直线与圆的方程综合题、典型题
(完整版)直线与圆的方程测试题(含答案)
直线与圆的方程测试题(本试卷满分150分,考试时间120分钟)一、单项选择题(本大题共18小题,每小题4分,共72分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其选出,错选、多选或未选均无分.1.点M 1(2,-5)与M 2(5,y)之间的距离是5,则y=( )A.-9B.-1C.-9或-1D. 122. 数轴上点A 的坐标是2,点M 的坐标是-3,则|AM|=( )A.5B. -5C. 1D. -13. 直线的倾斜角是,则斜率是( )32πA. B. C. D.3-3333-34. 以下说法正确的是( )A.任意一条直线都有倾斜角B. 任意一条直线都有斜率C.直线倾斜角的范围是(0,)D. 直线倾斜角的范围是(0,)2ππ5. 经过点(4, -3),斜率为-2的直线方程是( )A. 2x+y+2=0B.2x-y-5=0C. 2x+y+5=0D. 2x+y-5=06. 过点(2,0)且与y 轴平行的直线方程是( )A.x=0B.y=0C.x=2D.y=27. 直线在y 轴上的截距是-2,倾斜角为0°,则直线方程是()A.x+2=0B.x-2=0C.y+2=0D.y-2=08. “B ≠0”是方程“Ax+By+C=0表示直线”的( )A.充分非必要条件B.必要非充分条件C.充分且必要条件D.非充分非必要条件9. 直线3x-y+=0与直线6x-2y+1=0之间的位置关系是( )21A.平行B.重合C.相交不垂直D.相交且垂直10.下列命题错误的是( )A. 斜率互为负倒数的两条直线一定互相垂直B. 互相垂直的两条直线的斜率一定互为负倒数C. 两条平行直线的倾斜角相等D. 倾斜角相等的两条直线平行或重合11. 过点(3,-4)且平行于直线2x+y-5=0的直线方程是( )A. 2x+y+2=0B. 2x-y-2=0C. 2x-y+2=0D.2x+y-2=012. 直线ax+y-3=0与直线y=x-1垂直,则a=( )21A.2B.-2C.D. 2121-13. 直线x=2与直线x-y+2=0的夹角是( )A.30°B. 45°C. 60°D. 90°14. 点P (2,-1)到直线l :4x-3y+4=0的距离是()A.1 B. C. D.35115315. 圆心在( -1,0),半径为5的圆的方程是()A.(x+1)2+y 2= B. (x+1)2+y 2=255C. (x-1)2+y 2= D. (x-1)2+y 2=25516. 直线3x+4y+6=0与圆(x-2)2+(y+3)2=1的位置关系是( )A.相交不过圆心B.相交且过圆心C.相切D.相离17. 方程x 2+y 2-2kx+4y+3k+8=0表示圆,则k 的取值范围是( )A.k<-1或k>4B. k=-1或k=4C. -1<k<4D. -1≤k≤418. 直线y=0与圆C:x 2+y 2-2x-4y=0相交于A 、B 两点,则△ABC 的面积是()A.4B.3C.2D.1二、填空题(本大题共5小题,每小题4分,共20分)请在每小题的空格中填上正确答案。
直线和圆的方程精选练习题
直线和圆的方程精选练习题1.直线x+3y-3=的倾斜角是多少?答:倾斜角为π/6.2.若圆C与圆(x+2)+(y-1)=1关于原点对称,则圆C的方程是什么?答:圆C的方程为(x-2)^2+(y+1)^2=1.3.直线ax+by+c同时要经过第一、第二、第四象限,则a、b、c应满足什么条件?答:ab0.4.直线3x-4y-9=与圆x+y=4的位置关系是什么?答:相交但不过圆心。
5.已知直线ax+by+c=(abc≠0)与圆x+y=1相切,则三条边长分别为a、b、c的三角形是什么类型的?答:是锐角三角形。
6.过两点(-1,1)和(3,9)的直线在x轴上的截距是多少?答:截距为2/5.7.点(2,5)到直线y=2x的距离是多少?答:距离为1/√5.8.由点P(1,3)引圆x+y=9的切线的长度是多少?答:长度为2.9.如果直线ax+2y+1=与直线x+y-2=互相垂直,那么a的值等于多少?答:a的值等于-1/3.10.若直线ax+2y+2=与直线3x-y-2=平行,那么系数a等于多少?答:a的值等于-3/2.11.直线y=3x绕原点按逆时针方向旋转30度后所得直线与圆(x-2)^2+y^2=33的位置关系是什么?答:直线与圆相交,但不过圆心。
12.若直线ax+y+1=与圆x^2+y^2-2x=相切,则a的值为多少?答:a的值为-1.13.圆O1:x^2+y^2-4x+6y=0和圆O2:x^2+y^2-6x=0交于A、B两点,则AB的垂直平分线的方程是什么?答:垂直平分线的方程为2x-y-5=0.14.以点(1,3)和(5,-1)为端点的线段的中垂线的方程是什么?答:中垂线的方程为2x+y=7.15.过点(3,4)且与直线3x-y+2平行的直线的方程是什么?答:由于两条直线平行,所以它们的斜率相同。
直线3x-y+2的斜率为3,所以过点(3,4)且与直线3x-y+2平行的直线的斜率也是3.带入点(3,4)和斜率3,可以得到直线的方程为y-4=3(x-3),即y=3x-5.16.直线3x-2y+6在x、y轴上的截距分别是多少?答:当x=0时,直线3x-2y+6的方程化为-2y+6=0,解得y=3,所以直线在y轴上的截距是3.当y=0时,直线3x-2y+6的方程化为3x+6=0,解得x=-2,所以直线在x轴上的截距是-2.17.三点(2,-3)、(4,3)和(5,k)在同一条直线上,求k的值。
高中数学 人教版 必修二 直线与圆的方程综合复习题(含答案)
直线与圆的方程综合复习(含答案)一. 选择题1.已知点A(1,. 3),B(-1,33),则直线AB 的倾斜角是( C ) A 3B 6C 23D 562.已知过点A(-2,m)和B (m,4)的直线与直线2x+y-1=0平行,则m 的值为( C ) A 0 B 2 C -8 D 103.若直线L 1:ax+2y+6=0与直线L 2:x+(a-1)y+(2a -1)=0平行但不重合,则a 等于( D )A -1或2B 23C 2D -14.若点A (2,-3)是直线a 1x+b 1y+1=0和a 2x+b 2y+1=0的公共点,则相异两点 (a 1,b 1)和(a 2,b 2)所确定的直线方程是( A ) A.2x-3y+1=0 B.3x-2y+1=0 C.2x-3y-1=0 D.3x-2y-1=05.直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 ( D )A.[)π,0B.⎪⎭⎫⎢⎣⎡ππ43,4C.⎥⎦⎤⎢⎣⎡-4,4ππD.⎪⎭⎫⎢⎣⎡⎥⎦⎤⎢⎣⎡πππ,434,06.“m=12”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2y)-3=0相互垂直”的( B )A 充分必要条件B 充分而不必要条件C 必要而不充分条件D 既不充分也不必要条件7.已知A(7,-4)关于直线L 的对称点为B (-5,6),则直线L 的方程为(B ) A 5x+6y-11=0 B 6x-5y-1=0 C 6x+5y-11=0 D 5x-6y+1=0 8.已知直线1l 的方向向量a=(1,3),直线2l 的方向向量b=(-1,k).若直线2l 经过点(0,5)且1l 2l ,则直线2l 的方程为( B )A x+3y-5=0B x+3y-15=0C x-3y+5=0D x-3y+15=0 9. 过坐标原点且与圆2x +2y -4x+2y+52=0相切的直线方程为( A )A y=-3x 或y= 13xB y=3x 或y= -13xC y=-3x 或y= -13xD y=3x 或y= 13x10.直线x+y=1与圆2x +2y -2ay=0(a>0)没有公共点,则a 的取值范围是(A )A (02-1,)B (2-1, 2+1)C (-2-1, 2-1)D (0, 2+1) 11.圆2x +2y -4x-4y-10=0上的点到直线x+y-14=0的最大距离与最小距离的差是( C )A 36B 18C 62D 5212.以直线:y=kx-k 经过的定点为P 为圆心且过坐标原点的圆的方程为(D ), A 2x +2y +2x=0 B 2x +2y +x=0 C 2x +2y -x=0 D 2x +2y -2x-013.已知两定点A(-2,0),B(1,0),如果定点P 满足PA=2PB,则定点P 的轨迹所 包围的面积等于( B )A B 4 C 8 D 914.若直线3x+y+a=0过圆2x +2y +2x-4y=0的圆心,则a 的值为( B )A 1B -1C 3D -315.若直线2ax-by+2=0 (a >0,b >0)始终平分圆x 2+y 2+2x-4y+1=0的周长,则ba11+的最小值是( C )A.41B.2C.4D.2116.若直线y=k(x-2)+4与曲线y=1+24x -有两个不同的交点,则k 的取值范围是 ( A )A.⎥⎦⎤⎝⎛43,125 B.⎪⎭⎫⎝⎛+∞,125 C.⎥⎦⎤⎝⎛43,21D.⎪⎭⎫⎝⎛125,17.设两圆1C ,2C 都和两坐标轴相切,且过点(4,1),则两圆心的距离 ︱1C 2C ︱等于( C )A 4B 42C 8D 8218.能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0距离等于1的c的一个值为 ( C ) A.2B.5C.3D.3519.若直线by ax +=1与圆x 2+y 2=1有公共点,则( D )A.a 2+b 2≤1B.a 2+b 2≥1C.2211ba +≤1 D.2211ba +≥120.已知A (-3,8)和B (2,2),在x 轴上有一点M ,使得|AM|+|BM|为最短,那么点M 的坐标为( B ) A.(-1,0)B.(1,0)C.⎪⎭⎫⎝⎛0522,D. ⎪⎭⎫⎝⎛522,021.直线y=kx+3与圆2(3)x+2(2)y =4相交于M 、N 两点,若︱MN ︱≥23,则k 的取值范围是( A )A [-34,0] B [-∞,-34] [0,∞) C [-33,33] D [-23,0] 22.(广东理科2)已知集合{(,)|,A x y x y =为实数,且221}x y +=,{(,)|,B x y x y =为实数,且}y x =,则AB 的元素个数为(C )A .0B .1C .2D .3 23.(江西理科9)若曲线02221=-+x y x C :与曲线 0)(2=--m mx y y C :有四个不同的交点,则实数m 的取值范围是 ( B ) A. )33,33(-B. )33,0()0,33( -C. ]33,33[-D. ),33()33,(+∞--∞ 答案:B 曲线0222=-+x y x 表示以()0,1为圆心,以1为半径的圆,曲线()0=--m mx y y 表示0,0=--=m mx y y 或过定点()0,1-,0=y 与圆有两个交点,故0=--m mx y 也应该与圆有两个交点,由图可以知道,临界情况即是与圆相切的时候,经计算可得,两种相切分别对应3333=-=m m 和,由图可知,m 的取值范围应是)33,0()0,33( -二.填空题24.已知圆C 经过)3,1(),1,5(B A 两点,圆心在X 轴上,则C 的方程为10)2(22=+-y x ___________。
直线和圆综合练习题集附答案解析
直线与圆的方程训练题一、选择题:1.直线1x =的倾斜角和斜率分别是( )A .B .C . ,不存在D . ,不存在 2.设直线0ax by c ++=的倾斜角为α,且sin cos 0αα+=,则,a b 满足( ) A .1=+b aB .1=-b aC .0=+b aD .0=-b a3.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A .012=-+y x B .052=-+y x C .052=-+y x D .072=+-y x 4.已知点(1,2),(3,1)A B ,则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( )A .平行B .垂直C .斜交D .与的值有关 6.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4 BCD7.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .38.直线l 与两直线1y =和70x y --=分别交于,A B 两点,若线段AB 的中点为(1,1)M -,则直线l 的斜率为( )A .23 B .32 C .32- D . 23-9.若动点P 到点(1,1)F 和直线340x y +-=的距离相等,则点P 的轨迹方程为( ) A .360x y +-= B .320x y -+= C .320x y +-= D .320x y -+=10.若为 圆的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x11.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .221+D .221+ 12.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( )0135,1-045,10900180,,a b θ(2,1)P -22(1)25x y -+=A .1条B .2条C .3条D .4条 13.圆0422=-+x y x 在点)3,1(P 处的切线方程为( )A .023=-+y xB .043=-+y xC .043=+-y xD .023=+-y x14.直线032=--y x 与圆9)3()2(22=++-y x 交于,E F 两点,则∆EOF (O 是原点)的面积为( ) A.23 B.43C.52 D.55615.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y x B .0422=++x y xC .03222=-++x y xD .0422=-+x y x16.若过定点)0,1(-M 且斜率为k 的直线与圆05422=-++y x x 在第一象限的部分有交点,则k 的取值围是( )A. 50<<k B. 05<<-k C. 130<<k D. 50<<k 17.圆:06422=+-+y x y x 和圆:0622=-+x y x 交于,A B 两点,则AB 的垂直平分线的方程是( ) A.30x y ++= B .250x y --= C .390x y --= D .4370x y -+=18.入射光线在直线1:23l x y -=上,经过x 轴反射到直线2l 上,再经过y 轴反射到直线3l 上,若点P是1l 上某一点,则点P 到3l 的距离为( )A .6 B .3 C D 二、填空题:19.已知直线,32:1+=x y l 若2l 与1l 关于y 轴对称,则2l 的方程为__________; 若3l 与1l 关于x 轴对称,则3l 的方程为_________; 若4l 与1l 关于x y =对称,则4l 的方程为___________;20.点(,)P x y 在直线40x y +-=上,则22x y +的最小值是________________.21.直线l 过原点且平分ABCD 的面积,若平行四边形的两个顶点为(1,4),(5,0)B D ,则直线l 的方程为________________。
直线与圆的方程综合题、典型题[1]
直线与圆的方程综合题、典型题、高考题1、已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21mk m =+,因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立.所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.(2)不能.由(1)知l 的方程为(4)y k x =-,其中12k ≤. 圆C 的圆心为(42)C -,,半径2r =.圆心C 到直线l的距离d =.由12k ≤,得1d >,即2r d >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. 2、已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。
解析:圆C 化成标准方程为2223)2()1(=++-y x 假设存在以AB 为直径的圆M ,圆心M 的坐标为(a由于CM ⊥l ,∴k CM ⋅k l = -1 ∴k CM =112-=-+a b , 即a +b +1=0,得b = -a -1 ① 直线l 的方程为y -b =x -a , 即x -y +b -a =0CM=23+-a b∵以AB 为直径的圆M 过原点,∴OM MB MA ==2)3(92222+--=-=a b CMCB MB ,222b a OM += ∴2222)3(9b a a b +=+-- ②把①代入②得 0322=--a a ,∴123-==a a 或 当25,23-==b a 时此时直线l 的方程为x -y -4=0; 当0,1=-=b a 时此时直线l 的方程为x -y +1=0故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0评析:此题用0OA OB =,联立方程组,根与系数关系代入得到关于b 的方程比较简单3、已知点A(-2,-1)和B(2,3),圆C :x 2+y 2= m 2,当圆C 与线段..AB 没有公共点时,求m 的取值范围.解:∵过点A 、B 的直线方程为在l :x -y +1 = 0, 作OP 垂直AB 于点P ,连结OB.由图象得:|m|<OP 或|m|>OB 时,线段AB 与圆x 2+y 2= m 2无交点.(I )当|m|<OP 时,由点到直线的距离公式得:22|m |2|1||m |<⇒<,即22m 22<<-. (II )当m >OB 时,||||m m 即 13m 13m >-<或. ∴当22m 22<<-和0m 13m 13m ≠>-<且与时,圆x 2+y 2= m 2与线段AB 无交点.4、.已知动圆Q 与x 轴相切,且过点()0,2A .⑴求动圆圆心Q 的轨迹M 方程;⑵设B 、C 为曲线M 上两点,()2,2P ,PB BC ⊥,求点C 横坐标的取值范围. 解: ⑴设(),P x y 为轨迹上任一点,则0y =≠ (4分)化简得:2114y x =+ 为求。
直线与圆的方程单元测试题含答案
掌握直线与圆的位置关系判断是解决直线与圆相关问题的基础,对于提高解题能力和数学思 维能力有很大的帮助。
定义:直线方程的基本形式是y=kx+b,其中k是斜率,b是截距。
斜率:表示直线与x轴的夹角,当k>0时,夹角为锐角;当k<0时,夹角为钝角。 截距:表示直线与y轴的交点,当b>0时,交点在正半轴上;当b<0时,交点在负半轴 上。
圆的一般方程:x^2+y^2+Dx+Ey+F=0,其中D、E、F为常数
圆的参数方程:x=a+r*cosθ,y=b+r*sinθ,其中(a,b)为圆心,r为半径,θ为参数
圆的切线方程:在已知圆x^2+y^2+Dx+Ey+F=0上,切线的方程可表示为:D*x*x0+E*y*y0+F*x+E*y+C=0, 其中(x0,y0)为切点
单击此处添加标题
圆的直径的方程:$(x-\frac{x1+x2}{2})^2+(y\frac{y1+y2}{2})^2=(\frac{\sqrt{(x1-x2)^2+(y1-y2)^2}}{2})^2$,其中 $(x1,y1)$和$(x2,y2)$为直径的两个端点
联立方程法:通过将直线方程与圆方程联立,消元求解交点坐标
添加文档副标题
目录
01.
02.
03.
定义:表示直线上的点与固定点之间的距离始终等于一个常数 形式:Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0 分类:一般式、点斜式、斜截式、两点式和截距式 适用范围:适用于所有直线方程,是直线方程的基本形式
直线和圆的方程的典型例题
问题,利用数形结合法求最值.
[例5]已知直线l:y=k(x-a)及圆O:x2+y2=r2(a>r>0),直线l与圆O
相交于A、B两点,求当k变动时,弦AB的中点的轨迹方程.
【解法一】设轨迹上任一点为M(x,y),A(x1,y1),B(x2,y2).
由得(1+k2)x2-2ak2x+a2k2-r2=0,
(4+2sinθ)2=60+32sinθ+24cosθ=60+40sin(θ+).(其中tan=), 当sin(θ+)=-1时, (|AP|2+|BP|2)min=20, 此时60+24cosθ+32sinθ=20,即3cosθ+4sinθ=-5. 由得
∴P点的坐标为(). 【解法二】设P点的坐标为(x,y). ∵A(-1,0)、B(1,0), ∴|AP|2+|BP|2=(x+1)2+y2+(x-1)2+y2=2(x2+y2)+2=2|OP|2+2. 要使|AP|2+|BP|2取得最小值,需使|OP|2最小. 又点P为圆C:(x-3)2+(y-4)2=4上的点, ∴(|OP|)min=|OC|-r(r为半径). 由(x-3)2+(y-4)2=4知:C(3,4),r=2. ∴|OC|-r=-2=5-2=3, 即(|OP|)min=3,∴(|AP|2+|BP|2)min=2×32+2=20. 此时,OC:y=x 由得 或 (舍) ∴点P的坐标为(). 【点评】解法一是利用了圆的参数方程的形式设出了点P的坐标, 使所求的式子转化为三角函数式,利用三角函数法求最值;解法二设出 的是P点的普通坐标(x,y),使要求的式子转化为求圆上的点到坐标满足(x-)2+y2=.
直线与圆的方程试题及答案大题
直线与圆的方程试题及答案大题一、选择题1.设直线过点A(1, 2),斜率为-2,则直线方程是()– A. y = 2x + 3– B. y = -2x + 3– C. 2y = x + 3– D. -2y = x + 3答案:B2.设点A(-1,3)和B(2,-4),则直线AB的斜率为()– A. -1– B. 1– C. 2– D. -2答案:D二、填空题1.过点A(2,1)且与直线y = 2x + 3平行的直线的方程是y = ___________。
答案:2x - 12.过点A(1,-2)且与直线2y = 4x - 3垂直的直线的方程是y = ___________。
答案:-0.5x - 13.过点A(-3,4),斜率为2的直线方程是 y = ___________。
答案:2x + 10三、解答题1.求过点A(2,3)和B(-1,5)的直线方程。
解:直线AB的斜率 m = (5 - 3)/ (-1 - 2) = 2 / -3 = -2/3直线方程的一般形式为y = mx + c,其中c为常数。
将坐标A(2,3)代入直线方程,得到3 = (-2/3) * 2 + c => 3 = -4/3 + c。
解得c = 3 + 4/3 = 13/3,所以直线方程为y = -2/3x + 13/3。
2.已知直线的斜率为-1/2,过点A(3,4),求直线的方程。
解:直线方程的斜率为-1/2,过点A(3,4),所以直线方程可以表示为y = (-1/2)x + c。
将点A(3,4)代入直线方程,得到4 = (-1/2) * 3 + c => 4 = -3/2 + c。
解得c = 4 +3/2 = 11/2,所以直线方程为y = (-1/2)x + 11/2。
四、应用题1.在直角坐标系中,过点A(2,3)和B(-1,5)的直线与y轴交于点C,求点C的坐标。
解:由题意可知,过点A(2,3)和B(-1,5)的直线与y轴交于点C,所以C的横坐标为0。
基础模块下册第六章直线与圆的方程综合测试题-高教版
直线与圆的方程学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知直线ll:yy=xx−8.则下列结论正确的是()A.点(2,6)在直线ll上B.直线ll的倾斜角为ππ4C.直线ll在yy轴上的截距为8 D.直线ll的一个方向向量为vv⃗=(1,−1) 2.若直线x+3y-9=0与直线x+3y-c=0的距离为√10,则c的值为()A.-1 B.19C.-1或19 D.1或-193.直线3xx+4yy+2=0与2xx+yy−2=0的交点坐标是A.(−2,1)B.(−2,6)C.(2,−2)D.(6,−5) 4.方程xx2+yy2−aaxx+bbyy+cc=0表示圆心为(1,2),半径为1的圆,则a、b、c的值依次为()A.−2,−4,4B.2,−4,4C.2,−4,−4D.−2,4,−4 5.已知点(1,aa)(aa>0)到直线ll:xx+yy−2=0的距离为1,则aa的值为()A.√2B.2−√2C.√2−1D.√2+16.经过点PP(0,−1)作直线ll,若直线ll与连接AA(1,−2),BB(2,1)的线段总有公共点,则ll的倾斜角的取值范围是()A.�0,ππ4�B.�ππ4,3ππ4�C.�3ππ4,ππ�D.�0,ππ4�∪�3ππ4,ππ�7.点PP在直线3xx+yy−5=0上,且点PP到直线xx−yy−1=0的距离为√2,则PP点坐标为()A.(1,2)B.(2,1)C.(1,2)或(2,−1)D.(2,1)或(−2,1)8.若直线yy=xx+bb与曲线xx=�1−yy2恰有一个公共点,则bb的取值范围是()A.�−√2,√2�B.�−1,√2�C.�−1,√2�∪�√2�D.(−1,1]∪�−√2�9.已知圆CC与倾斜角为5ππ6的直线相切于点NN�3,−√3�,且与曲线(xx−1)2+yy2=1相外切,则圆CC的方程为()A.(xx−4)2+yy2=4,xx2+(yy+2√3)2=12C.(xx+4)2+yy2=4,xx2+(yy−4√3)2=36D.(xx−4)2+yy2=4,xx2+(yy+4√3)2=3610.l经过第二、四象限,则直线l的倾斜角α的范围是()A.0°≤α<90°B.90°≤α<180°C.90°<α<180°D.0°<α<180°11.在平面直角坐标系中,坐标原点OO到过点AA(cos130∘,sin130∘),BB(cos70∘,sin70∘)的直线距离为()A.12B.√22C.√32D.112.已知直线ll过AA(-2,1),且在两坐标轴上的截距为相反数,那么直线ll的方程是().A.xx+2yy=0或xx-yy+3=0B.xx-yy-1=0或xx-yy+3=0C.xx-yy-1=0或xx+yy-3=0D.xx+2yy=0或xx+yy-3=013.在平面直角坐标系中,AA(0,1),BB(0,2),若动点CC在直线yy=xx上,圆MM过AA、BB、CC三点,则圆MM的面积最小值为()A.πB.2π3C.π2D.π414.在平面直角坐标系中,把横、纵坐标均为有理数的点称为有理点.若a为无理数,则在过点PP�aa,−12�的所有直线中,下列说法正确的()A.有无穷多条直线,每条直线上至少存在两个有理点B.恰有nn(nn≥2)条直线,每条直线上至少存在两个有理点C.有且仅有一条直线至少过两个有理点D.每条直线至多过一个有理点15.若直线ll过点(−1,−1)和(2,5),且点(1009,bb)在直线ll上,则bb的值为()A.2019 B.2018 C.2017 D.2016 16.坐标原点到直线ll:kk2xx+xx+yy−kk2−2=0的距离的取值范围是()A.(1,√2]B.[0,√2]C.(0,1)D.[0,+∞)17.已知直线ll1:aaxx+yy+1=0,ll2:2xx+(aa−1)yy+1=0,则“aa=−1”是“ll1∥ll2”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件18.已知曲线CC:�xx=2cosααyy=2sinαα(αα为参数),点PP为在xx轴、yy轴上截距分别为8,-4的直线上的一个动点,过点PP向曲线引两条切线PPAA,PPBB,其中AA,BB为切点,则直线AABB恒过点A.(2,0)B.�√55,−25√5�C.(1,−1)D.�12,−1�19.设双曲线xx2aa2−yy2bb2=1(aa>0,bb>0)的右焦点为FF,右顶点为AA,过FF作AAFF的垂线与双曲线交于BB,CC两点,过BB,CC分别作AACC,AABB的垂线,两垂线交于点DD.若DD到直线BBCC的距离等于aa+√aa2+bb2,则该双曲线的离心率是()A.√2B.√3C.2 D.√520.关于下列命题,正确的个数是()(1)若点(2,1)在圆xx2+yy2+kkxx+2yy+kk2−15=0外,则kk>2或kk<−4;(2)已知圆MM:(xx+cosθθ)2+(yy−sinθθ)2=1,直线yy=kkxx,则直线与圆恒相切;(3)已知点PP是直线2xx+yy+4=0上一动点,PPAA、PPBB是圆CC:xx2+yy2−2yy=0的两条切线,AA、BB是切点,则四边形PPAACCBB的最小面积是2;(4)设直线系MM:xx cosθθ+yy sinθθ=2+2cosθθ,MM中的直线所能围成的正三角形面积都等于12√3.A.1B.2C.3D.4二、填空题21.已知直线ll1:xx−mmyy+1=0,ll2:2xx−6yy+5=0,且ll1//ll2,则mm的值为________.22.设若圆与圆的公共弦长为,则=______.23.已知直线ll1:xx+aayy+6=0与ll2:(aa−2)xx+yy+1=0互相垂直,则aa=_________. 24.过直线ll1:xx−2yy+3=0与直线ll2:2xx+3yy−8=0的交点,且到点PP(0,4)距离为2的直线方程为__________________.25.已知直线3xx-4yy-11=0和圆xx2+(yy-1)2=rr2(rr>0)相交于AA,BB两点.若|AABB|=2,则rr的值为___________.三、解答题26.已知三角形的三个顶点AA(−5,0),BB(3,−3),CC(0,2).(1)求BC边所在直线的方程;(2)求BC边上的高所在直线方程.27.求以CC(3,−4)为圆心,且与圆xx2+yy2=1相外切的圆C的方程.于M、N两点.(1)若∠CCMMNN=30°,求圆的半径;(2)若OOMM⊥OONN(OO为坐标原点),求圆CC的方程.29.已知MM(1,−1),NN(2,2),PP(3,1),圆CC经过MM,NN,PP三点.(1)求圆CC的方程,并写出圆心坐标和半径的值;(2)若过点QQ(1,1)的直线ll与圆CC交于AA、BB两点,求弦AABB的长度|AABB|的取值范围. 30.已知圆C经过点A(﹣1,3),B(3,3)两点,且圆心C在直线x﹣y+1=0上.(1)求圆C的方程;(2)求经过圆上一点A(﹣1,3)的切线方程.参考答案:1.B【分析】逐个分析各个选项.【详解】对于A 项,当xx =2,yy =6时, 代入直线方程后得6≠2−8,∴点(2,6)不在直线l 上,故A 项错误;对于B 项,设直线l 的倾斜角为θθ,∵kk =1,∴tan θθ=1,又∵θθ∈[0,ππ),∴θθ=π4,故B 项正确;对于C 项,令xx =0得:yy =−8,∴直线l 在y 轴上的截距为−8,故选项C 错误; 对于D 项,∵直线l 的一个方向向量为vv ⃗=(1,−1),∴kk =−11=−1,这与已知kk =1相矛盾,故选项D 错误. 故选:B. 2.C【分析】由题意利用两条平行线间的距离公式,可的c 的值. 【详解】由两平行线间的距离公式得, d =|−cc−(−9)|√12+32=√10,所以| c -9|=10,得c =-1或c =19. 故选:C. 3.C【分析】直接联立方程组求解交点坐标即可. 【详解】解:由�3xx +4yy +2=02xx +yy −2=0 解得�xx =2yy =−2, ∴直线3xx +4yy +2=0与2xx +yy −2=0的交点坐标是(2,−2), 故选C .【点睛】本题考查两条直线交点坐标的求法,考查计算能力. 4.B【分析】根据题意,由圆的一般方程分析可得答案.【详解】解:根据题意,方程xx 2+yy 2−aaxx +bbyy +cc =0表示圆心为(1,2),半径为1的圆,则⎩⎪⎨⎪⎧aa2=1−bb2=214(aa 2+bb 2−4cc )=1 ,解可得:aa=2,bb=−4,cc=4,故选B.【点睛】本题考查圆的一般方程,注意由圆的一般方程求圆心坐标、半径的方法,属于基础题.5.D【分析】根据点到直线的距离公式列式求解参数即可.【详解】由题,|1+aa−2|√12+12=1⇒aa=1±√2,因为aa>0,故aa=√2+1.故选:D【点睛】本题主要考查了点到线的距离公式求参数的问题,属于基础题.6.D【解析】结合图形利用PPAA,PPBB的斜率得到直线ll的斜率的取值范围,从而可得直线ll的倾斜角的取值范围.【详解】设直线ll的斜率为kk,倾斜角为αα,kk PPPP=−1−(−2)0−1=−1,kk PPPP=−1−10−2=1,由图可知,−1≤kk≤1,所以0≤αα≤ππ4或3ππ4≤αα<ππ.故选:D【点睛】关键点点睛:求直线倾斜角的取值范围的关键是求出直线的斜率的取值范围,结合图象,利用PPAA,PPBB的斜率可得所要求的斜率的取值范围.7.C【分析】设点PP的坐标,再代入点到直线的距离公式,即可得答案.【详解】∵点PP在直线3xx+yy−5=0上,∴设PP(xx,−3xx+5),利用点到直线的距离公式得:√2=|xx+3xx−5−1|√2,解得:xx=1或xx=2,∴点PP的坐标为(1,2)或(2,−1).故选:C.【点睛】本题考查点到直线的距离公式,考查运算求解能力,属于基础题.8.D【分析】由题意,作图,根据直线与圆的位置关系,可得答案.【详解】由曲线xx=�1−yy2,可得xx2+yy2=1(xx≥0),表示以原点为圆心,半径为1的右半圆,yy=xx+bb是倾斜角为ππ4的直线与曲线xx=�1−yy2有且只有一个公共点有两种情况:①直线与半圆相切,根据dd=rr,所以dd=|bb|√2=1,结合图象可得bb=−√2;②直线与半圆的上半部分相交于一个交点,由图可知−1<bb≤1.综上可知:−1<bb≤1或bb=−√2.故选:D.9.D【分析】求出直线方程为xx+√3yy=0,设出圆CC的方程,构建方程组即可得到结果. 【详解】过点NN�3,−√3�且倾斜角为5ππ6的直线方程为yy=−√33(xx−3)−√3,即xx+√3yy=0,设圆CC的圆心为�mm,nn�,半径为RR,由题意直线NNCC垂直于直线xx+√3yy=0,故kk NNNN=nn+√3mm−3=√3,可得nn=√3mm−4√3,RR=|NNCC|=�(mm−3)2+�nn+√3�2=2|mm−3|,两圆相切,有�(mm−3)2+�nn+√3�2=1+RR=2|mm−3|,(1)mm≥3时,解得mm=4,nn=0,RR=2,圆CC的方程为(xx−4)2+yy2=4;(2)mm<3时,解得mm=0,nn=−4√3,RR=6,圆CC的方程为xx2+�yy+4√3�2=36;故选:D10.C【分析】由题意,直线l经过第二、四象限,根据直线的倾斜角的定义,即可得到答案.【详解】由题意,可得直线l经过第二、四象限,所以直线l的倾斜角αα的范围是90°<αα<180°,故选C.【点睛】本题主要考查了直线的倾斜角的定义,其中解答中熟记直线的倾斜角的概念,合理应用是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.11.C【解析】求出直线AABB的方程,然后利用点到直线的距离公式可计算出原点到直线AABB的距离. 【详解】kk PPPP=sin70∘−sin130∘sin20∘+sin40∘=cos20∘−2cos220∘+1cos70∘−cos130∘=cos20∘−cos40∘sin20∘+2sin20∘⋅cos20∘=1−cos20∘sin20∘=sin10∘cos10∘,根据诱导公式可知:BB(sin20∘,cos20∘),所以经过AA、BB两点的直线方程为:yy−cos20∘=sin10∘cos10∘(xx−sin20∘),即xx sin10∘−yy cos10∘+cos10∘cos20∘−sin10∘sin20∘=0,即xx sin10∘−yy cos10∘+cos(10∘+20∘)=0,即xx sin10∘−yy cos10∘+√32=0,所以原点OO到直线的距离为dd=√32√sin210∘+cos210∘=√32,故选:C.【点睛】本题考查点到直线距离的计算,涉及二倍角公式和两角和的余弦公式的应用,解题的关键就是求出直线的方程,考查计算能力,属于中等题.12.A【分析】根据直线在两坐标轴上的截距为相反数,可以分两种情况来讨论,两坐标轴上的截距都为0时和两坐标轴上的截距互为相反数且不等于0时,即可求解.【详解】(1)当坐标轴上的截距都为0时,直线过原点,设直线方程为yy=kkxx把点(-2,1)代入求出kk=-12,即直线方程为xx+2yy=0(2)当坐标轴上的截距互为相反数且不等于0时,设直线方程为xx aa+yy-aa=1,把点(-2,1)代入求出aa=-3,即直线方程为xx-yy+3=0综上,直线方程为xx+2yy=0或xx-yy+3=0故选:A13.C【分析】设CC(aa,aa),讨论aa=1时和aa≠1时两种情况,分别求出或表示出半径的平方值,结合二次函数性质求得答案.【详解】因为AA(0,1),BB(0,2),若动点CC在直线yy=xx上,圆MM过AA、BB、CC三点,设CC(aa,aa),显然aa≠0,圆心为线段AB的垂直平分线和AC的垂直平分线的交点,当aa=1时,CC(1,1),则圆心为(12,32),设圆的半径为r,则rr2=(12)2+(32−1)2=12,此时圆的面积为πrr2=π2;当aa≠1时,AC的垂直平分线方程为yy−aa+12=aa1−aa(xx−aa2),令yy=32,则xx=aa+1aa−32,故圆心为(aa+1aa−32,32),则rr2=(aa+1aa−32)2+(32−1)2=(aa+1aa−32)2+14,令tt=aa+1aa,由于aa≠1,aa>0时,aa+1aa>2;aa<0时,aa+1aa≤−2,故tt>2或tt≤−2,因此对于函数yy=(tt−32)2,yy>(2−32)2=14,即rr2>12,此时圆MM的面积πrr2>π2,综合上述,圆MM的面积最小值为π2,故选:C14.C【分析】分析斜率不存在的直线和斜率为0的直线上的有理点的个数,再在斜率存在且不为0的直线上假设有两个有理点MM(xx1,yy1),NN(xx2,yy2),利用直线的斜率公式推导出矛盾,从而判断各选项.【详解】显然直线yy=−12过PP点且此直线上有无数个有理点,选项D错误;直线xx=aa上的所有点都不是有理点,其它过PP点斜率存在且不为0的直线上假如有两个有理点MM(xx1,yy1),NN(xx2,yy2),xx1,yy1,xx2,yy2都是有理数,则此直线的斜率为kk MMNN=yy1−yy2xx1−xx2为有理数,又kk MMPP=yy1+12xx1−aa为无理数,显然kk MMNN≠kk MMPP,矛盾,因此此类直线上不可能有两个或以上的有理点.所以AB均错,C正确.故选:C.15.A【分析】根据直线ll过点(−1,−1)和(2,5),由直线的两点式方程化简得yy=2xx+1,然后将点(1009,bb)代入方程yy=2xx+1,求解得出bb的值.【详解】解:因为直线ll过点(−1,−1)和(2,5),由直线的两点式方程,得直线ll的方程为yy−(−1)5−(−1)=xx−(−1)2−(−1),化简得:yy=2xx+1,由于点(1009,bb)在直线ll上,将点(1009,bb)代入方程yy=2xx+1,得bb=2×1009+1,解得:bb=2019.故选:A.【点睛】本题考查直线的两点式方程的求法和应用,属于基础题.16.A【分析】根据给定条件,利用点到直线距离公式列式,再求出函数的值域作答. 【详解】坐标原点到直线ll:(kk2+1)xx+yy−kk2−2=0的距离dd=kk2+2�(kk2+1)2+1,令tt=kk2+2≥2,则dd=tt�(tt−1)2+1=1�2tt2−2tt+1=1�2(1tt−12)2+12,因0<1tt≤12,则12≤2(1tt−12)2+12<1,当且仅当tt=12,即kk=0时取等号,即1<dd≤√2,所以原点到直线l的距离的取值范围为(1,√2].故选:A17.C【分析】先根据两直线平行,解得aa的值,再利用充分条件、必要条件的定义求解. 【详解】直线ll:aaxx+yy+1=0,ll:2xx+(aa−1)yy+1=0,ll1∥ll2的充要条件是�aa(aa−1)=2aa≠2,解得aa=−1因此得到“aa=−1”是“ll1∥ll2”的充分必要条件.故答案为:C.18.D【解析】根据条件转化得出曲线C和直线的直角坐标方程,根据题意设PP的坐标,由切线的性质得点AA、BB在以OOPP为直径的圆CC上,求出圆CC的方程,将两个圆的方程相减表示出公共弦AABB所在的直线方程,再求出直线AABB过的定点坐标.【详解】解:∵PP是直线xx−2yy−8=0的任一点,∴设PP(8+2mm,mm),曲线CC:�xx=2cosααyy=2sinαα(αα为参数),即圆xx2+yy2=4,由题意知,∴OOAA⊥PPAA,OOBB⊥PPBB,则点AA,BB在以OOPP为直径的圆上,即AABB是圆OO和圆CC的公共弦,则圆心MM的坐标是MM�4+mm,mm2�,且rr2=OOMM2= (4+mm)2+mm24,∴圆MM的方程:(xx−4−mm)2+�yy−mm2�2=(4+mm)2+mm24①,又xx2+yy2=4②,②-①得,(8+2mm)xx+mmyy−4=0,即公共弦AABB所在的直线方程:(8+2mm)xx+mmyy−4=0即mm(2xx+yy)+(8xx−4)=0,由�2xx+yy=08xx−4=0解得�xx=12yy=−1:∴直线AABB恒过定点�12,−1�,故选DD.【点睛】本题考查了参数方程,圆的切线性质,圆和圆的位置关系,公共弦所在直线求法以及直线过定点问题,属于中档题.19.A【分析】依题意求得AA,BB,CC的坐标,求得直线BBDD,CCDD的方程,联立BBDD,CCDD的方程求得DD点坐标,根据DD到直线BBCC的距离等于aa+√aa2+bb2列方程,由此求得双曲线的离心率. 【详解】依题意可知AA(aa,0),BB�cc,bb2aa�,CC�cc,−bb2aa�,所以kk PPPP=bb2aa(cc−aa),kk NNCC=−aa(cc−aa)bb2,kk PPNN=−bb2aa(cc−aa),kk PPCC=aa(cc−aa)bb2,所以直线BBDD:yy−bb2aa=aa(cc−aa)bb2(xx−cc)①,直线CCDD:yy+bb2aa=−aa(cc−aa)bb2(xx−cc)②,①-②并化简得xx CC=bb4aa2(cc−aa)+cc.由于DD到直线BBCC的距离等于aa+√aa2+bb2=aa+cc,直线BBCC方程为xx=cc,所以xx CC=bb4aa2(cc−aa)+cc=−aa,化简得aa2=bb2,aa=bb,所以双曲线为等轴双曲线,离心率为√2.故选:A【点睛】本小题主要考查直线和直线交点坐标的求法,考查直线方程点斜式,考查两条直线垂直斜率的关系,考查双曲线离心率的求法,考查化归与转化的数学思想方法,属于中档题. 20.A【分析】(1)根据一般方程表示圆和点(2,1)列不等式组可解出实数kk的取值范围,可判断出命题(1)的真假;(2)计算圆心到直线yy=kkxx的距离dd的取值范围,可判断出命题(2)的真假;(3)找出当切线PPAA、PPBB的长取得最小值时点PP的位置,计算出PPAA的长,并计算出此时四边形PPAACCBB的面积,可判断出命题(3)的真假;(4)由直线系方程可知,MM中所有直线都是定圆(xx−2)2+yy2=4的切线,易知MM中的直线所能围成的正三角形的面积不一定都相等,即可判断出命题(4)的真假.【详解】对于命题(1),由于方程xx2+yy2+kkxx+2yy+kk2−15=0表示圆,则kk2+4−4(kk2−15)>0,整理得3kk2−64<0,由于点(2,1)在该圆外,则kk2+2kk−8<0,所以{3kk2−64<0kk2+2kk−8>0,解得−8√33<kk<−4或2<kk<8√33,命题(1)为假命题;对于命题(2),直线yy=kkxx过原点OO,圆MM:(xx+cosθθ)2+(yy−sinθθ)2=1的圆心MM的坐标为(−cosθθ,sinθθ),且|OOMM|=1,所以,圆心MM到直线yy=kkxx的距离dd≤1,则直线与圆相交或相切,命题(2)为假命题;对于命题(3),圆CC的标准方程为xx2+(yy−1)2=1,圆心CC的坐标为(0,1),半径长为1,圆心CC到直线2xx+yy+4=0的距离为dd=5√22+12=√5,∴|PPCC|min=√5,则|PPAA|min=�(√5)2−12=2,∴四边形PPAACCBB的面积的最小值为2×12|PPAA|min⋅rr=2×1=2,命题(3)为真命题;对于命题(4),直线系MM的方程为(xx−2)cosθθ+yy sinθθ−2=0,由于点(2,0)到直线MM的距离为dd=2√cos2θθ+sin2θθ=2,直线系MM中所有的直线都是圆DD:(xx−2)2+yy2=4的切线,如下图,MM中的直线所能围成的正三角形AABBCC和AADDAA面积不相等,故(4)错误.如下图所示:因此,真命题的个数为1.故选:A.【点睛】关键点点睛:本题考查命题真假的判断,解题的关键是掌握点与圆的位置关系,直线与圆的位置关系的应用,考查了转化和数形结合思想等数学思想方法,属于难题. 21.3【分析】由两直线平行有2mm−6=0,即可求参数m.【详解】由ll1//ll2,则有2mm−6=0,解得mm=3.故答案为:322.a=1由已知,两个圆的方程作差可以得到相交弦的直线方程为yy=1aa,【详解】利用圆心(0,0)到直线的距离d=|1aa|√1为�22-√32=1,解得aa=1.23.1【解析】根据两直线垂直的条件AA1AA2+BB1BB2=0,即可求解.【详解】因为线ll1:xx+aayy+6=0与ll2:(aa−2)xx+yy+1=0互相垂直,所以aa−2+aa=0,即aa=1,故答案为:1【点睛】本题主要考查了两直线垂直的条件AA1AA2+BB1BB2=0,属于容易题.24.yy=2或4xx−3yy+2=0【分析】求得直线ll1与ll2的交点坐标,对所求直线的斜率是否存在进行分类讨论,结合点PP到所求直线的距离为2可求得所求直线的方程.【详解】由�xx−2yy+3=02xx+3yy−8=0,得�xx=1yy=2,所以,直线ll1与ll2的交点为(1,2).当所求直线的斜率不存在时,所求直线的方程为xx=1,点PP到该直线的距离为1,不合乎题意;当所求直线的斜率存在时,设所求直线的方程为yy−2=kk(xx−1),即kkxx−yy−kk+2=0,由于点PP(0,4)到所求直线的距离为2,可得2=|−2−kk|√1+kk2,整理得3kk2−4kk=0,解得kk=0或kk=43.综上所述,所求直线的方程为yy=2或4xx−3yy+2=0.故答案为:yy=2或4xx−3yy+2=0.【点睛】本题考查利用点到直线的距离公式求直线的方程,同时也考查了直线交点坐标的求解,考查计算能力,属于中等题.25.√10【分析】根据圆的方程得到圆心坐标和半径,由点到直线的距离公式可求出圆心到直线的距离dd,进而利用弦长公式|AABB|=2√rr2-dd2,即可求得rr.【详解】因为圆心(0,1)到直线3xx-4yy-11=0的距离dd=|-4-11|√9+16=3,由|AABB|=2√rr2-dd2可得2=2√rr2-32,解得rr=√10.故答案为:√10.26.(1)5xx+3yy−6=0(2)3xx−5yy+15=0【分析】(1)由已知条件结合直线的两点式方程的求法求解即可;(2)先求出直线BC的斜率,再求出BC边上的高所在直线的斜率,然后利用直线的点斜式方程的求法求解即可.【详解】解:(1)∵BB(3,−3),CC(0,2),∴直线BC的方程为yy+32+3=xx−30−3,即5xx+3yy−6=0. (2)∵kk PPNN=−53,∴直线BC边上的高所在的直线的斜率为35,又AA(−5,0),∴直线BC边上的高的方程为: yy−0=35(xx+5),即BC边上的高所在直线方程为3xx−5yy+15=0.【点睛】本题考查了直线的两点式方程的求法,重点考查了直线的位置关系及直线的点斜式方程的求法,属基础题.27.(xx−3)2+(yy+4)2=16【分析】根据圆心距等于半径和求解得圆C的半径RR=4,再求解方程即可.【详解】解:由题知xx2+yy2=1的圆心为OO(0,0),rr=1,因为以CC(3,−4)为圆心,且与圆xx2+yy2=1相外切,设圆C的半径为RR,所以|CCOO|=rr+RR,即5=1+RR,所以RR=4,所以圆C的方程为(xx−3)2+(yy+4)2=1628.(1)65√10;(2)(xx−1)2+(yy−2)2=195.【分析】(1)根据已知,可在直角三角形中求解出圆的半径;������⃗⋅OONN������⃗=0,(2)联立直线与圆的方程,根据韦达定理,用mm表示出坐标关系.由已知可得,OOMM代入坐标,即可求得mm的值,从而得到圆的方程.【详解】(1)如图,DD是MMNN的中点,则∠CCMMDD=30∘,CCDD⊥MMNN.由xx2+yy2−2xx−4yy+mm=0得(xx−1)2+(yy−2)2=5−mm,圆心为CC(1,2).圆心CC(1,2)到直线xx+3yy−1=0的距离为dd=|CCDD|=|1+6−1|√10=3√105.在Rt△CCDDMM中,有∠CCMMDD=30∘,|CCDD|=3√105,sin∠CCMMDD=|NNCC||NNMM|=3√105rr=sin30∘=12,所以rr=65√10,故圆的半径为rr=65√10.(2)由xx2+yy2−2xx−4yy+mm=0得(xx−1)2+(yy−2)2=5−mm,∴5−mm>0,即mm<5,由题意联立�xx2+yy2−2xx−4yy+mm=0xx+3yy−1=0,可得10yy2−4yy+mm−1=0.则Δ=(−4)2−4×10(mm−1)=−40�mm−7�>0,所以mm<7.设MM(xx1,yy1)、NN(xx2,yy2),由韦达定理可得yy1+yy2=25,yy1yy2=mm−110,������⃗⋅OONN������⃗=0,则xx1xx2+yy1yy2=0,因为OOMM⊥OONN,所以OOMM又xx1=1−3yy1,xx2=1−3yy2,即有(1−3yy1)(1−3yy2)+yy1yy2=0,整理可得10yy1yy2−3(yy1+yy2)+1=0,即有10×mm−110−3×25+1=0,解得mm=65,满足mm<5,且mm<75.则圆CC的方程为(xx−1)2+(yy−2)2=195.29.(1)圆CC:xx2+yy2−3xx−yy=0,圆心CC�32,12�,半径rr=√102;(2)2√2≤|AABB|≤√10. 【解析】(1)由题意设圆CC方程为xx2+yy2+DDxx+AAyy+FF=0,待定系数法求DD,AA,FF的值,再把圆的方程化为标准式,即得圆心坐标和半径;(2)设圆心到直线ll的距离为dd,判断点QQ在圆内,数形结合可知,当直线ll过圆心时,dd min=0;当ll⊥CCQQ时,dd max=√22.由弦长|AABB|=2√rr2−dd2可得|AABB|的取值范围.【详解】(1)设圆CC:xx2+yy2+DDxx+AAyy+FF=0.∵圆CC过MM,NN,PP三点,∴�1+1+DD−AA+FF=04+4+2DD+2AA+FF=09+1+3DD+AA+FF=0解得�DD=−3AA=−1FF=0∴圆CC:xx2+yy2−3xx−yy=0,化为标准式得�xx−32�2+�yy−12�2=52,∴圆心CC�32,12�,半径rr=√102.(2)设圆心到直线ll的距离为dd,点QQ(1,1)到圆心的距离为|CCQQ|=��1−32�2+�1−12�2=√22<√102=rr.∴点QQ在圆内,∴|AABB|=2�52−dd2.结合图形,可知0≤dd≤|CCQQ|=√22(ll过圆心时,dd=0;ll⊥CCQQ时,dd=√22).∴2√2≤|AABB|≤√10.【点睛】本题考查待定系数法求圆的一般方程,考查直线和圆的位置关系,用到数形结合的数学思想,属于中档题.30.(1)(x﹣1)2+(y﹣2)2=5;(2)2x﹣y+5=0.【分析】(1)根据题意,设圆心的坐标为(a,b),则有a﹣b+1=0,由AB的坐标可得AB的垂直平分线的方程,联立两直线方程可得圆心的坐标,则有r2=|AC|2,计算可得圆的半径,由圆的标准方程的形式分析可得答案;(2)根据题意,A(﹣1,3)在圆C上,求出AC的斜率,由垂直可得切线的斜率,由直线的点斜式方程即可得切线的方程.【详解】解:(1)根据题意,设圆心的坐标为(a,b),圆心C在直线x﹣y+1=0上,则有a﹣b+1=0,圆C经过点A(﹣1,3),B(3,3)两点,则AB的垂直平分线的方程为x=1,则有a=1,则有�aa−bb+1=0aa=1,解可得b=2;则圆心的坐标为(1,2),半径r2=|AC|2=4+1=5,则圆C的方程为(x﹣1)2+(y﹣2)2=5;(2)根据题意,圆C的方程为(x﹣1)2+(y﹣2)2=5,有A(﹣1,3)在圆C上,有KAC=3−2−1−1=−12,则切线的斜率k=2,则切线的方程为y﹣3=2(x+1),变形可得2x﹣y+5=0.【点睛】本题考查求圆的标准方程和圆的切线方程,求圆的标准方程,一般是确定圆心坐标和半径,由圆的性质知圆心一定在弦的中垂线上.圆的切线与过切点的半径垂直,由此可求出切线斜率得切线方程.。
2022-2023学年人教版高二数学复习精练第二章 直线与圆的方程-综合检测卷(基础卷)(解析版)
第二章 直线与圆方程本卷满分150分,考试时间120分钟。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.若直线1:2330l x y --=与2l 互相平行,且2l 过点(2,1),则直线2l 的方程为( ) A .3270x y +-= B .3240x y -+= C .2330x y -+= D .2310x y --=【答案】D【解析】因为直线1:2330l x y --=与2l 互相平行,所以设直线2l 的方程为230x y m -+=, 因为直线2l 过点(2,1), 所以430m -+=,得1m =-, 所以直线2l 的方程为2310x y --=, 故选:D2.已知直线l 的方程为sin 10,x R αα-=∈,则直线l 的倾斜角范围是( ) A .20,,33πππ⎛⎤⎡⎫⋃ ⎪⎥⎢⎝⎦⎣⎭B .50,,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭ C .50,,66πππ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭D .20,,33πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭【答案】B【解析】由直线l 的方程为sin 10x α+-=, 所以y = 即直线的斜率k =,由1sin 1α-≤≤.所以k ≤≤,又直线的倾斜角的取值范围为0,,由正切函数的性质可得:直线的倾斜角为50,,66πππ⎡⎤⎡⎫⎪⎢⎥⎢⎣⎦⎣⎭. 故选:B3.已知“m t ≤”是“220x y m ++=”表示圆的必要不充分条件,则实数t 的取值范围是( )A .()1,-+∞ B .[)1,+∞C .(),1-∞D .(),1-∞-【答案】B【解析】若表示圆,则22(40+->m , 解得1m <.“m t ≤”是“220x y m ++=”表示圆的必要不充分条件, 所以实数t 的取值范围是[1,)+∞. 故选:B4.已知直线3410x y --=与圆22:(1)(2)16C x y -++=相交于A ,B 两点,P 为圆C 上的动点,则PAB △面积的最大值为( )A .B .C .D .【答案】C【解析】由22:(1)(2)16C x y -++=可知:圆心(1,2)C -,半径为4, 圆心C 到直线AB 距离|381|25d +-==,∴||AB ==∴()max11||()622PAB SAB r d =⋅+=⨯= 故选:C5.已知直线2y kx k =-+与圆()()22214x y -+-=相交于P 、Q 两点,则弦PQ 最短时所在的直线方程是( ) A .10x y ++= B .10x y +-= C .10x y --= D .10x y -+=【答案】D【解析】直线y =kx -k +2=k (x -1)+2,所以直线恒过A (1,2), 因为22(21)(12)4-+-< ,故该点在圆内,设圆心为B (2,1),由圆的几何性质知,当直线y =kx -k +2与直线AB 垂直时,弦PQ 最短, 此时,直线AB 的斜率为21112AB k -==--, ∴kPQ =1,∴弦PQ 最短时所在的直线方程是y -2=x -1,即x -y +1=0, 故选:D6.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在位置为()2,4B ,若将军从点()2,0A -处出发,河岸线所在直线方程为-2+80x y =,则“将军饮马”的最短总路程为( ) AB .10 C.D.【答案】A【解析】如图,点A 关于直线的对称点为A ',则A B '即为“将军饮马 ”的最短总路程,设(),A a b ',则22+8=0221122a b b a -⎧-⨯⎪⎪⎨⎪⨯=-⎪+⎩,解得2224,55a b =-=,则A B '= 故“将军饮马”故选:A7.已知圆C :22(2)2x y -+=,点P 是直线l :420x y --=上的动点,过点P 引圆C 的两条切线PA 、PB ,其中A 、B 为切点,则直线AB 经过定点( ) A .21(,)33-B .21(,)33-C .21(,)33--D .21(,)33【答案】D【解析】因为PA 、PB 是圆C 的两条切线,所以,PA AC PB BC ⊥⊥,因此点A 、B 在以PC 为直径的圆上,因为点P 是直线l :420x y --=上的动点,所以设(,42)P m m -,点(2,0)C , 因此PC 的中点的横坐标为:22m +,纵坐标为:42212m m -=-,12PC PC 为直径的圆的标准方程为:22221()(21)(17208)(1)24m x y m m m +-+-+=-+,而圆C :22(2)2(2)x y -+=, (1)(2)-得:(2)(42)220m x m y m ---+-=,即为直线AB 的方程,由(2)(42)220222(42)m x m y m x y m x y ---+-=⇒+-=+-22220342013x x y x y y ⎧=⎪+-=⎧⎪⇒⇒⎨⎨+-=⎩⎪=⎪⎩,所以直线AB 经过定点21(,)33,故选:D8.已知点Q 在圆()()22:334M x y ++-=上,直线:2360l x y -+=与x 轴、y 轴分别交于点P 、R ,则下列结论中正确的有( )∴点Q 到直线l 的距离小于4.5 ∴点Q 到直线l 的距离大于1∴当QRP ∠最小时,RQ =∴当QRP ∠最大时,RQ =A .1个 B .2个C .3个D .4个【答案】C【解析】圆M 的圆心为()3,3M -,半径为2r =,圆心M 到直线l 的距离为2=>, 所以,直线l 与圆M 相离,点Q 到直线l 22,21-<2 4.5<,故∴对,∴错;直线:2360l x y -+=交x 轴于点()3,0P -,交y 轴于点()0,2R ,MR = 过点R 作圆M 的两条切线,切点分别为E 、N ,如下图所示:当QRP ∠最小时,点Q 与点E 重合,此时226QR RM r =-=,当QRP ∠最大时,点Q 与点N 重合,此时QR ==∴∴都对.故选:C.一、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分. 9.在下列四个命题中,错误的有( ) A .坐标平面内的任何一条直线均有倾斜角和斜率 B .直线的倾斜角的取值范围是[0,π]C .若一条直线的斜率为1,则此直线的倾斜角为45度D .若一条直线的倾斜角为α,则此直线的斜率为tanα 【答案】ABD 【解析】对于A ,倾斜角为90的直线斜率不存在 所以A 错误对于B直线的倾斜角的取值范围为0,所以B 错误对于C因为tan 1α=且[)0,απ∈,所以4πα=所以C 正确对于D 倾斜角为90的直线斜率不存在所以D 错误故选:ABD10.已知直线l :()()221310m x m y m ++---=与圆C :()()222116x y -++=交于A ,B 两点,则弦长|AB |的可能取值是( ) A .6 B .7C .8D .5【答案】BC【解析】:由()()221310m x m y m ++---=,得()23210x y m x y +-+--=,令230210x y x y +-=⎧⎨--=⎩解得1,1,x y =⎧⎨=⎩故直线l 恒过点(1,1)M .圆心(2,1)C ,半径4r =,CM =2AB r ≤,即8AB ≤. 故选:BC.11.已知直线:10l mx y m +-+=,圆22:2410E x y x y +--+=,则下列说法正确的是( )A .直线l 与圆E 一定有公共点B .当12m =-时直线l 被圆E 截得的弦最长C .当直线l 与圆E 相切时,34m =D .圆心E 到直线l 【答案】BCD【解析】由题意知直线l 过定点()1,1M -,且点M 在圆E 外部,所以A 错误;当12m =-时,l 的方程为230x y -+=,直线l 过圆心()1,2E ,截得的弦恰为直径,故B 正确;当l 与圆E2=,解得34m =,故C 正确;当l 与ME 垂直时,圆心E 到l 的距离取得最大值,其最大值为ME =D 正确. 故选:BCD.12.已知圆O :224x y +=和圆C :22231x y .现给出如下结论,其中正确的是( )A .圆O 与圆C 有四条公切线B .过C 且在两坐标轴上截距相等的直线方程为为5x y +=或10x y -+= C .过C 且与圆O 相切的直线方程为9x -16y +30=0D .P 、Q 分别为圆O 和圆C 上的动点,则PQ 3 【答案】AD【解析】圆22:4O x y +=的圆心(0,0)O ,半径为2;圆22:(2)(3)1C x y -+-=,圆心(2,3)C ,半径为1,A 中,圆心距||21OC >+,所以两个圆相离,所以两个圆有4条公切线,所以A 正确;B 中,过点(2,3)C 又过原点的直线在两坐标轴的截距相等,即32y x =在坐标轴上的截距相等,当直线不过O 时,设x y a +=,将C 的坐标代入可得5a =, 所以过点C 点在坐标轴的截距相等的直线为5x y +=, 过C 在两坐标轴上的截距相等的直线有两条,所以B 不正确;C 中,过点(2,3)C 的直线斜率不存在时,即直线2x =显然与圆O 相切,当切线的斜率存在时,设为3(2)y k x -=-,即230kx y k --+=, 圆心O 到直线的距离2d ==,解得512k =,则这时切线方程为:512260x y -+=,所以过C 且与圆O 相切的直线为2x =或512200x y -+=,故C 不正确;D 中,圆心距||OC =,由题意可得||PQ 的最大值为||(21)OC ++3,所以D 正确; 故选:AD .一、填空题:本题共4小题,每小题5分,共20分.13.设点(2,3),(0,)A B a -,若直线AB 关于y a =对称的直线与圆22(3)(2)1x y +++=有公共点,则a 的取值范围是________.【答案】13,32⎡⎤⎢⎥⎣⎦【解析】:()2,3A -关于y a =对称的点的坐标为()2,23A a '--,()0,B a 在直线y a =上,所以A B '所在直线即为直线l ,所以直线l 为32a y x a -=+-,即()3220a x y a -+-=; 圆()()22:321C x y +++=,圆心()3,2C --,半径1r =, 依题意圆心到直线l 的距离1d ≤,即()()2225532a a -≤-+,解得1332a ≤≤,即13,32a ⎡⎤∈⎢⎥⎣⎦;故答案为:13,32⎡⎤⎢⎥⎣⎦14.若直线()100,0ax by a b +-=>>始终平分圆2224160x y x y +---=的周长,则12a b+的最小值为_______. 【答案】9【解析】由题知直线()100,0ax by a b +-=>>过圆心(1,2),得21a b +=,所以121222()(2)5549b a a b a b a b a b +=++=++≥+=,当22b a a b =,即13a b ==时,取等号. 故答案为:915.已知圆C :224210x y x y +--+=及直线l :()2y kx k k =-+∈R ,设直线l 与圆C 相交所得的最长弦长为MN ,最短弦为PQ ,则四边形PMQN 的面积为______.【答案】:将圆C 方程整理为22214x y -+-=,得圆心()21C ,,半径2r =, 将直线l 方程整理为()12y k x =-+,得直线l 恒过定点()12,,且()12,在圆C 内, ∴最长弦MN 为过()12,的圆的直径,即4MN =,最短弦PQ 为过()12,,且与最长弦MN 垂直的弦, 21112MN k -==--,1PQ k ∴=, ∴直线PQ 方程为21y x -=-,即10x y -+=,∴圆心C 到直线PQ的距离为d==PQ ∴= ∴四边形PMQN的面积11422S MN PQ =⋅=⨯⨯, 故答案为:16.过圆224x y +=内点M 作圆的两条互相垂直的弦AB 和CD ,则AB CD +的最大值为__.【答案】【解析】取AB 中点E ,CD 中点F ,如图,则OEMF 是矩形,2223OE OF OM +==,2AB AE ==CD =注意到0,0a b >>时,由222a b ab +≥得222()()2a b a b +≥+,从而a b +≤仅当a b =时取等号.所以AB CD +=≤=当且仅当2244OE OF -=-,即OE OF ==所以AB CD +的最大值是四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)在平面直角坐标系中,光线l 过点()2,1A -,经x 轴反射后与圆D :()()22234x y -+-=有交点(1)当反射后光线经过圆心D ,求光线l 的方程; (2)当反射后光线与圆D 相切,求光线l 的方程.【答案】(1)10x y ++= (2))12y x -=+或)12y x -=+ 【解析】 (1)点()2,1A -关于x 轴对称的点为()2,1A '--,由光线的折射性质,反射光线经过圆心2,3O ,所以OA OA K K '=, 易知()()31122OA K '--==--,所以1OA K =-,所以光线l 的方程为10x y ++=.(2)设经过()2,1A '--的直线方程为()12y k x +=+由于折射光线与圆相切,所以圆心到直线的距离等于半径,即2d ==,化简得:33830k k -+=,解得k =所光线l 的方程为)12y x -=+或)12y x -=+. 18(12分).已知圆22:6440C x y x y +--+=.(1)若一直线被圆C 所截得的弦的中点为(2,3)M ,求该直线的方程;(2)设直线:l y x m =+与圆C 交于A ,B 两点,把CAB △的面积S 表示为m 的函数,并求S 的最大值. 【答案】(1)1y x =+(2)()11,1S m m -<=<≠-,最大值为92.【解析】(1)圆22:6440C x y x y +--+=化为标准方程为:()()22329x y -+-=. 则32123CM k -==--. 设所求的直线为m .由圆的几何性质可知:1C m M k k ⋅=-,所以1m k =,所以所求的直线为:()312y x -=⋅-,即1y x =+.(2)2AB因为直线:l y x m =+与圆C 交于A ,B 两点,所以03d <<,解得:11m -<<且1m ≠-.而CAB △的面积:()1121,1S m B m A d =⨯=-<<≠-因为2292AB d ⎛⎫+= ⎪⎝⎭所以221192222S AB d AB d ⎛⎫⎡⎤⎢⎥=⨯≤+ ⎪⎝⎭=⎢⎥⎣⎦(其中2AB d ==. 所以S 的最大值为92.19.在直角坐标系xOy 中,若圆C 与y 轴相切,且过点43,55P ⎛⎫- ⎪⎝⎭,圆心C 在直线20x y -=上.(1)求圆C 的标准方程; (2)若直线13y x =与圆C 交于A ,B 两点,求ABC 的面积. 【答案】(1)()()22214x y -+-=【解析】 【分析】(1)利用待定系数法可得圆的方程;(2)根据点到直线距离求得弦长,即可得三角形面积. (1)由圆心C 在直线20x y -=上,且圆C 与y 轴相切, 故设圆心()2,C a a ,圆的方程为()()22224x a y a a -+-=,又圆C 过点43,55P ⎛⎫- ⎪⎝⎭,则222432455a a a ⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭,即2210a a -+=, 解得1a =,即圆心()2,1C ,半径2r =,所以圆C 的标准方程为()()22214x y -+-=;(2)因为圆心()2,1C 到直线13y x =的距离d =,所以弦长AB ==,所以1122ABCSAB d =⋅⋅==. 20.(12分)已知圆M 与x 轴相切于点(a ,0),与y 轴相切于点(0,a ),且圆心M 在直线360x y --=上.过点P (2,1)的直线与圆M 交于1122(,),(,)A x y B x y 两点,点C 是圆M 上的动点.(1)求圆M 的方程;(2)若直线AB 的斜率不存在,求∴ABC 面积的最大值;(3)是否存在弦AB 被点P 平分?若存在,求出直线AB 的方程;若不存在,说明理由. 【答案】(1)()()22339x y -+-= (2)(3)存在,方程为240x y +-=【解析】(1)∴圆M 与x 轴相切于点(a ,0),与y 轴相切于点(0,a ),∴圆M 的圆心为M (a ,a ),半径r a =.又圆心M 在直线360x y --=上,∴360a a --=,解得3a =.∴圆M 的方程为:()()22339x y -+-=.(2)当直线AB 的斜率不存在时,直线AB 的方程为2x =,∴由()()222339y -+-=,解得3y =±∴12AB y y =-=易知圆心M 到直线AB 的距离1d =,∴点C 到直线AB 的最大距离为134+=.∴∴ABC面积的最大值为142⨯= (3)方法一:假设存在弦AB 被点P 平分,即P 为AB 的中点.又∴MA MB =,∴MP AB ⊥.又∴直线MP 的斜率为13223-=-, ∴直线AB 的斜率为-12. ∴()1122y x -=--. ∴存在直线AB 的方程为240x y +-=时,弦AB 被点P 平分.方法二:由(2)易知当直线AB 的斜率不存在时,126y y +=,∴此时点P 不平分AB .当直线AB 的斜率存在时,120x x -≠,假设点P 平分弦AB .∴点A 、B 是圆M 上的点,设()11,A x y ,()22,B x y .∴()()()()22112222339339x y x y ⎧-+-=⎪⎨-+-=⎪⎩ 由点差法得()()()()12121212660x x x x y y y y -+-+-+-=.由点P 是弦AB 的中点,可得12124,2x x y y +=+=, ∴121212y y x x -=--. ∴()1122y x -=-- ∴存在直线AB 的方程为240x y +-=时,弦AB 被点P 平分.21.(12分)已知圆C与直线30x -=相切于点(P,且与直线50x +=也相切.(1)求圆C 的方程;(2)若直线:30l mx y ++=与圆C 交于A ,B 两点,且0CA CB ⋅<,求实数m 的范围.【答案】(1)()2214x y ++=(2)1m 或7m <-【解析】(1):设圆C 的方程为()222()x a y b r -+-=,由题意得(2221r a b r ⎛=- ⎝⎪⎪⎪=⎨⎪⎪⎪+=⎪⎩,即(22222(1))54a r b b a a r ⎧⎪⎪++=⎨⎪+==⎩+⎪,解得1a =-,0b =,2r =,即圆C 的方程为()2214x y ++=.(2)解:由题意,得ACB ∠为钝角或平角,当A ,B ,C 共线时,3m =,此时ACB ∠为平角;当A ,B ,C 不共线时,3m ≠,ACB ∠为钝角,设圆心C 到直线l的距离为d ,则02d <<,于是,有0<,解之得1m 或7m <-,且3m ≠;综上,实数m 的取值范围是1m 或7m <-.22.(12分)莱昂哈德·欧拉(Leonhard Euler ,瑞士数学家),1765年在他的著作《三角形的几何学》中首次提出定理:三角形的重心(三条中线的交点)、垂心(三条高线的交点)和外心(三条中垂线的交点)共线.这条线被后人称为三角形的欧拉线.已知QMN 的顶点()1,0M ,()3,2N -,()1,4Q -.(1)求QMN 的欧拉线方程;(2)记QMN 的外接圆的圆心为C ,直线l :()10kx y k k ---=∈R 与圆C 交于A ,B 两点,且C l ∉,求ABC 的面积最大值.【答案】(1)2y =-【解析】(1) QMN 的顶点()1,0M ,()3,2N -,()1,4Q -利用两点之间距离公式知MN QN ==4MQ = 又222MN QN MQ +=,所以QMN 为等腰直角三角形, MQ 的中垂线方程是2y =-,也是MNQ ∠的平分线,三线合一, ∴欧拉线方程是2y =-.(2)由(1)知QMN 为等腰直角三角形,故外心为斜边MQ 中点, 即外心是()1,2C -,2r =圆心C 到直线l 的距离1d =≤,AB =所以12ABC S AB d =⋅=△利用二次函数性质知,当21d =时,即0k =时,max S。
直线与圆的方程典型例题
高中数学圆的方程典型例题类型一:圆的方程例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系.分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内.解法一:(待定系数法)设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为222)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点.∴⎪⎩⎪⎨⎧=+-=+-22224)3(16)1(ra r a解之得:1-=a ,202=r .所以所求圆的方程为20)1(22=++y x . 解法二:(直接求出圆心坐标和半径)因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为13124-=--=AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x .又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++==AC r .故所求圆的方程为20)1(22=++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为r PC d >=++==254)12(22.∴点P 在圆外.例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程.分析:根据问题的特征,宜用圆的标准方程求解.解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3. 若两圆相切,则734=+=CA 或134=-=CA .(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得1022±=a .∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .(2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a .∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .说明:对本题,易发生以下误解:由题意,所求圆与直线0=y 相切且半径为4,则圆心坐标为)4,(a C ,且方程形如2224)4()(=-+-y a x .又圆042422=---+y x y x ,即2223)1()2(=-+-y x ,其圆心为)1,2(A ,半径为3.若两圆相切,则34+=CA .故2227)14()2(=-+-a ,解之得1022±=a .所以欲求圆的方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x .上述误解只考虑了圆心在直线0=y 上方的情形,而疏漏了圆心在直线0=y 下方的情形.另外,误解中没有考虑两圆内切的情况.也是不全面的.例3 求经过点)5,0(A ,且与直线02=-y x 和02=+y x 都相切的圆的方程.分析:欲确定圆的方程.需确定圆心坐标与半径,由于所求圆过定点A ,故只需确定圆心坐标.又圆与两已知直线相切,故圆心必在它们的交角的平分线上.解:∵圆和直线02=-y x 与02=+y x 相切, ∴圆心C 在这两条直线的交角平分线上,又圆心到两直线02=-y x 和02=+y x 的距离相等.∴5252y x y x +=-.∴两直线交角的平分线方程是03=+y x 或03=-y x .又∵圆过点)5,0(A ,∴圆心C 只能在直线03=-y x 上. 设圆心)3,(t t C∵C 到直线02=+y x 的距离等于AC ,∴22)53(532-+=+t t t t .化简整理得0562=+-t t . 解得:1=t 或5=t∴圆心是)3,1(,半径为5或圆心是)15,5(,半径为55. ∴所求圆的方程为5)3()1(22=-+-y x 或125)15()5(22=-+-y x .说明:本题解决的关键是分析得到圆心在已知两直线的交角平分线上,从而确定圆心坐标得到圆的方程,这是过定点且与两已知直线相切的圆的方程的常规求法.例4、 设圆满足:(1)截y 轴所得弦长为2;(2)被x 轴分成两段弧,其弧长的比为1:3,在满足条件(1)(2)的所有圆中,求圆心到直线02=-y x l :的距离最小的圆的方程.分析:要求圆的方程,只须利用条件求出圆心坐标和半径,便可求得圆的标准方程.满足两个条件的圆有无数个,其圆心的集合可看作动点的轨迹,若能求出这轨迹的方程,便可利用点到直线的距离公式,通过求最小值的方法找到符合题意的圆的圆心坐标,进而确定圆的半径,求出圆的方程.解法一:设圆心为),(b a P ,半径为r . 则P 到x 轴、y 轴的距离分别为b 和a .由题设知:圆截x 轴所得劣弧所对的圆心角为︒90,故圆截x 轴所得弦长为r 2. ∴222b r =又圆截y 轴所得弦长为2. ∴122+=a r .又∵),(b a P 到直线02=-y x 的距离为52b a d -=∴2225b a d -=ab b a 4422-+= )(242222b a b a +-+≥ 1222=-=a b当且仅当b a =时取“=”号,此时55min =d . 这时有⎩⎨⎧=-=1222a b b a ∴⎩⎨⎧==11b a 或⎩⎨⎧-=-=11b a又2222==b r故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x 解法二:同解法一,得52b a d -=.∴d b a 52±=-.∴2225544d bd b a +±=. 将1222-=b a 代入上式得:01554222=++±d bd b .上述方程有实根,故0)15(82≥-=∆d ,∴55≥d . 将55=d 代入方程得1±=b . 又1222+=a b ∴1±=a . 由12=-b a 知a 、b 同号.故所求圆的方程为2)1()1(22=-+-y x 或2)1()1(22=+++y x . 说明:本题是求点到直线距离最小时的圆的方程,若变换为求面积最小呢?类型二:切线方程、切点弦方程、公共弦方程例5 已知圆422=+y x O :,求过点()42,P 与圆O 相切的切线. 解:∵点()42,P 不在圆O 上, ∴切线PT 的直线方程可设为()42+-=x k y 根据r d =∴21422=++-kk解得 43=k 所以 ()4243+-=x y即 01043=+-y x因为过圆外一点作圆得切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为2=x .说明:上述解题过程容易漏解斜率不存在的情况,要注意补回漏掉的解.本题还有其他解法,例如把所设的切线方程代入圆方程,用判别式等于0解决(也要注意漏解).还可以运用200r y y x x =+,求出切点坐标0x 、0y 的值来解决,此时没有漏解.例 6 两圆0111221=++++F y E x D y x C :与0222222=++++F y E x D y x C :相交于A 、B 两点,求它们的公共弦AB 所在直线的方程.分析:首先求A 、B 两点的坐标,再用两点式求直线AB 的方程,但是求两圆交点坐标的过程太繁.为了避免求交点,可以采用“设而不求”的技巧.解:设两圆1C 、2C 的任一交点坐标为),(00y x ,则有:0101012020=++++F y E x D y x ① 0202022020=++++F y E x D y x ②①-②得:0)()(21021021=-+-+-F F y E E x D D .∵A 、B 的坐标满足方程0)()(212121=-+-+-F F y E E x D D . ∴方程0)()(212121=-+-+-F F y E E x D D 是过A 、B 两点的直线方程. 又过A 、B 两点的直线是唯一的.∴两圆1C 、2C 的公共弦AB 所在直线的方程为0)()(212121=-+-+-F F y E E x D D .说明:上述解法中,巧妙地避开了求A 、B 两点的坐标,虽然设出了它们的坐标,但并没有去求它,而是利用曲线与方程的概念达到了目标.从解题的角度上说,这是一种“设而不求”的技巧,从知识内容的角度上说,还体现了对曲线与方程的关系的深刻理解以及对直线方程是一次方程的本质认识.它的应用很广泛.例7、过圆122=+y x 外一点)3,2(M ,作这个圆的两条切线MA 、MB ,切点分别是A 、B ,求直线AB 的方程。
直线和圆的方程综合能力测试及答案
直线和圆的方程综合能力测试本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
满分150分。
考试时间120分钟。
第Ⅰ卷(选择题 共60分)一、选择题(每小题只有一个选项是正确的,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.(2009·湖北荆州质检二)过点P (1,2),且方向向量v =(-1,1)的直线的方程为( )A .x -y -3=0B .x +y +3=0C .x +y -3=0D .x -y +3=0 答案:C解析:方向向量为v =(-1,1),则直线的斜率为-1,直线方程为y -2=-(x -1)即x +y -3=0,故选C.2.(2009·重庆市高三联合诊断性考试)将直线l 1:y =2x 绕原点逆时针旋转60°得直线l 2,则直线l 2到直线l 3:x +2y -3=0的角为 ( )A .30°B .60°C .120°D .150° 答案:A解析:记直线l 1的斜率为k 1,直线l 3的斜率为k 3,注意到k 1k 3=-1,l 1⊥l 3,依题意画出示意图,结合图形分析可知,直线l 2到直线l 3的角是30°,选A.3.(2009·东城3月)设A 、B 为x 轴上两点,点P 的横坐标为2,且|P A |=|PB |,若直线P A 的方程x -y +1=0,则直线PB 的方程为 ( )A .2x +y -7=0B .2x -y -1=0C .x -2y +4=0D .x +y -5=0 答案:D解析:因k P A =1,则k PB =-1,又A (-1,0),点P 的横坐标为2,则B (5,0),直线PB 的方程为x +y -5=0,故选D.4.过两点(-1,1)和(0,3)的直线在x 轴上的截距为 ( )A .-32 B.32 C .3 D .-3答案:A解析:由两点式,得y -31-3=x -0-1-0,即2x -y +3=0,令y =0,得x =-32,即在x 轴上的截距为-32.5.直线x +a 2y +6=0和(a -2)x +3ay +2a =0无公共点,则a 的值是 ( ) A .3 B .0 C .-1 D .0或-1 答案:D解析:当a =0时,两直线方程分别为x +6=0和x =0,显然无公共点;当a ≠0时,-1a 2=-a -23a,∴a =-1或a =3.而当a =3时,两直线重合,∴a =0或-1.6.两直线2x -my +4=0和2mx +3y -6=0的交点在第二象限,则m 的取值范围是( )A .-32≤m ≤2B .-32<m <2C .-32≤m <2D .-32<m ≤2答案:B解析:由⎩⎪⎨⎪⎧2x -my +4=0,2mx +3y -6=0,解得两直线的交点坐标为(3m -6m 2+3,4m +6m 2+3),由交点在第二象限知横坐标为负、纵坐标为正,故3m -6m 2+3<0且4m +6m 2+3>0⇒-32<m <2.7.(2009·福建,9)在平面直角坐标系中,若不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0,(a 为常数)所表示的平面区域的面积等于2,则a 的值为( ) A .-5 B .1C .2D .3答案:D解析:不等式组⎩⎪⎨⎪⎧x +y -1≥0,x -1≤0,ax -y +1≥0所围成的区域如图所示.∵其面积为2,∴|AC |=4,∴C 的坐标为(1,4),代入ax -y +1=0, 得a =3.故选D. 8.(2009·陕西,4)过原点且倾斜角为60°的直线被圆x 2+y 2-4y =0所截得的弦长为( )A. 3 B .2 C. 6 D .2 3 答案:D解析:∵直线的方程为y =3x ,圆心为(0,2),半径r =2.由点到直线的距离公式得弦心距等于1,从而所求弦长等于222-12=2 3.故选D. 9.(2009·西城4月,6)与直线x -y -4=0和圆x 2+y 2+2x -2y =0都相切的半径最小的圆的方程是 ( )A .(x +1)2+(y +1)2=2B .(x +1)2+(y +1)2=4 C .(x -1)2+(y +1)2=2 D .(x -1)2+(y +1)=4 答案:C解析:圆x 2+y 2+2x -2y =0的圆心为(-1,1),半径为2,过圆心(-1,1)与直线x -y -4=0垂直的直线方程为x +y =0,所求的圆的圆心在此直线上,排除A 、B ,圆心(-1,1)到直线x -y -4=0的距离为62=32,则所求的圆的半径为2,故选C.10.(2009·安阳,6)已知直线x +y =a 与圆x 2+y 2=4交于A 、B 两点,且|OA →+OB →|=|OA →-OB →|,其中O 为原点,则实数a 的值为 ( )A .2B .-2C .2或-2 D.6或- 6 答案:C解析:由|OA →+OB →|=|OA →-OB →|得|OA →+OB →|2=|OA →-OB →|2,OA →·OB →=0,OA →⊥OB →,三角形AOB 为等腰直角三角形,圆心到直线的距离为2,即|a |2=2,a =±2,故选C.11.(2009·河南实验中学3月)若直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则点P (a ,b )与圆C 的位置关系是 ( )A .点在圆上B .点在圆内C .点在圆外D .不能确定 答案:C解析:直线l :ax +by =1与圆C :x 2+y 2=1有两个不同交点,则1a 2+b 2<1,a 2+b 2>1,点P (a ,b )在圆C 外部,故选C.12.(2010·保定市高三摸底考试)从原点向圆x 2+(y -6)2=4作两条切线,则这两条切线夹角的大小为 ( )A.π6B.π2 C .arccos 79 D .arcsin 229 答案:C解析:如图,sin ∠AOB =26=13,cos ∠BOC =cos2∠AOB =1-2sin 2∠AOB =1-29=79,∴∠BOC =arccos 79,故选C.第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,请将答案填在题中的横线上。
高二数学直线与圆练习题
高二数学直线与圆练习题1. 已知直线L1的方程为3x+y-5=0,直线L2的方程为x-2y+6=0,圆C的方程为x^2+y^2-8x+2y+8=0。
求直线L1与L2的交点坐标,并判断圆C与直线L1、L2的位置关系。
解:首先,我们来求直线L1与L2的交点坐标。
令L1与L2联立,得到(1) 3x+y-5 = 0(2) x-2y+6 = 0解这个方程组,可以使用消元法或代入法。
我们使用代入法。
将(1)式的y代入(2)式中,得到x - 2(5 - 3x) + 6 = 0x - 10 + 6x + 6 = 07x - 4 = 07x = 4x = 4/7将x的值代入(1)式中,得到3(4/7) + y - 5 = 012/7 + y - 5 = 0y - 23/7 = 0y = 23/7所以,直线L1和L2的交点坐标为(x,y) = (4/7, 23/7)。
接下来,我们判断圆C与直线L1、L2的位置关系。
首先,我们要分别求出直线L1和L2在圆C上的焦点。
将直线L1的方程代入圆C的方程,得到3x + y - 5 = 0x = (5 - y)/3将直线L1的方程代入圆C的方程,得到x - 2y + 6 = 0x = 2y - 6将上述两个等式相等,得到(5 - y)/3 = 2y - 65 - y = 6y - 187y = 23y = 23/7将y的值代入直线L1的方程,得到x = (5 - (23/7))/3x = 4/7所以,直线L1在圆C上的焦点坐标为(x,y) = (4/7, 23/7)。
将直线L2的方程代入圆C的方程,得到x - 2y + 6 = 0x = 2y - 6将直线L2的方程代入圆C的方程,得到x^2 + y^2 - 8x + 2y + 8 = 0(2y - 6)^2 + y^2 - 8(2y - 6) + 2y + 8 = 04y^2 - 24y + 36 + y^2 - 16y + 48 + 2y + 8 = 05y^2 - 38y + 92 = 0解这个二次方程,得到y = (38 ± √(38^2 - 4(5)(92)))/(2(5))y = (38 ± √(1444 - 1840))/10y = (38 ± √(-396))/10由于√(-396)是虚数,所以y的值没有实数解。
直线与圆的方程综合题、典型题
直线与圆的方程综合题、典型题例题:已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,. (2)不能.例题:已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。
解析:故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0例题:已知点A(-2,-1)和B(2,3),圆C :x 2+y 2 = m 2,当圆C 与线段..AB 没有公共点时,求m 的取值范围. 解:∴当22m 22<<-和0m 13m 13m ≠>-<且与时,圆x 2+y 2 = m 2与线段AB 无交点.题:已知圆4)4()3(:22=-+-y x C ,直线1l 过定点)0,1(A 。
(1)若1l 与圆相切,求1l 的方程;(2)若1l 与圆相交于Q 、P 丙点,线段PQ 的中点为M ,又1l 与022:2=++y x l 的交点为N ,判断AN AM ∙是否为定值,若是,则求出定值;若不是,请说明理由。
解:(1)直线方程是1=x ,0343=--y x (2) 故AN AM ⋅是定值,且为6。
例题:已知 C 过点)1,1(P ,且与 M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称. (Ⅰ)求 C 的方程;(Ⅱ)设Q 为 C 上的一个动点,求PQ MQ ⋅的最小值;(Ⅲ)过点P 作两条相异直线分别与 C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:(Ⅰ)222x y +=(Ⅱ)PQ MQ ⋅ 的最小值为4-(Ⅲ)直线AB 和OP 一定平行例题:已知过点)0,1(-A 的动直线l 与圆C :4)3(22=-+y x 相交于P 、Q 两点,M 是PQ 中点,l 与直线m :063=++y x 相交于N .(1)求证:当l 与m 垂直时,l 必过圆心C ; (2)当32=PQ 时,求直线l 的方程;(3)探索⋅是否与直线l 的倾斜角有关,若无关,请求出其值;若有关,请说明理由.解析:(1)∴当l 与m 垂直时,l 必过圆心C (2)直线l 的方程为1-=x 或0434=+-y x(3)⋅与直线l 的斜率无关,且5-=⋅.第17题例题:已知以点P 为圆心的圆经过点()1,0A -和()3,4B ,线段AB 的垂直平分线交圆P 于点C 和D,且||CD =.(1)求直线CD 的方程;⑵求圆P 的方程;⑶设点Q 在圆P 上,试问使△QAB 的面积等于8的点Q 共有几个?证明你的结论.解:⑴()21y x -=--即x+y-3=0 ⑵圆P 的方程为()()223640x y ++-= 或()()225240x y -++= ⑶ 两个点Q 使 △QAB 的面积为8例题:在平面直角坐标系xOy 中,平行于x 轴且过点A ()2的入射光线l 1被直线l:3y x =反射,反射光线l 2交y 轴于B 点.圆C 过点A 且与l 1、l 2相切. (1)求l 2所在的直线的方程和圆C 的方程;(2)设P 、Q 分别是直线l 和圆C 上的动点,求PB+PQ 的最小值及此时点P 的坐标.解析.40y --=.圆C的方程为22((1)9x y -++=.(Ⅱ)1),2P最小值33B C '-=. 例题:设圆1C 的方程为2224)23()2(m m y x =--++,直线l 的方程为2++=m x y .(1)求1C 关于l 对称的圆2C 的方程;(2)当m 变化且0≠m 时,求证:2C 的圆心在一条定直线上,并求2C 所表示的一系列圆的公切线方程. 解:(1)2224)1()12(m m y m x =--+--(2)圆心在定直线x -2y +1=0上。
直线与圆的方程的应用练习题含答案
直线与圆的方程的应用练习题(1)1. 已知圆C :(x −1)2+y 2=25,则过点P(2, −1)的圆C 的所有弦中,以最长弦和最短弦为对角线的四边形的面积是( ) A.10√31 B.10√23 C.9√21 D.9√112. 直线y =kx +1与圆(x −2)2+(y −1)2=4相交于P ,Q 两点.若|PQ|≥2√2,则k 的取值范围是( ) A.[−34,0]B.[−√33,√33] C.[−1, 1] D.[−√3,√3]3. 若圆x 2+y 2−4x +2y +1=0关于直线ax −2by −1=0(a, b ∈R)对称,则ab 的取值范围是( ) A.(−∞,14] B.(−∞,116]C.(−14,0]D.[116,+∞)4. 与直线x +y −2=0和曲线x 2+y 2−12x −12y +54=0都相切的半径最小的圆的标准方程是________.5. 已知直线y =2x +1与圆x 2+y 2+ax +2y +1=0交于A ,B 两点,直线mx +y +2=0垂直平分弦AB ,则|AB |=________.6. 已知直线kx −y −k =0与曲线y =ln (x −1)有公共点,则实数k 的最大值为________.7. 已知圆C 同时满足下列三个条件:①与y 轴相切;②在直线y =x 上截得弦长为2√7;③圆心在直线x −3y =0上.求圆C 的方程.8. 已知圆M :(x −1)2+(y −1)2=4,直线l 过点P(2, 3)且与圆M 交于A ,B 两点,且|AB|=2√3,求直线l 的方程.9. 已知圆C 经过点A(0, 0),B(7, 7),圆心在直线上.(1)求圆C 的标准方程;(2)若直线l 与圆C 相切且与x ,y 轴截距相等,求直线l 的方程.10. 已知圆C:x 2+y 2+2x −4y +3=0.(1)若圆C 的切线在x 轴、y 轴上的截距相等,求切线的方程;(2)从圆C 外一点P(x 1, y 1)向圆引一条切线,切点为M ,O 为坐标原点,且有|PM|=|PO|,求使|PM|最小的点P 的坐标.11. 已知圆C:x 2+(y −1)2=5,直线l:mx −y +1−m =0,且直线l 与圆C 交于A 、B 两点.(1)若|AB|=√17,求直线l 的倾斜角;(2)若点P(1, 1),满足2AP →=PB →,求直线l 的方程.12. 在平面直角坐标系xOy 中,圆C 的方程为(x −4)2+y 2=4,且圆C 与x 轴交于M ,N 两点,设直线l 的方程为y =kx(k >0).(1)当直线l 与圆C 相切时,求直线l 的方程;(2)已知直线l 与圆C 相交于A ,B 两点. ①若AB ≤4√1717,求实数k 的取值范围; ②直线AM 与直线BN 相交于点P ,直线AM ,直线BN ,直线OP 的斜率分别为k 1,k 2,k 3,是否存在常数a ,使得k 1+k 2=ak 3恒成立?若存在,求出a 的值;若不存在,说明理由.参考答案与试题解析直线与圆的方程的应用练习题(1)一、选择题(本题共计 3 小题,每题 5 分,共计15分)1.【答案】B【考点】直线与圆的位置关系【解析】根据题意,AC为经过点P的圆的直径,而BD是与AC垂直的弦.因此算出PM的长,利用垂直于弦的直径的性质算出BD长,根据四边形的面积公式即可算出四边形ABCD的面积.【解答】解:∵圆的方程为:(x−1)2+y2=25,∴圆心坐标为M(1, 0),半径r=5.∵P(2, −1)是该圆内一点,∴经过P点的直径是圆的最长弦,且最短的弦是与该直径垂直的弦.结合题意,得AC是经过P点的直径,BD是与AC垂直的弦.∵|PM|=√2,∴由垂径定理,得|BD|=2√25−2=2√23.因此,四边形ABCD的面积是S=12|AC|⋅|BD|=12×10×2√23=10√23.故选B.2.【答案】C【考点】直线与圆的位置关系直线和圆的方程的应用【解析】由已知可得圆心(2, 1)到直线y=kx+1的距离d≤√2,结合点到直线距离公式,可得答案.【解答】解:若|PQ|≥2√2,则圆心(2, 1)到直线y=kx+1的距离为:d≤(2√22)=√2,即√1+k2≤√2,解得k∈[−1, 1].故选C.3.【答案】 B【考点】关于点、直线对称的圆的方程 【解析】由题意知,圆心在直线上,得到a +b =12,若a ,b 都是正数,利用基本不等式求得0<ab ≤116,若当a ,b 中一个是正数另一个是负数或0时,ab ≤0.【解答】解:∵ 圆x 2+y 2−4x +2y +1=0关于直线ax −2by −1=0(a, b ∈R)对称, ∴ 圆心(2, −1)在直线ax −2by −1=0上,∴ 2a +2b −1=0,a +b =12,若a ,b 都是正数,由基本不等式得 12≥2√ab >0, ∴ 0<ab ≤116.当a ,b 中一个是正数另一个是负数或0时,ab ≤0,故 ab ≤116, 故选B .二、 填空题 (本题共计 3 小题 ,每题 5 分 ,共计15分 ) 4.【答案】(x −2)2+(y −2)2=2 【考点】圆的标准方程与一般方程的转化 直线和圆的方程的应用 点到直线的距离公式【解析】由题意可知先求圆心坐标,再求圆心到直线的距离,求出最小的圆的半径,圆心坐标,可得圆的方程. 【解答】解:曲线化为(x −6)2+(y −6)2=18, 其圆心到直线x +y −2=0的距离为d =|6+6−2|√2=5√2.所求的最小圆的圆心在直线y =x 上, 其到直线的距离为√2,圆心坐标为(2, 2). 标准方程为(x −2)2+(y −2)2=2. 故答案为:(x −2)2+(y −2)2=2.5. 【答案】8√55【考点】直线与圆相交的性质 直线和圆的方程的应用 【解析】首先利用垂直,得m =12,再利用圆心,确定a =4,结合直线与圆相交的性质,即可求出弦长. 【解答】解:由题意可得直线y =2x +1与直线mx +y +2=0垂直, 所以 2(−m )=−1,所以m =12,因为圆心(−a2,−1)在直线mx +y +2=0上, 所以12(−a2)−1+2=0,所以a =4,所以圆x 2+y 2+ax +2y +1=0的方程可化为 (x +2)2+(y +1)2=4,所以圆心为(−2,−1),半径为2, 圆心到直线y =2x +1的距离为d =√5=√5,所以弦AB 的长为|AB|=2√22−(√5)2=8√55.故答案为:8√55. 6.【答案】1【考点】利用导数研究曲线上某点切线方程 直线与圆的位置关系 曲线与方程 导数求函数的最值 点到直线的距离公式【解析】 1【解答】 1三、 解答题 (本题共计 6 小题 ,每题 5 分 ,共计30分 ) 7.【答案】解设所求的圆C 与y 轴相切,又与直线y =x 交于AB , ∵ 圆心C 在直线x −3y =0上,∴ 圆心C(3a, a),又圆=√2|a|.与y轴相切,∴R=3|a|.又圆心C到直线y−x=0的距离|CD|=|3a−a|√2在Rt△CBD中,R2−|CD|2=(√7)2,∴9a2−2a2=7.a2=1,a=±1,3a=±3.∴圆心的坐标C分别为(3, 1)和(−3, −1),故所求圆的方程为(x−3)2+(y−1)2=9或(x+3)2+(y+1)2=9.【考点】圆的标准方程【解析】设所求的圆C与y轴相切,又与直线y=x交于AB,由题设知圆心C(3a, a),R=3|a|,再由点到直线的距离公式和勾股定理能够求出a的值,从而得到圆C的方程.【解答】解设所求的圆C与y轴相切,又与直线y=x交于AB,∵圆心C在直线x−3y=0上,∴圆心C(3a, a),又圆=√2|a|.与y轴相切,∴R=3|a|.又圆心C到直线y−x=0的距离|CD|=|3a−a|√2在Rt△CBD中,R2−|CD|2=(√7)2,∴9a2−2a2=7.a2=1,a=±1,3a=±3.∴圆心的坐标C分别为(3, 1)和(−3, −1),故所求圆的方程为(x−3)2+(y−1)2=9或(x+3)2+(y+1)2=9.8.【答案】解:圆心坐标为M(1, 1),半径R=2,∵|AB|=2√3,∴圆心到直线的距离d=√R2−(AB)2=√4−(√3)2=√4−3=1,2若过P的直线的斜率k不存在,则直线方程为x=2,此时圆心到直线的距离d=2−1=1≠R,则不满足条件.若斜率k存在,则线方程为y−3=k(x−2),即kx−y+3−2k=0则由√1+k2=√1+k2=2得|k−2|=2√1+k2,平方得3k2+4k=0,解得k=0或k=−43,则对应的直线方程为y=3或4x+3y−17=0.【考点】直线与圆相交的性质【解析】根据直线和圆相交的性质,结合弦长公式即可得到结论.【解答】解:圆心坐标为M(1, 1),半径R=2,∵|AB|=2√3,∴圆心到直线的距离d=√R2−(AB2)2=√4−(√3)2=√4−3=1,若过P的直线的斜率k不存在,则直线方程为x=2,此时圆心到直线的距离d=2−1=1≠R,则不满足条件.若斜率k存在,则线方程为y−3=k(x−2),即kx−y+3−2k=0则由√1+k2=√1+k2=2得|k−2|=2√1+k2,平方得3k2+4k=0,解得k=0或k=−43,则对应的直线方程为y=3或4x+3y−17=0.9.【答案】根据题意,设圆C的圆心为(a, b),半径为r,则其标准方程为(x−a)2+(y−b)2=r2,圆C经过点A(0, 0),B(7, 7),圆心在直线上,则有,解可得,则圆C的标准方程为(x−3)2+(y−4)2=25,若直线l与圆C相切且与x,y轴截距相等,分2种情况讨论:①,直线l经过原点,设直线l的方程为y=kx,则有=5,解可得:k=-,此时直线l的方程为y=-x;②,直线l不经过原点,设直线l的方程为x+y−m=0,则有=5,解可得m =7+5或7−5,此时直线l的方程为x+y+5−7=0或x+y−5−7=0;综合可得:直线l的方程为y=-x或x+y+5−7=0或x+y−5−7=0.【考点】直线和圆的方程的应用【解析】(1)根据题意,设圆C的圆心为(a, b),半径为r,结合圆的标准方程的形式可得,解可得a、b、r的值,代入圆的标准方程中即可得答案;(2)根据题意,①,直线l经过原点,设直线l的方程为y=kx,则有=5,②,直线l不经过原点,设直线l的方程为x+y−m=0,则有=5,分别求出直线l的方程,综合2种情况即可得答案.【解答】根据题意,设圆C的圆心为(a, b),半径为r,则其标准方程为(x−a)2+(y−b)2=r2,圆C经过点A(0, 0),B(7, 7),圆心在直线上,则有,解可得,则圆C的标准方程为(x−3)2+(y−4)2=25,若直线l与圆C相切且与x,y轴截距相等,分2种情况讨论:①,直线l经过原点,设直线l的方程为y=kx,则有=5,解可得:k=-,此时直线l的方程为y=-x;②,直线l不经过原点,设直线l的方程为x+y−m=0,则有=5,解可得m =7+5或7−5,此时直线l的方程为x+y+5−7=0或x+y−5−7=0;综合可得:直线l的方程为y=-x或x+y+5−7=0或x+y−5−7=0.10.【答案】由方程x2+y2+2x−4y+3=0知(x+1)2+(y−2)2=2,所以圆心为(−1, 2),半径为√2.当切线过原点时,设切线方程为y=kx,则√k2+1=√2,所以k=2±√6,即切线方程为y=(2±√6)x.当切线不过原点时,设切线方程为x+y=a,则√2=√2,所以a=−1或a=3,即切线方程为x+y+1=0或x+y−3=0.综上知,切线方程为y=(2±√6)x或x+y+1=0或x+y−3=0;因为|PO|2+r2=|PC|2,所以x12+y12+2=(x1+1)2+(y1−2)2,即2x1−4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO垂直于直线2x−4y+3=0时,即直线PO的方程为2x+y=0时,|PM|最小,此时P点即为两直线的交点,得P点坐标(−310, 35 ).【考点】直线和圆的方程的应用【解析】(1)圆的方程化为标准方程,求出圆心与半径,再分类讨论,设出切线方程,利用直线是切线建立方程,即可得出结论;(2)先确定P的轨迹方程,再利用要使|PM|最小,只要|PO|最小即可.【解答】由方程x2+y2+2x−4y+3=0知(x+1)2+(y−2)2=2,所以圆心为(−1, 2),半径为√2.当切线过原点时,设切线方程为y=kx,则√k2+1=√2,所以k=2±√6,即切线方程为y=(2±√6)x.当切线不过原点时,设切线方程为x+y=a,则√2=√2,所以a=−1或a=3,即切线方程为x+y+1=0或x+y−3=0.综上知,切线方程为y=(2±√6)x或x+y+1=0或x+y−3=0;因为|PO|2+r2=|PC|2,所以x12+y12+2=(x1+1)2+(y1−2)2,即2x1−4y1+3=0.要使|PM|最小,只要|PO|最小即可.当直线PO 垂直于直线2x −4y +3=0时,即直线PO 的方程为2x +y =0时,|PM|最小, 此时P 点即为两直线的交点,得P 点坐标(−310, 35). 11. 【答案】解:(1)由于半径r =√5,|AB|=√17,∴ 弦心距d =√32, 再由点到直线的距离公式可得d =√m 2+1=√32, 解得m =±√3.故直线的斜率等于±√3,故直线的倾斜角等于π3或2π3. (2)设点A(x 1, mx 1−m +1),点B(x 2, mx 2−m +1 ),由题意2AP →=PB →,可得 2(1−x 1, −mx 1+m )=(x 2−1, mx 2−m ),∴ 2−2x 1=x 2−1,即2x 1+x 2=3. ①再把直线方程 y −1=m(x −1)代入圆C:x 2+(y −1)2=5,化简可得 (1+m 2)x 2−2m 2x +m 2−5=0,由根与系数的关系可得x 1+x 2=2m 21+m 2②.由①②解得x 1=3+m 21+m 2,故点A 的坐标为(3+m 21+m 2, 1+2m+m 21+m 2).把点A 的坐标代入圆C 的方程可得m 2=1,故m =±1,故直线L 的方程为x −y =0,或x +y −2=0.【考点】直线和圆的方程的应用 【解析】(1)求出弦心距、利用点到直线的距离公式可得直线的斜率,即可求直线l 的倾斜角; (2)设点A(x 1, mx 1−m +1),点B(x 2, mx 2−m +1 ),由题意2AP →=PB →,可得2x 1+x 2=3. ①再把直线方程 y −1=m(x −1)代入圆C ,化简可得x 1+x 2=2m 21+m 2②,由①②解得点A 的坐标,把点A 的坐标代入圆C 的方程求得m 的值,从而求得直线L 的方程. 【解答】解:(1)由于半径r =√5,|AB|=√17,∴ 弦心距d =√32, 再由点到直线的距离公式可得d =√m 2+1=√32, 解得m =±√3.故直线的斜率等于±√3,故直线的倾斜角等于π3或2π3. (2)设点A(x 1, mx 1−m +1),点B(x 2, mx 2−m +1 ),由题意2AP →=PB →,可得 2(1−x 1, −mx 1+m )=(x 2−1, mx 2−m ),∴ 2−2x 1=x 2−1,即2x 1+x 2=3. ① 再把直线方程 y −1=m(x −1)代入圆C:x 2+(y −1)2=5,化简可得 (1+m 2)x 2−2m 2x +m 2−5=0,由根与系数的关系可得x 1+x 2=2m 21+m 2②. 由①②解得x 1=3+m 21+m 2,故点A 的坐标为(3+m 21+m 2, 1+2m+m 21+m 2).把点A 的坐标代入圆C 的方程可得m 2=1,故m =±1, 故直线L 的方程为x −y =0,或x +y −2=0. 12.【答案】解:(1)由题意k >0,圆心C 为(4,0),半径r =2∴ 当直线l 与圆C 相切时,直线的斜率k =√33 ∴ 直线l:y =√33x . (2)①由题意得解得8√1717≤d <2,由(1)知d =√1+k 2, ∴ 8√1717≤√k 2+1<2解得2√1313≤k <√33②l AM :y =k 1(x −2)与圆C:(x −4)2+y 2=4联立得(x −4)2+k 12(x −2)2=4[(k 12+1)x −(2k 12+6)](x −2)=0即A (2k 12+61+k 12,4k 11+k 12)同理得BN ,y 2=k 2(x −6)即B (2+6k 221+k 22,−4k 21+k 22)∵ k OA =k OB∴ 4k 12k 12+6=−4k22+6k 22 解得k 2=−13k 1,k 1=−3k 2设P (x 0,y 0),则{y 0=k 1(x 0−2)y 0=k 2(x 0−6) 即P (2k 1−6k 2k 1−k 2,−4k 1k 2k 1−k 2), k 3=−4k 1k 22k 1−6k 2 k 1+k 2=2k 3∴ 存在常数a =2,使得k 1+k 2=2k 3恒成立.【考点】直线和圆的方程的应用 直线与圆的位置关系【解析】此题暂无解析【解答】解:(1)由题意k >0, 圆心C 为(4,0),半径r =2 ∴ 当直线l 与圆C 相切时, 直线的斜率k =√33 ∴ 直线l:y =√33x . (2)①由题意得 解得8√1717≤d <2,由(1)知d =√1+k 2, ∴ 8√1717≤√k 2+1<2解得2√1313≤k <√33②l AM :y =k 1(x −2) 与圆C:(x −4)2+y 2=4联立得(x −4)2+k 12(x −2)2=4[(k 12+1)x −(2k 12+6)](x −2)=0即A (2k 12+61+k 12,4k11+k 12) 同理得BN ,y 2=k 2(x −6) 即B (2+6k 221+k 22,−4k21+k 22) ∵ k OA =k OB∴ 4k 12k 12+6=−4k22+6k 22 解得k 2=−13k 1,k 1=−3k 2 设P (x 0,y 0),则{y 0=k 1(x 0−2)y 0=k 2(x 0−6) 即P (2k 1−6k 2k 1−k 2,−4k 1k 2k 1−k 2), k 3=−4k 1k 22k 1−6k 2 k 1+k 2=2k 3∴ 存在常数a =2,使得k 1+k 2=2k 3恒成立.。
第二章 直线和圆的方程 综合能力测试 - 高二上学期数学人教A版(2019)选择性必修第一册
第二章 直线和圆的方程一、单选题1.圆2)1(22=++y x 的圆心到直线3+=x y 的距离为( )。
A 、1B 、2C 、2D 、222.若平面内两条平行线1l :02)1(=+-+y a x 与2l :012=++y ax 间的距离为553,则实数=a ( )。
A 、2-B 、1-C 、1D 、23.过点P -且倾斜角为135的直线方程为( )A .30x y --=B .0x y --=C .0x y +=D .0x y ++= 4.圆1C :221x y +=与圆2C :()224310x y k x y +++-=(k ∈R ,0k ≠)的位置关系为( )A .相交B .相离C .相切D .无法确定5.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后人称之为三角形的欧拉线.已知ABC 的顶点()2,0A ,()0,4B ,AC BC =,则ABC 的欧拉线方程为( ) A .230x y +-=B .230x y -+=C .230x y --=D .230x y -+= 6.若直线l 将圆()()22129x y -++=平分,且在两坐标轴上的截距相等,则直线l 的方程为( )A .10x y ++=或20x y +=B .10x y -+=或20x y +=C .10x y -+=或20x y -=D .10x y --=或20x y -= 7.过坐标原点O 作圆()()22341x y -+-=的两条切线,切点为,A B ,直线AB 被圆截得弦AB 的长度为( )A BC D 8.已知圆M 的方程为22680x y x y +--=,过点()0,4P 的直线l 与圆M 相交的所有弦中,弦长最短的弦为AC ,弦长最长的弦为BD ,则四边形ABCD 的面积为( ) A .30B .40C .60D .80 二、多选题9. 下列说法中,正确的有( )A. 过点P (1,2)且在x ,y 轴截距相等的直线方程为30x y +-=B. 直线y =3x -2在y 轴上的截距为-2C. 直线 10x -+=的倾斜角为60°D. 过点(5,4)并且倾斜角为90°的直线方程为x -5=010. 如果0AB <,0BC <,那么直线0Ax By C ++=经过( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限11.已知圆O :x 2+y 2=4和圆M :x 2+y 2﹣2x +4y +4=0相交于A 、B 两点,下列说法正确的是( )A .圆M 的圆心为(1,﹣2),半径为1B .直线AB 的方程为x ﹣2y ﹣4=0C .线段AB 的长为2√55D .取圆M 上点C (a ,b ),则2a ﹣b 的最大值为4+√512.已知圆C :(x ﹣5)2+(y ﹣5)2=16与直线l :mx +2y ﹣4=0,下列选项正确的是(( )A .直线l 与圆C 不一定相交B .当m ≥1615时,圆C 上至少有两个不同的点到直线l 的距离为1C .当m =﹣2时,圆C 关于直线1对称的圆的方程是(x +3)2+(y +3)2=16D .当m =1时,若直线l 与x 轴,y 轴分别交于A ,B 两点,P 为圆C 上任意一点,当|PB |=3√2时,∠PBA 最小三、填空题13.已知点()P x y ,在直线10x y =++上运动,则()()2211x y +--取得最小值时点P 的坐标为_______.14.已知P 是直线l : 260x y ++=上一动点,过点P 作圆C :22230x y x ++-=的两条切线,切点分别为A 、B .则四边形PACB 面积的最小值为___________.15.已知圆心为(),0a 的圆C 与倾斜角为56π的直线相切于点(3,N ,则圆C 的方程为___________16.直线3y x =+D :(()2213x y +-=交与A ,B 两点,则直线AD 与BD 的倾斜角之和为_____________.四、解答题17.实数x ,y 满足x 2+y 2+2x ﹣4y +1=0,求:(1)y x−4的最大值和最小值;(2)2x +y 的最大值和最小值.18.已知点)2212(-+,P ,点)13(,M ,圆C :4)2()1(22=-+-y x 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线与圆的方程综合题、典型题1、已知m ∈R ,直线l :2(1)4mx m y m -+=和圆C :2284160x y x y +-++=.(1)求直线l 斜率的取值范围;(2)直线l 能否将圆C 分割成弧长的比值为12的两段圆弧?为什么? 解析:(1)直线l 的方程可化为22411m m y x m m =-++,直线l 的斜率21mk m =+,因为21(1)2m m +≤,所以2112m k m =+≤,当且仅当1m =时等号成立. 所以,斜率k 的取值范围是1122⎡⎤-⎢⎥⎣⎦,.(2)不能.由(1)知l 的方程为(4)y k x =-,其中12k ≤. 圆C 的圆心为(42)C -,,半径2r =.圆心C 到直线l的距离d =.由12k ≤,得1d >,即2rd >.从而,若l 与圆C 相交,则圆C 截直线l 所得的弦所对的圆心角小于23π.所以l 不能将圆C 分割成弧长的比值为12的两段弧. 总结备忘:2、已知圆C :044222=-+-+y x y x ,是否存在斜率为1的直线l ,使l 被圆C 截得的弦AB 为直径的圆过原点,若存在求出直线l 的方程,若不存在说明理由。
解析:圆C 化成标准方程为2223)2()1(=++-y x 假设存在以AB 为直径的圆M ,圆心M由于CM ⊥l ,∴k CM ×k l = -1∴k CM =112-=-+a b ,即a +b +1=0,得b = -a -1 ① 直线l 的方程为y -b =x -a , 即x -y +b -a =0 CM=23+-a b∵以AB 为直径的圆M 过原点,∴OM MB MA == 2)3(92222+--=-=a b CMCB MB,222b a OM += ∴2222)3(9b a a b +=+-- ②把①代入②得 0322=--a a ,∴123-==a a 或 当25,23-==b a 时此时直线l 的方程为x -y -4=0; 当0,1=-=b a 时此时直线l 的方程为x -y +1=0故这样的直线l 是存在的,方程为x -y -4=0 或x -y +1=0评析:此题用0OA OB =,联立方程组,根与系数关系代入得到关于b 的方程比较简单 总结备忘:3、已知点A(-2,-1)和B(2,3),圆C :x 2+y 2 = m 2,当圆C 与线段..AB 没有公共点时,求m 的取值范围.解:∵过点A 、B 的直线方程为在l :x -y +1 = 0, 作OP 垂直AB 于点P ,连结OB.由图象得:|m|<OP 或|m|>OB 时,线段AB 与圆x 2+y 2 = m 2无交点.(I )当|m|<OP 时,由点到直线的距离公式得:22|m |2|1||m |<⇒<,即22m 22<<-.(II )当m >OB 时,||||m m >⇒>即 13m 13m >-<或.∴当22m 22<<-和0m 13m 13m ≠>-<且与时,圆x 2+y 2 = m 2与线段AB 无交点.总结备忘:4、.已知动圆Q 与x 轴相切,且过点()0,2A .⑴求动圆圆心Q 的轨迹M 方程;⑵设B 、C 为曲线M 上两点,()2,2P ,PB BC ⊥,求点C 横坐标的取值范围. 解: ⑴设(),P x y 为轨迹上任一点,则0y =≠ (4分)化简得:2114y x =+ 为求。
(6分) ⑵设2111,14B x x ⎛⎫+ ⎪⎝⎭,2221,14C x x ⎛⎫+ ⎪⎝⎭, ∵0PB BC •= ∴211162x x x ⎛⎫=-+⎪+⎝⎭(8分) ∴210x ≥ 或26x ≤- 为求 (12分) 总结备忘:5、将圆02222=-++y x y x 按向量(1,1)a平移得到圆O ,直线l 与圆O 相交于A 、 B 两点,若在圆O 上存在点C ,使0,.OCOAOBOCa 且求直线l 的方程.解:由已知圆的方程为22(1)(1)2x y , 按(1,1)a 平移得到22:2O x y . ∵(),OC OA OB ∴22()()0OC ABOAOB OBOA OAOB.即OC AB .又OC a ,且(1,1)a,∴1OCk .∴1ABk .设:0AB l x y m, AB 的中点为D.由()2OCOA OB OD ,则2OC OD ,又22,2OCOD.∴O 到AB .22, ∴1m .∴直线l 的方程为:10x y 或10x y -+=.总结备忘:6、已知平面直角坐标系xoy 中O 是坐标原点,)0,8(),32,6(B A ,圆C 是OAB ∆的外接圆,过点(2,6)的直线l 被圆所截得的弦长为34 (1)求圆C 的方程及直线l 的方程;(2)设圆N 的方程1)sin 7()cos 74(22=-+--θθy x ,)(R ∈θ,过圆N 上任意一点P 作圆C 的两条切线PF PE ,,切点为F E ,,求CE CF ⋅的最大值.解:因为)0,8(),32,6(B A ,所以OAB ∆为以OB 为斜边的直角三角形,所以圆C :16)4(22=+-y x(2)1)斜率不存在时,l :2=x 被圆截得弦长为34,所以l :2=x 适合 2)斜率存在时,设l :)2(6-=-x k y 即026=-+-k y kx因为被圆截得弦长为34,所以圆心到直线距离为2 所以212642=+-+kk k34-=∴k 02634),2(346:=-+--=-∴y x x y l 即综上,l :2=x 或02634=-+y x (3)设2ECF a ∠=,则2||||cos 216cos 232cos 16CE CF CE CF ααα===-.在Rt PCE △中,4cos ||||x PC PC α==,由圆的几何性质得 ||||1716PC MC -=-=≥, 所以32cos ≤α, 由此可得916-≤⋅CF CE 则CF CE ⋅的最大值为169-.总结备忘:7、已知圆4)4()3(:22=-+-y x C ,直线1l 过定点)0,1(A 。
(1)若1l 与圆相切,求1l 的方程;(2)若1l 与圆相交于Q 、P 丙点,线段PQ 的中点为M ,又1l 与022:2=++y x l 的交点为N ,判断AN AM •是否为定值,若是,则求出定值;若不是,请说明理由。
解:(1)①若直线1l 的斜率不存在,即直线是1=x ,符合题意。
……2分 ②若直线1l 斜率存在,设直线1l 为)1(-=x k y ,即0=--k y kx 。
由题意知,圆心)4,3(以已知直线1l 的距离等于半径2,即:21432=+--k k k ,解之得43=k ……5分 所求直线方程是1=x ,0343=--y x ……6分(2)解法一:直线与圆相交,斜率必定存在,且不为0,可设直线方程为0=--k y kx 由⎩⎨⎧=--=++0022l y kx y x 得)123,1222(+-+-K kK k N ……8分又直线CM 与1l 垂直,由⎪⎩⎪⎨⎧--=--=)3(14x k y kkx y 得)124,134(2222k k k k k k M +++++ ……11分∴22222222)123()11222()124()1134(+-+-+-⋅+++-+++=⋅kk k k kk k k k k AN AM……13分6121311122222=++⋅+++=k k k k k 为定值。
故AN AM ⋅是定值,且为6。
……15分 总结备忘:8、已知C 过点)1,1(P ,且与M :222(2)(2)(0)x y r r +++=>关于直线20x y ++=对称.(Ⅰ)求C 的方程;(Ⅱ)设Q 为C 上的一个动点,求PQ MQ ⋅的最小值;(Ⅲ)过点P 作两条相异直线分别与C 相交于B A ,,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:(Ⅰ)设圆心C (,)a b ,则222022212a b b a --⎧++=⎪⎪⎨+⎪=⎪+⎩,解得00a b =⎧⎨=⎩…………(3分)则圆C 的方程为222x y r +=,将点P 的坐标代入得22r =,故圆C 的方程为222x y +=………(5分)(Ⅱ)设(,)Q x y ,则222x y +=,且(1,1)(2,2)PQ MQ x y x y ⋅=--⋅++=224x y x y +++-=2x y +-,…………………………(7分)所以PQ MQ ⋅的最小值为4-(可由线性规划或三角代换求得)…(10分)(Ⅲ)由题意知, 直线PA 和直线PB 的斜率存在,且互为相反数,故可设:1(1)PA y k x -=-,:1(1)PB y k x -=--, 由221(1)2y k x x y -=-⎧⎨+=⎩,得222(1)2(1)(1)20k x k k x k ++-+--= ………(11分)因为点P 的横坐标1x =一定是该方程的解,故可得22211A k k x k --=+同理,22211B k k x k +-=+,所以(1)(1)2()1BA B A B A AB B A B A B Ay y k x k x k k x x k x x x x x x ------+====---=OP k 所以,直线AB 和OP 一定平行……………………………………(15分) 总结备忘:9、已知过点)0,1(-A 的动直线l 与圆C :4)3(22=-+y x 相交于P 、Q 两点,M 是PQ中点,l 与直线m :063=++y x 相交于N . (1)求证:当l 与m 垂直时,l 必过圆心C ;(2)当32=PQ 时,求直线l 的方程; (3)探索AN AM ⋅是否与直线l 的倾斜角有关,若无关,请求出其值;若有关,请说明理由.解析:(1)∵l 与m 垂直,且31-=m k ,∴3l k =, 故直线l 方程为3(1)y x =+,即330x y -+=………2分 ∵圆心坐标(0,3)满足直线l 方程,∴当l 与m 垂直时,l 必过圆心C ………………… …4分(2)①当直线l 与x 轴垂直时, 易知1-=x 符合题意…………………6分②当直线l 与x 轴不垂直时,设直线l 的方程为)1(+=x k y ,即0=+-k y kx ,第17题第17题∵32=PQ ,∴134=-=CM ,………………………………………8分则由11|3|2=++-=k k CM ,得34=k , ∴直线l :0434=+-y x . 故直线l 的方程为1-=x 或0434=+-y x ………………………………………10分 (3)∵CM MN ⊥,∴ ()AM AN AC CM AN AC AN CM AN AC AN ⋅=+⋅=⋅+⋅=⋅……12分① 当l 与x 轴垂直时,易得5(1,)3N --,则5(0,)3AN =-,又(1,3)AC =,∴5AM AN AC AN ⋅=⋅=-………………………………………………………14分 当l 的斜率存在时,设直线l 的方程为)1(+=x k y , 则由⎩⎨⎧=+++=063)1(y x x k y ,得N (36,13k k --+k k 315+-),则55(,)1313kAN k k --=++∴AM AN AC AN ⋅=⋅=51551313k k k--+=-++ 综上所述,AN AM ⋅与直线l 的斜率无关,且5-=⋅AN AM .…………………16分 总结备忘:10、已知圆O 的方程为),,过点直线03(,1122A l y x =+且与圆O 相切。