高一数学函数的单调性教案[1]
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的单调性
教学过程设计
一、引入新课
师:请同学们观察下面两组在相应区间上的函数,然后指出这两组函数之间在性质上的主要区别是什么?
(用投影幻灯给出两组函数的图象.)
第一组:
第二组:
二、对概念的分析
引入定义
师:图中对于区间[a,b]上的任意,,当时,都有,因此在区间[a,b]上是单调递增的,区间[a,b]是函数的单调增区间;而图中对于区间[a,b]上的任意,,当时,都有,
因此在区间[a,b]上是单调递减的,区间[a,b]是函数的单调减区间.(师:因此我们可以说,增函数就其本质而言是在相应区间上较大的自变量对应……
生:减函数就其本质而言是在相应区间上较大的自变量对应较小的函数值的函数.
生:我认为在定义中,有一个词“给定区间”是定义中的关键词语.
师:很好,我们在学习任何一个概念的时候,都要善于抓住定义中的关键词语,在学习几个相近的概念时还要注意区别它们之间的不同.增函数和减函数都是对相应的区间而言的,离开了相应的区间就根本谈不上函数的增减性.请大家思考一个问题,我们能否说一个函数在x=5时是递增或递减的?为什么?
生:不能.因为此时函数值是一个数.
说明单调性是局部性质
三、概念的应用
例1 图4所示的是定义在闭区间[-5,5]上的函数f(x)的图象,根据图象说出f(x)的单调区间,并回答:在每一个单调区间上,f(x)是增函数还是减函数?
例2 证明函数f(x)=3x+2在(-∞,+∞)上是增函数.
师:他的证明思路是清楚的.一开始设,是(-∞,+∞)内任意两个自变量,并
设(边说边用彩色粉笔在相应的语句下划线,并标注“①→设”),然后看
,这一步是证明的关键,再对式子进行变形,一般方法是分解因式或配成完全平方的形式,这一步可概括为“作差,变形”(同上,划线并标注”②→作差,变形”).但
美中不足的是他没能说明为什么<0,没有用到开始的假设“”,不要以为其显而易见,在这里一定要对变形后的式子说明其符号.应写明“因为x1<x2,所以
,从而<0,即.”这一步可概括为“定符号”(在黑板上板演,并注明“③→定符号”).最后,作为证明题一定要有结论,我们把它称之为第四步“下结论”(在相应位置标注“④→下结论”).
这就是我们用定义证明函数增减性的四个步骤,请同学们记住.需要指出的是第二步,如果函数y=f(x)在给定区间上恒大于零,也可以
小.
调函数吗?并用定义证明你的结论.
全体定义域上的减函数?
四、课堂小结
生:这节课我们学习了函数单调性的定义,要特别注意定义中“给定区间”、“属于”、“任意”、“都有”这几个关键词语;在写单调区间时不要轻易用并集的符号连接;最后在用定义证明函数的单调性时,应该注意证明的四个步骤.
数.
.(*)
+b>0.由此可知(*)式小于0,即.