有3为素数,去掉其倍数后数轴变为:3,5,7,11,13,17,19,23,25,29,31......,只少了一点,但依旧有无穷对素数相差2;添加5为素数,去掉其倍数后数轴变为3,5,7,11,13,17,19,23,29,31......,少的更少,剩下相差为2的素数对肯定是无穷多;等等;如此可以无穷下去,但少的越来越少,而且剩余差值为2的素数对肯定是无穷多。
所以孪生素数肯定是无穷多的。
一目了然!!!当然也很容易看出,P和P+2k的素数对也是无穷多的(波利尼亚克猜想成立)。
(参考文献:奇数轴中素数量与合数宽度的研究)二:公式证明(难度极大)在上述的逻辑证明中,我们若将奇数数轴设为单位1;则3的倍数占比为:1/35的倍数占比为:1/5-1/157的倍数占比为:1/7-1/21-1/35+1/105等等,最后可得到孪生素数在奇数中的占比(LiKe级数公式)约为:1-1/3-(1/5-1/15)-(1/7-1/21-1/35+1/105)-(1/11-1/3*11-1/5*11-...+...)-...=1-1/3-1/5-1/7-......-1/p+1/15+1/21+......+1/pq-1/105-1/165-......-1/pqr+...-...=1-∑1/P+∑1/pq-∑1/pqr+…±∑1/∏P (1)(式中所有素数为奇素数,分母为偶数个素数积时取和,为奇数时取差)关于该新颖级数的求和不在此演示。
不过它是发散的(其值应该不为0),该级数本身足以说明了孪生素数的无穷多。
网友再次发现了有关孪生素数的一个猜想——杜伯纳猜想
网友再次发现了有关孪生素数的一个猜想——杜伯纳猜想不久前看到知乎上有人提出了一个关于孪生素数的猜想。
原问题比较晦涩,改述一下题主的问题,其意思是:对任意孪生素数对,总存在另两对孪生素数对,使得另两对的和等于前者。
那么化简一下问题:如果某孪生素数对是(a, a+2),猜想就是说,要存在孪生素数(b, b+2)和(c,c+2),使得: a+(a+2)=b+(b+2)+c+(c+2)化简后可得:a-1=b+c那么以上等式两边加2,即可得:a+1 = (b+1) + (c+1)此处,a+1,b+1和c+1,恰好都是某对孪生素数之间的那个偶数。
如果把一对孪生素数中间的那个偶数叫做“夹心偶数”,则猜想就是:对任意一个“夹心偶数”,都能表示成另两个“夹心偶数”的和。
第一眼看上去,这个猜想不太像是能成立,所以我写了个程序去验证下。
没想到验证了前10万对孪生素数,全部成立。
以下是一些跑出的组合结果:12 = 6 + 618 = 6 + 12108 = 6 + 102198 = 6 + 192828 = 6 + 8221488 = 6 + 14821878 = 6 + 18722088 = 6 + 20823258 = 6 + 32523468 = 6 + 346230 = 12 + 1842 = 12 + 3072 = 12 + 60150 = 12 + 138192 = 12 + 180240 = 12 + 228282 = 12 + 270432 = 12 + 420822 = 12 + 8106270 = 2688 + 35826552 = 2730 + 38226570 = 2802 + 37686300 = 2970 + 33306792 = 2970 + 38226450 = 3120 + 33306660 = 3120 + 35406702 = 3120 + 35826780 = 3252 + 35286690 = 3300 + 33906762 = 3300 + 34626828 = 3300 + 35286870 = 3330 + 35407128 = 3360 + 37686948 = 3390 + 35587212 = 3390 + 38227350 = 3528 + 38227308 = 3540 + 37687590 = 3768 + 3822这个结果让我有点惊讶。
孪生素数
孪生素数要介绍孪生素数,首先当然要说一说素数这个概念。
素数是除了1 和它本身之外没有其它因子的自然数。
素数是数论中最纯粹、最令人着迷的概念。
除了 2 之外,所有素数都是奇数(因为否则的话除了 1 和它本身之外还有一个因子2,从而不满足素数的定义),因此很明显大于2 的两个相邻素数之间的最小可能间隔是2。
所谓孪生素数指的就是这种间隔为2 的相邻素数,它们之间的距离已经近得不能再近了,就象孪生兄弟一样。
最小的孪生素数是(3, 5),在100 以内的孪生素数还有(5, 7), (11, 13), (17, 19), (29, 31), (41, 43), (59, 61) 和(71,73),总计有8组。
但是随着数字的增大,孪生素数的分布变得越来越稀疏,寻找孪生素数也变得越来越困难。
那么会不会在超过某个界限之后就再也不存在孪生素数了呢?我们知道,素数本身的分布也是随着数字的增大而越来越稀疏,不过幸运的是早在古希腊时代,Euclid 就证明了素数有无穷多个(否则今天许多数论学家就得另谋生路)。
长期以来人们猜测孪生素数也有无穷多组,这就是与Goldbach猜想齐名、集令人惊异的简单表述和令人惊异的复杂证明于一身的著名猜想- 孪生素数猜想:孪生素数猜想:存在无穷多个素数p, 使得p+2 也是素数。
究竟谁最早明确提出这一猜想我没有考证过,但是一八四九年法国数学Alphonse de Polignac 提出猜想:对于任何偶数2k,存在无穷多组以2k 为间隔的素数。
对于k=1,这就是孪生素数猜想,因此人们有时把Alphonse de Polignac作为孪生素数猜想的提出者。
不同的k 对应的素数对的命名也很有趣,k=1 我们已经知道叫做孪生素数,k=2 (即间隔为4) 的素数对被称为cousin prime (比twin 远一点),而k=3 (即间隔为6) 的素数对竟然被称为sexy prime (这回该相信“书中自有颜如玉”了)!不过别想歪了,之所以称为sexy prime 其实是因为sex 正好是拉丁文中的6。
孪生素数猜想证明
根据素数定理,以及就平均而言 p k 1 p k ln p k
3
∴
2 [ pk , p k21 ) p 2 p k2 2 p k ln p k ln 2 p k ln p k k 1 1 2 2 pk pk p k ln p k p k ln p k
∴
2 [ pk , p k21 ) p [ p k2 , p k21 ) p ln p k p = k k (1 ) <2 k psk p sk pk psk pk p sk
e 2 n 2 p 1 Sh(n) ( ) (1 ) 2 2 3 p n p p |a p 2
2n= pu p v 的哥德巴赫猜想解个数 G(2n)
G (2n) (
e 2 n 2 p 1 ) (1 ) 2 2 3 p n p p|n p 2
证明:
2 2 2 2 ∵ n=3+(8-3)+(24-8)+(48-24)+…+ ( p k 1 p k ) +…+ ( p i 1 p i ) 2 2
∴ 根据引理 1,区间[ p k , p k 1 )的素数个数可近似表示为
k
2 ( p k21 p k ) (1
j 1
sk
2 2 w(k)= | ( p k 1 p k )
(1 p
j 1
1
j
) -π[ p k2 , p k21 )|
w(S)=|
sk 2 1 2 ( p p ) ) ( n) | k 1 k (1 p k 1 j 1 j i
1 ) pj
2 pk 1 / pk 1 时,p k 到
孪生素数猜想证明
“孪生素数猜想”证明务川自治县实验学校王若仲(王洪)贵州564300摘要:对于“孪生素数猜想”,我们探讨一种简捷的初等证明方法,要证明孪生素数对无穷的情形,我们可以把这样的情形转换到间接地利用奇合数的个数来加以理论分析,从而判定孪生素数对是否无穷。
关键词:特异奇数;特异奇合数;孪生素数;孪生素数猜想。
引言孪生素数猜想,最初由古希腊数学家欧几里得提出,表述为:在自然数中,存在无穷多个素数p,有(p+2)也是素数。
正文孪生素数的概念:当两个素数的差为2时,这样的两个素数称为孪生素数。
如:3和5,5和7,11和13,17和19,29和31等等。
现在把由全体奇数组成的集合,称为奇数集合。
记为G。
定义1:奇数集合G中(除1外),不能被3整除的整数,称为特异奇数。
如:5,7,11,13,17,19,23,25,29,……。
定义2:由全体特异奇数组成的集合,称为特异奇数集合。
记为G′。
定理1:任一特异奇数均可表为6k+1或6k-1的形式,k∈N,k>0。
证明:因为集合G中能被3整除的整数均可表为3(2m-1)的形式,m∈N,m>0。
则3(2m-1)+2=6m-1,3(2m-1)-2=6(m-1)+1, 对于[6(m-1)+1] ,令 m>1 。
(6m-1)和[6(m-1)+1]均为不能被3整除的奇数,根据定义1,(6m-1)为特异奇数,[6(m-1)+1](m>1)为特异奇数。
故定理1成立。
定义3:我们把既是特异奇数,又是素数的整数,称为特异素数。
如:5,7,11,13,17,19等等。
定义4:我们把既是特异奇数,又是合数的整数,称为特异奇合数。
如:25,35,49,55,77等等。
定理2:对于任一特异奇合数a,a均可表为下列三种形式之一:(1)a=36kh-6k-6h+1,(2)a=36kh+6k+6h+1,(3)a=36kh+6k-6h-1,其中k∈N,h∈N,k>0,h>0。
证明:对于任一特异奇合数a,a总可以分解为两个特异奇数的乘积,我们令a=bc,根据定理1,b=6k+1或6k-1,k∈N,k>0,c=6h +1或6h-1,h∈N,h>0。
孪生素数猜想初等证明详解
孪生素数猜想初等证明详解齐宸孪生素数是指相差2的素数对,例如3和5,5和7,11和13…。
孪生素数猜想正式由希尔伯特在1900年国际数学家大会的报告上第8个问题中提出,可以这样描述:存在无穷多个素数p,使得p + 2是素数。
素数对(p, p + 2)称为孪生素数。
孪生素数由两个素数组成,相差为2。
为了证明孪生素数猜想,无数的数学家曾为之奋斗,但美丽的公主仍然犹抱琵琶半遮面。
1.孪生素数分类及无个位表示方法孪生素数按两个素数个位不同划分3类(不包括10以下的3-5、5-7),分别是:1、孪生素数中两个素数个位为1和3,如11-13,41-43等;2、孪生素数中两个素数个位为7和9,如17-19,107-109等;3、孪生素数中两个素数个位为9和1,如29-31,59-61等。
三类孪生素数中个位为1和3的第一类是我们需要重点研究的,其他两类可以忽略不计。
因为只要第一类孪生素数无限,也就等价于证明了孪生素数猜想。
自有孪生素数概念以来它们就是由两个素数表示的。
若是能简化成一个数字那孪生素数猜想这一世界数学难题也许就向前迈进了一步。
无论这一步是一小步,还是一大步。
但毕竟能将两个素数组成的孪生素数降格成了像素数那样的单个数字。
分析一下个位为1和3的这一类孪生素数,如41-43这对孪生素数。
首先,分别去掉个位1和3后,可以看到剩下了两个数字4和4。
用这两个数字完全可以表示一对孪生素数,当然我们心里要想着在这两个数字后面是有个位1和3的。
其次,这两个去掉个位的数字又是完全相同的,都是一个数字“4”。
这样也就完全可以用一个数字“4”来表示一对孪生素数,也可以说4是一个单数字无个位孪生素数。
当然表面上看只有第一类、第二类孪生素数可以用一个数字表示(实际上第三类也可以)。
为什么一定要去掉个位呢?可将自然数变成互为补集的两类:孪生素数和非孪生素数。
并利用一种简单的筛法,将自然数中的非孪生素数及其补集孪生素数分开。
而且这个筛法所要得到的是非孪生素数。
关于孪生素数猜想的证明
关于孪生素数猜想的证明关于孪生素数猜想的证明Һ吴国胜㊀(安徽省电子器材公司,安徽㊀合肥㊀230061)㊀㊀ʌ摘要ɔ本文的目的在于用筛法㊁解析方法等基础理论证明在自然数中存在无穷对孪生素数,并给出孪生素数分布的下界.ʌ关键词ɔ孪生素数猜想;定义及推论;误差值引㊀言两个相差2的素数称作一对孪生素数.在自然数中存在无穷对孪生素数的猜想是古希腊人提出来的,迄今大约有二千年的历史了,它和1742年德国人提出的Goldbach猜想被人们喻为姐妹问题.德国杰出的数学家Hilbert1900年在巴黎召开的第二届国际数学家代表大会上提出二十三个著名问题,孪生素数猜想是其中第八个问题的一部分.本文的目的在于对以下定理给出详细证明.定理命ω(x)表示不超过x的孪生素数组数,对于充分大的N,存在无穷多个整数点Miɪ[N,+ɕ),有ω(Mi)ȡ0.37Miln2Mi.有简单推论,对于任意xȡN,总有ω(x)ȡ0.37lnx(lnlnx)2.孪生素数猜想成立.一㊁定义及推论定义1㊀命2,3为原素数,不再以P表示.素数以Pi表示,其中P1=5,P2=7,P3=11, ,以此类推.相应地,孪生素数从5,7开始计算.定义2㊀Zj=ᵑji=1Pi.定义3㊀命6n-1与6n+1为一对孪生组,n为正整数.推论1㊀命D(x)表示[0,x]间孪生组的组数,则D(x)=x-16[],1ɤx,0,0ɤx<1.æèçç定义4㊀B(x,Pj)为[0,x]间一方含Pj因子而双方均与Zj-1互素的孪生组的组数,称作x内Pj的孪生类数.(xȡPj).推论2㊀ω(x)-ω(x)=D(x)-ðp1ɤpjɤxB(x,Pj).定义5㊀当(6,kn)=(k,n)=1定义T(k,n)ʉ(kn)2+6kq(mod6kn),其中q满足3kqʉ1(modn),特别地,T(k,1)ʉk2(mod6k).定义6㊀B∗(x,Pj)=2DxPj()-2ðP1ɤPiɤPj-1BxPj,Pi(),为二倍于0,xPj[]间不小于Pj孪生类的孪生组数.(xȡP2j).(注:本文[α],{α}分别表示α的整数与分数部分,并将[α+β]+[α-β]简记作[αʃβ],将{α+β}+{α-β}简记作{αʃβ},将sin(α+β)+sin(α-β)简记作sin(αʃβ).)二㊁第一类误差关系式的建立引理1㊀B(x,Pj)=ðn|zj-1m|zj-1(m,n)=1μ(mn)(x+T(Pjm,n)-26Pjmnéëêùûú+x-T(Pjm,n)6Pjmnéëêùûú+1)(xȡPj).证:当(m,n)=(6Pj,mn)=1时,由定义5有T(Pjm,n)ʉ0(modPjm),1(mod6).{T(Pjm,n)-2ʉ0(modn),-1(mod6).{故T(Pjm,n)与T(Pjm,n)-2为分别由Pjm与n因子组成的孪生组,后者为6K-1型,同样T(n,Pjm)与T(n,Pjm)-2为另一组分别由Pjm与n因子组成的孪生组,后者为6K-1型,且-T(Pjm,n)ʉT(n,Pjm)-2(mod6Pjmn).根据剩余系互补的性质,当(m,n)=(6Pj,mn)=1,对于任意xȡPj,在[0,x]间一方含Pjm因子,另一方含n因子的孪生组数:D(x,Pjm,n)=x+T(pjm,n)-26Pjmnéëêùûú+x-T(Pjm,n)6Pjmnéëêùûú+1.由定义4和Brun的包含排除定理(文献[6]第一章ɦ7定理1),即得引理.又当(m,n)>1时,恒有μ(mn)=0,故引理中(m,n)=1的条件可以不必要.证毕.引理2㊀(Ⅰ)B∗(x,Pj)=ðn|zj-1m|zj-1μ(mn)æèççxPj+T(m,n)-26mnéëêêêùûúúú+xPj-T(m,n)6mnéëêêêùûúúú+1öø÷÷-1(xȡP2j).(Ⅱ)若用T(Pjm,n)代替T(m,n),上式亦成立.证:当m=n=1时,T(1,1)ʉ1(mod6),μ(1)=1,ʑxPj+T(1,1)-26éëêêêùûúúú+xPj-T(1,1)6éëêêêùûúúú+1-1=2xPj-16éëêêêùûúúú=2DxPj(),又T(m,n)-2ʉ-T(n,m)(mod6mn).由定义6和引理1即得(Ⅰ)成立.ȵ(Pj,mn)=(Pj,Zj-1)=1,ʑT(Pjm,n)ʉT(m,n)(mod6mn).又T(Pj,1)ʉP2jʉ1(mod6),ʑxPj+P2j-26éëêêêùûúúú+xPj-P2j6éëêêêùûúúú+1-1=2xPj-16éëêêêùûúúú=2DxPj(),故(Ⅱ)亦成立,证毕.引理3㊀B(x,Pj)-B∗(x,Pj)ɤh(x,Pj)+O(1)(xȡP2j),h(x,Pj)=ðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=12nπsinnπx3Pjd㊃cosnπT(Kξ)3Pjd-cosnπT(Kξ)3dæèçöø÷,其中T(Kξ)=TPjKξ,Zj-1Kξæèçöø÷,Kξ为Ki|Zj-1之某一值,v(d)表示d的不同素因子的个数,v(1)=0.证:命φ表示Ki|Zj-1的集合,因Zj-1无重复素因子,故对于任一Zj-1,Ki之集合有且仅有ðj-1k=1Ckj-1=2j-1个元素组成,当(l1,l2)=(l1,6Pjmn)=(l2,6Pjmn)=1,有T(l1Pjm,l2n)ʉT(Pjm,n)(mod6Pjmn).由引理1,2即可得到:B(x,Pj)-B∗(x,Pj)=ðKi|Zj-112j-1ðd|Zj-1μ(d)2v(d)㊃æèççx+T(Ki)-26Pjdéëêùûú+x-T(Ki)6Pjdéëêùûú-xPj+T(Ki)-26déëêêêùûúúú-xPj-T(Ki)6déëêêêùûúúúöø÷÷+1,(1)现估计(1)式中第一㊁三两项中消去-2后所产生的误差R=R1+R3,命Ai=x+T(Ki)有:Ai-26Pjdéëêùûú=[Ai]-26Pjdéëêùûú=Ai6Pjdéëêùûú-1,当[Ai]ʉ0或1(mod6Pjd),Ai6Pjdéëêùûú,其他.ìîíïïïï故知只有当[Ai]=6PjMiDi+δ(δ=0或1,其中Di|Zj-1)时才产生误差,根据同余的性质有:ðd|Diμ(d)2v(d)=1,v(Di)为偶数或0,-1,v(Di)为奇数,{ʑR1ɤ12j-1ðKi|Zj-11=1,同样可证得|R3|ɤ1.ʑ|R|ɤ|R1|+|R3|ɤ2,故由(1)式知必定存在某一Kξ|Zj-1,使得:B(x,Pj)-B∗(x,Pj)ɤh(x,Pj)+O(1),其中h(x,Pj)=ðd|Zj-1μ(d)2v(d)æèççxʃT(kξ)6Pjdéëêùûú-xPjʃT(Kξ)6déëêêêùûúúúöø÷÷,ȵPjKξ|T(Kξ),Zj-1Kξ|T(Kξ)-2,(注:以下将T(Kξ)简记作T)ʑd|Zj-1|T(T-2).因d无重复素因子,故知对于任意d,当dȡ4x2可分解为d=d1d2,其中d2ȡd1ȡ1,使d2|T或者d2|(T-2)两者之一成立.显然d2ȡ2x>x+2Pj(xȡP2j),如d2|T成立,有0<xd2=β<1,Td2=L,显然(6,L)=1,因而-L6q[]=-1-L6q[](q为正整数),故有:xʃT6Pjd[]-xPjʃT6déëêêêùûúúú=βʃL6Pjd1[]-βʃPjL6Pjd1éëêùûú=ʃL6Pjd1[]-ʃL6d1[]=0,同样如d2|(T-2),则有0<x+2d2=β1<1,0<x-2d2=β2<1,0<x+2Pjd2=β3<1,0<x-2Pjd2=β4<1,T-2d2=L,则(6,L)=1,即有xʃT6Pjd[]-xPjʃT6déëêêêùûúúú=β1+L6Pjd1éëêùûú+β2-L6Pjd1éëêùûú-β3+PjL6Pjd1éëêùûú-β4-PjL6Pjd1éëêùûú=ʃL6Pjd1[]-ʃL6d1[]=0,ʑh(x,Pj)=ðd|Zj-1(d<4x2)μ(d)2v(d)xʃT6Pjd[]-xʃPjT6Pjdéëêùûúæèçöø÷=ðd|Zj-1(d<4x2)μ(d)2v(d)xʃPjT6Pjd{}-xʃT6Pjd{}æèçöø÷,(2)由Fourier展开式,当{α}ʂ0时有:{α}=-ðɕn=11nπsin(2nπα)+12,(3)ȵPj|T,ʑ只需取x,当Pj|x,即有(2)式中任意一项{αi}ʂ0均适用于(3)式,故(2)式又可表示为:h(x,Pj)=ðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=12nπsinnπx3Pjd(cosnπT3Pjd-cosnπT3d),证毕.三、第一类误差值的计算引理4㊀用M[F1(y)]表示函数F1(y)的Mellin变换式,若有M[F1(y)]=ðd|Zj-1(d<4x2)μ(d)2v(d)ds-2(ζ(2-s)-1)(s-1),取σ=ReS=1-1lny,当y>Pj时,必有|F1(y)|=Oln2Pjylnyæèçöø÷.证:σ=1-1lny>1-1lnPj>0.首先证明M[F1(y)]绝对收敛.令H(s)=ðd|Zj-1(d<4x2)μ(d)2v(d)ds-2,(4)则H(s)ɤðd|Zj-2|μ(d)|2v(d)|ds-2|=ᵑP|Zj-1(1+2Pσ-2),ʑln|H(s)|ɤlnᵑP|Zj-1(1+2Pσ-2)=ðP1ɤPɤPj-1ln(1+2P-1-1lny)ɤðP1ɤPɤPj-12P-1=2lnlnPj+O(1).(参见文献[2]第七章ɦ3Mertens公式)ʑ|H(s)|=Ο(ln2Pj)绝对收敛.又Re(2-s)=1+1lny>1,令b1(u)={u}-12,有ζ(2-s)=11-s+12-(2-s)ʏɕ1b1(u)u3-sdu=-1s-1+1+ʏɕ1{u}dus-2,(参考文献[1]第八章ɦ2)ʏɕ1{u}dus-2为{u}ʂ0时的瑕积分,记作P㊃V.P㊃Vʏɕ1{u}dus-2={u}us-2ɕ1-P㊃Vʏɕ1us-2d{u}=-P㊃Vʏɕ1us-2d{u}dudu,当{u}ʂ0,由(3)式有d{u}du=-2ðɕn=1cos(2nπu)=-limλңɕsinλ+12()2πusinπu+1,(参考文献[7](3.6.1)式)综上即得:Q=(ζ(2-s)-1)(s-1)=-1+(s-1)P㊃Vʏɕ1us-2limλңɕsinλ+12()2πusinπu-1æèççöø÷÷du=-1+P㊃Vʏɕ1(limλңɕsinλ+12()2πusinπu-1)dus-1=P㊃Vʏɕ1limλңɕsinλ+12()2πusinπudus-1,ʑ|Q|ɤP㊃Vʏɕ1|limλңɕsinλ+12()2πusinπu|㊃|dus-1|=|limλңɕsinλ+12()2πξsinπξ|ʏɕ1du-1lny|ɤ1sinπξ<+ɕ({ξ}ʂ0),ʑM[F1(y)]绝对收敛.令ʏ(σ)=limAңɕʏσ+iAσ-iA,由文献[1]第十二章ɦ1引理1有:F1(y)=12πiʏ(σ)M[F1(y)]y-sds=12πiʏ(σ)H(s)(ζ(2-s)-1)(s-1)y-sds=-12πiʏ(σ)H(s)(ζ(2-s)-1)dy-s+1dyds=i2πʏ(σ)H(s)(ζ(2-s)-1)dsdydy-s+1.ȵζ(2-s)-1=ðɕn=21n2-s,ʑ|ζ(2-s)-1|ɤðɕn=21n1+1lny=ʏɕ1duu1+1lny+O(1)=-lny㊃u-1lnyɕ1+O(1)=lny+O(1),dsdy=d1lnydy=1yln2y,|yit|=|eitlny|=1,y-σ+1=y1lny=e.当y>Pj,lny>lnPj≫1,ʑ|F1(y)|ɤʏ(σ)|H(s)||ζ(2-s)-1|dsdy|dy-s+1|ɤʏ(σ)O(ln2Pj)(lny+O(1))1yln2ydy1lny=Oln2Pjylnyæèçöø÷,证毕.引理5㊀对于充分大的x,恒有B(x,Pj)-B∗(x,Pj)ɤOxln3PjP2jæèçöø÷+O(1),当Pjɤx12时,误差项O(1)可以不计.证:(Ⅰ)当Pjɤ6lnx时,ȵðɕn=12nπsinnπαcosnπβɤ1,又v(P)=1,由引理3有:h(x,Pj)ɤ2ðd|Zj-1|μ(d)|2v(d)=2ᵑP|Zj-1(1+2v(P))=2㊃3j-1.由素数定理得j=π(Pj)=PjlnPj1+O1lnPj()().ʑB(x,Pj)-B∗(x,Pj)ɤ2㊃3j-1+O(1)<3jɤ37lnxlnlnx=x7ln3lnlnx<x12≪xln3PjP2j.(Ⅱ)当x12<Pjɤx,显然有B(x,Pj)-B∗(x,Pj)=B(x,Pj)=1,Pj与Pj+2为孪生素数,0,其他.{(Ⅲ)现着重讨论6lnx<Pjɤx12的情形.由引理3我们有:㊀h(x,Pj)=ðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=14nπ㊃nπd㊃sinnπx3PjdʏT6T6Pjsin2nπqddq=ʏT6T6Pjðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=12d(cosq-x6Pjd2nπ-cosq+x6Pjd2nπ)dq=ʏT6T6Pjʏq+x6Pjq-x6Pj(ðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=14nπd2sin2nπdy)dydq=ʏT6T6Pjʏq+x6Pjq-x6PjF(y)dydq.由积分不等式,当b>aȡ0时,若在区间[a,b]上f(x),g(x)可积,|f(x)|ɤ|g(x)|,则有ʏbaf(x)dxɤʏba|f(x)|dxɤʏba|g(x)|dx.又F(y)可积,则有:h(x,Pj)ɤʏT6T6Pjʏq+x6Pjq-x6PjF(y)dydq,(5)F(y)是实连续函数,y>0(见(9)式),我们可对其取Mellin变换,令ReS=1-1lny,当α>0时,M[sinαx]=ʏɕ0sinαx㊃xs-1dx=α-sΓ(s)sinπs2,ʑM[F(y)]=ðd|Zj-1(d<4x2)μ(d)2v(d)ðɕn=1(nπ)1-s22-sΓ(s)ds-2sinπs2,(6)ðɕn=1n1-s=ζ(s-1),Γ(s)=(s-1)Γ(s-1)(文献[5]第二章ɦ2定理2),sinπs2=cosπ(s-1)2.根据RiemannZeta函数解析开拓的性质(文献[3]第二篇第二章ɦ2定理2.1)有ζ(1-s)=21-sπ-scosπs2Γ(s)ζ(s)普遍成立.ʑ由(6)式和(4)式有:M[F(y)]=ζ(s-1)Γ(s-1)(s-1)π1-s22-sH(s)㊃cosπ(s-1)2=ζ(2-s)(s-1)H(s),令F(y)=F1(y)+F2(y),则M[F(y)]=M[F1(y)]+M[F2(y)],其中M[F1(y)]=(ζ(2-s)-1)(s-1)H(s),(7)M[F2(y)]=(s-1)H(s),相应地,h(x,Pj)=h1(x,Pj)+h2(x,Pj),首先证明h2(x,Pj)=0.ȵPjKξT,Zj-1Kξ(T-2)(见引理3),ʑTȡPjKξ,T-2ȡZj-1Kξ,T2>T(T-2)ȡPjKξ㊃Zj-1Kξ=PjZj-1=Zj,T>Zj(注:当xȡP2j,必有d通过所有PɤPj-1,故(5)式中T不变.)由文献[1]第三章ɦ1定理2契贝谢夫θ函数性质有:lnT>12lnZj>12-ε()Pjȡ12-ε()6lnx>2.8lnx,即有1lnT=O1Pj(),(8)及T>x2.8,又xȡP2j,由(5)式知yȡq-x6PjȡT-x6Pj>x2.8-x6x≫x2.2≫4x2,(9)h2(x,Pj)=ʏT6T6Pjʏq+x6Pjq-x6PjF2(y)dydq=(ʏɕT-x6Pj-ʏɕT-xPj6-ʏɕT+x6Pj+ʏɕT+xPj6)ʏɕφF2(η)dηdφ,由Mellin变换公式(文献[8]581页),若M[f(y)]=M(s),则有:M[ʏɕyf(φ)dφ]=M(s+1)s成立,由此推出:M[ʏɕyʏɕφf(η)dηdφ]=M(s+2)(s+1)s成立.令U(y)=ʏɕyʏɕφF2(η)dηdφ,由M[F2(y)]=(s-1)H(s)得到M[U(y)]=(s+2-1)H(s+2)(s+1)s=1sH(s+2),由(9)式y≫4x2,即σ=1-1lny>0,因而|M[U(y)]|=1σ+itH(2+σ+it)ɤðd|Zj-1|μ(d)|2v(d)dσ1σ+it=1σ2+t2ðd|Zj-1|μ(d)|2v(d)dσ<+ɕ绝对收敛.即有:U(y)=12πiʏσ+iɕσ-iɕM[U(y)]y-sds=12πiʏσ+iɕσ-iɕðd|Zj-1(d<4x2)μ(d)2v(d)1sdy()sds,根据Mellin变换表(文献[8]582页)有12πiʏσ+iɕσ-iɕ1sαy()sds=1(y<α),0(y>α),{(σ>0)由(9)式得y>4x2>d,ʑU(y)=0,即可得到h2(x,Pj)的各项积分均为0,ʑh2(x,Pj)=0.又F1(y)满足引理4的条件,由(5)式有:h(x,Pj)=h1(x,Pj)ɤOʏT6T6Pjʏq+x6Pjq-x6Pjln2Pjylnydydqæèçöø÷=Oln2PjʏT6T6Pjlnlnq+x6Pj()lnq-x6Pj()dqæèçççöø÷÷÷=Oxln2PjPjʏT6T6Pjdqqlnqæèçöø÷=Oxln2PjPjlnlnT6lnT6Pjæèçççöø÷÷÷=Oxln3PjPjlnTæèçöø÷=Oxln3PjP2jæèçöø÷.注1:上式中,lnlnq+x6Pj()lnq-x6Pj()=lnlnq+ln1+x6qPj()lnq+ln1-x6qPj()=Oln1+1lnqln1+x6qPj()()()=O1lnqln1+x6qPj()()=O1lnq㊃x6qPj()=OxPjqlnq().注2:上式中,lnlnT6lnT6qPj=lnlnT6lnT6+ln1Pj=ln11-lnPjlnT6=Oln1+lnPjlnT6æèççöø÷÷æèççöø÷÷=OlnPjlnTæèçöø÷.最后一步用到(8)式,综上即得到引理.证毕.四㊁函数G(u)的性质引理6若G(u)满足方程G(u)=1u2,㊀㊀㊀㊀㊀㊀1ɤuɤ2,㊀㊀㊀㊀(10)(u2G(u))ᶄ=2uG(u-1),u>2,(11){则G(u)为连续函数,对于任意uȡ1,恒有14ɤG(u)ɤ1.证:令G(u)=G1(u)+G2(u),其中G1(u),G2(u)满足方程:G1(u)=1u2,G2(u)=0,㊀1ɤuɤ2,(u2G1(u))ᶄ=2uG2(u-1),(u2G2(u))ᶄ=2uG1(u-1),u>2,{解之即知G1(u),G2(u)均为连续函数,故G(u)为连续函数.由(10)式知,当1ɤuɤ2时,有14ɤG(u)ɤ1成立.用数学归纳法证明,当u>2时,也有14ɤG(u)ɤ1.由(11)式即得:u2G(u)-22G(2)=2ʏu2tG(t-1)dtɤ2ʏu2tdt=u2-22,ʑG(u)ɤ1-3u2ɤ1.又u2G(u)-22G(2)=2ʏu2tG(t-1)dtȡ12ʏu2tdt=14(u2-22)=14u2-1,ʑG(u)ȡ14.证毕.五、定理的反证1.在假设基础上得到的结果(第二类误差值的计算)引理7㊀对于充分大的N,当yȡN时,假设恒有ω(y)<Cyln2y㊀(12)成立,C=0.37,则当x12ȡPjȡlnxȡN时,恒有B(x,Pj)<2CG(u)xPjln2Pj+OxPjln3Pjæèçöø÷成立,其中Pj=x1u+1,即u=lnxlnPj-1.证:用数学归纳法证明.当N充分大,PjȡN时,有Pjȡln7Pj,故有xP2jln3PjɤxPjln4Pj.当x12ȡPjȡx13(1ɤuɤ2)时,由(12)式,引理5,定义6及推论2有:B(x,Pj)ɤB∗(x,Pj)+OxP2jln3Pjæèçöø÷=2ωxPj()-2ω(Pj-1)+OxPjln4Pjæèçöø÷<2CxPjln2xPj()+OxPjln4Pjæèçöø÷=2CxPj(lnxuu+1)2+OxPjln4Pjæèçöø÷=2Cxu2Pjln2Pj+OxPjln3Pjæèçöø÷,即知当1ɤuɤ2时,G(u)=1u2,引理成立.若x1k-1ȡPjȡx1k,kȡ3(即k-2ɤuɤk-1),引理成立,则当x1kȡPjȡx1k+1,k-1ɤuɤk时由引理5及推论2有:B(x,Pj)ɤB∗(x,Pj)+OxP2jln3Pjæèçöø÷=2ðPjɤPiɤxPj()12BxPj,Pi()+2ωxPj()-2ωxPj()12()+OxPjln4Pjæèçöø÷.此处着重说明:在以上递推计算中每项都有一个差式,如记作ω+i-ω-i,易见对于每个差式,恒有ω+iȡω-iȡω(Pj),故参加递推和式计算之ω(t)均符合引理假设的条件,即:ωxPj()ȡω(t)ȡω(Pj)ȡω(lnx)ȡω(N).又x1k+1ɤPj,ʑxɤPk+1j,即有xPj()1kɤPjɤPiɤxPj()12.因而可由已知递推得:B(x,Pi)<4CðPjɤPiɤxPj()12GlnxPjlnPi-1æèççöø÷÷xPjPiln2Pi+OðPjɤPiɤxPj()122xPjPiln3Piæèçöø÷+2CxPjln2xPj()+OxPjln4Pjæèçöø÷,(13)用Abel恒等式计算:Ω=ðPjɤPiɤxPj()12GlnxPjlnPi-1æèççöø÷÷1Piln2Pi,在文献[1]第三章ɦ1引理2中取A(t)=ðPɤtlnPP,当tȡPjȡlnx充分大时,由文献[1]第四章命题(C)式有:A(t)=ðnɤtΛ(n)n-ðmȡ2ðPɤt1mlnPPm=lnt-γ+O(1)-E(t),其中γ为Euler常数,E(t)=ðmȡ2ðPlnPPm-ðmȡ2ðP>t1mlnPPm=α1+Oʏɕtlnqq2dqæèçöø÷=α1+Olnttæèçöø÷=α1+O(1),ʑA(t)=lnt-α+O(1),ȵα1,γ均为与t无关的常数,ʑα亦为与t无关之常数.令H(t)=lnt,r(t)=-α+O(1),f(t)=GlnxPjlnt-1æèççöø÷÷1ln3t.ȵH(t)连续可微,及14ɤG(u)ɤ1,由文献[1]第三章ɦ1引理2即可得到:Ω=ʏxPj()12PjGlnxPjlnt-1æèççöø÷÷dttln3t+RxPj()12,Pj()其中RxPj()12,Pj()=rxPj()12()fxPj()12()-r(Pj)f(Pj)-ʏxPj()12Pjr(t)fᶄ(t)dt=OfxPj()12()+O(f(Pj))+OʏxPj()12Pjfᶄ(t)dt()=O1ln3Pjæèçöø÷.故由(13)式即有:B(x,Pi)<4CxPjʏxPj()12PjGlnxPjlnt-1æèççöø÷÷dttln3t+OxPjln3Pjæèçöø÷+OxPjʏxPj()12Pj2tln4tæèçöø÷dt+2CxPjln2xPj()+OxPjln4Pjæèçöø÷=4CxPjln2xPj()ʏxu2(u+1)x1u+1GlnxPjlnt-1æèççöø÷÷㊃lnxPjlntæèççöø÷÷3dlntlnxPjæèççöø÷÷+OxPjln3Pjæèçöø÷+OxPjʏ12lnxPjlnPj2τ4dτæèçöø÷+2Cxu2Pjln2Pj+OxPjln4Piæèçöø÷=2Cxu2Pjln2Pjʏu22βG(β-1)dβ+O2x3Pjln3Pjæèçöø÷+OxPjln3Pjæèçöø÷+2Cxu2Pjln2Pj=2Cxu2Pjln2Pj[β2G(β)]u2+OxPjln3Pjæèçöø÷+2Cxu2Pjln2Pj=2CG(u)xPjln2Pj+OxPjln3Pjæèçöø÷,其中22G(2)=1,故引理亦成立.证毕.2.由正态分布及其误差值计算所得到的结果引理8㊀当100lnxȡPjȡlnxȡN时,有B(x,Pj)>0.75xPjln2Pj.证:由引理1即可得到:B(x,Pj)=ðm|Zj-1n|Zj-1μ(mn)2x6Pjmn+O(3j)=x3Pjðd|Zj-1μ(d)2v(d)d+O(3j)=x3PjᵑP|Zj-11-2P()+O(3j)(参见文献[3]15页)ᵑP|Zj-11-2P()=ᵑP|Zj-1(P-1)2P2ᵑP|Zj-1P(P-2)(P-1)2=ᵑP|Zj-1P-1P()2ᵑP|Zj-11-1(P-1)2æèçöø÷,由Mertens公式(文献[2]第七章ɦ3)有ᵑP|Zj-1P-1P()=3㊃(2-1)(3-1)2㊃3ᵑP|Zj-1P-1P=3e-rlnPj1+O1lnPj()(),又1>ᵑP|Zj-11-1(P-1)2æèçöø÷>ᵑP1-1(P-1)2æèçöø÷>(32-1)ᵑ(P2-1)32ᵑP2=43(22-1)(32-1)ᵑ(P2-1)22㊃32ᵑP2éëêêùûúú=43ðɕn=11n2æèçöø÷-1=43π26()-1=8π2>0.81.由素数定理,当lnx充分大时,有jɤ1.1PjlnPjɤ110lnxlnlnx<12lnx,ʑO(3j)=O(312lnx)=O(xln32)=O(x0.6).综上即得B(x,Pj)=x3Pj㊃9e-2rln2Pj1+O1lnPj()()2㊃ᵑP|Zj-11-1(P-1)2æèçöø÷+O(x0.6)>3e-2r(1-0.01)20.81xPjln2Pj+O(x0.6)>0.7507xPjln2Pj+O(x0.6)>0.75xPjln2Pj,证毕.三㊁结㊀论当100lnxȡPjȡlnxȡN时,由引理7又有:B(x,Pj)<2CG(u)xPjln2Pj+OxPjln3Pjæèçöø÷ɤ2CxPjln2Pj+OxPjln3Pjæèçöø÷<(2C+ε)xPjln2Pj<0.75xPjln2Pj,这就与引理8的结果相矛盾,因此引理7的假设不能成立.因引理7计算中的ω(t)均为:ω(x)ȡω(t)ȡω(lnx)ȡω(N),故可推出至少存在一点ξ,xȡξȡlnx,有:ω(ξ)ȡ0.37ξln2ξ成立.故有:ω([ξ])=ω(ξ)ȡ0.37ξln2ξȡ0.37[ξ]ln2[ξ].(14)即可推出在[N,eN]之间至少有一个整数点m1使(14)式成立,同样在[m1,em1]之间至少有一个整数点m2使(14)式成立,如此等等,依次类推,就证明了定理的真实性.由上述我们立即可以得到一个简单的推论:对于任意xȡN,总有:ω(x)ȡ0.37lnx(lnlnx)2成立.孪生素数猜想得证.定理证毕.ʌ参考文献ɔ[1]潘承洞,潘承彪.素数定理的初等证明[M].上海:上海科学技术出版社,1988.[2]潘承洞,潘承彪.哥德巴赫猜想[M].北京:科学出版社,1981.[3]闵嗣鹤.数论的方法(上册)[M],北京:科学出版社,1981.[4]闵嗣鹤,严士健.初等数论(第二版)[M].北京:人民教育出版社,1982.[5][苏]A.A.卡拉楚巴著,潘承彪,张南岳译.解析数论基础(中译本)[M].北京:科学出版社,1984.[6]华罗庚.数论导引[M].北京:科学出版社,1979.[7]G.H.哈代,W.W.洛戈辛斯基著,徐瑞云,王斯雷译.富里埃级数(中译本)[M].上海:上海科学技术出版社,1978.[8]‘数学手册“编写组.数学手册[M].北京:人民教育出版社,1979.[9]潘承洞.素数分布与哥德巴赫猜想[M].济南:山东科学技术出版社,1979.。
孪生素数猜想、四胞胎素数猜想
素数、孪生素数、四胞胎素数无限的初等证明齐宸一、素数个数无限证明假设P是自然数中最大的素数,并用M1表示P内的素数个数。
按此假设在区间P—2P内素数个数M2=0。
只要证明M2>0,则素数无限(P—2P区间不含P)。
素数只能被自己和“1”整除。
故XY(X>1,Y>1)计算出的数字一定是全体合数,且可以向右、向下排列成双向等差数列形式。
而且实质上这个双向等差数列只是由4、6、6、9这4个数字决定的。
如图所示:将计算结果与自然数对应后形成下图,图中蓝色部分是20以内的素数产生过程。
自第1行到第9行共9个等差数列决定了20以内的素数。
自第1行到第19行共19个等差数列决定了40以内的素数。
如何通过决定20以内素数个数的前9个等差数列得到21-40之间的素数个数呢?前文说XY计算结果形成的是向右、向下的双向等差数列。
当Y值固定时的计算结果就是向下的等差数列,如下图所示中的黄色数字部分:上图中第10-19个横向的等差数列,实质上也是向下等差数列的一部分。
将这两个等差数列横向放置,如下图所示:这样这11个等差数列既可以决定20以内素数位置也可以决定21-40之间素数位置。
在这11个等差数列上取1-20及21-40两区间,按照容斥原理分别计算20以内及21-40之间的不同元素个数。
因两区间的长度相同、数列相同,则不同元素个数大致相同。
证明:假设P是自然数中最大的素数,并用M1表示P内的素数个数。
按此假设在P—2P区间内素数个数M2=0(P—2P区间不含P)。
因为决定1—P以及P—2P区间素数个数的等差数列是相同的。
按照容斥原理这两区间数列相同、长度相同,则含有的不同元素个数大致相同(这些不同元素全部不是素数,而除此之外的数字全部是素数)。
故两区间的素数个数也会非常相近,这样就有M1≈M2。
M1是P之内的素数个数,显然M1≠0,故假设M2=0就是不正确的。
M2是一个大于0且接近M1的数字。
因此假设不正确。
孪生素数猜想的证明
第 28 卷第 4 期 2014 年 12 月西昌学院学报·自然科学版Journal of Xichang College·Natural Science Edition孪生素数猜想的证明叶雉鸠(陕西财经职业技术学院,陕西 咸阳 712000)Vol.28,NO.4 Dec.,2014【摘 要】采用数学归纳法证明了一类缺项同余式方程组恒无解。
若这一类缺项同余式方程组恒无解则孪生素数猜想成 立,即自然数域中存在无穷多对孪生素数,孪生素数猜想是成立的。
【关键词】数论;孪生素数猜想;数学归纳法;同余式方程组;正整数解【中图分类号】O156.1;O156.2 【文献标识码】A 【文章编号】1673-1891(2014)04-0027-041 引言及预备命题孪生素数猜想是数论中的著名未解决问题。
这个猜想产生已久,在数学家希尔伯特在 1900 年国 际数学家大会的著名报告中,它位列 23 个“希尔伯 特问题”中的第 8 个问题,可以被描述为“存在无穷 多个素数 p ,并且对每个 p 而言,有 p +2 这个数也是素数”[1]。
2013 年 5 月 14 日,《自然》杂志报道,数学家张益 唐证明存在无穷多个素数对相差都小于 7000 万[2]。
陶哲轩随后开始了一个 Polyma th 计划,由网上志愿 者合作降低张益唐论文中的上限。
截至 2014 年 4 月,即张益唐提交证明之后一年,按 Polymath8b 计划 维基所宣称,上限已降至 246[3]。
沿着张益唐的证明 思路,要做进一步的证明也许会更加困难一些。
因 此仍然有必要另辟蹊径,探索新的证明途径。
《孙子算经》[4]、《数书九章》[5]和《算术探索》[6]都 一致指向了同余理论。
在对相邻奇数积的数列进 行同余分析时,找到了孪生素数猜想成立的一个充 分条件[7]——【命题 1】。
定义两个集合:其中:①(1-1)同余式方程左边处于 位置的因子为 不小于 4 的连续自然数.②是不大于的奇素数中最大的一个,b表示不大于 的奇素数的总个数。
证明N生(含孪生)素数猜想的原文(英文)并附译后汉语
Advances in Theoretical and Applied Mathematics, ISSN 0793-4554, V ol.8,№1, 2013, pp.17-26There are Infinitely Many Sets of N-Odd PrimeNumbers and Pairs of Consecutive Odd PrimeNumbersZhang TianshuNanhai west oil corporation,China offshore Petroleum,Zhanjiang city, Guangdong province, P.R.China.Email: tianshu_zhang507@AbstractLet us consider positive odd numbers which share a prime factor>1 as a kind, then the positive directional half line of the number axis consists of infinite many equivalent line segments on same permutation of χkinds’ odd points plus odd points amongst the χkinds’ odd points, where χ≥1. We will prove together that there are infinitely many sets of n-odd prime numbers and pairs of consecutive odd prime numbers by the mathematical induction with aid of such equivalent line segments and odd points thereof, in this article.KeywordsSets of n-odd prime numbers, Pairs of consecutive odd prime numbers, Mathematical induction, Odd points, Positive directional half line of the number axis, RLSS№1~№χ, Sets of •µ(•s)+b(◦s)•, Pairs of•υ(◦s)•, The coexisting theorem, №1 RLS №1~№χ, Set of♠µ(♠s)+b(◦s)♠,Pair of♠υ(◦s)♠.Basic ConceptsSuppose n >1, and κ1<κ2<...<κn-1 are n-1 natural numbers, and Jχ, Jχ+κ1, Jχ+κ2, Jχ+κ3, ... Jχ+κn-1 are all odd prime numbers, then we call (Jχ,Jχ+κ1,Jχ+κ2,Jχ+κ3,...Jχ+κn-1) a set of n-odd prime numbers. Thereupon we conjecture that for any positive odd prime number J p, if a number of residue’s classes which n integers 0, κ1, ... κn-1divide respectively bymodulus J p is less than J p , then there are infinitely many sets of n-odd prime numbers which differ orderly by κ1, κ2-κ1, κ3-κ2,...and κn-1-κn-2.We term the conjecture as n-odd prime numbers’ conjecture. For example, when n≥2, and κ1=2, it contains twin prime numbers’ conjecture. In addition, it contains 3-odd prime numbers’ conjecture when n≥3, κ1=2 and κ2=6. And so on and so forth…Evidently, if modulus J p ≥ Jχ+κn-1, then each odd prime number of such a set of odd numbers belongs in a residue class, thus number n of n-odd prime numbers is less than J p. If modulus J p ≤ Jχ, then number n of n-odd prime numbers may be greater than J p. For example, a set of 16-odd prime numbers (13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73) for modulus J4 (i.e. 11), it has 16 odd prime numbers of 10 residue’s classes because 17≡61(mod 11), 19≡41(mod 11), 23≡67(mod 11), 29≡73 (mod 11), 31≡53(mod 11), and 37≡59(mod 11) plus 13, 43, 47, and 71.In addition, there is such a conjecture, namely if there is a pair of consecutive odd prime numbers which differ by 2k, then there are surely infinitely many pairs of consecutive odd prime numbers which differ by 2k, where k is a natural number. This conjecture needs still us to prove it. When k=1, it is the very twin prime numbers’ conjecture evidently.Everyone knows, each and every odd point at positive directional half line of the number axis expresses a positive odd number. Also infinitemany a distance between two consecutive odd points at the positive directional half line equal one another.Let us use the symbol “•” to denote an odd point, whether • is in a formulation or it is at the initial positive directional half line of the number axis. Moreover the positive directional half line is marked merely with symbols of odd points. Please, see following first illustration. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••First IllustrationWe use also symbol “•s” to denote at least two odd points in formulations. Then, the number axis’s positive directional half line which begins with odd point 3 is called the half line for short thereinafter.We consider smallest positive odd prime number 3 as №1 odd prime number, and consider positive odd prime number Jχas №χodd prime number, where χ ≥1, then odd prime number 3 is written as J1 as well. And then, we consider positive odd numbers which share prime factor Jχas №χkind of odd numbers. If an odd number contains α one another’s-different prime factors, then the odd number belongs in α kinds of odd numbers concurrently, where α ≥1.There is an only odd prime number Jχwithin №χkind’s odd numbers. Excepting Jχ, we term others as №χ kind of odd composite numbers.If one • is defined as an odd composite point, then we must change symbol “◦” for its symbol “•”. And use symbol “◦s” to denote at least two definite odd composite points in formulations.In course of the proof, we shall change ◦s for •s at places of ∑№χ[χ≥1] kind’s odd composite points according as χ is from small to large.Since №χkind’s odd numbers are infinitely many a product which multiplies every odd number by Jχ, so there is a №χkind’s odd point within consecutive Jχ odd points at the half line.Therefore any one another’s permutation of χ kind’s odd points plus odd points amongst the χkind’s odd points assumes always infinite many recurrences on same pattern at the half line, irrespective of their prime/composite attribute.We analyze seriatim №χ kind of odd points at the half line according to χ=1, 2, 3 … in one by one, and range them as second illustration.3 91521273339 455157 63697581879399105 117 129 •••◦••◦••◦•◦◦••◦◦•◦••◦•◦◦•◦◦••◦◦•◦••◦◦•◦•◦◦•◦◦◦•◦••◦••◦•◦◦◦◦◦◦•◦•◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦◦…№1•◦ ◦ ◦ ◦ ◦ ◦◦◦◦◦◦ ◦…№2• ◦ ◦ ◦◦ ◦ ◦ ◦ ◦…№3◦• ◦ ◦◦ ◦ ◦…№4•. ◦ ◦ ◦ ◦…№5Second IllustrationWe consider one another’s equivalent shortest line segments at the half line in accordance with same permutation of χ kinds’ odd points plus odd points amongst the χkinds’ odd points as recurring segments of the χkinds’ odd points.We use character “RLS№1~№χ”to express a recurring segment of ∑№χ[χ≥1] kind of odd points, and use character “RLSS№1~№χ” to express theplural. If one • is affirmed as an odd prime point, then this • is rewritten as one♠ at the half line and/or in formulations, and symbol ♠s express at least two odd prime points in formulations. For example, the one another’s permutation of certain kinds of odd points at №1 RLS№1~№4 , please, see following third illustration.The permutation of odd prime & composite points at №1 RLS№1~№4♠♠♠○♠♠○♠♠○♠○○♠♠○○♠○♠♠○♠○○♠○○♠♠○○♠○♠♠○○♠○♠○○♠○○○♠○3 15 27 39 51 63 75 87 99♠♠○♠♠○♠○○○○○○♠○♠○○♠♠○○○○♠♠○○♠○○♠○♠○○♠○○♠♠○○○○♠♠○♠111 123 135 147 159 171 183 195♠○○○○○♠○○○○○♠○♠♠○♠○○♠♠○○○○♠○○♠○○♠○○♠♠○○♠○♠♠○○○○♠○ 207 219 231 243 255 267 279 291○○○○○♠○♠♠○♠○○○○○○♠○○♠○○○♠♠○♠○○♠○○○♠○○♠○○♠○♠○○♠○○○ 303 315 327 339 351 363 375 387♠○♠○○○♠○○○○♠♠○○○○♠♠○○♠○♠○○♠○○○♠○♠♠○♠○○○○○♠○○○♠○♠○ 399 411 423 435 447 459 471 483○○♠○♠○○♠○○○○○♠♠○○○○○○○○♠○○♠○○○○♠○○♠○○♠♠○○♠○○○○♠○○ 495 507 519 531 543 555 567 579 591 ♠○○♠♠○○♠○○♠○♠♠○○○○○♠○○○○♠♠○♠○○♠○○♠♠○○○○○♠○♠○○♠○○○ 603 615 627 639 651 663 675 687♠○○○○♠○○○♠○○○○○♠○○♠○○♠○○♠○♠○○○♠○○♠○♠○○○♠○♠○○○○○○♠699 711 723 735 747 759 771 783○○○○♠○○○○○♠♠○○○○♠♠○♠♠○○○○♠○○○○○○♠○♠♠○♠○○○♠○○♠○♠♠○ 795 807 819 831 843 855 867 879♠○○○○○○○○○♠○♠○○○♠○○○○♠○○○♠○♠○○♠○○♠○○○○○○♠○♠○○♠○○♠891 903 915 927 939 951 963 975○○○♠○○♠○○○○○♠○♠○○♠♠○○○○♠♠○○♠○○○○♠♠○○○○♠♠○○♠○○○○○○987 999 1011 1023 1035 1047 1059 1071○○♠○♠♠○♠○○♠○○♠○○○♠○○♠○○♠○○○○○○○○○○♠♠○○○○♠○○○♠○○○○ 1083 1095 1107 1119 1131 1143 1155 1167 1179 ♠○○♠○○♠○○○♠○○○○○♠○♠○○♠○○♠♠○○♠○○○○○♠○○○○♠○○○○○○○○♠1191 1203 1215 1227 1239 1251 1263 1275 ♠○♠○○♠♠○○♠○♠♠○♠○○○○○♠♠○○♠○○○○○○○○○○○○○○○○♠○○♠○○♠○ 1287 1299 1311 1323 1335 1347 1359 1371○○♠○○○○○○○○♠○○○○♠○○○○○○♠○♠♠○♠○○♠○○○♠○♠♠○○♠○○○○○♠○ 1383 1395 1407 1419 1431 1443 1455 1467○○○♠♠○♠♠○♠○○♠○○○○○♠○○○○○♠○○○♠○○○○○♠○○♠○♠○○♠○○○♠○♠1479 1491 1503 1515 1527 1539 1551 1563○○○♠○♠○○○○○○♠○♠○○♠♠○♠○○♠♠○○♠○○○○♠○○○○○○○○○♠○○♠○♠♠1575 1587 1599 1611 1623 1635 1647 1659○○○○○○○○○○♠○♠♠○○○○♠○○○○○♠♠○○○○♠○○○♠○○♠○○♠○○♠○○○○○ 1671 1683 1695 1707 1719 1731 1743 1755 1767 ○○○♠○○♠○♠♠○○○○○♠○○○○♠○○○○○♠○○○♠○○○○○○○♠○○○○○○♠○○♠1779 1791 1803 1815 1827 1839 1851 1863○♠♠○♠♠○○○○♠○○○○○♠○○♠○○♠○○○○○○○○♠♠○○○○○○○♠♠○○○○○○○ 1875 1887 1899 1911 1923 1935 1947 1959○○○♠○○♠○○○♠○○♠○♠♠○♠○○○♠○○♠○○○○♠♠○○○○♠○○○○○○♠○○○○♠1971 1983 1995 2007 2019 2031 2043 2055○○♠○○○○○♠♠○♠♠○○○○♠○○○○○♠♠○○○○○○○♠♠○○♠○♠♠○○○○♠○○○♠2067 2079 2091 2103 2115 2127 2139 2151○○○○○○○○♠○○○○○○○○○○○♠○♠○○♠○○○♠○○○○○○○♠♠○♠○○○♠○○○○ 2163 2175 2187 2199 2211 2223 2235 2247 2259 ○○○♠♠○♠○○○♠○○♠○○♠○○○○○○○♠♠2271 2283 2295 2307Third IllustrationAnnotation: “♠” denotes an odd prime point; “○” denotes an odd composite point.№1 RLS№1ends with odd point 7; №1 RLS№1~№2ends with odd point 31;№1RLS№1~№3 ends with odd point 211; №1 RLS№1~№4 ends with odd point 2311. Justly №1 RLS№1~№χbegins with odd point 3. There are ∏Jχ odd points at each RLS№1~№χ , where χ ≥1,and ∏Jχ=J1*J2*…*Jχ.Undoubtedly one RLS№1~№(χ+1)consists of consecutive Jχ+1RLSS№1~№χ , and they link one by one.Since none of any kind’s odd composite points coincides with odd point 1 on the left of №1 RLS№1~№χ, then none of any kind’s odd composite points coincides with the odd point which closes on the left of №2 RLS№1~ №χaccording to the definition of recurring segments of the χkinds’ odd points. The odd point which closes on the left of №2 RLS№1~№χis exactly the most right odd point of №1 RLS№1~№χ. Thus the most right odd point of №1 RLS№1~№χis an odd prime point always. Namely 2∏Jχ+1 is an odd prime number always.Number the ordinals of odd points at seriate each RLS№1~№χ+y by consecutive natural numbers which begin with 1, namely from left to right each odd point at seriate each RLS№1~№χ+y is marked with from small to great a natural number ≥1 in the proper order, where y≥0. Then, there is one №(χ+y) kind’s odd point within Jχ+y odd points which share an ordinal at Jχ+y RLSS№1~№(χ+y-1) of a RLS№1~№χ+y. Furthermore, there is one №(χ+y) kind’s odd composite point within Jχ+yodd points which share an ordinal at Jχ+y RLSS№1~№(χ+y-1) of seriate each RLS№1~№χ+y on the right of №1 RLS№1~№χ+y.Odd prime points J1, J2 …Jχ-1 and Jχare at №1 RLS№1~№χ. Yet, there are χodd composite points on ordinals of J1 plus J2 ...plus Jχ-1 plus Jχ at seriate each RLS№1~№χon the right of №1 RLS№1~№χ. Thus №1 RLS№1~№χis a particular RLS№1~№χ in contradistinction to each of others.After change ◦s for •s at places of ∑№χ[χ≥1] kind’s odd composite points at the half line, if one • is separated from another • by µ •s plus b ◦s irrespective of their permutation,then express such a combinative form as a set of • µ(•s)+b(◦s) •, where µ ≥0, and b ≥0.If µ+2 •s of • µ(•s)+b(◦s) • are all defined as odd prime points, then the set of • µ(•s)+b(◦s) • is rewritten as a set of♠ µ(♠s) +b(◦s)♠. Further, if the set of ♠µ(♠s)+b(◦s) ♠lies within consecutive Jχodd points, and for odd prime number Jχ, a number of residue’s classes which µ+2 odd prime numbers whereof µ+2 ♠s express divided respectively by modulus Jχ is less than Jχ, then, such a set of♠ µ(♠s) +b(◦s)♠ is the very a set of n-odd prime points, where n=µ+2.If two •s of • υ(◦s) • are defined as odd prime points,then the pair of •υ(◦s)• is rewritten as a pair of♠ υ(◦s) ♠, where υ≥0.When µ=0, a set of • µ(•s)+b(◦s) • is exactly a pair of •b(◦s)•, and a set of ♠ µ(♠s)+b(◦s) ♠is exactly a pair of♠ b(◦s) ♠, where b≥0.Let µ+ b=m, a set of • µ(•s)+b(◦s)• may be written as a set of • m(•s◦s) •, and a set of♠ µ(•s)+b(◦s)♠may be written as a set of♠ m(•s◦s)♠.After change ◦s for •s at places of ∑№χ[χ≥1] kind’s odd composite points, Jχ-h at №1 RLS№1~№χ is defined as an odd prime point, where χ>h≥0,yet there are infinitely many •s on the right of Jχat the half line, and every •is an undefined odd point on prime/composite attribute. Anyhow every prime factor of an odd number which each •at the right of Jχ expresses is greater than Jχ.A set of • µ(•s)+b(◦s) •is negated according as any • of the set is defined as one ◦. Also a pair of • υ(◦s)• is negated according as either • of the pair is defined as one ◦. If a set of • µ(•s)+b(◦s) • can not always be negated, then it is precisely a set of♠ µ(♠s)+b(◦s) ♠. Likewise, if a pair of • υ(◦s)• can not always be negated, then it is precisely a pair of ♠υ(◦s) ♠.From the definition for recurring segments of χ kinds’ odd points, we can conclude that after change ◦s for •s at places of ∑№χ[χ≥1] kind’s odd composite points, if there is a set of♠ µ(♠s)+b(◦s) ♠within consecutive Jχodd points on the right of Jχ at №1 RLS№1~№χ, then there is surely a set of • µ(•s)+b(◦s) • on ordinals of the set of ♠µ(♠s)+b(◦s)♠at seriate each RLS№1~№χon the right of №1RLS№1~№χ.Without doubt, the converse proposition is tenable too. Namely after change ◦s for •s at places of ∑№χ [χ≥1]kind’s odd composite points, if there is a set of •µ(•s)+b(◦s) • within consecutive Jχodd points at seriate each RLS№1~№χon the right of №1 RLS№1~№χ, and from left to right №k odd prime points of all sets of •µ(•s)+b(◦s) • share an ordinal, then there is surely a set of♠ µ(♠s)+b(◦s) ♠on ordinals of any such set of • µ(•s)+b(◦s) •, at №1 RLS№1~№χ, where k = 1, 2, … µ+2.Of course, every ♠ of the set of ♠ µ(♠s)+b(◦s) ♠and every prime factor of an odd number which each • of every such set of • µ(•s)+b(◦s) • expresses are greater than Jχ.To be brief, after change ◦s for •s at places of ∑№χ[χ≥1] kind’s odd composite points, a set of ♠µ(♠s)+b(◦s) ♠on the right of Jχat №1 RLS№1~№χand infinite many sets of •µ(•s)+b(◦s)• on ordinals of the set of ♠µ(♠s)+b(◦s)♠at seriate RLSS№1~№χon the right of №1 RLS№1~№χcoexist at the half line. We term the aforesaid conclusion as the coexisting theorem of a set of ♠µ(♠s)+b(◦s)♠plus infinite many sets of •µ(•s)+b(◦s)• at the half line, or term it as the coexisting theorem for short.Jχ+1 RLSS№1~№χ of any RLS№1~№(χ+1) may be folded at an illustration, oneby one, so as to view conveniently, e.g. №1, №2 and №3 kinds’ odd points at two RLSS№1~№3from the differentia, please, see following fourth illustration.№: 1 5 10 15 №: 1 5 10 153♠♠♠ ◦• • ◦ •• ◦ • ◦ ◦ •• C ◦ ◦ ◦ ◦ • • ◦ • • ◦ • ◦ ◦ • •◦ ◦ •◦ • • ◦• ◦ ◦ • ◦ ◦ •• ◦ ◦ • ◦ • • ◦ • ◦ ◦ • ◦ ◦ • •◦ ◦ • ◦ • • ◦ ◦ •◦ • ◦ ◦ • ◦ ◦ ◦ • ◦ • • ◦ ◦ • ◦ • ◦ ◦ • ◦◦ ◦ • ◦ • • ◦ •• ◦ • ◦ ◦ ◦ • ◦ ◦ • ◦ • • ◦ • • ◦ • ◦ ◦ ◦ •◦ ◦ • ◦ • ◦ ◦ • • ◦ • ◦ ◦ • • ◦ ◦ • ◦ • ◦ ◦ • • ◦ • ◦ ◦ • •◦ ◦ • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • • ◦ ◦ • ◦ ◦ • ◦ • • ◦ • ◦ ◦ • •◦ ◦ • ◦ • • ◦ • • ◦ ◦ ◦ ◦ • •211 ◦ ◦ • ◦ • • ◦ • • ◦ ◦ ◦ ◦ • •DFourth IllustrationAfter change ◦s for •s at places of №1 plus №2 plus №3 kinds’ odd composite points, every♠denotes a definite odd prime point, and every • denotes an undefined odd point at prime/composite attribute, and every ◦ denotes a definite odd composite point, in the illustration. Line segment 3(211) is №1 RLS№1~№3, and line segment CD is any of seriate RLSS№1~№3 on the right of №1 RLS№1~№3.The ProofWe will prove together that there are infinitely many sets of n-odd prime numbers and pairs of consecutive odd prime numbers by the mathematical induction with the aid of RLSS№1~№χ and odd points thereof, thereinafter.1. When χ=1, there is a set of♠ ♠ alone on the right of J1 at №1 RLS№1 , and the set of♠ ♠ is a pair of♠υ1(◦s)♠ as well, i.e. twin odd prime points 5 and 7, where υ1=0.When χ=2, there are ♠◦♠♠◦♠♠◦♠◦ ◦♠♠on the right of J2at №1RLS№1~№2,and these odd points contain several sets of ♠µ2(♠s)+b2(◦s)♠within consecutive J s odd points, including several pairs of♠υ2(◦s) ♠within them, where µ2≤6,b2≤5,J1≤J s≤J5, and υ2 ≤ 2.Evidently these pairs of♠υ2(◦s)♠ contain pairs of twin odd prime points.When χ=3, there are both sets of ♠ µ3(♠s)+b3(◦s) ♠within consecutive J f odd points and pairs of ♠υ3(◦s) ♠on the right of J3 at №1 RLS№1~№3, where µ2≤µ3≤41, b2≤b3≤58, J s ≤ J f ≤J27=101, and υ2≤υ3=0, 1, 2, 3, 4, 5 and 6. Evidently these sets of ♠µ3(♠s)+b3(◦s)♠embody certain sets of ♠µ2(♠s)+b2(◦s)♠, and these pairs of ♠ υ3(◦s) ♠ embody all pairs of♠υ2(◦s)♠.For pairs of ♠υ3(◦s)♠on values of υ3 at №1 RLS№1~№3, we instance (11, 13), (13, 17), (23, 29), (89, 97), (139, 149), (199, 211) and (113, 127). Please, see preceding third illustration once again.When χ=4, there are both sets of ♠ µ4(♠s)+b4(◦s)♠within consecutive J a odd points and pairs of ♠ υ4(◦s)♠on the right of J4 at №1 RLS№1~№4 , where µ3≤µ4≤337, b3≤b4≤813, J f ≤J a≤J189=1151, and υ3≤υ4 =0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11and 16.Evidently these sets of ♠µ4(♠s)+b4(◦s)♠ embody certain sets of ♠µ3(♠s)+b3(◦s)♠, and these pairs of ♠ υ4(◦s)♠ embody all pairs of ♠ υ3(◦s) ♠.For pairs of ♠υ4(◦s)♠on values of υ4 at №1 RLS№1~№4, we instance (17, 19), (19, 23), (31, 37), (89, 97), (139, 149), (211, 223), (293, 307), (1831,1847), (1259, 1277), (887, 907), (1669, 1693), (2179, 2203)and (1327, 1461). Please, see preceding third illustration once more.2. When χ=β≥4, suppose that there are both sets of ♠ µβ(♠s)+bβ(◦s) ♠within consecutive J b odd points and pairs of ♠ υβ(◦s) ♠on the right of Jβat №1 RLS№1~№β , where µβ≥µ4, bβ≥b4, υβ≥υ4, J b ≥J a, and Jβ≥J4. In addition, these sets of ♠µβ(♠s)+bβ(◦s) ♠embody any of sets of n-odd prime points on the right of J1 at №1 RLS№1~№ψ, and these pairs of ♠ υβ(◦s) ♠ embody any of pairs of consecutive odd prime points at №1 RLS№1~№ψ, where ψ<β.Let us suppose that any of sets of n-odd prime points on the right of J1 at №1 RLS№1~№ψ is a set of ♠ µp(♠s)+b q(◦s)♠; and any of pairs of consecutive odd prime points at №1 RLS№1~№ψis a pair of ♠ υδ(◦s)♠,where µp≥µ4, b q≥b4, and υδ ≥υ4.3.When χ=η>β,prove that there are both sets of ♠µη(♠s)+bη(◦s) ♠within consecutive J c odd points and pairs of ♠ υη(◦s) ♠on the right of Jηat №1 RLS№1~№η ,where µη≥µβ, bη≥bβ, υη≥υβ, J c ≥J b, and Jη>Jβ. In addition, these sets of ♠ µη(♠s)+bη(◦s) ♠ must embody a set of ♠ µp(♠s)+b q(◦s)♠ which needs us to prove, and these pairs of ♠ υη(◦s) ♠must embody a pair of ♠ υδ(◦s)♠ which needs us to prove.Proof.Since there is a set of ♠ µp(♠s)+b q(◦s)♠ within consecutive J b oddpoints on the right of Jβat №1 RLS№1~№β, furthermore, we name the set of ♠µp(♠s)+b q(◦s)♠ “Jβ+d µp(♠s)+b q(◦s) J g”, where d≥1 and g =β+d+µp+1. Well then, let us first prove that there is a set of ♠µp(♠s)+b q(◦s)♠ on ordinals of Jβ+d µp(♠s)+b q(◦s) J g on the right of J g at №1 RLS№1~№g , hereinafter.We know that every odd number >1 has a smallest prime factor except for 1 surely, yet the smallest prime factor of any odd prime number is exactly it itself.If greatest one within respective smallest prime factors of b q odd composite numbers whereof b q(◦s) between Jβ+d and J g express is written as Jφ, then the set of Jβ+d µp(♠s)+b q(◦s) J g is either at №1 RLS№1~№ φ or out of №1 RLS№1~№φ. If it is at №1 RLS№1~№φ, then let 1≤χ1≤ϕ. If it is out of №1 RLS№1~№φ, then suppose that it is just at №1 RLS№1~№κ , but it is not at №1 RLS№1~№κ-1, then κ >ϕ , and let 1≤χ2≤κ .If the set of Jβ+d µp(♠s)+b q(◦s) J g is at №1 RLS№1~№φ, then after change ◦s for •s at places of ∑№χ1 [1≤χ1≤ϕ] kind’s odd composite points, there is a set of •µp(•s)+b q(◦s)•on ordinals of Jβ+d µp(♠s)+b q(◦s)J g at seriate each RLS№1~№φon the right of №1 RLS№1~№φ.If the set of Jβ+d µp(♠s)+b q(◦s) J g is just barely at №1 RLS№1~№κ , but it is out of №1 RLS№1~№(κ-1), then after change ◦s for •s at places of ∑№χ2[1≤χ2≤κ]kind’s odd composite points, there is a set of •µp(•s)+b q(◦s)•on ordinals of Jβ+d µp(♠s)+b q(◦s) J g at seriate each RLS№1~№κon the right of №1 RLS№1~№κ.Either there is Jϕ ≥ µp+b q+2 or Jκ ≥ µp+b q+2, uniformly let it to equal Jν. If Jϕ or Jκ<µp+b q+2, then suppose that Jν is the smallest odd prime number which is not smaller than µp+b q+2.Each set of •µp(•s)+b q(◦s)• on ordinals of Jβ+d µp(♠s)+b q(◦s) J g considering aforementioned either case is rewritten as a set of • µp(•s)+b q(◦s)•.If some set of • µp(•s)+b q(◦s)• is defined as a set of ♠ µp(♠s)+b q(◦s)♠, then the set of ♠ µp(♠s)+b q(◦s)♠ is rewritten as a set of ♠µp(♠s)+b q(◦s)♠.Let ν+1≤ω≤g, since there is one №ω kind’s odd point within consecutive Jω odd points, and there is one №ω kind’s odd point within Jωodd points which share an ordinal at seriate JωRLSS№1~№ω-1, therefore there is a series of results as the following.After successively change ◦s for •s at places of № (ν+1) kind’s odd composite points, there are both (Jν+1-µp) sets of •µp(•s)+b q(◦s) • and µp sets of •(µp-1)(•s)+(b q+1)(◦s)• at seriate each RLS№1~№(ν+1)on the right of №1 RLS№1~№(ν+1).Of course, every prime factor of an odd number which each • at here expresses is greater than Jν+1.After successively change ◦s for •s at places of № (ν+2) kind’s odd composite points, there are both(Jν+1-µp)(Jν+2-1)sets of • µp(•s)+b q(◦s) • and µp( Jν+2-1) sets of • (µp-2)(•s)+(b q+2)(◦s)• at seriate each RLS№1~№(ν+2)on the right of №1 RLS№1~№(ν+2). Of course, every prime factor of an odd number which each • at here expresses is greater than Jν+2 .And so on and so forth…Up to after successively change ◦s for •s at places of №g kind’s odd composite points, there are both(Jν+1-µp)(Jν+2-1)( Jν+3-1)…( J g-1) sets of •µp(•s)+b q(◦s)•and µp(Jν+2-1)( Jν+3-1)…( J g-1) pairs of • (µp+b q)(◦s) •at seriate each RLS№1~№g on the right of №1 RLS№1~№g。
张益唐:天才的证明
张益唐:天才的证明原作: Alec Wilkinson编译:潘颖陈晓雪接受《纽约客》专访时,张益唐59岁。
仅仅两年前,他不过是个美国非一流大学的普通讲师,只发表过两篇论文,没有研究经费,曾有近十年的时间找不到学术职位,“流浪”美国各州,不时借住朋友家安身。
2013年5月,他因出色地证明了一个关于素数分布的“里程碑式的定理”而蜚声全球。
英国著名数学家哈代说,数学比起其他技艺和科学来,更像是“年轻人的游戏”,没有哪一个重大成就是50岁之后提出来的。
然而张益唐用天才般的工作证明:年龄、职位、论文统统不是登顶的“标配”。
2月2日,《纽约客》杂志正式刊发特约撰稿人亚历克·威尔金森(Alec Wilkinson)专访张益唐的长文。
《赛先生》求教一流数论专家,补正部分内容,力求准确编译,以飨国内读者。
华人数学家张益唐。
Peter Bohler/图张益唐证明了什么张益唐所做的工作通常被称作“素数间的有界距离”,是“孪生素数”猜想证明的弱形式。
所谓“素数”,又称“质数”,是指只能被1和它本身整除的数字,例如:2、3、5、7等等。
但随着数字增大,素数在数轴上的分布越来越稀疏。
想像一条数轴,普通数字是绿色的,素数是红色的。
轴线开始时有许多红色的数字:2、3、5、7、11、13、17、19、23、29、31、41、43和47,它们都是小于50的素数。
在1-100之间有25个素数,1到1000之间有168个素数,1到100万之间有78498个素数。
素数越来越大时,它们变得越来越稀少,素数与素数间的平均距离越来越大。
那么,相邻两个素数之间的距离是否是有限的呢?特别是当数字趋于无穷大时,一个数字的位数之多需要一本书的厚度才能写下,此时是否还能找到相邻的两个素数呢?没有一个方程式可以预言素数的分布特征——它们看起来非常随机。
欧几里得在公元前300年证明存在无穷多个素数,但并没有证明两个素数之间的距离可能是多远。
他曾大胆猜想:存在无穷多对之差为2的素数。
浅谈对一类数学题的创新型解法(三)第三章用两种方法证明孪生素数猜想
浅谈对一类数学题的创新型解法(三)第三章用两种方法证明孪生素数猜想摘要:本文用两种方法证明了孪生素数猜想,第一种为“用孪生素数本源法来证明”,第二种为“用公式来证明”。
如果我们把证明孪生素数猜想,仅仅看作是解答一道普通的数学题,就再也不会把它看得是那么的神秘,就会静下心来,认真地讨论如何在初等数论的范围内是否能够证明它。
关键词:孪生素数猜想;孪生素数本源法;混合的孪生素数数列;公式证明;减数移位法。
1、第一种方法:用孪生素数本源法来证明:要想证明孪生素数猜想,必须要探明孪生素数产生的本源。
那么,什么是孪生素数的本源呢?要回答这个问题,必须先肯定两个基本前提:(1)自然数中的奇数有无穷多个;(2)素数有无穷多个。
下面,我们就来寻找孪生素数产生的本源:第一步,将自然数中的奇数排成一列,即:3 5 7 9 11 13 15 17 1921 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 6365 ......p。
(这里,用字母p来表示奇数)第二步,在所有的奇数中减去3的倍数,并将这一列数两两配对,那么,剩下的所有的奇数就变为如下的形式:(这里,我们先增加了一个5,然后再两两组合配对)3 5 5 7 11 13 17 19 23 25 29 31 35 37 41 43 4749 53 55 59 61 65 67 71 73 77 79 83 85 89 91 9597 101 103......pi pi+2。
(1)我们来观察数列(1):这是一个既包含着有无穷多对“真孪生素数”,同时也包含着有无穷多对“假孪生素数”的无穷数列。
而所有的孪生素数要想产生,必然来自于此数列之中,概莫例外。
我们称这个数列为“混合的孪生素数数列”。
此数列即为“孪生素数产生的本源”,而且,所有的孪生素数都是“从孪生素数的本源中诞生出来的”。
在数列(1)中,我们已经知道了素数是无穷多的,只要紧连着这个素数的配对数也同时是素数,那么,这一对数必然就是孪生素数对,简称孪生素数。
孪生质数猜想的巧妙证明
孪生质数猜想的巧妙证明李云祥 (云南省楚雄州禄丰县土官镇小学 651209 )【摘要】:孪生质数猜想的巧妙证明开辟了孪生质数研究的崭新途径。
此文主要以角表、角表数链为依托进行了深入的拓展,发掘出了角表数链五个非常有趣的特性,而且角表数链还有更广阔的研究空间,并且根据角表数链的性质推演出的两个证明方法,巧妙地证明出没有最大的孪生质数,即孪生质数猜想是正确的。
孪生质数猜想的巧妙证明还可以推演出三个更有意思的证明(此三个证明方法在此文中没有赘述):老问题“质数无限多个”的新证明;“三生质数无限多组”的证明(如果三个质数A、B、C,其中B比A多2,而C比B多4,那么质数A、B、C就叫三生质数);“等质数值是6的等质数无限多组”的证明。
【关键词】:角表;角表数链;孪生质数;猜想;巧妙;证明【分类号】:O156.1【文献标识码】:A【正文】:一、角表的认识如 (图1-1-1)、(图1-1-2)和(图 1-1-3),这样的图表很像我们认识的无限延伸的角,所以称它们为角表。
(图1-1-1)在(图1-1-1)中,如果第一横行和第一竖行的某一个数,在其它行中找不到,那么这个数就是质数。
此角表中的所有数都沿4、9、16、25、36......这些平方数为轴而对称。
在对称位置上的数都对应相等。
根据这种现象,还可以把(图1-1-1)改为另一种角表,如(图1-1-2) 。
(图1-1-2)在质数中,除2、5两个外,其余的质数的个位上的数都只会重复出现1、3、7、9。
个位上的数是1、3、7、9的任何合数,都是个位上的数是1、3、7、9的数相互乘得到的(除了数1外),所以角表 (图1-1-2)又可以变为如(图1-1-3)的角表。
(图1-1-3)二、角表数链的认识根据(图1-1-3),把个位上的数是1、3、7、9的数排列成数列(除了数1外),并分别划去各质数的倍数(质数的倍数是只包括不小于质数的平方数的倍数。
此论文中出现的质数的倍数都是这样的),剩下的就是质数。
边积分析法证明孪生素数猜想
边积分析法证明孪生素数猜想1. 引言1.1 引言孪生素数猜想是一个数论领域的经典问题,即存在无穷多对相邻的素数。
这个问题已经困扰数学家们几个世纪,至今未能完全解决。
为了尝试解决这个难题,我们引入了边积分分析法,这是一种新颖的证明方法,能够在一定情况下得到有用的结果。
在本文中,我们将首先介绍边积分分析法的基本原理和应用范围。
然后,我们会详细讨论孪生素数猜想的背景和已有的研究成果。
接着,我们将提出边积分法在证明孪生素数猜想中的思路,解释为何这种方法可能会取得成功。
在详细阐述边积分法的证明过程之后,我们将展示最终的证明结果,并对其进行深入的分析和讨论。
通过本文的研究,我们希望能够为解决孪生素数猜想这一经典问题提供新的思路和方法。
我们也希望能够推动边积分分析法在数论领域的更广泛应用,为数学研究开辟新的方向和可能性。
2. 正文2.1 边积分分析法简介边积分分析法是一种利用边积分技术来解决数论问题的数学方法。
它的基本思想是将问题转化为对边积分的求解,从而得到一种新颖的证明方法。
边积分分析法在解决一些具有特定形式的数论问题时具有很强的实用性和有效性。
边积分分析法的核心思想是利用积分的性质来研究数论问题。
通过对边积分的合理选择和运用,可以将原本复杂的数论问题简化为一个容易求解的积分问题。
这种转化不仅可以提高问题的解决效率,还能够为问题的解决提供一种全新的视角和思路。
边积分分析法在数论领域的研究中取得了许多重要的成果,为解决一些经典的数论问题提供了新的思路和方法。
通过对边积分的灵活运用,可以探索数论问题的深层次结构,揭示其中的隐藏规律,从而推动数论研究的进展。
边积分分析法是一种重要的数学方法,在解决复杂的数论问题时具有独特的优势和应用前景。
通过深入研究和应用,边积分分析法有望为数论领域的发展带来新的突破和进展。
2.2 孪生素数猜想孪生素数猜想是一个数论领域的经典问题,它指的是存在无穷多的素数对,这些素数对之间的差值始终为2。
张益唐孪生素数猜想证明过程
张益唐孪生素数猜想证明过程张益唐近照,由新罕布什尔大学提供张益唐是个对数字“极其敏感”的人,他能把大学同班同学的出生日期背得“滚瓜烂熟”,并在每个人过生日时发去一封祝福邮件。
同为恢复高考后北京大学数学系第一批学生,美国普渡大学数学系教授沈捷就享受过这样的“待遇”。
但他发现,七八年前张益唐突然“消失”了。
因为,从那时起,他再没收到过张的生日祝福,“给他发邮件也没再回过”。
5月16日,张益唐的邮件突然来了,只有一个单词:“谢谢”。
在接受中国青年报记者采访时,沈捷回忆说,此前一天,他和夫人就张益唐在孪生素数方面取得的突破向他发去邮件道贺。
5月14日,《自然》(Nature)杂志在线报道张益唐证明了“存在无穷多个之差小于7000万的素数对”,这一研究随即被认为在孪生素数猜想这一终极数论问题上取得了重大突破,甚至有人认为其对学界的影响将超过陈景润的“1+2”证明。
在此之前,“年近6旬”的张益唐在数学界可以说是个名不见经传的人。
多年前曾与张益唐接触过的浙江大学数学系教授蔡天新也以为“他早从数学圈消失”了,蔡说已经“近30年没他的消息了”,没曾想“他突然向孪生素数猜想走近了一大步”——素数是指正因数只有1和本身即只能被自身和1整除的正整数,“孪生素数”则是指两个相差为2的素数,例如3和5,17和19等。
而随着素数的增大,下一个素数离上一个素数应该越来越远,故古希腊数学家欧几里得猜想,存在无穷多对素数,他们只相差2,例如3和5,5和7,×2195000-1和×2195000+1等等。
这就是所谓的孪生素数猜想,它和黎曼猜想、哥德巴赫猜想一样,让无数数论者着迷。
数学家需要做的是一个证明!然而,人们甚至不知道它的“弱形式”是否成立,用《数学文化》主编、香港浸会大学理学院院长汤涛的话说就是——能不能找到一个正数,使得有无穷多对素数之差小于这个给定正数,在孪生素数猜想中,这个正数就是2。
张益唐找到的正数是“7000万”。
孪生素数猜想和哥德巴赫猜想的证明
孪生素数猜想和哥德巴赫猜想的证明冯仰春(中国矿业大学孙越崎学院,江苏 徐州 221116)摘要:相差2的质数为孪生素数,孪生素数猜想表述为孪生素数有无穷多对。
哥德巴赫猜想表述为任意大于等于6的偶数都可以写成两个素数的和。
关键词:孪生素数猜想;无穷多对;哥德巴赫猜想;证明1 素数有无穷多个()()()212122 1...22 (21)x y xy x y x N y N m n xy x y x N y N m n ++=+++∈*∈*⎧=≠++∈*∈*⎨+⎩其中则为素数且个数为无穷多 2孪生素数有无穷多对()()()221,,,,2,212n ab a b x n n a b c d n x y n cd c d y x ≠++=+⎧⎧∈N*≥⎨⎨≠+++=-⎩⎩当时.则为孪生素数且为无穷多3 孪生素数猜想的证明过程()()()()()()()()=212122 1...2..22122121212121=2N x y xy x y x N y N n xy x y x N y N n m m n n ab a b n a b c d n n cd c d n n n n *∴++=+++∈*∈*∴≠++∈*∈*⎧=⎨+⎩≠++⎧∈N *⎨≠+++⎩+-+--证:由奇数和偶数组成,偶数不是素数素数只能是奇数奇数由奇合数与素数组成奇合数当时,的个数为无穷多则为素数且个数为无穷多当,,,,时,个数为无穷多与均为素数,且,()()22121n n n ≥∴+-∴此时与为孪生素数且为无穷多孪生素数猜想成立4哥德巴赫猜想的证明过程()()()()()()()()()()()()()()2121211212213211211, (2121)221222132214221422212221322m b a b n b a b a b b m n b a b a b a b a b b a b b a b a m n a b a b a b a b b a b a b a b a b ≠++≠++∈N *++++++++-+++++++++++++++++++++证:,,,,当为某一确定值时,,可以为:,,,...,,,当也为某一确定值时,为:,,,...,当,为任意正整数时,,()()()()()()()()14221428234567222121222121a b b m n m n m n m n m n m n +++++∴+∴++++++=+++∴∴,...,为大于等于的任意正整数又可以为,,,,,可以为任意大于等于2的正整数为大于等于6的偶数,和为两个素数,,任意大于等于6的偶数可以写成两个素数之和歌德巴赫猜想成立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
THE PROOFS OF TWIN PRIME CONJECTURE AND WEAKER POLIGNAC’S CONJECTUREWAN-DONG XUSchool of Science,Tianjin University,Tianjin,300072,Chinae-mail:wandongx@Abstract:This paper advanced a new method of appointedly cov-ering prime circles with level colors of black degree,and showed twinprime conjecture and weaker Polignac’s conjecture to be true withthe proof by contradiction.Keywords:prime;distribution of primes;twin primes;Polignac’sconjecture;Goldbach-type problem.2000MSC:11A41,11P32,11N051.Introduction.After C.Goldbach and L.Euler presented their famous conjecture by a letter in1742which states that every number>2is the sum of two primes[1,2p421],A.de Polignac presented yet his famous conjecture in1849[1,2p424,3p11],One named it the conjecture of twin primes,which statesConjecture1:Even number2is the difference of two consecutive primes in an infinitude of ways.Then he advanced extendedly another famous conjecture also in that pa-per,it statesConjecture2:Every even number is the difference of two consecutive primes in an infinitude of ways.One named it Polignac’s conjecture.Conjecture2is a very stronger con-jecture,one couldn’t now not only show it but decide whether it is true as well.And one have advanced a slightly weaker conjecture which is analogous as the former,we name it a weaker Polignac’s conjecture,it states Conjecture3:Every even number is the difference of two primes in an infinitude of ways.Owing to Conjecture3doesn’t need that two primes are in order,that is, it is allowed that there are some other primes between these two primes,its condition is weaker than Conjecture2and it is possible to show it.Although Conjecture3is weaker,yet it still includes Conjecture1as a special one.In this paper we will advance a method of appointedly covering prime circles with the level colors of black degree,and show Conjectures3and1to be true with the proof by contradiction.Some symbols using in the paper is analogous as those in ref.[4,5,6,7].2.Preparative works.Prior to showing this important problem in number theory or in mathematics,we should do some things.1a.A sequence of odd numbers.Firstly,we should write a sequence of odd numbers except1,and denote ordinal number of odd numbers by i and its increment by i and i ,and ordinal number of odd prime numbers by s and its increment byσ.That iso dd number:3,5,7,9,11,13,15,17,19,21,···, o rdinal number i:12345678910···, o rdinal number s:123−45−67−···.b.An additive graph of difference formulae of odd numbers.Sec-ondly,we can draw a graph with two-color circles indicating odd numbers. This graph is analogous as Fig.3in ref.[5],n heading numbers was cut offfrom a sequence of odd numbers and rearranged vertically in right line,then, an ordinal sequence of odd numbers was arranged paralleling with former in left,both the right and left lines construct a column for an even number, and there were imaginatively a minus sign between correspondingly two odd numbers in the same row in this column indicating this even number.we denote ordinal number of odd number vertically laying infirst column by k which is starting at2,and its increment by k .There are two kinds of backed circles colored with black and snow,the black is to prime number,the snow to odd composite number.For all n,here n=1,2,···,we can draw out some analogous columns consisted of odd numbers and get an additive graph of these numbers(Fig.1).In Fig.1we draw a horizontal dotted line for every column which is parting the difference formulae of odd numbers into two parts:one part,laying up on the dotted line,contains n difference formulae of odd numbers for the n th column which includes some formulae consisted of two primes;another, laying down under the dotted line,contains infinitely many of rest difference formulae.c.An important conclusion.According to our showing in ref.[5-7],there must exist some difference formulae of two odd primes above the dotted line for every column,that is,Polignac-Xu’s number is≥1,i.e.,#{D(n)}≥1, and it is oscillatingly increased as even number increases.So we can conclude Conclusion4:For every even number its Polignac-Xu’s number is≥1and is oscillatingly increased as even number increases.d.Some convention of using symbols.In order to conveniently indicate its significant for some mathematical items,we use some symbols to denote them.For an odd number laying at a sit in the n th column,we use a front superscript n to denote it is in the n th column,a front subscript r to denote it is in the right line,a front subscript l to denote it in the left,we use a letter c to denote a composite number,a letter p to denote an odd prime,and the ordinal number i for indicating an odd number which is in the i th row in left line in the n th column sits at a back superscript,the ordinal number k for indicating an odd number which is in the k th row in right line in the n th column sits at a back superscript also,the ordinal number s for displayingan odd prime number sits at a back subscript,that is,n r c k,n r p k s,nl c i,or nlp i s.Furthermore,we use symbol“|=|”to indicate a prime meet another prime in the i th row in the n th column,that is,there is n r p k s+n|=|nlp i s,and use2Figure 1.The appointed couples of two primes after re-arranged vertically the sequence of odd numbers.symbol“ ”to indicate a prime circle is being covered by a level color with black degree,that is,n r p k s+n n r p k s+n.3e.About the levels of black degree.And here the term“black degree”possesses the mathematical significant.We define snow is zero level of black degree and black is infinite level of black degree,there are integer levels between them,so that,the potence of the set of the levels of black degree #{B d}is equal to that of the set of nonnegative integers#{N}.We know that according to the theorem of prime numbers[8,p153-180],the potence of the set of odd prime numbers#{P r}is infinity of lower order comparing to that of natural number#{N∗},we all know there is#{N}=#{N∗},so there is#{B d}>#{P r}and the number of the levels of black degree for covering prime circles is sufficiently.f.Three relationship formulae.And from Fig.1there are some important relationship formulae.For a prime in the n th column,here n≤K−1and K is sufficiently large,there are(1)k=i+n.(2)k =i .(3)n r p k s+n=2n+n l p i s.(4)n r p k s+σ=n l p i+ns+σ.3.The proof of conjecture3.Proof.We use the proof by contradiction.Assume that Conjecture3is not true,thus,it could deduce four cases possible.a.Thefirst cases assumes that every even number is the difference of two primes but not in an infinitude of ways.It is directly in contradiction with Conclusion4.Thefirst case indicates that for all even number its Polignac-Xu’s number isfinitely,but Conclusion4indicates that for a sufficiently larger even number its Polignac-Xu’s number is infinitely.Both is in contradiction each other,and the assumption is wrong.b.The second cases assumes that all sufficiently larger even numbers are the difference of two primes in an infinitude of ways but all not sufficiently larger even numbers aren’t in an infinitude of ways.For this cases possible,all even number<M,here M is a sufficiently larger number,is onlyfinite many of the difference formulae of two primes not in an infinitude of ways.That is,we may assume that when k≥K,every even number<M doesn’t be expressed as the difference of two primes(Note: When an even number approaches to M,n is to approach to m,here m also is a sufficiently larger number).This will introduce some error conclusion.Let we return to Fig.1,for n=1,suppose that there is a last pair of twin primes in the(K−1)th row in1st column,according to the assumption of the proof by contradiction,there weren’t any appointed pair of two primes in all rows while k≥K and n<m.Now let we consider a sufficiently larger number K,and draw a horizontal real line between K−1and K. And if there then appears a prime meet another prime under this real line,1 r p K s+1|=|1lp i s in1st column,we cover1r p K s+1and1lp i+1s+1with the1st level colorof black degree,and there are1r p K s+1 1r p K s+1and1l p i+1s+11lp i+1s+1.And if4there appear some primes meet other primes yet in this column,1r p K+ks+1|=|1 l p i+is,we cover1r p K+ks+1and1lp i+i +1s+1for all pairs of k ,i andσwith thatlevel color,and cover continually again any2r p K s+1and2l p i+1s+1,and all2r p K+ks+σand2l p i+i +1sin2nd column,3r p K s+1and3lp i+1s+1,and all3r p K+ks+σ+1and3lp i+i +1s+σ+1in3rd column,and go on.Thus,there are1r p K+ks+σ+1 1r p K+ks+σ+1,2r p K s+12 r p K s+1,2r p K+ks+σ+12r p K+ks+σ+1,3r p K s+1 3r p K s+1,and3r p K+ks+σ+13r p K+ks+σ+1,···;and1 l p i+i +1s+σ+11r p i+i +1s+σ+1,2lp i+1s+12lp i+1s+1,2lp i+i +1s+σ+12lp i+i +1s+σ+1,3lp i+1s+13lp i s+1,and3 l p i+i +1s+σ+13lp i+i +1s+σ+1,···.Next,for n=2and k≥K,if there appear some primes meet others,2 r p K+ks+σ|=|2lp i+is,in2nd column,we cover2r p K+ks+σ,2lp i+i +is+σ,3r p K+ks+σ,3lp i+i +is+σ,···with2nd level color.Thus,there are2r p K+ks+σ 2r p K+k 2s+σ,2lp i+i +is+σ2 l p i+i +is+σ,3r p K+ks+σ3r p K+ks+σ,3lp i+i +is+σ3lp i+i +is+σ,···,and go on.Then,we do this for ever and ever for all n,here n=1,2,3,···,n−1(Fig.2).For example,let we see in Fig.2,There are some clearly examples.Thereis1r432113|=|1l 412012in1st column,then,we cover1r432113and1l432113with1st levelcolor,and cover n r432113and nl 4320+113for all n>1;and there is1r612917|=|1l592916yet in that column,and we cover1r612917and1l613017with that level color,andcover n r612917and nl 6129+117for all n>1.And there are n r 432113,nl4320+113,n r 612917,and nl 6129+117for all n=1,2,···.There is2r412012|=|2l 371811in2nd column,then,we cover1r412012and2l4118+212with2nd level color,and cover n r412012and nl 4118+212for all n>2,there aren r 412012and nl4118+212for all n=1,2,···.And there is3r532615|=|3l472314in3rd column,and we cover3r532615and3l5323+315with3rd level color,and we cover n r532615and nl 5323+315for all n>3;and thereis3r673317|=|3l 613017also in3rd column,and we cover3r673317and3l6730+317withthat level color,and cover n r673317and nl 6730+317for all n>3.So that there aren r 412012,nl4118+212,n r 532615,nl5323+315,n r 673317,nl6730+317.When n from1to n−1,due to n=K−i now,all black prime circlesbetween1st and k th in left line will be through all black circles between (k+1)th and(2K+1)th in right line,and all these circle were being coveredwith K−1level colors of black degree.And there are n−1r p K+ks+σn−1rp K+ks+σand n−1l p i+is+σn−1lp i+is+σfor all pairs of k andσin right line in the(n−1)thcolumn.While n turns from n−1to n,there will appear n r p K+ks+σ+n |=|nlp i+is+σand turnall nl p i+i +is+σ+nto nlp i+i +is+σ+nfor all pairs of K+k and s+σ,here1≤i+i ≤Kand K+1≤K+k ≤2K+1,And we do not consider that there were probably the primes meet primes in infinitely in the n th column.So we can conclude three error conclusions:(i)There is not any appointed pair between two primes,i.e.,#{D(n)}=0and there is no Polignac-Xu’s number,above dotted line while n≥K,this is contradiction with Conclusion4;(ii)There is no prime in open interval(K,2K)under dotted line also while n≥K, this is contradiction with a prime theorem that there must exist at least one5Figure2.Nearly all prime circles would be covered when aneven number is sufficiently large.prime between K and2K,and(iii)There is no prime in open interval(K,∞) also under dotted line while n→∞,this is contradiction with Euclid’s prime6theorem that there are infinitely many primes in natural numbers.And the assumption is wrong.c.The third cases assumes that all sufficiently larger even numbers and some not sufficiently larger even numbers are the difference of two primes in an infinitude of ways but some not sufficiently larger even numbers aren’t in an infinitude of ways.In this status,we divide all even number in to two sets,A and B,the set A contains the former,and the set B contains the latter.For all even number in B we take analogous method of covering sufficiently larger odd primes in the column indicating these even numbers.After processed all these columns we mayfind that all prime number≥K have been covered.Of cause,all odd primes≥K which lay in all columns indicating all even numbers in Ashould also be covered.And there is n r p K+ks+σ+n |=|nlp i+is+σfor all pairs of K+kand s+σfor all columns in A,so that there is no n r p K+ks+σ+n |=|nlp i+is+σ,and theassumption is contradiction itself in this case and it is wrong.d.In the last case one assumes that every even number except2is the difference of two primes in an infinitude of ways.There is indeed no good method to show this assumption to be wrong.But if it were true,one yet assumes that every even number except4is the difference of two primes in an infinitude of ways;every even number except6is the difference of two primes in an infinitude of ways;and go on.That will introduce a new antinomy.The assumption is wrong.Up to now,we havefinished showing Conjecture3to be true and also Conjecture1to be true.Acknowledge:I am grateful to Prof.Rong-Qing Jia,Prof.Geng-Pu Yu, Prof.Zai-De Wu,Prof.Jing Xu,Eng.Yu-Zhi Li,and Bachelor Heng Xu for beneficial discussion,and my student Yue-Bo Ding for her verifying all of the data in this paper.REFERENCE[1]D.Hilbert,Mathematische Problems,Archiv5.Math.u.Phys.3,Bd.1(1901),44-63;213-237.[2]L.E.Dickson,History of the theory of numbers,Carnegie Institute of Washington,Washington,vol I.1919.[3]T.M.Apostol,Introduction to Analytic Number Theory,Springer-Verlag,NewYork,1976.[4]W.-D.Xu,A new two-dimension sieve method and the proof of Goldbach’s con-jecture,/200606266(unpublished).[5],Every even number is the difference of two odd prime numbers,www./2006006456(unpublished).[6],A C++source program of calculating Polignac-Xu’s number with recur-sion method,/200609373(unpublished).[7],A FORTRAN source program of calculating Polignac-Xu’s number withrecursion method,/200609392(unpublished).[8]P.Ribenboim,The Book of Prime Number Records,(Second Edition),Springer-Verlag,Berlin,1989.7。