向量的减法教案
向量减法运算及其几何意义,向量的数乘运算及其几何意义教案
向量减法运算及其⼏何意义,向量的数乘运算及其⼏何意义教案§2.2.2向量减法运算及其⼏何意义⼀.知识点梳理1.⽤“相反向量”定义向量的减法:1?“相反向量”的定义:与a 长度相同、⽅向相反的向量记作 -a2?规定:零向量的相反向量仍是零向量,且-(-a ) = a 。
任⼀向量与它的相反向量的和是零向量即a + (-a ) = 0。
如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上b 的相反向量,叫做a 与b 的差即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法2.⽤加法的逆运算定义向量的减法:若b + x = a ,则x 叫做a 与b 的差,记作a - b3减法的三⾓形法则:在平⾯内取⼀点O ,作OA = a , OB = b , 那么连接两个向量的终点并指向被减向量⽅向的向量就是两个向量的差向量. 即a - b 可以表⽰为从向量b 的终点指向向量a 的终点的向量注意:1?AB 表⽰a - b 强调:差向量“箭头”指向被减数.4.向量减法运算的记忆⼝决:共起点,连终点,⽅向指向被减数(⽅向由后指前)5.向量减法与向量加法的⽐较:(1)加法:⾸尾相连,从头指尾(前向量的头指向后向量的尾)(2)减法:共起点,连终点,⽅向指向被减数 6.向量减法的字母公式:CB AC AB =-⼆.例题讲解例1.已知向量a 、b 、c 、d ,求作向量a -b 、c -d解:在平⾯上取⼀点O ,作OA = a , OB = b , OC = c , OD = d ,作BA, DC, 则BA= a-b, DC= c-d例2.已知,在平⾏四边形ABCD中,aAD=,⽤a,b表⽰向量AC、AB=,bDB解:由平⾏四边形法则得: D CAC= a + b,DB= ADAB- = a-b bA aB 例3.若|AB|=8,|AC|=5,则|BC|的取值范围是( )A.[3,8]B.(3,8)C.[3,13]D.(3,13)解析:BC=AC-AB.(1)当AB、AC同向时,|BC|=8-5=3;(2)当AB、AC反向时,|BC|=8+5=13;(3)当AB、AC不共线时,3<|BC|<13.综上,可知3≤|BC|≤13.答案:C点评:此题可直接应⽤重要性质||a|-|b||≤|a+b|≤|a|+|b|求解.三.课堂练习1. 如下图所⽰,已知⼀点O到ABCD的3个顶点A、B、C的向量分别是a、b、c,则向量OD等于( )A.a+b+cB.a-b+cC.a+b-cD.a-b-c解析:如图5,点O到平⾏四边形的三个顶点A、B、C的向量分别是a、b、c,结合图形有OD=OA+AD=OA+BC=OA+OC-OB=a-b+c.答案:B2 判断题:(1)若⾮零向量a与b的⽅向相同或相反,则a+b的⽅向必与a、b之⼀的⽅向相同.(2)△ABC中,必有AB+BC+CA=0.(3)若AB+BC+CA=0,则A、B、C三点是⼀个三⾓形的三顶点.(4)|a+b|≥|a-b|.解:(1)a与b⽅向相同,则a+b的⽅向与a和b⽅向都相同;若a与b⽅向相反,则有可能a与b互为相反向量,此时a+b=0的⽅向不确定,说与a、b之⼀⽅向相同不妥.(2)由向量加法法则AB+BC=AC,AC与CA是互为相反向量,所以有上述结论.(3)因为当A、B、C三点共线时也有AB+BC+AC=0,⽽此时构不成三⾓形.(4)当a与b不共线时,|a+b|与|a-b|分别表⽰以a和b为邻边的平⾏四边形的两条对⾓线的长,其⼤⼩不定.当a 、b 为⾮零向量共线时,同向则有|a +b |>|a -b |,异向则有|a +b |<|a -b |; 当a 、b 中有零向量时,|a +b |=|a -b |. 综上所述,只有(2)正确.四.内容⼩结本节我们学习的内容如下: 1.相反向量的概念 2.向量减法的定义 3.向量减法的运算法则§2.2.2向量的数乘运算及其⼏何意义教学⽬标:1.向量的数乘运算的概念 2.向量的数乘运算法则 3.向量的数乘运算的⼏何意义 4.平⾯向量基本定理教学重点:1.向量的数乘运算法则 2.向量的数乘运算的⼏何意义教学难点:平⾯向量基本定理的理解与运⽤⼀.知识点梳理1.向量的数乘运算定义:规定⼀个实数λ与向量a 的积是⼀个向量,这种运算叫做向量的数乘运算记作λa. 它的长度和⽅向规定如下:(1)|λa|=|λ||a|. (2)0λ>时,λa 的⽅向与a 的⽅向相同;当0λ<时,λa 的⽅向与a的⽅向相反;特别地,当0λ=或0a = 时,0λa =.2.运算律:设a 、b为任意向量,λ、µ为任意实数,则有:(1)()λµa λa µa +=+ ;(2)()()λµa λµa = ;(3)()λa b λa λb +=+.通常将(2)称为结合律,(1)(3)称为分配律。
向量的减法教案
向量的减法教案教案:向量的减法学科:数学年级:高中学习目标:1. 理解向量的概念和性质。
2. 掌握向量的减法运算及其性质。
3. 能够解决与向量减法相关的问题。
教学准备:1. PowerPoint演示文稿。
2. 向量减法的练习题及答案。
教学过程:Step 1:导入通过例子或问题引入向量减法的概念,例如:已知向量A和向量B的坐标分别为(3, 4)和(2, 1),求A-B的坐标。
Step 2:向量的定义和性质回顾回顾向量的定义和性质,如零向量、向量的模、向量的运算规则等。
Step 3:向量减法的概念向学生解释向量减法的概念:向量A减去向量B,相当于将向量B的方向取反,然后与A相加。
Step 4:向量减法的运算规则向学生介绍向量减法的运算规则:两个向量相减,就是将被减数的方向取反,然后与减数相加。
Step 5:示例演示通过一个或多个示例演示向量减法的具体计算过程,引导学生掌握向量减法的方法。
Step 6:练习提供一些练习题给学生进行练习,帮助他们巩固和应用所学的知识。
可以在黑板上展示问题,让学生进行计算,并提供答案供他们核对。
Step 7:总结总结向量减法的要点,并解答学生在练习中遇到的问题。
Step 8:拓展引导学生思考向量减法在实际问题中的应用,如力的合成、速度的合成等。
Step 9:实践运用提供一些实际问题给学生,并引导他们运用所学的知识解决问题。
Step 10:评估通过作业或小测验评估学生对向量减法的掌握程度,及时发现并纠正他们的错误。
扩展活动:1. 将向量与平移、旋转等几何变换联系起来,进一步拓展学生对向量减法的认识和应用。
2. 让学生自己设计一些相关的问题或案例,并分享给同学们讨论和解答。
教学反思:通过本节课的教学,学生对向量减法的概念和运算规则有了更深入的理解,并能够应用所学的知识解决实际问题。
对于一些较为困难的问题,可以适当增加示例演示的数量,或提供更多的练习题进行巩固和拓展。
同时,关注学生的学习情况,及时给予帮助和指导,确保他们能够准确理解和应用向量减法的知识。
《向量的减法运算及其几何意义》参考教案
《向量的减法运算及其几何意义》参考教案一、教学目标1. 让学生理解向量的减法运算概念,掌握向量减法的运算规则。
2. 让学生掌握向量减法的几何意义,能够运用向量减法解决实际问题。
3. 培养学生的逻辑思维能力和空间想象能力。
二、教学内容1. 向量的减法定义:已知两个向量a和b,则向量a减去向量b,记作a-b,其结果是一个向量。
2. 向量减法的运算规则:(1) 交换律:a-b = b-a(2) 结合律:(a-b)-c = a-(b-c)(3) 分配律:a-(b+c) = (a-b)-c3. 向量减法的几何意义:(1) 表示起点相同,终点不同的两个向量之间的“差”。
(2) 表示从一个向量的终点返回到起点的“反向向量”。
三、教学重点与难点1. 教学重点:向量的减法定义、运算规则及几何意义。
2. 教学难点:向量减法的运算规则及几何意义的理解和应用。
四、教学方法1. 采用讲授法,讲解向量的减法定义、运算规则及几何意义。
2. 采用案例分析法,分析实际问题中的向量减法运算。
3. 采用练习法,让学生通过练习巩固向量减法的知识和技能。
五、教学步骤1. 导入新课:回顾向量的基本概念,引导学生思考向量的减法运算。
2. 讲解向量的减法定义、运算规则及几何意义。
3. 分析实际问题,运用向量减法解决问题。
4. 布置练习题,让学生巩固向量减法的知识和技能。
5. 总结本节课的主要内容和知识点,强调向量减法的重要性和应用价值。
六、教学评估1. 课堂提问:通过提问了解学生对向量减法概念、运算规则及几何意义的理解和掌握情况。
2. 练习题:布置课后练习题,评估学生对向量减法的应用能力。
3. 小组讨论:组织学生进行小组讨论,评估学生在团队合作中的沟通能力和解决问题的能力。
七、教学拓展1. 向量加法与减法的关系:引导学生思考向量加法与减法之间的联系和区别。
2. 向量减法在实际问题中的应用:举例说明向量减法在物理学、工程学等领域的应用。
3. 向量减法的进一步研究:引导学生探讨向量减法的性质和规律,提高学生的研究能力。
教案)空间向量及其运算
教案)空间向量及其运算一、教学目标1. 了解空间向量的概念,掌握空间向量的基本性质。
2. 学会空间向量的线性运算,包括加法、减法、数乘和点乘。
3. 能够运用空间向量解决实际问题,提高空间想象力。
二、教学内容1. 空间向量的概念:向量的定义、大小、方向、表示方法。
2. 空间向量的线性运算:(1) 向量加法:三角形法则、平行四边形法则。
(2) 向量减法:差向量、相反向量。
(3) 数乘向量:数乘的定义、运算规律。
(4) 向量点乘:点乘的定义、运算规律、几何意义。
三、教学重点与难点1. 教学重点:空间向量的概念、线性运算及应用。
2. 教学难点:空间向量线性运算的推导及证明,空间向量在实际问题中的应用。
四、教学方法1. 采用多媒体教学,结合图形、动画,直观展示空间向量的概念和运算。
2. 利用实际例子,引导学生运用空间向量解决实际问题。
3. 组织小组讨论,培养学生团队合作精神,提高解决问题的能力。
五、教学安排1. 第一课时:空间向量的概念及表示方法。
2. 第二课时:空间向量的线性运算(向量加法、减法)。
3. 第三课时:空间向量的线性运算(数乘向量、向量点乘)。
4. 第四课时:空间向量线性运算的应用。
5. 第五课时:总结与拓展。
六、教学评价1. 课堂参与度:观察学生在课堂上的发言和提问情况,评估学生的参与度和积极性。
2. 作业完成情况:检查学生完成的作业质量,评估学生对空间向量及其运算的理解和掌握程度。
3. 小组讨论:评估学生在小组讨论中的表现,包括团队合作、问题解决能力和创新思维。
4. 课堂测试:通过课堂测试,了解学生对空间向量及其运算的掌握情况,及时发现并解决问题。
七、教学资源1. 多媒体教学课件:通过动画、图形等展示空间向量的概念和运算,增强学生的直观感受。
2. 实际例子:收集与空间向量相关的实际问题,用于引导学生运用空间向量解决实际问题。
3. 小组讨论材料:提供相关的问题和案例,供学生进行小组讨论。
4. 课堂测试卷:编写涵盖空间向量及其运算知识的测试卷,用于评估学生的学习效果。
向量减法教案范文
向量减法教案范文教学目标:1.了解向量的概念和性质。
2.理解向量减法的定义和运算规则。
3.能够应用向量减法解决实际问题。
教学重点:1.向量减法的定义和运算规则。
2.向量减法的性质及应用。
教学难点:1.理解向量减法的概念和运算规则。
2.能够灵活运用向量减法解决实际问题。
教学准备:1.板书:向量减法的定义和运算规则。
2.准备一些实际问题,供学生进行演算和解答。
教学过程:Step 1:导入新知识(5分钟)教师可以举一个生活中的例子,如人从家里走到学校的路程是10千米,而回家的路程是5千米,问两者的距离差是多少?引导学生思考和讨论。
Step 2:引入向量减法的概念(10分钟)1.向量的概念向量是有大小和方向的量,用一条有方向的箭头来表示,长度表示向量的大小,箭头的方向表示向量的方向。
向量常用字母加上箭头来表示,如AB,表示从点A指向点B的向量。
2.向量减法的定义向量减法是指将一个向量从另一个向量中减去,得到一个新的向量。
向量减法的定义是:设有向量AB和向量CD,向量AB减去向量CD的结果为一个新的向量EF,EF的起点为C,终点为B。
Step 3:向量减法的运算规则(15分钟)1.向量减法的运算规则向量减法的运算规则是:要求向量减法与向量加法遵循相同的运算规则,即将被减向量的反向量与减去向量相加即可。
Step 4:向量减法的性质(10分钟)向量减法的性质如下:1.减法的交换律即向量减法满足交换律,即向量AB减去向量CD等于向量CD减去向量AB,即AB-CD=-(CD-AB)。
2.减法的结合律即向量减法满足结合律,即向量AB减去向量CD再减去向量EF等于向量AB减去向量(CD+EF),即AB-CD-EF=AB-(CD+EF)。
Step 5:案例演练(20分钟)教师提供一些实际问题,供学生进行演算和解答,如:1.一个人从家里走到学校要走1千米,又从学校走到家里要走1.5千米,问两者的距离差是多少?2.假设有一个造纸厂和一个书店,造纸厂离学校是3千米,书店离学校是2千米,问造纸厂和书店之间的距离差是多少?Step 6:小结和作业布置(10分钟)教师进行本节课的小结,总结向量减法的概念和运算规则,并提醒学生巩固练习相关的作业。
向量的加减法教案
5.2向量的加法与减法江苏省通州高级中学 曹芬知识目标:通过本节课的学习,使学生达到:(1)掌握向量的加法的定义,会用向量加法的三角形法则和会用向量加法的平行四边形法则作两个向量的和向量(2)掌握向量加法的交换律和结合律,并会用它们进行计算 (3)掌握向量减法,会作两个向量的差向量能力目标:(1)重视基础知识的教学、基本技能的训练和能力的培养;(2)启发学生能够发现问题和提出问题,善于独立思考,学会分析问题和创造地解决问题;(3)通过教师指导发现知识结论,培养学生抽象概括能力和逻辑思维能力 (4)培养学生化归的数学思想德育目标:激发学生学习数学的兴趣和积极性,陶冶学生的情操,培养学生坚忍不拔的意志,实事求是的科学学习态度和勇于创新的精神教学重点:向量的加减法的定义,向量加法的三角形法则和平行四边形法则,作两个向量的和向量、差向量教学难点:对向量加法和减法定义的理解 教 具:多媒体、实物投影仪 授课类型:新授课 教学过程:一、复习引入:1.向量的有关概念;2.我们知道,数是可以进行加减运算的。
同样,向量也可以进行运算。
下面 我们来学习向量的加法。
二、讲授新课: (一)向量的加法:1.向量的加法的定义:已知向量b a ,,在平面内任取一点A ,作b BC a AB,,则向量AC 叫做向量b a,的和。
记作:b a 即AC BC AB b a零向量与任意向量a,有a a a 002.两个向量的和向量的作法:(1)三角形法则:两个向量“首尾”相接注意:1°三角形法则对于两个向量共线时也适用; 2°两个向量的和向量仍是一个向量例1.已知向量b a,,求作向量b a作法:在平面内任取一点O ,作b AB a OA,,则b a OB(2)平行四边形法则:由同一点A 为起点的两个已知向量b a ,为邻边作平行四边形ABCD ,则以A 为起点的向量AC 就是向量b a,的和。
这种作两个向量和的方法叫做平行四边形法则注意:平行四边形法则对于两个向量共线时不适用 3.向量和与数量和的区别:(1)当向量b a ,不共线时,b a 的方向与b a ,不同向,且||||||b a b a(2)当向量b a ,同向时,b a 的方向与b a ,同向,且||||||b a b a当向量b a ,反向时,若||||b a ,则b a 的方向与b a,同向,且||||||b a b a ;若||||b a ,则b a 的方向与b a,反向,且 ||||||a b b a ;4.向量的运算律:(1)交换律:a b b a证明:当向量b a,不共线时,如上图,作平行四边形ABCD ,使a AB ,b AD 则b BC ,a DC因为b a BC AB AC,a b DC AD AC所以a b b a当向量b a ,共线时,若a 与b同向,由向量加法的定义知: b a 与a 同向,且||||||b a b aa b 与a 同向,且||||||a b a b,所以a b b a 若a 与b反向,不妨设||||b a ,同样由向量加法的定义知:b a 与a 同向,且||||||b a b aa b 与a 同向,且||||||b a b a,所以a b b a 综上,a b b a(2)结合律:)()(c b a c b a学生自己验证。
数学高中向量的减法教案
数学高中向量的减法教案
教学重点与难点:向量的减法运算规则,向量的减法计算。
教学准备:教材、教具、黑板、粉笔。
教学过程:
一、导入新课(5分钟)
教师向学生简单介绍向量的减法概念,并通过例题引出向量的减法规则。
二、示范与讲解(10分钟)
1. 向量的减法规则:将被减向量取相反向量,再进行加法运算。
2. 用具体的例子进行详细讲解,让学生理解向量的减法运算规则。
三、练习与巩固(15分钟)
1. 让学生做一些简单的向量减法计算练习题,巩固所学的知识。
2. 教师及时纠正学生的错误,指导学生正确解题。
四、课堂小结(5分钟)
通过本节课的学习,让学生总结向量的减法规则,再次强调向量减法的步骤。
五、作业布置(5分钟)
布置相关的作业,巩固学生的学习成果。
教学反思:
本节课主要围绕向量的减法运算展开,通过示范、讲解、练习等多种方式,让学生掌握向量的减法规则。
在教学过程中,要注意引导学生理解向量减法的意义,避免简单地机械运算,鼓励学生多思考多实践,提高数学思维能力。
空间向量及其运算详细教案
空间向量及其运算3。
1。
1 空间向量及其加减运算教学目标:(1)通过本章的学习,使学生理解空间向量的有关概念。
(2)掌握空间向量的加减运算法则、运算律,并通过空间几何体加深对运算的理解。
能力目标:(1)培养学生的类比思想、转化思想,数形结合思想,培养探究、研讨、综合自学应用能力。
(2)培养学生空间想象能力,能借助图形理解空间向量加减运算及其运算律的意义。
(3)培养学生空间向量的应用意识教学重点:(1)空间向量的有关概念(2)空间向量的加减运算及其运算律、几何意义.(3)空间向量的加减运算在空间几何体中的应用教学难点:(1)空间想象能力的培养,思想方法的理解和应用。
(2)空间向量的加减运算及其几何的应用和理解.考点:空间向量的加减运算及其几何意义,空间想象能力,向量的应用思想.易错点:空间向量的加减运算及其几何意义在空间几何体中的应用教学用具:多媒体教学方法:研讨、探究、启发引导。
教学指导思想:体现新课改精神,体现新教材的教学理念,体现学生探究、主动学习的思维习惯。
教学过程:(老师):同学们好!首先请教同学们一个问题:物理学中,力、速度和位移是什么量?怎样确定?(学生):矢量,由大小和方向确定(学生讨论研究)(课件)引入:(我们看这样一个问题)有一块质地均匀的正三角形面的钢板,重500千克,顶点处用与对边成60度角,大小200千克的三个力去拉三角形钢板,问钢板在这些力的作用下将如何运动?这三个力至少多大时,才能提起这块钢板?(老师):我们研究的问题是三个力的问题,力在数学中可以看成是什么?(学生)向量(老师):这三个向量和以前我们学过的向量有什么不同?(学生)这是三个向量不共面(老师):不共面的向量问题能直接用平面向量来解决么?(学生):不能,得用空间向量(老师):是的,解决这类问题需要空间向量的知识这节课我们就来学习空间向量板书:空间向量及其运算(老师):实际上空间向量我们随处可见,同学们能不能举出一些例子?(学生)举例(老师):然后再演示(课件)几种常见的空间向量身影。
高中一年级下学期数学《平面向量的运算—向量的减法运算》教案
《平面向量的运算-减法运算》教案【教学目标】1、知识与技能:掌握相反向量的概念及其在向量减法中的作用,会作两个向量的差向量,并理解其几何意义;2、过程与方法:通过类比相反数,得到相反向量的概念的过程,提升学生的逻辑推理、数学抽象核心素养,掌握向量减法的运算的方法,提升学生的数学运算核心素养;3、情感态度价值观:通过本节的学习,培养学生的类比思想、数形结合思想及划归思想,从而激发学生学习数学的热情,培养学生学习数学的兴趣。
【教学重难点】重点:向量减法的运算和几何意义;难点:减法运算时差向量方向的确定。
【教学方法】讲授法【教学用具】多媒体【教学过程】一、提出问题在数的运算中,减法是加法的逆运算,其运算法则是“减去一个数等于加上这个数的相反数”。
类比数的减法,向量的减法与加法有什么关系?如何定义向量的减法法则?二、向量的减法及运算法则1、相反向量:与向量a→长度相等,方向相反的向量,叫做a →的相反向量,记作−a→ 。
性质:(1)−(−a →)=a→; (2)规定:零向量的相反向量仍是零向量,即−0→=0→; (3)a →+(−a →)=(−a →)+a →=0→ (4)如果a →,b →互为相反向量,那么a →=−b →,b →=−a →,a →+b →=0→ 2、向量的减法:求两个向量差的运算叫做向量的减法。
a →-b →=a →+(-b →) 即:减去一个向量相当于加上这个向量的相反向量。
a →-b →叫做a →与b→的差。
向量的差仍为向量探究:向量减法的几何意义是什么?向量减法的几何意义是:a →-b →可以表示为从向量b →的终点指向向量a →的终点的向量。
作法:共起点,连终点,箭头指向被减向量。
问:如图,红色向量表示什么?思考:若向量a →,b →共线,怎样作出a →-b→?若a→,b →方向相同,则|a →−b →|=|a →|−|b →|(或者|b →|−|a →|) 若a →,b →方向相反,则|a →−b →|=|a →|+|b →|思考:若向量a →,b →不共线,怎样作出a →-b→? 3、不共线三角形的两边之和大于第三边三角形的两边之差小于第三边若a →、b →不共线时,||a →|−|b →||<|a →−b →|<|a →|+|b→| 探究: |a →−b →|,|a →|,|b→|之间的关系。
第33课 平面向量的减法
第四单元4.2.2《平面向量的减法》教案一、创设情境激发兴趣问题:我们知道,两个实数可以进行加减法运算.向量的加法已经学过了,那么两个向量的减法是怎么进行的呢?分析:我们把与向量a长度相等且方向相反的向量,叫作向量a的相反向量,记作-a. 其中a和-a互为相反向量.则有:(1)-(-a )= a .(2)任一向量与其相反向量的和是零向量 , 即 a+(−a)=(−a)+a=0.(3)若a,b互为相反向量 , 那么a = -b,b = - a,a + b= 0.规定:零向量的相反向量还是零向量.a加上b的相反向量叫作a与b的差 ,即a+(-b)= a -b= 0.求两个向量差的运算,叫向量的减法.二、自主探究讲授新知如图 4-18,CB=b,根据相反向量的定义有:CB BC-== - b,则()AB CB AB BC AB CB-=+=+-.可见,在向量减法运算中类似结论依然成立.图 4-18由上述分析,可得结论:在向量运算中,减一个向量等于加上这个向量的相反向量.把求两个向量差的运算,叫作向量的减法,即a -b= a+(-b).问题1:如何求两个非零向量的差向量呢?了解观看课件思考自我分析思考理解记忆类比实数的加减法运算,使学生自然理解知识点,激发学生学习兴趣带领学生分析引导式启发学生得出结果带领学生总结加深理解1.不共线的两个非零向量a 与b 的减法:作法:如图4-19,在平面上任取一点A ,依次作AB = a ,BC =-b ,因为 a -b= a +(-b ),对向量 a 与(-b )使用向量加法的三角形法则,得 a -b= a +(-b )=AB +BC =AC .2. 共线的两个非零向量的减法: 当非零向量a 与b 共线时 , 在平面上任取一点A ,首尾相接作AB = a ,BC =-b ,同样可得 a -b= a +(-b ) =AB +BC =AC .情形一:a 与 b 方向相同,如图 4-20:作法:(1)以A 为起点,作AB ⃗⃗⃗⃗⃗ = a ,(2)以B 为起点,作BC ⃗⃗⃗⃗⃗ =−b ,那么 AC⃗⃗⃗⃗⃗ = a -b 情形二:a 与 b 方向相反,如图 4-21:作法:(1)以A 为起点,作AB ⃗⃗⃗⃗⃗ = a ,(2)以B 为起点,作BC ⃗⃗⃗⃗⃗ =−b ,那么 AC⃗⃗⃗⃗⃗ = a -b .理解记忆 思考 辨析 思考 归纳引导启发 学生 思考 仔细 分析 关键 词语 “首尾 相接“ 进一步 理解 加深 记忆第2课时教学过程教学活动学生活动设计思路三、典型例题巩固知识例 1如图4-22(1) , 已知向量a,b,求作向量a-b,并指出其几何意义.解:如图 4-22(2)所示,以平面上任一点A为起点,作AB= a,AD=b,BC=-b,由向量减法的定义可知 ,AC=a+(-b)=a-b .连接AC,则向量AC即为所求的差向量.又因为AD+DB=AB,即b+DB=a ,所以DB=a-b .因此,向量减法的几何意义是:a-b表示把a与b平移到同一起点后 , 向量b 的终点指向向量a 的终点的向量.例2填空:(1)AB AD-=_____________ ;(2)BC BA-=_____________ ;(3)OD OA-=_____________ .解:根据向量减法的定义,减一个向量等于加上它观察思考主动求解小组讨论交流通过例题领会帮助学生更好理解掌握知识点通过例题进一步领会的相反向量,可知, (1)AB AD -=+AB AD -()=+AB DA DA AB DB =+=;(2)BC BA -=+BC BA -()=+BC AB AB BC AC =+=;(3)OD OA -=+OD OA -()=+OD AO AO OD AD +==.思考:当向量a 与b 不共线时,把和向量a+b 与差向量 a -b 作在一个图上,可以得出什么结论?方法提炼:向量减法作图的两种常用方法: 1. 定义法.向量 a 与 b 的差,即是向量 a 加上向量 b 的相反向量,即 a -b = a +(-b ).此时向量a 与向量-b 依然遵循“首尾相接,由始至终”的向量加法口诀.作法如图4-23所示:2. 几何意义法.如图 4-24,把向量a 与向量b 平移到同一起点后,向量b 的终点指向向量a 的终点的向量就是 a -b .即“同一起点,减指被减”.(减向量指向被减向量)思考 归纳 理解 记忆观察 思考 主动 求解 归纳 领会 掌握观察 学生 是否 理解 知识 点 及时 了解 学生 知识 掌握 的情 况 强化 思想 及时 练习 巩固 所学 知识四、随堂练习 强化运用 1.填空.(1)AB AD -=_____________;(2)BA BC -=_____________; (3)BC BA -=_____________;(4)OA OB -=_____________; (5)OD OA -=_____________.2.已知下列各组向量a ,b ,求作 a +b 和 a -b .3.根据图形填空.(1)OA OB -=_____________; (2)OC OA -=_____________ . 五、 课堂小结 归纳提高1. 向量减法的定义及几何意义.2. 向量减法的运算法则:三角形法则.3. 向量减法作图的两种常用方法. 六、布置作业 拓展延伸1.分层作业:(必做)习题4.2.2水平一;(选做)水平二2.读书部分:教材观察 思考领会 掌握 主动 求解 归纳 总结记录检验 学生 学习 效果 关注 学生 练习 中的 错误 使得 学生 在总 结中 提高 分层次 要求教学反思根据教师上课实际情况,课后填写:学生知识、技能的掌握情况、情感态度、思维情况、学生合作交流的情况,及时总结反思。
中职数学基础模块7.1.3向量的减法教学设计教案人教版
第 1 页 (总 页)
太原市教研科研中心研制
课时教学流程
教师行为 在某地的一条大河中,水流速度为 v1,摆 渡船需要以 v2 的实际航速到达河对岸,那么摆 渡船自身应以怎样的航行速度行驶呢?
学生行为 教师提出问题, 引入课题. 学生思考.
设计意图
☆补充设计☆
从实际生活经历出
发,激发学生的学习兴
趣,同时体现向量的应
用向量 a 和 b 分别表示向量 → AC 和 → DB. D C
教师给出问题. 学生根据向量的 加法运算和减法运算 完成解答.
平行四边形是向量 运算中经常遇到的图 形,此题作为重点让学 生熟练掌握.
b
A
a B
解 连接 AC,DB,由向量求和的平行四
边形法则,有→ AC =→ AB +→ AD=a+b;
(3) → OD-→ OA.
o B
3.已知□ABCD,→ AB =a,→ AD=b,试用向
量 a 和 b 分别表示以下向量
(1) → CD,→ CA ;
(2) → BD,→ CA .
学生练习巩固.
练习中作图与化简 两类题型都要练到,使 学生对减法法则认识更 加深刻.
第 4 页 (总 页)
太原市教研科研中心研制
2.相反向量 与向量 a 等长且方向相反的向量叫做 a
第 2 页 (总 页)
太原市教研科研中心研制
的相反向量,记作-a.
课时教学流程
a -a
教师作图,引导
思考:向量减法是加法运算的逆运算吗? 学生完成证明:
B
a-b
b O
A a
a+(-b)-ba- Nhomakorabea=a+(-b) C
例1 已知□ABCD,→ AB =a,→ AD=b,试
向量的加法与减法(优质课教案)
课题:向量的加法与减法教案目的:⑴掌握向量加法的定义⑵会用向量加法的三角形法则和向量的平行四边形法则作两个向量的和向量⑶掌握向量加法的交换律和结合律,并会用它们进行向量计算教案重点:用向量加法的三角形法则和平行四边形法则,作两个向量的和向量.教案难点:向量的加法和减法的定义的理解授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教案过程:一、复习引入:1.向量的概念:我们把既有大小又有方向的量叫向量2.向量的表示方法:①用有向线段表示;②用字母a、b等表示;③用有向线段的起点与终点字母:;④向量的大小――长度称为向量的模,记作||.3.零向量、单位向量概念:①长度为0的向量叫零向量,记作的方向是任意的②长度为1个单位长度的向量,叫单位向量.零向量、单位向量的定义都是只限制大小,不确定方向.4.平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.向量a、b、c平行,记作a∥b∥c.5.相等向量定义:长度相等且方向相同的向量叫相等向量.(1)向量a与b相等,记作a=b;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关...........6.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上.(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.7.对向量概念的理解的字母是有顺序的,起点在前终点在后,所以我们说有向线段有三个要素:起点、方向、长度;既有大小又有方向的量,我们叫做向量,有二个要素:大小、方向.向量不能比较大小;实数与向量不能相加减,但实数与向量可以相乘.向量与有向线段的区别:向量是自由向量,只有大小和方向两个要素;与起点无关:只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段 二、讲解新课:1.向量的加法:求两个向量和的运算,叫做向量的加法几何中向量加法是用几何作图来定义的,一般有两种方法,即向量加法的三角形法则(“首尾相接,首尾连”)和平行四边形法则(对于两个向量共线不适应)课本中采用了三角形法则来定义,这种定义,对两向量共线时同样适用,当向量不共线时,向量加法的三角形法则和平行四边形法则是一致的如图,已知向量a 、b 在平面内任取一点A ,作a =,b =,则向量叫做a 与b 的和,记作b a +,即b a =+=+特殊情况:(1)BBAabba +ba +AABC C )2()3(对于零向量与任一向量a ,有a a a =+=+00 探究:(1)两相向量的和仍是一个向量;(2)当向量a 与b 不共线时,a +b 的方向不同向,且|a +b |<|a |+|b |。
向量的加减法教案
向量的加减法教案第一章:向量简介1.1 向量的定义向量的概念:具有大小和方向的量向量的表示方法:用箭头表示,例如→a 或<a, b>1.2 向量的性质向量的大小:向量的长度或模向量的方向:向量的起点到终点的线段单位向量:大小为1的向量1.3 向量的坐标表示二维空间中的向量:用(x, y) 表示三维空间中的向量:用(x, y, z) 表示第二章:向量的加法2.1 向量加法的定义向量加法:将两个向量的对应分量相加得到新的向量2.2 向量加法的几何意义向量加法:起点相同的两个向量,终点相加得到一个新的向量2.3 向量加法的坐标表示二维空间中的向量加法:(a, b) + (c, d) = (a+c, b+d)三维空间中的向量加法:(a, b, c) + (d, e, f) = (a+d, b+e, c+f) 第三章:向量的减法3.1 向量减法的定义向量减法:将两个向量的对应分量相减得到新的向量3.2 向量减法的几何意义向量减法:起点相同的两个向量,终点相减得到一个新的向量3.3 向量减法的坐标表示二维空间中的向量减法:(a, b) (c, d) = (a-c, b-d)三维空间中的向量减法:(a, b, c) (d, e, f) = (a-d, b-e, c-f)第四章:向量的数乘4.1 向量数乘的定义向量数乘:将一个向量与一个实数相乘得到新的向量4.2 向量数乘的几何意义向量数乘:将向量的大小乘以实数,方向不变4.3 向量数乘的坐标表示二维空间中的向量数乘:(a, b) c = (ac, bc)三维空间中的向量数乘:(a, b, c) c = (ac, bc, cc)第五章:向量加减法的应用5.1 向量加减法的几何应用向量加减法在几何图形中的应用,例如计算向量位移、速度等5.2 向量加减法的物理应用向量加减法在物理学中的应用,例如计算力的合成和分解5.3 向量加减法的实际应用向量加减法在计算机图形学中的应用,例如计算图像的位移和旋转第六章:向量加减法的运算律6.1 向量加法的运算律交换律:向量a + 向量b = 向量b + 向量a结合律:(向量a + 向量b) + 向量c = 向量a + (向量b + 向量c)6.2 向量减法的运算律减法与加法的关联:向量a 向量b = 向量a + (-向量b)结合律:(向量a 向量b) 向量c = 向量a (向量b + 向量c)第七章:向量的数乘运算7.1 向量数乘的运算律分配律:向量a (向量b + 向量c) = (向量a 向量b) + (向量a 向量c) 结合律:向量a (向量b 向量c) = (向量a 向量b) 向量c7.2 标量与向量的运算标量与向量相乘:标量向量= 向量标量第八章:向量加减法的应用举例8.1 二维空间中的向量加减法应用例题:计算物体在两个力的作用下的位移8.2 三维空间中的向量加减法应用例题:计算飞机在两个推力的作用下的位移第九章:向量的数乘应用举例9.1 二维空间中的向量数乘应用例题:计算物体在力的大小变化后的加速度9.2 三维空间中的向量数乘应用例题:计算飞机在推力大小变化后的加速度向量加减法的基本概念、运算律及应用10.2 向量加减法的拓展向量加减法在其他领域的应用,例如生物学、经济学等10.3 向量加减法的练习题及解答提供一些向量加减法的练习题,帮助学生巩固所学知识重点和难点解析一、向量简介1.1 向量的定义与表示方法:理解向量的基本概念,以及向量的大小和方向。
高中数学向量减法教案
高中数学向量减法教案
教学目标:
1. 了解向量减法的定义与性质;
2. 熟练掌握向量减法的运算方法;
3. 能够解决相关的数学问题。
教学重点:
1. 向量减法的定义;
2. 向量减法的运算方法。
教学难点:
1. 理解向量减法的几何意义;
2. 运用向量减法解决实际问题。
教学准备:
1. 教师准备课件、黑板、白板笔等教学工具;
2. 学生准备笔记本、铅笔等学习工具。
教学步骤:
一、导入:通过引导学生回顾前几节课的知识,复习向量的定义和向量的加法,激发学生对本节课内容的学习兴趣。
二、讲解:介绍向量减法的定义和性质,引导学生理解向量减法的几何意义,并演示向量减法的运算方法。
三、练习:让学生进行相关的练习,包括计算向量的减法并求解具体的数学问题。
四、拓展:引导学生思考向量减法在实际生活中的应用,并提出相关问题,让学生运用向量减法解决实际问题。
五、总结:对本节课的内容进行总结,强调向量减法的重点及运用方法,帮助学生加深对向量减法的理解。
六、作业:布置相关的作业,让学生巩固向量减法的知识点,并在下节课前完成作业。
教学反思:
通过本节课的教学,学生应该能够掌握向量减法的定义与性质,熟练运用向量减法的运算方法,并能够解决相关的数学问题。
同时,应该能够加深对向量减法的理解,提高解决实际问题的能力。
向量的加减法教案
向量的加减法教案教案名称:向量的加减法课时数:2课时教学目标:1.知识目标:了解向量的加法和减法的定义;掌握向量的加法和减法的计算方法;2.能力目标:能够应用向量的加法和减法解决实际问题;3.情感目标:培养学生乐于探究数学问题的兴趣,培养学生团队合作意识。
教学重点:1.向量的加法和减法的定义;2.向量的加法和减法的计算方法;3.向量的加法和减法的应用。
教学难点:1.复杂问题的向量相加或相减;2.向量相减的组合应用。
教学方法:1.情境教学法:通过启发引导和情境模拟的方式,提高学生的学习兴趣和动手能力;2.合作学习法:通过小组合作讨论和交流思考,培养学生的团队合作意识。
教学准备:1.教师准备:课件、多媒体设备、小黑板等;2.学生准备:课本、作业本、笔、尺等。
教学过程:Step 1 引入新知1.教师出示两个有向线段,并提问:“什么是向量?”学生回答后,教师进一步引导:“向量有哪些表示方法?”2.学生回答后,教师出示标准向量和单位向量,并让学生描述它们的特点。
Step 2 向量的加法1.教师出示两个向量,分别是AB和CD,然后分析向量相加的方法。
2.教师引导学生进行手工测量,并计算向量相加的过程,然后用标准向量和单位向量进行验证。
3.学生进行小组讨论,总结出向量相加的规律,并将规律记录在笔记中。
Step 3 向量的减法1.教师出示两个向量,分别是AB和CD,然后分析向量相减的方法。
2.教师引导学生进行手工测量,并计算向量相减的过程,然后用标准向量和单位向量进行验证。
3.学生进行小组讨论,总结出向量相减的规律,并将规律记录在笔记中。
Step 4 综合应用1.教师设计一个实际问题,如:将物品从A点搬运到B点,再从B点搬运到C点,学生根据问题提供的向量情况,计算运动过程中的位移向量和总位移向量。
2.学生进行小组讨论,解决实际问题,并将答案写在白板上。
3.教师选择几组答案进行讲解,并与学生讨论是否存在其他解法。
数学教案向量的基本运算
数学教案向量的基本运算数学教案:向量的基本运算一、引言在数学中,向量是一个重要的概念,它可以用来描述物理空间中的位移、速度和力等物理量。
向量的基本运算包括加法、减法和数乘运算,它们在数学和物理学中有着广泛的应用。
本教案将从理论和实践两个方面,详细介绍向量的基本运算。
二、向量的表示与性质向量通常用有序数组表示,如(A1, A2, A3)。
向量的性质包括大小、方向和共线性。
大小由向量的模表示,方向由箭头指向确定,共线性由向量的比例关系决定。
三、向量的加法运算1. 向量的三要素及图解法:两个向量相加所得的和向量,大小等于两个向量大小之和,方向与第一个向量和第二个向量的连接方向相同。
2. 分量法:将向量分解为水平方向和垂直方向上的分量,然后分别对应相加。
3. 示例题:根据图示求两个向量的和向量。
四、向量的减法运算1. 向量的定义及图解法:两个向量相减所得的差向量,大小等于两个向量大小之差,方向与第一个向量和第二个向量的连接方向相反。
2. 分量法:将向量分解为水平方向和垂直方向上的分量,然后分别对应相减。
3. 示例题:根据图示求两个向量的差向量。
五、向量的数乘运算1. 向量的定义及图解法:一个向量乘以一个实数所得的向量,向量的大小等于实数与向量大小的乘积,方向与原向量相同(正数)或相反(负数)。
2. 分量法:将向量的分量分别乘以实数。
3. 示例题:根据图示求向量的数乘。
六、向量的基本运算的性质1. 加法和减法的性质:交换律、结合律、零向量和负向量。
2. 数乘的性质:分配律、加法的结合律、单位向量。
七、实际应用1. 位移向量:描述物体在空间中的位置变化。
2. 速度向量:描述物体在空间中的运动状态。
3. 力向量:描述物体受力及其方向。
八、小结通过本教案的学习,我们了解了向量的基本运算,包括加法、减法和数乘运算。
向量运算不仅在数学中有着广泛的应用,而且在物理学和工程学等领域也具有重要的意义。
在实际问题中,我们可以通过运用向量的基本运算来描述物体的位置、运动和受力等情况,提高问题解决的效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《向量的减法》教案
英德中学黄小玲
教学目标:
〈一〉知识目标
1、掌握向量的减法运算,并理解其几何意义,会作两个向量的差向量。
2、理解相反向量的概念及向量加法与减法的逆运算关系。
〈二〉能力目标
1、向量的运算能反映出一些物理规律,从而加深学科之间的联系,提高我们的应用能力。
2、培养学生逻辑思维能力、发散思维能力及从多方位,多角度分析问题的能力,提高学生自身解题的能力。
〈三〉德育目标
理解事物之间相互转化、相互联系的辩证思想。
〈四〉美育目标
通过学习体会数学的内在美及向量证明方法的逻辑美。
教学重点:向量减法的运算及其几何意义。
教学难点:向量减法定义的理解。
学法引导:类比向量加法运算与数的运算,培养学生的观察力,提高学习兴趣及探究精神。
教学过程:
一、创设情境
如图,已知a、b,求作向量c,使c =a +b。
(学生板演后,保留图形,方便后面对比)
向量是否有减法?如何理解向量的减法?
我们知道,减法是加法的逆运算,类比实数的减法运算,能否把向量的减法同样作为向量加法的逆运算引入?二、展示目标
三、自主探究
阅读课本p94---p96 2.2.2向量减法运算及其几何意义,回答下列问题:
1、小东从A地走10米到B地,又再从B地走10米到A地,他的位移是多少?
2、什么叫做相反向量?相关性质?
3、你如何理解向量减法的定义?
4、已知两个向量a,b,如何作出两个向量的差?
小试牛刀:
(1)设b是a相反向量,则下列说法错误的是( C )
A、a与b的长度必相等
B、a∥b
C、a与b一定不相等
D、a是b的相反向量
(2)下列等式,①a + 0 =a ②、b +a = a +b ③、-(-a)= a
④、a +(-a)=0 ⑤、a +(-b)=a-b正确的有( )个?
A、2
B、3
C、4
D、5
(3)已知向量a, b怎样作出向量m,使m =a-b?
四、共同探导
1、从上面习题(3)中,引导从之前的加法作图法中,归纳出作两向量差的方法。
三角形法则:①起点重合,连接两向量终点,箭头指向被减数(几何意义)
②、利用a-b=a +(-b)(板书演示作图过程)
2、改变a、b的位置(如下图),该怎样作出 a-b?
3、上题中,向量a、b不共线,若a、b共线时,怎样作a-b?(指名板演,师生共同评议)引导归纳作两共线向量差的方法:利用向量减法的几何意义。
并与怎样作a +b比较。
5、再展牛刀
a
b
a
b
a b
a
b
(1)课本p95例3 (2)课本p96 第3题 (3) 课本p96 第2题
(4)、已知菱形ABCD 的边长为2,求向量AB CB CD -+的模的长。
五、 新手上路
1、例4 如图,平行四边形ABCD 中,AB =a ,AD =b ,你能用a 、b 表示向量AC ,DB 吗?
分析:AC =a +b ,DB =a -b ,BD =b -a ,并指导
学生如何判断是做向量加法还是减法。
强调:上题结论在以后的应用中非常广泛,应该理解并记住 变式:(1)当a 、b 满足什么条件时,a +b 与 a -b 垂直? (2)当a 、b 满足什么条件时,│a +b │=│a -b │? (3)a +b 与 a -b 可能是相等向量吗?
(4)当a 、b 满足什么条件时,a +b 平分a 与b 所夹的角?
(5)若│a │=│b │=│a -b │,求a 与a +b 所在直线的夹角
知识迁移:已知│a │=6,│b │=8,且│a +b │=│a -b │,则│a -b │= 。
(提示:解法一:以a 、b 、a +b 、、a -b 组成一个平行四边形的边与对角线。
解法二:利用必修2“平行四边形对角线的平方和等于各边的平方和”)
2、我们在上节课已证出,对任意给定的向量a 、b ,都有│a +b │≤|a |+|b |,你还能证明│|a |-|b |│≤│a -b │,并指出等式成立的条件吗?
若把上面两式中的b 换成-b ,各得到什么式子?(│a -b │≤|a |+|b |,│|a |-|b |│≤│a +b │)
综合四式,可得什么结论?(│|a |-|b |│≤│a ±b │≤|a |+|b |) 此三角不等式在后继学习中(即证明不等式)有着重要的作用,需深入理解记忆。
六、成果检验
1、在三角形ABC 中,BC =a ,CA =b ,则AB 等于( B )
A 、a +b
B 、-a +(-b )
C 、a - b
D 、b – a 2、在平行四边形ABCD 中,若│AD AB
+│=│AD AB -│,则边AB 与AD 所夹的角=
3、若向量a 、b 满足|a |=8,|b |=12,则│a +b │的最小值为 4 ,│a -b │的最
大值为 20 。
七、学习内容及学习方法(学生谈) 学习内容:
1、 相反向量的定义、性质
2、 向量减法的意义
3、
两向量和、差的作法及比较
学习方法:
向量的减法与加法互为逆运算,有关向量的减法可同加法向类比,也可同实数的减法向类比,体现化生为熟,化未知为已知的化归思想。
师补充:在学习过程中,要养成对例题或习题进行变式训练的习惯,培养我们的发散思维的能力,从多方位,多角度分析问题,提高我们自身解题的能力。
八、 作业
1、已知O 是平行四边形ABCD 的对角线AC 和BD 的交点,若AB =a ,BC = b ,OD =c , OB =c + a +b ?并试证明你的结论。
2、课本p101 习题2.2A 组4、5及第二教材相关习题。
C。