2020年九年级数学上册专题25.1随机事件与概率(测试)
2020华师大版九年级数学上册第25章 随机事件的概率水平测试及答案
【文库独家】第25章 随机事件的概率水平测试一、精心选一选:1.下列事件为必然事件的是( )A .买一张电影票,座位号是偶数;B .抛掷一枚普通的正方体骰子1点朝上C .百米短跑比赛,一定产生第一名;D .明天会下雨2.下列说法中正确的个数是 ( ) ①如果一件事情发生的可能性很小,那么它就不可能发生 ②如果一件事情发生的可能性很大,那么它就必然发生 ③如果一件事情不可能发生,那么它是必然事件 A .0 B .1 C .2 D .33.下列事件:①打开电视机,它正在播广告;②从装有红球的不透明袋子中,任意摸出一个球,恰是白球;③两次抛正方体骰子,掷得的数字之和小于13;④抛硬币1000次,第1000次正面向上.其中为随机事件的是( ).A .①③B .①④C .②③D .②④4.两个正的有理数相加,和一定是正有理数,这件事情是( )A .必然事件B .不可能事件C .随机事件D .其他 5.如图1,转动转盘,转盘停止转动时指针指向阴影部分的概率是( )BA .58B .12C .34D .78图1 6.一个不透明的袋中装有除颜色外均相同的5个红球和3个黄球,从中随机摸出一个,摸到黄球的概率是( )A .18 B . 13 C . 38 D .357. 长为4cm 、5cm 、6em 的三条线段能围成三角形的事件是( )A .随机事件B .不可能事件C .必然事件D .以上都不是8.下列事件中,不可能事件是( )A .掷一枚六个面分别刻有1~6数字的均匀正方体骰子,向上一面的点数是“5”B .任意选择某个电视频道,正在播放北京奥运会开幕式C .明天会天晴D .在平面内,度量一个三角形的内角度数,其和为360 9. 掷一枚骰子,出现的以下点数中,可能性最大的是( )A .点数为3的倍数B .点数为奇数C .点数不小于3D .点数不大于310.某超级市场失窃,大量的商品在夜间被罪犯用汽车运走。
三个嫌疑犯被警察局传讯,警察局已经掌握了以下事实:(1)罪犯不在A 、B 、C 三人之外;(2)C 作案时总得有A 作从犯;(3)B 不会开车。
概率考点训练课件人教版九年级数学上册
【答案】 A
9 抛掷一枚质地均匀的硬币,若前3次都是正面朝上, 则第4次正面朝上的概率( )
A.小于12 C.大于12
B.等于12 D.无法确定
【点拨】 抛掷一枚质地均匀的硬币,正面朝上的概率为12.
【答案】 B
【点易错】 本题易对概率的意义理解不透而致错,概率是一个常数,
【点拨】 利用随机事件的定义、概率的意义、中位数及众数的定
义、方差的意义对各选项逐一判断.
【答案】 D
3 【2023·包头】2022年2月20日北京冬奥会大幕落下, 中国队在冰上、雪上项目中,共斩获9金4银2铜,创 造中国队冬奥会历史最好成绩,某校为普及冬奥知识, 开展了校内冬奥知识竞赛活动,并评出一等奖3名, 现欲从小明等3名一等奖获得者中任选2名参加全市冬 奥知识竞赛,则小明被选到的概率为( ) A.16 B.13 C.12 D.23
12
(1)在调查活动中,教育局采取的调查方式是 _抽__样__调__查___(填写“普查”或“抽样调查”);
(2)教育局抽取的初中生有___3_0_0___名,扇形统计图中m的 值是____3_0___;
(3)已知平均每天完成作业时间在“100≤t<110”分钟的9 名初中生中有5名男生和4名女生,若从这9名学生中随 机抽取一名进行访谈,且每一名学生被抽到的可能性相 5 同,则恰好抽到男生的概率是____9____;
【点拨】 (1)根据题意可知采取的是抽样调查. (2)教育局抽取的初中生有 45÷15%=300(名),1-15%
-3%-7%-45%=30%,∴m=30. (3)从 9 名学生中随机抽取一名共有 9 种等可能结果,抽
到男生的结果有 5 种,∴P(恰好抽到男生)=59.
2020年华东师大新版九年级(上)《第25章+随机事件的概率》中考真题套卷(2)【附答案】
2020年华东师大新版九年级(上)《第25章随机事件的概率》中考真题套卷(2)一、选择题(共10小题)1.从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.2.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.3.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.4.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球5.下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次6.某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.7.不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.B.C.D.8.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数9.下列命题正确的是()A.概率是1%的事件在一次试验中一定不会发生B.要了解某公司生产的100万只灯泡的使用寿命,可以采用全面调查的方式C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的成绩更稳定D.随意翻到一本书的某页,页码是奇数是随机事件10.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2二、填空题(共10小题)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.12.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球个.13.一个猜想是否正确,科学家们要经过反复的试验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数61404040100003600080640出现“正面朝3109204849791803139699上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为(精确到0.1).14.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.15.不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是.16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球个.17.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.18.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是.19.若从﹣2,0,1这三个数中任取两个数,其中一个记为a,另一个记为b,则点A(a,b)恰好落在x轴上的概率是.20.“抛掷一枚质地均匀的硬币,正面向上”是事件(从“必然”、“随机”、“不可能”中选一个).三、解答题(共10小题)21.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数﹣1,2,﹣3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.22.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为,a=;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.23.我市某校准备成立四个活动小组:A.声乐,B.体育,C.舞蹈,D.书画,为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了名学生,扇形统计图中的m值是;(2)请补全条形统计图;(3)喜爱“书画”的学生中有两名男生和两名女生表现特别优秀,现从这4人中随机选取两人参加比赛,请用列表或画树状图的方法求出所选的两人恰好是一名男生和一名女生的概率.24.某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.根据统计图:(1)求该校被调查的学生总数及评价为“满意”的人数;(2)补全折线统计图;(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?25.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.26.如图是某商场第二季度某品牌运动服装的S号,M号,L号,XL号,XXL号销售情况的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)求XL号,XXL号运动服装销量的百分比;(2)补全条形统计图;(3)按照M号,XL号运动服装的销量比,从M号、XL号运动服装中分别取出x件、y 件,若再取2件XL号运动服装,将它们放在一起,现从这(x+y+2)件运动服装中,随机取出1件,取得M号运动服装的概率为,求x,y的值.27.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.28.文化是一个国家、一个民族的灵魂,近年来,央视推出《中国诗词大会》、《中国成语大会》、《朗读者》、《经曲咏流传》等一系列文化栏目.为了解学生对这些栏目的喜爱情况,某学校组织学生会成员随机抽取了部分学生进行调查,被调查的学生必须从《经曲咏流传》(记为A)、《中国诗词大会》(记为B)、《中国成语大会》(记为C)、《朗读者》(记为D)中选择自己最喜爱的一个栏目,也可以写出一个自己喜爱的其他文化栏目(记为E).根据调查结果绘制成如图所示的两幅不完整的统计图.请根据图中信息解答下列问题:(1)在这项调查中,共调查了多少名学生?(2)将条形统计图补充完整,并求出扇形统计图中“B”所在扇形圆心角的度数;(3)若选择“E”的学生中有2名女生,其余为男生,现从选择“E”的学生中随机选出两名学生参加座谈,请用列表法或画树状图的方法求出刚好选到同性别学生的概率.29.甲、乙两队进行打乒乓球团体赛,比赛规则规定:两队之间进行3局比赛,3局比赛必须全部打完,只要赢满2局的队为获胜队,假如甲、乙两队之间每局比赛输赢的机会相同,且甲队已经赢得了第1局比赛,那么甲队最终获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)30.若n是一个两位正整数,且n的个位数字大于十位数字,则称n为“两位递增数”(如13,35,56等).在某次数学趣味活动中,每位参加者需从由数字1,2,3,4,5,6构成的所有的“两位递增数”中随机抽取1个数,且只能抽取一次.(1)写出所有个位数字是5的“两位递增数”;(2)请用列表法或树状图,求抽取的“两位递增数”的个位数字与十位数字之积能被10整除的概率.2020年华东师大新版九年级(上)《第25章随机事件的概率》中考真题套卷(2)参考答案与试题解析一、选择题(共10小题)1.从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.B.C.D.【解答】解:∵在,0,π,3.14,6这5个数中只有0、3.14和6为有理数,∴从,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是.故选:C.2.如图,一个游戏转盘中,红、黄、蓝三个扇形的圆心角度数分别为60°,90°,210°.让转盘自由转动,指针停止后落在黄色区域的概率是()A.B.C.D.【解答】解:∵黄扇形区域的圆心角为90°,所以黄区域所占的面积比例为=,即转动圆盘一次,指针停在黄区域的概率是,故选:B.3.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球后不放回,再随机摸出一个小球,则两次摸出的小球标号之和等于5的概率为()A.B.C.D.【解答】解:画树状图得:∵共有12种等可能的结果,两次摸出的小球标号之和等于5的有4种情况,∴两次摸出的小球标号之和等于5的概率是:=.故选:C.4.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球【解答】解:A.摸出的是3个白球是不可能事件;B.摸出的是3个黑球是随机事件;C.摸出的是2个白球、1个黑球是随机事件;D.摸出的是2个黑球、1个白球是随机事件,故选:A.5.下列说法正确的是()A.不可能事件发生的概率为0B.随机事件发生的概率为C.概率很小的事件不可能发生D.投掷一枚质地均匀的硬币1000次,正面朝上的次数一定是500次【解答】解:A、不可能事件发生的概率为0,故本选项正确;B、随机事件发生的概率P为0<P<1,故本选项错误;C、概率很小的事件,不是不发生,而是发生的机会少,故本选项错误;D、投掷一枚质地均匀的硬币1000次,是随机事件,正面朝上的次数不确定是多少次,故本选项错误;故选:A.6.某个密码锁的密码由三个数字组成,每个数字都是0﹣9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.【解答】解:∵共有10个数字,∴一共有10种等可能的选择,∵一次能打开密码的只有1种情况,∴一次能打开该密码的概率为.故选:A.7.不透明的袋子中有两个小球,上面分别写着数字“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A.B.C.D.【解答】解:列表如下:12123234由表可知,共有4种等可能结果,其中两次记录的数字之和为3的有2种结果,所以两次记录的数字之和为3的概率为=,故选:C.8.下列事件中,必然事件是()A.抛掷1个均匀的骰子,出现6点向上B.两直线被第三条直线所截,同位角相等C.366人中至少有2人的生日相同D.实数的绝对值是非负数【解答】解:A、抛掷1个均匀的骰子,出现6点向上的概率为,故A错误;B、两条平行线被第三条直线所截,同位角相等,故B错误;C、366人中平年至少有2人的生日相同,闰年可能每个人的生日都不相同,故C错误;D、实数的绝对值是非负数,故D正确;故选:D.9.下列命题正确的是()A.概率是1%的事件在一次试验中一定不会发生B.要了解某公司生产的100万只灯泡的使用寿命,可以采用全面调查的方式C.甲乙两人各自跳远10次,若他们跳远成绩的平均数相同,甲乙跳远成绩的方差分别为0.51和0.62,则乙的成绩更稳定D.随意翻到一本书的某页,页码是奇数是随机事件【解答】解:概率为1%的事件在一次试验中也可能发生,只是可能性很小,因此选项A 不符合题意;把100万只灯泡采取全面调查,一是没有必要,二是破坏性较强,不容易完成,因此选项B不符合题意;方差小的稳定,因此选项C不符合题意;随意翻到一本数的某页,页码可能是奇数、也可能是偶数,因此选项D符合题意;故选:D.10.如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为()A.6m2B.7m2C.8m2D.9m2【解答】解:假设不规则图案面积为xm2,由已知得:长方形面积为20m2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:,解得x=7.故选:B.二、填空题(共10小题)11.在一个不透明的口袋中,装有A,B,C,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是.【解答】解:画树状图如下:∴P(两次摸到同一个小球)==故答案为:12.在一个不透明的袋子中装有除颜色外完全相同的3个白球、若干红球,从中随机摸取1个球,摸到红球的概率是,则这个袋子中有红球5个.【解答】解:设这个袋子中有红球x个,∵摸到红球的概率是,∴=,∴x=5,经检验:x=5是分式方程的解.故答案为:5.13.一个猜想是否正确,科学家们要经过反复的试验论证.下表是几位科学家“掷硬币”的实验数据:实验者德•摩根蒲丰费勒皮尔逊罗曼诺夫斯基掷币次数614040401000036000806403109204849791803139699出现“正面朝上”的次数频率0.5060.5070.4980.5010.492请根据以上数据,估计硬币出现“正面朝上”的概率为0.5(精确到0.1).【解答】解:因为表中硬币出现“正面朝上”的频率在0.5左右波动,所以估计硬币出现“正面朝上”的概率为0.5.故答案为0.5.14.如图,将一个棱长为3的正方体的表面涂上红色,再把它分割成棱长为1的小正方体,从中任取一个小正方体,则取得的小正方体恰有三个面涂有红色的概率为.【解答】解:由题意可得:小立方体一共有27个,恰有三个面涂有红色的有8个,故取得的小正方体恰有三个面涂有红色的概率为:.故答案为:.15.不透明的袋子中装有红、蓝小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到相同颜色的小球的概率是.【解答】解:画树状图为:共有4种等可能的结果,其中两次都摸到相同颜色的小球的结果数为2,所以两次都摸到相同颜色的小球的概率==.故答案为.16.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球8个.【解答】解:由题意可得,摸到黑球和白球的频率之和为:1﹣0.4=0.6,∴总的球数为:(8+4)÷0.6=20,∴红球有:20﹣(8+4)=8(个),故答案为:8.17.如图,一只蚂蚁在正方形ABCD区域内爬行,点O是对角线的交点,∠MON=90°,OM,ON分别交线段AB,BC于M,N两点,则蚂蚁停留在阴影区域的概率为.【解答】解:∵四边形ABCD为正方形,点O是对角线的交点,∴∠MBO=∠NCO=45°,OB=OC,∠BOC=90°,∵∠MON=90°,∴∠MOB+∠BON=90°,∠BON+∠NOC=90°,∴∠MOB=∠NOC.在△MOB和△NOC中,有,∴△MOB≌△NOC(ASA),∴S阴影=S△MOB+S△BON=S△NOC+S△BON=S△BOC=S正方形ABCD.∴蚂蚁停留在阴影区域的概率P==.故答案为:.18.小明和小丽按如下规则做游戏:桌面上放有7根火柴棒,每次取1根或2根,最后取完者获胜.若由小明先取,且小明获胜是必然事件,则小明第一次应该取走火柴棒的根数是1.【解答】解:若小明第一次取走1根,小丽也取走1根,小明第二次取2根,小丽不论取走1根还是两根,小明都将取走最后一根,若小明第一次取走1根,小丽取走2根,小明第二次取1根,小丽不论取走1根还是两根,小明都将取走最后一根,由小明先取,且小明获胜是必然事件,故答案为:1.19.若从﹣2,0,1这三个数中任取两个数,其中一个记为a,另一个记为b,则点A(a,b)恰好落在x轴上的概率是.【解答】解:画树状图如下由树状图知,共有6种等可能结果,其中使点A在x轴上的有2种结果,故点A(a,b)恰好落在x轴上的概率是=.故答案为:.20.“抛掷一枚质地均匀的硬币,正面向上”是随机事件(从“必然”、“随机”、“不可能”中选一个).【解答】解:“抛掷一枚质地均匀的硬币,正面向上”是随机事件,故答案为:随机.三、解答题(共10小题)21.一个不透明的口袋中有4个大小、质地完全相同的乒乓球,球面上分别标有数﹣1,2,﹣3,4.(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率为.(2)摇匀后先从中任意摸出1个球(不放回),再从余下的3个球中任意摸出1个球,用列表或画树状图的方法求两次摸出的乒乓球球面上的数之和是正数的概率.【解答】解:(1)摇匀后任意摸出1个球,则摸出的乒乓球球面上的数是负数的概率==;故答案为;(2)画树状图为:共有12种等可能的结果数,其中两次摸出的乒乓球球面上的数之和是正数的结果数为8,所以两次摸出的乒乓球球面上的数之和是正数的概率==.22.为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.(1)填空:样本容量为100,a=30;(2)把频数分布直方图补充完整;(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.【解答】解:(1)15÷=100,所以样本容量为100;B组的人数为100﹣15﹣35﹣15﹣5=30,所以a%=×100%=30%,则a=30;故答案为100,30;(2)补全频数分布直方图为:(3)样本中身高低于160cm的人数为15+30=45,样本中身高低于160cm的频率为=0.45,所以估计从该地随机抽取1名学生,估计这名学生身高低于160cm的概率为0.45.23.我市某校准备成立四个活动小组:A.声乐,B.体育,C.舞蹈,D.书画,为了解学生对四个活动小组的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中必须选择而且只能选择一个小组,根据调查结果绘制如下两幅不完整的统计图.请结合图中所给信息,解答下列问题:(1)本次抽样调查共抽查了50名学生,扇形统计图中的m值是32;(2)请补全条形统计图;(3)喜爱“书画”的学生中有两名男生和两名女生表现特别优秀,现从这4人中随机选取两人参加比赛,请用列表或画树状图的方法求出所选的两人恰好是一名男生和一名女生的概率.【解答】解:(1)10÷20%=50,所以本次抽样调查共抽查了50名学生,m%==32%,即m=32;故答案为50,32;(2)B组的人数为50﹣6﹣16﹣10=18(人),补全条形统计图为:(3)画树状图为:共有12种等可能的结果数,其中所选的两人恰好是一名男生和一名女生的结果数为8,所以所选的两人恰好是一名男生和一名女生的概率==.24.某校为了解本校学生对课后服务情况的评价,随机抽取了部分学生进行调查,根据调查结果制成了如下不完整的统计图.根据统计图:(1)求该校被调查的学生总数及评价为“满意”的人数;(2)补全折线统计图;(3)根据调查结果,若要在全校学生中随机抽1名学生,估计该学生的评价为“非常满意”或“满意”的概率是多少?【解答】解:(1)由折线统计图知“非常满意”9人,由扇形统计图知“非常满意”占15%,所以被调查学生总数为9÷15%=60(人),所以“满意”的人数为60﹣(9+21+3)=27(人);(2)如图:(3)所求概率为=.25.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了3人.【解答】解:(1)抽查的学生总数为6÷25%=24(人),读书为5册的学生数为24﹣5﹣6﹣4=9(人),所以条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率==;(3)因为4册和5册的人数和为14,中位数没改变,所以总人数不能超过27,即最多补查了3人.故答案为3.26.如图是某商场第二季度某品牌运动服装的S号,M号,L号,XL号,XXL号销售情况的扇形统计图和条形统计图.根据图中信息解答下列问题:(1)求XL号,XXL号运动服装销量的百分比;(2)补全条形统计图;(3)按照M号,XL号运动服装的销量比,从M号、XL号运动服装中分别取出x件、y 件,若再取2件XL号运动服装,将它们放在一起,现从这(x+y+2)件运动服装中,随机取出1件,取得M号运动服装的概率为,求x,y的值.【解答】解:(1)60÷30%=200(件),×100%=10%,1﹣25%﹣30%﹣20%﹣10%=15%.故XL号,XXL号运动服装销量的百分比分别为15%,10%;(2)S号服装销量:200×25%=50(件),L号服装销量:200×20%=40(件),XL号服装销量:200×15%=30(件),条形统计图补充如下:(3)由题意,得,解得.故所求x,y的值分别为12,6.27.不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为.(1)试求袋中蓝球的个数;(2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率.【解答】解:(1)设袋中蓝球的个数为x个,∵从中任意摸出一个是白球的概率为,∴=,解得:x=1,∴袋中蓝球的个数为1;(2)画树状图得:∵共有12种等可能的结果,两次都是摸到白球的有2种情况,。
人教版-九年级数学上册《第二十五章 随机事件与概率》同步练习题及答案
人教版-九年级数学上册《第二十五章 随机事件与概率》同步练习题及答案 学校 班级 姓名 学号 基础巩固练习一、选择题1.下列事件中,是必然事件的是( )A.明天太阳从东方升起B.打开电视机,正在播放体育新闻C.射击运动员射击一次,命中靶心D.经过有交通信号灯的路灯,遇到红灯2.用长分别为3cm ,4cm ,5cm 的三条线段可以围成直角三角形的事件是( )A.必然事件B.不可能事件C.随机事件D.以上都不是3.电脑福利彩票中有两种方式“22选5”和“29选7”,若选种号码全部正确则获一等奖,你认为获一等奖机会大的是( )A.“22选5”B.“29选7”C.一样大D.不能确定4.事件①:射击运动员射击一次,命中靶心;事件②:购买一张彩票,没中奖,则( )A.事件①是必然事件,事件②是随机事件B.事件①是随机事件,事件②是必然事件C.事件①和②都是随机事件D.事件①和②都是必然事件5.下列事件中,必然事件是( )A.掷一枚硬币,正面朝上B.任意三条线段可以组成一个三角形C.投掷一枚质地均匀的骰子,掷得的点数是奇数D.抛出的篮球会下落6.下列图形:从中任取一个是中心对称图形的概率是( )A.14B.12C.34D.1 7.在不透明的袋子装有9个白球和一个红球,它们除颜色外其余都相同,从袋中随意摸出一个球,则下列说法中正确的是( )A.“摸出的球是白球”是必然事件B.“摸出的球是红球”是不可能事件C.摸出的球是白球的可能性不大D.摸出的球有可能是红球8.抛掷一枚质地均匀的硬币,若连续4次均得到“正面朝上”的结果,则对于第5次抛掷结果的预测,下列说法中正确的是( )A.出现“正面朝上”的概率等于1 2B.一定出现“正面朝上”C.出现“正面朝上”的概率大于1 2D.无法预测“正面朝上”的概率9.小燕一家三口在商场参加抽奖活动,每人只有一次抽奖机会:在一个不透明的箱子中装有红、黄、白三种球各1个,这些球除颜色外无其他差别,从箱子中随机摸出1个球,然后放回箱子中轮到下一个人摸球,三人摸到球的颜色都不相同的概率是( )A.127 B.13C.19D.2910.笔筒中有10支型号、颜色完全相同的铅笔,将它们逐一标上1~10的号码,若从笔筒中任意抽出一支铅笔,则抽到编号是3的倍数的概率是( )A.110 B.15C.310D.25二、填空题11.任意掷一枚质地均匀的骰子,比较下列事件发生的可能性大小,将它们的序号按从小到大排列为.①面朝上的点数小于2;②面朝上的点数大于2;③面朝上的点数是奇数.12.甲、乙两人轮流做下面的游戏:掷一枚均匀的骰子(每上面分别标有1,2,3,4,5,6这六个数字),如果朝上的数字大于3,则甲获胜,如果朝上的数字小于3,则乙获胜,你认为获胜的可能性比较大的是.13.如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.14.已知四个点的坐标分别是(﹣1,1),(2,2),(23,32),(﹣5,﹣15),从中随机选取一个点,其在反比例函数y=1x的图象上的概率是.15.从1,2,3,4,5,6,7,8,9这九个自然数中,任取一个数是奇数的概率是______.16.如图,一只小鸟自由自在的在空中飞翔,然后随意落在如图所示的图形表示的空地上(每个方格除颜色外完全相同),则落在图中阴影部分的概率是.三、解答题17.从分别标有数字1~10的10张卡片中任意选取两张(不放回),下列事件中,哪些是“必然发生”的?哪些是“随机发生”的?哪些是“不可能发生”的?(1)两数之和是整数.(2)两数不相同.(3)两数的积是偶数.(4)两数的积是负数.(5)第一个数是第二个数的2倍.18.世界杯决赛分成8个小组,每小组4个队,小组进行单循环(每个队都与该小组的其他队比赛一场)比赛,选出2个队进入16强,胜一场得3分,平一场得1分,负一场得0分.(1)求每小组共比赛多少场.(2)在小组比赛中,现有一队得到6分,该队出线是一个确定事件,还是不确定事件?19.甲、乙两人玩一种游戏:共20张牌,牌面上分别写有-10,-9,-8,…,-1,1,2,…,10,洗好牌后,将牌背面朝上,每人从中任意抽取3张牌,然后将牌面上的三个数相乘,结果较大者为胜.(1)当抽取到哪三张牌时,不管对方抽到其他怎样的三张牌,你都会赢?(2)当抽取到哪三张牌时,不管对方抽到其他怎样的三张牌,你都会输?(3)结果等于6的可能性有几种?请把每一种都写出来.20.在“谁转出的‘四位数’大”比赛中,小明和小新分别转动标有0-9十个数字的转盘四次,每次将转出的数填入表示四位数的四个方格中的任意一个,比较两人得到的四位数,谁得到的数大谁获胜.已知他们四次转出的数字如下表:(1)小明和小新转出的四位数最大分别是多少?(2)小明可能得到的四位数中“千位数字是9”的有哪几个?小新呢?(3)小明一定能获胜吗?请说明理由.能力提升练习一、选择题1.下列关于概率的描述属于“等可能性事件”的是( )A.交通信号灯有“红、绿、黄”三种颜色,它们发生的概率B.掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率C.小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率D.小明用随机抽签的方式选择以上三种答案,则A 、B 、C 被选中的概率2.从n 个苹果和4个雪梨中,任选1个,若选中苹果的概率是35,则n 的值是( ) A.8 B.6 C.4 D.23.如图,在两个同心圆中,四条直径把大圆分成八等份,若往圆面投掷飞镖,则飞镖落在黑色区域的概率是( )A.15B.310C.13D.124.现有四张扑克牌:红桃A 、黑桃A 、梅花A 和方块A,将这四张牌洗匀后正面朝下放在桌面上,再从中任意抽取一张牌,则抽到红桃A 的概率为( )A.1B.14C.12D.345.正方形地板由9块边长均相等的小正方形组成,米粒随机地撒在如图所示的正方形地板上,那么米粒最终停留在黑色区城的概率是( )A.13B.29C.23D.496.小明把如图所示的3×3的正方形网格纸板挂在墙上玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何一个点的机会都相等),则飞镖落在阴影区域(四个全等的直角三角形的每个顶点都在格点上)的概率是()A. B. C. D.二、填空题7.小芳同学有两根长度为4cm、10cm的木棒,她想钉一个三角形相框,桌上有五根木棒供她选择(如图所示),从中任选一根,能钉成三角形相框的概率是.8.一只蚂蚁在如图所示的七巧板上任意爬行,已知它停在这副七巧板上的任何一点的可能性都相同,那么它停在1号板上的概率是.9.从数-2,-12,0,4中任取一个数记为m,再从余下的三个数中,任取一个数记为n,若k=mn,则正比例函数y=kx的图象经过第三、第一象限的概率是.10.在﹣9,﹣6,﹣3,﹣1,2,3,6,8,11这九个数中,任取一个作为a值,能够使关于x的一元二次方程x2+ax+9=0有两个不相等的实数根的概率是.三、解答题11.足球世界杯比赛分成8个小组,每个小组4个队,小组内进行单循环比赛(每个队都与该小组的其他队比赛一场),选出2个队进入16强.比赛规定胜一场得3分,平一场得1分,负一场得0分.请问:(1)每个小组共比赛多少场?(2)在小组比赛中,有一个队比赛结束后积分为6分,该队出线这一事件是什么事件?12.下列事件,哪些是必然发生的事件?哪些是不可能发生的事件?哪些是随机事件?(1)有一副洗好的只有数字1~10的10张扑克牌。
2020年人教版九年级数学上册25.1《随机事件与概率》随堂练习 学生版
2020年人教版九年级数学上册25.1《随机事件与概率》随堂练习一、选择题1.书架上有数学书2本,英语书3本,语文书5本,从中任意抽取一本是数学书概率是 ()A. B. C. D. 11035310152.下列事件中,是必然事件的是 ()A. 明天太阳从东方升起B. 射击运动员射击一次,命中靶心C. 随意翻到一本书的某页,这页的页码是奇数D. 经过有交通信号灯的路口,遇到红灯3.某个密码锁的密码由三个数字组成,每个数字都是这十个数字中的一个,只有当三0−9个数字与所设定的密码及顺序完全相同时,才能将锁打开如果仅忘记了锁设密码的最后那.个数字,那么一次就能打开该密码的概率是 ()A. B. C. D. 1101913124.已知袋中有若干个球,其中只有2个红球,它们除颜色外其它都相同若随机从中摸出一.个,摸到红球的概率是,则袋中球的总个数是 14()A. 2 B. 4 C. 6 D. 85.如图,在正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个4×4白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 ()A. B. C. D. 6135134133136.如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为 .3()A. B. C. D. 142523597.从,0,,,6这5个数中随机抽取一个数,抽到有理数的概率是 2π 3.14()A. B. C. D. 152535458.小伟掷一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,下列事件是随机()事件的是 A. 掷一次骰子,在骰子向上的一面上的点数大于0B. 掷一次骰子,在骰子向上的一面上的点数为7C. 掷三次骰子,在骰子向上的一面上的点数之和刚好为18D. 掷两次骰子,在骰子向上的一面上的点数之积刚好是1180%()9.对“某市明天下雨的概率是”这句话,理解正确的是 A. 某市明天将有的时间下雨B. 某市明天将有的地区下雨80%80%C. 某市明天一定会下雨D. 某市明天下雨的可能性较大a>b a+c>b+c P(A)10.如果用A表示事件“若,则”,用表示“事件A发生的概()率”,那么下列结论中正确的是 A. B.P(A)=1P(A)=0C. D.0<P(A)<1P(A)>1二、填空题11.一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为______.12.“一只不透明的袋子共装有3个小球,它们的标号分别为1,2,3,从中摸出1个小.(球,标号为“4”,这个事件是______ 填“必然事件”、“不可能事件”或“随机事件”)13.一个均匀的正方体各面上分别标有数字:1、2、3、4、5、6,这个正方体的表面展开.图如图所示抛掷这个正方体,则朝上一面所标数字恰好等于朝下一面所标数字的3倍的概率是______.14.某学校组织知识竞赛,共设有15道试题,其中有关中国传统文化试题8道,实践应用试题4道,创新试题3道,一学生从中任选一道试题作答,他选中创新能力试题的概率是______.6−2x15.从1,3,5三个数中选取一个数作为x,使二次根式有意义的概率为______.三、解答题16.全面两孩政策实施后,甲、乙两个家庭有了各自的规划,假定生男生女的概率相同,回答下列问题:(1)甲家庭已有一个男孩,准备再生一个孩子,则第二个孩子是女孩的概率是______;(2)乙家庭没有孩子,准备生两个孩子,求至少有一个孩子是女孩的概率.A(0,−3)B(3,0)C(−1,−4).17.平面上有3个点的坐标:,,y1=x−3(1)在A,B,C三个点中任取一个点,这个点既在直线上又在抛物线上y2=x2−2x−3上的概率是多少?y2=x2−2x−3(2)从A,B,C三个点中任取两个点,求两点都落在抛物线上的概率.18.汤姆斯杯世界男子羽毛球团体赛小组赛比赛规则:两队之间进行五局比赛,其中三局.单打,两局双打,五局比赛必须全部打完,赢得三局及以上的队获胜假如甲,乙两队每局获胜的机会相同.(1)若前四局双方战成2:2,那么甲队最终获胜的概率是______;(2)现甲队在前两周比赛中已取得2:0的领先,那么甲队最终获胜的概率是多少?。
人教版九年级数学上册:25.1第2课时概率含答案
25.1 第2课时 概率知识点:⒈对于一个随机事件A ,我们把刻画其发生的数值,称为随机事件A 发生的概率,记为 。
2、一般地,如果在一次实验中,有n 种可能的结果,并且他们发生的可能性都 ,事件A 包含其中的m 种结果,那么事件A 发生的概率P(A)= (0≤P(A)≤1).3、当A 是必然发生的事件时P(A)= ;当A 是不可能发生的事件时P(A)= ;一、选择题1.下列事件中是随机事件有( )个.(1)在标准大气压下水在0℃时开始结成冰;(2)掷一枚六个面分别标有l ~6的数字的均匀骰子,骰子停止转动后偶数点朝上;(3)从一副扑克牌中任意抽出一张牌,花色是红桃;(4)打开电视机,正在转播足球比赛;(5)小麦的亩产量为1000公斤.A . 1个B .2个C .3个D .4个2.下列说法:(1)不可能发生和必然发生的都是确定的;(2)可能性很大的事情是必然发生的;(3)不可能发生的事情包括几乎不可能发生的事情;(4)冬天里武汉一定会下雪.其中,正确的个数为( ).A. 1个B. 2个C. 3个D. 4个3.如图,小明周末到外婆家,走到十字路口处,记不清前面哪条路通往外婆家,那么他能一次选对路的概率是( ).A. B. C. D. 04.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等.四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形;乙:只要指针连续转六次,一定会有一次停在6号扇形;丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;121314丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大.其中,你认为正确的见解有( )A .1个B .2个C .3个D .4个5.在中考体育达标跳绳项目测试中,1分钟跳160次为达标。
小敏记录了他预测时1分钟跳的次数分别为145、155、140、162、164,则他在该次预测中达标的概率是( ).A. B. C. D. 16.有两组扑克牌各三张,牌面数字分别为1、2、3,随意从每组中牌中各抽取一张,数字和是奇数的概率是( ).A . B . C . D .7.一个骰子,六个面上的数字分别为1,2,3,4,5,6投掷一次,向上面为数字3的概率及向上面的数字大于3的概率分别是( ).A. 、B. 、C. 、D. 、 8.某商店举办有奖销售活动,购物满100元者发对奖券一张.在10000张奖券中,设特等奖1个,一等奖10个,二等奖100个.若某人购物刚好满100元,那么他中一等奖的概率是( ).A .B .C .D .二、填空题9.粉笔盒中有8支红粉笔,6支黄粉笔1支绿粉笔,从中任取—支,是红粉笔的概率为________.10.某射手在一次射击中,射中10环、9环、8环的概率分别是0.24、0.28、0.19,那么,这个射手在这次射击中,射中10环或9环的概率为________;不够8环的概率为________.11.初三(1)班共有48名团员要求参加青年志愿者活动,根据实际需要,团支部从中随机选择12名团员参加这次活动,该班团员李明能参加这次活动的概率是 .12.一次抽奖活动中印发奖券1000张,其中一等奖20张,二等奖80张,三等奖200张,那么每一位抽奖者(仅买一张奖券)中奖的概率都是_______.13、在一个不透明的布袋中装有2个白球和n 个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,摸到黄球的概率是54,则n =▲ 2523122913495912161323141216121001100011000011000011114、某班共有50名同学,其中有2名同学习惯用左手写字,其余同学都习惯用右手写字,老师随机请1名同学到黑板板演,习惯用左手写字的同学被选中的概率是 .15、从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程20x x k -+=的k 值,则所得的方程中有两个不相等的实数根的概率是16、“上升数”是一个数中右边数字比左边数字大的自然数(如:34、568、2469等).任取三、解答题17.某电视台综艺节目接到热线电话3000个,现要从中抽取“幸运观众”10名,张华同学打通了一次热线电话,那么他成为“幸运观众”的概率为多少?18.甲班56人,其中身高在160厘米以上的男同学10人,身高在160厘米以上的女同学3人,乙班80人,其中身高在160厘米以上的男同学20人,身高在160厘米以上的女同学8人.如果想在两个班的160厘米以上的女生中抽出一个作为旗手,在哪个班成功的机会大?为什么?19.如图所示,每个转盘被分成3个面积相等的扇形,小红和小芳利用它们做游戏:同时自由转动两个转盘,如果两个转盘的指针所停区域的颜色相同,则小红获胜;如果两个转盘的指针所停区域的颜色不相同,则小芳获胜,此游戏对小红和小芳两人公平吗?谁获胜的概率大?20. 如图,用两个相同的转盘(每个圆都平均分成六个扇形)玩配紫色游戏(—个转盘转出“红”,另一个转盘转出“蓝”,则为配成紫色).在所给转盘中的扇形里,分别填上“红’’或“蓝”,使得到紫色的概率是.1625.1 第2课时 概率一、1D ;2A ;3B ;4A ;5A ;6C; 7D; 8C;二、9.; 10. 0.52、0.29; 11. ; 12.;13、8; 14、0.04; 15、0.6 ; 16、25;三、17..18.因为已经限定在身高160厘米以上的女生中抽选旗手,在甲班被抽到的概率为,在乙甲班被抽到的概率为,∵>,∴在甲班被抽到的机会大.19.不公平,小芳获胜的概率()大于小红的().20.[解答]本题是一道答案不惟一的开放题,在解这类题时,可从最简单的形式入手.由已知条件及要求只要符合题意即可.如可把其中一个转盘的六个扇形都填“红”,而另一个转盘的一个扇形填“蓝”,即可保证得到紫色的概率为.如图,一个转盘的六个扇形都填“红”,另一个转盘的一个扇形填“蓝”,余下的五个扇形不填或填其他颜色.(注:一个填两个“红”,另一个填三个“蓝”等也可).81514310130013181318231316。
人教版九年级数学上册《25.1随机事件与概率》同步测试题带答案
人教版九年级数学上册《25.1随机事件与概率》同步测试题带答案1.“明天是晴天”这个事件是( )A.确定事件B.不可能事件C.必然事件D.不确定事件2.下列事件是必然事件的是( )A.抛出的篮球不会下落B.射击运动员射击一次,命中10环C.早晨太阳从东方升起D.任意掷一枚硬币,落地后正面向上3.从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是( )A.必然事件B.随机事件C.不可能事件D.以上事件都有可能4.书架上有2本数学书、1本物理书.从中任取1本书是物理书的概率为( )A.14B.13C.12D.235.有形状、大小、材料完全相同的黑筷、白筷、红筷各5双,混杂在一个黑色的布袋里,要保证从中摸取不同颜色的筷子共两双,则至少要摸出( )只筷子.A.12B.13C.14D.156.掷两枚质地均匀的骰子,下列事件是随机事件的是( )A.点数的和为1B.点数的和为5C.点数的和大于12D.点数的和小于137.一个不透明口袋中装有除颜色不同外其它都完全相同的小球,其中白球2个,红球3个,黄球5个,将它们搅匀后从袋中随机摸出1个球,则摸出黄球的概率是( )A.12B.13C.15D.1108.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是( )A.摸出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同9.“同时抛掷两枚普通的骰子,落地后向上一面的点数之和为11”是___________(填“必然事件”“不可能事件”或“随机事件”)10.某班从三名男生(含小强)和五名女生中选四名学生参加学校举行的“中华古诗文朗诵大赛”,当女生选_________名参加时,男生小强被选中是必然事件.11.小明从《红星照耀中国》,《红岩》,《长征》,《钢铁是怎样炼成的》四本书中随机挑选一本,其中拿到《红星照耀中国》这本书的概率为______.12.有5张仅有编号不同的卡片,编号分别是1,2,3,4,5.从中随机抽取一张,编号是偶数的概率等于______.13.掷两枚普通的正方体骰子,把两个骰子的点数相加,请问下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是可能发生的?并说明原因.(1)和为1;(2)和为4;(3)差为6;(4)和小于1414.在一个不透明的盒子里装有6个红球,10个白球,若干个黑球,每个球除颜色外都相同,若从中任意摸出一个白球的概率是1 3 .(1)求任意摸出一个球是黑球的概率.(2)小明从盒子里取出a个黑球(其他颜色球的数量没有改变),使得从盒子里任意摸出一个球是红球的概率为14,请求出a的值.参考答案1.【答案】D解析:“明天是晴天”这个事件是随机事件,属于不确定事件故选:D.2.【答案】C解析:A、抛出的篮球不会下落,是不可能事件,故本选项不符合题意;B、射击运动员射击一次,命中10环是随机事件,故本选项不符合题意;C、早晨太阳从东方升起,是必然事件,故本选项符合题意;D、任意掷一枚硬币,落地后正面向上,是随机事件,故本选项不符合题意;故选:C.3.【答案】B解析:从装有红球、白球、黑球的不透明袋子中任意摸出一个球,该球是红球,这个事件是随机事件故选:B.4.【答案】B解析:一共有3本书,从中任取1本书共有3种结果选中的书是物理书的结果有1种∴从中任取1本书是物理书的概率13=. 故选:B.5.【答案】B解析:如果前面一直摸出某一种颜色的筷子,共10只筷子,此时袋内只有两种颜色的筷子,另外摸出一双即可,如果又摸两只仍为不同颜色,再摸一只便可组成一双,此时共摸出102113++=只,则至少摸出13只筷子.故选:B.6.【答案】B解析:投掷两枚质地均匀的骰子点数之和的范围在212~之间(包括2,12),可知点数的和为5是随机事件.点数的和为1,点数的和大于12是不可能事件,点数的和小于13是必然事件,故B 正确.故选:B.7.【答案】A 解析:从口袋中任意摸出一个球是黄球的概率=512+3+52. 故选A.8.【答案】C解析:盒中小球总量为:32510++=(个) 摸出“北斗”小球的概率为:310摸出“天眼”小球的概率为:摸出“高铁”小球的概率为:因此摸出“高铁”小球的可能性最大.故选C.21105=51102=9.【答案】随机事件解析:同时投掷两枚普通的骰子,落地后向上一面的点数之和可能是11,所以是随机事件.故答案为:随机事件.10.【答案】1解析:当女生选1名时,男生小强被选中是必然事件.故答案为1.11.【答案】14/0.25解析:随机挑选一本书共有4种等可能的结果,其中拿到《红星照耀中国》这本书的结果有1种∴14 P故答案为:1 4 .12.【答案】25/0.4解析:从编号分别是1,2,3,4,5的卡片中,随机抽取一张有5种可能性,其中编号是偶数的可能性有2种可能性∴从中随机抽取一张,编号是偶数的概率等于2 5故答案为:2 5 .13.【答案】见解析解析:(1)最小的和为2,故和为1属于不可能事件(2)和可能为2和12之间的任意一个数,故和为4属于可能事件(3)差最大为5,故差为6属于不可能事件(4)和最大为12,故和小于14属于必然事件.14.【答案】(1)715(2)6解析:(1)∵红球6个,白球10个,黑球若干个,从中任意摸出一个白球的概率是1 3∴盒子中球的总数为:110303÷=(个)故盒子中黑球的个数为:3061014--=(个)∴任意摸出一个球是黑球的概率为:147 3015=.(2)∵任意摸出一个球是红球的概率为1 4∴盒子中球的总量为:16244÷=(个)∴可以将盒子中的黑球拿出30246-=(个)∴6a=.。
人教版初三数学九年级上册第25章概率初步随机事件同步训练题含答案
人教版初三数学九年级上册第25章概率初步随机事件同步训练题含答案1. 以下事情中是肯定事情的是( )A.明天太阳从西边升起B.篮球队员在罚球线投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面向上2. 以下事情是随机事情的是( )A.姚明站在罚球线上投篮一次,投中B.农历初一的早晨能看到圆月C.在只装有五个红球的袋中摸出1球是红球D.在一小时内人步行了80千米3. 以下事情中属于不能够事情的是( )A.某投篮高手投篮一次就进球B.翻开电视机,正在播放世界杯足球竞赛C.掷一次骰子,向上的一面出现的点数不大于6D.在一个规范大气压下,90°的水会沸腾4. 一个不透明的盒子中装有2个红球和1个白球,它们除颜色外都相反.假定从中恣意摸出一个球,那么以下表达正确的选项是( )A.摸到红球是肯定事情B.摸到白球是不能够事情C.摸到红球与摸到白球的能够性相等D.摸到红球比摸到白球的能够性大5. 以下成语描画的事情为随机事情的是( )A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼6. 以下事情中,是确定事情的是( )A.打雷后会下雨B.明天是晴天C.1小时等于60分钟D.下雨后有彩虹7. 以下事情中,是不能够事情的是( )A.某个数有平方根B.某个数的相反数等于它自身C.三角形中有两个直角D.三角形中有两条边相等8. 袋中有红球4个,白球假定干个,它们只要颜色上的区别.从袋中随机地取出一个球,假设取到白球的能够性较大,那么袋中白球的个数能够是( ) A.3个B.缺乏3个C.4个D.5个或5个以上9. 不透明的袋子中装有4个红球、3个黄球和5个蓝球,每个球除颜色不同外其他都相反,从中恣意摸出一个球,那么摸出球的能够性最大.10. 一只不透明的袋子共装有3个小球,它们的标号区分为1,2,3,从中摸出1个小球,标号为〝4”,这个事情是(填〝肯定事情〞〝不能够事情〞或〝随机事情〞).11. 九年级(1)班共有先生44人,其中男生有26人,女生有18人,假定在此班上恣意找一名先生,找到男生的能够性比找到女性的能够性(填〝大〞或〝小〞).12. 以下事情:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100℃;③掷一次骰子,向上一面的数字是2;④度量四边形的内角和,结果是360°.其中是随机事情的是(填序号).13. 抛掷1枚区分标有1、2、3、4、5、6的正六面体骰子,写出这个实验中的一个随机事情是,写出这个实验中的一个肯定事情是,写出这个实验中的一个不能够事情是 .14. ①②③④⑤区分表示〝一定发作〞〝很有能够发作〞〝能够发作〞〝不太能够发作〞〝不能够发作〞,请描画以下事情发作的能够性大小(填序号).(1)翻开电视,正在播放科教片:;(2)100件商品中有5件次品,95件正品,从这100件产品中任取一件,取到正品;;(3)李波同窗能跳10米高:;(4)从装有15只白球的不透明的口袋中摸出一只白球:;(5)七位同窗每人各报一个数,所组成的一个七位数恰恰是王教员家的号码:.15. 如图是几个转盘,假定区分用它们做转盘游戏,你以为每个转盘转出白色和黄色的能够性相反吗?假定不同,哪个能够性大?16. 以下事情中,哪些是肯定事情?哪些是不能够事情?哪些是随机事情?①太阳从西边落下;②某人的体温是100℃;③一元二次方程x2+2x+3=0无实数解;④经过有信号灯的十字路口,遇见红灯.17. 小明与小强用如下图的转盘(六个区域大小一样)做游戏,两人随意转它,转盘中止后,假定指针指向阴影区域,那么小明胜;假定转盘指向白色区域,那么小强胜,你以为此游戏对双方公允吗?为什么?18. 一个不透明的口袋里有5个红球、3个白球、2个绿球,这些球外形和大小完全相反,小明现从中任摸一个球.(1)你以为小明摸到的球很能够是什么颜色?为什么?(2)摸到每一种颜色球的能够性一样吗?(3)假设想让小明摸到白色球和白色球的能够性一样,该怎样办?写出你的方案.参考答案;1---8 CADDB CCD9. 蓝10. 不能够事情11. 大12. ①③13. 抛掷这枚正六面体骰子一次恰恰2点朝上抛掷这枚正六面体骰子一次,朝上的数总大于0小于7抛掷一枚六面体骰子一次出现7点朝上14. (1)③(2) ②(3) ⑤(4) ①(5) ④15. 解:①③能够性相反;②④能够性不同,关于②转出白色的能够性大,关于④转出黄色的能够性大16. 解:事情①③是肯定事情;事情②是不能够事情;事情④是随机事情.17. 解:公允,由于阴影局部和白色局部面积相等,指针中止在阴影和白色区域的时机相等.18. 解:(1)白色由于红球最多;(2)不一样;(3)取2个红球出来,或放2个白球出来。
人教版九年级上册:25.1《随机事件与概率》同步练习卷 含答案
人教版九年级上册:25.1《随机事件与概率》同步练习卷一.选择题1.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件B.必然事件C.不可能事件D.不确定事件2.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼3.下列成语或词语所反映的事件中,发生的可能性大小最小的是()A.守株待兔B.旭日东升C.瓜熟蒂落D.夕阳西下4.下列关于概率的描述属于“等可能性事件”的是()A.交通信号灯有“红、绿、黄”三种颜色,它们发生的概率B.掷一枚图钉,落地后钉尖“朝上”或“朝下”的概率C.小亮在沿着“直角三角形”三边的小路上散步,他出现在各边上的概率D.小明用随机抽签的方式选择以上三种答案,则A、B、C被选中的概率5.袋子中装有10个黑球、1个白球,它们除颜色外无其他差别,随机从袋子中摸出一个球,则()A.这个球一定是黑球B.摸到黑球、白球的可能性的大小一样C.这个球可能是白球D.事先能确定摸到什么颜色的球6.一个布袋里装有2个红球,3个黑球,4个白球,它们除颜色外都相同,从中任意摸出1个球,则下列事件中,发生可能性最大的是()A.摸出的是白球B.摸出的是黑球C.摸出的是红球D.摸出的是绿球7.下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件8.掷一枚硬币3次有两次正面向上,一次反面向上,则第4次掷正面向上的可能性()A.100%B.C.D.9.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出1个球,是黄球的概率为()A.B.C.D.10.如图,在方格纸中,随机选择标有序号①②③④⑤中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是()A.B.C.D.11.如图,正方形ABCD内的图形来自中国古代的太极图,现随机向正方形内掷一枚小针,则针尖落在黑色区域内的概率为()A.B.C.D.12.这是一个古老的传说,讲一个犯人利用概率来增加他得到宽恕的机会.给他两个碗,一个里面装着5个黑球,另一个里面装着除颜色不同外其它都一样的5个白球.把他的眼睛蒙着,然后要选择一个碗,并从里面拿出一个球,如果他拿的是黑球就要继续关在监狱里面,如果他拿的是白球,就将获得自由.在蒙住眼睛之前允许他把球混合,重新分装在两个碗内(两个碗球数可以不同).你能设想一下这个犯人怎么做,使得自己获得自由的机会最大?则犯人获得自由的最大机会是()A.B.C.D.13.如图,飞镖游戏板中每一块小正方形除颜色外都相同.若某人向游戏板投掷飞镖一次(假设飞镖落在游戏板上),则飞镖落在阴影部分的概率是()A.B.C.D.二.填空题14.“a是实数,|a|≥0”这一事件是事件.15.一个不透明的袋子中装有4个红球、2个黑球,它们除颜色外其余都相同,从中任意摸出3个球,则事件“摸出的球至少有1个红球”是事件(填“必然”、“随机”或“不可能”)16.有5张看上去无差别的卡片,上面分别写着0,π,,,1.333.随机抽取1张,则取出的数是无理数的概率是.17.如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:由乙抛掷,同时出现两个正面,乙得1分;抛出一正一反,甲得1分.谁先累积到10分,谁就获胜.你认为(填“甲”或“乙”)获胜的可能性更大18.班会课上,小强与班上其他32名同学每人制作了一张贺卡放在一个盒子里,小强从盒子中任意地取一张.恰好抽到自己制作的那张贺卡的可能性为.19.如图,一个可以自由转动的转盘,被分成了6个相同的扇形,转动转盘,转盘停止时,指针落在红色区域的概率等于.20.如图,一块飞镖游戏板由大小相等的小正方形格子构成,向游戏板随机投掷一枚飞镖,击中黑色区域的概率是.21.如图,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率是.三.解答题22.现有4个红球,请你设计摸球游戏.(1)使摸球事件是个不可能事件;(2)使摸球事件是个必然事件.23.甲乙两人玩一种游戏:共20张牌,牌面上分别写有﹣10,﹣9,﹣8,…,﹣1,1,2,…,10,洗好牌后,将背面朝上,每人从中任意抽取3张,然后将牌面上的三个数相乘,结果较大者为胜.(1)你认为抽取到哪三张牌时,不管对方抽到其他怎样的三张,你都会赢?(2)结果等于4的可能性有几种?把每一种都写出来.24.小明周末要乘坐公交车到植物园游玩,从地图上查找路线发现,几条线路都需要换乘一次.在出发站点可选择空调车A、空调车B、普通车a,换乘站点可选择空调车C,普通车b、普通车c,且均在同一站点换乘.空调车投币2元,普通车投币1元.(1)求小明在出发站点乘坐空调车的概率;(2)求小明到达植物园恰好花费3元公交费的概率.25.元旦期间,某超市开展有奖促销活动,凡在超市购物的顾客均有转动圆盘的机会(如图),如果规定当圆盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中纪念奖,指向其余数字不中奖.(1)转动转盘中奖的概率是多少?(2)元旦期间有1000人参与这项活动,估计获得一等奖的人数是多少?26.在边长为4的正方形平面内,建立如图1所示的平面直角坐标系.学习小组做如下实验:连续转动分布均匀的转盘(如图2)两次,指针所指的数字作为直角坐标系中P点的坐标(第一次得到的数为横坐标,第二次得到的数为纵坐标).(1)转盘转动共能得到个不同点,P点落在正方形边上的概率是;(2)求P点落在正方形外部的概率.参考答案一.选择题1.解:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选:D.2.解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.3.解:A.守株待兔所反映的事件可能发生也可能不发生,是不确定事件,符合题意;B.旭日东升,是必然事件,发生的可能性为1,不符合题意;C.瓜熟蒂落,是必然事件,发生的可能性为1,不符合题意;D.夕阳西下,是必然事件,发生的可能性为1,不符合题意;故选:A.4.解:∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴它不属于“等可能性事件”,∴选项A不正确;∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴它不属于“等可能性事件”,∴选项B不正确;∵“直角三角形”三边的长度不相同,。
人教版九年级数学上册《25.1随机事件与概率》练习题及答案
人教版九年级数学上册《25.1随机事件与概率》练习题及答案学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列事件中是必然事件的为()A.方程x2-x+1=0有两个不等实根B.是最简二次根式C.旋转后的图形与原图形的对应线段平行且相等D.圆的切线垂直于圆的半径2.按小王、小李、小马三位同学的顺序从一个不透明的盒子中随机抽取一张标注“主持人”和两张空白的纸条,确定一位同学主持班级“交通安全教有”主题班会.下列说法中正确的是()A.小王的可能性最大B.小李的可能性最大C.小马的可能性最大D.三人的可能性一样大3.分别写有数字0,-1,-2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( )A.B.C.D.4.在一个不透明的口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是()A.B.C.D.5.某火车站的显示屏每间隔4分钟显示一次火车班次的信息,显示时间持续1分钟,某人到达该车站时,显示屏正好显示火车班次信息的概率是()A.B.C.D.6.为备战中考,同学们积极投入复习,李红书包里装有语文试卷3张、数学试卷2张、英语试卷1张、其它学科试卷3张,从中任意抽出一张试卷,恰好是数学试卷的概率是()A.B.C.D.7.在y=x2□6x□9的空格中,任意填上“+”或“-”,可组成若干个不同的二次函数,其中其图象的顶点在x轴上的概率为()A.B.C.D.18.如图,在3×3的方格中,已有3个小正方形被涂黑,若在其余空白小正方形中任选一个涂黑,则所得图案是一个轴对称图形的概率是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.同时掷两枚标有数字1~6的正方形骰子,数字和为1的概率是。
人教版九年级数学上册25.概率(共50张)
向交线时当作指向其右边的扇形)求下列事件的概率.
(1)指向红色;
(2)指向红色或黄色;
(3)不指向红色.
解:一共有7种等可能的结果.
(1)指向红色有3种等可能的结果,
3
P(指向红色)=_____;
7
(2)指向红色或黄色一共有5种等可能的结果,
P(
5
7
指向红或黄)=_____;
(3)抽到的序号会是0吗?
抽到的序号不会是0;
想一想:能算出抽到每个数字的可能数值吗?
学习目标
1. 理解一个事件概率的意义.
2. 会在具体情境中求出一个事件的概率.
3. 会进行简单的概率计算及应用.
合作探究
新知一 概率的定义
活动1:抽纸团
从分别有数字1、2、3、4、5的五个纸团中随机
抽取一个,这个纸团里的数字有5种可能,即1、2、3、
2
故抽得红球这个事件的概率为:P(抽到红球)= .
3
巩固练习
袋子里有1个红球,3个白球和5个黄球,每一个
球除颜色外都相同,从中任意摸出一个球,则
P(摸到红球)=
P(摸到白球)=
P(摸到黄球)=
1
9
1
3
5
9
;
;
.
典例精析
简单转盘的概率计算
例3 如图所示是一个转盘,转盘分成7个相同的扇形,
颜色分为红黄绿三种,指针固定,转动转盘后任其自
的可能性大小.
1
6
表示每一种点数出现
一般地,对于一个随机事件A,我们把刻
画其产生可能性大小的数值,称为随机事件A
产生的概率,记为P(A).
华师大版九年级上册数学第25章 随机事件的概率含答案
华师大版九年级上册数学第25章随机事件的概率含答案一、单选题(共15题,共计45分)1、下列说法中,正确的是()A.生活中,如果一个事件不是不可能事件,那么它就必然发生B.生活中,如果一个事件可能发生,那么它就是必然事件C.生活中,如果一个事件发生的可能性很大,那么它也可能不发生D.生活中,如果一个事件不是必然事件,那么它就不可能发生2、在一只不透明的口袋中放人只有颜色不同的白球6个,黑球4个,黄球n 个,搅匀后随机从中摸取1个恰好是白球的概率为,则放入的黄球总数为()A.5个B.6个C.8个D.10个3、有两个事件,事件A掷一次骰子,向上的一面是3;事件B篮球队员在罚球线上投篮一次,投中,则()A.只有事件A是随机事件B.只有事件B是随机事件C.事件A和B 都是随机事件D.事件和B都不是随机事件4、如图,每个灯泡能否通电发光的概率都是0.5,当合上开关时,至少有一个灯泡发光的概率是()A.0.25B.0.5C.0.75D.0.955、时代中学周末有40人去体育场观看足球赛,40张票分别为B区第2排1号到40号,分票采用随机抽样的办法,小明第一个抽取,他抽取的座号为10号,接着小亮从其余的票任意抽取一张,取得的一张票恰好与小明邻座的概率是( )A. B. C. D.6、下列说法正确的是()A.一个游戏的中奖概率是则做10次这样的游戏一定会中奖B.为了解全国中学生的心理健康情况,应该采用普查的方式C.一组数据 8 , 8 , 7 , 10 , 6 , 8 , 9 的众数和中位数都是 8D.若甲组数据的方差 S =" 0.01" ,乙组数据的方差 s = 0 .1 ,则乙组数据比甲组数据稳定7、下列事件中的必然事件是()A.任意买一张电影票,座位号是2的倍数B.打开电视机,它正在播放“朗读者”C.将油滴入水中,油会浮在水面上D.早上的太阳从西方升起8、在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是.如果再往盒中放进6颗黑色棋子,取得白色棋子的概率是,则原来盒中有白色棋子()A.8颗B.6颗C.4颗D.2颗9、从分别标有数﹣3,﹣2,﹣1,0,1,2,3的七张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝对值不是正数的概率是()A. B. C. D.10、下列说法正确的是()A.为了解苏州市中学生的睡眠情况,应该采用普查的方式B.某种彩票的中奖机会是,则买张这种彩票一定会中奖C.一组数据,,,,,,的众数和中位数都是D.若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定11、下列说法正确的是 ( )A.事件“如果a是实数,那么|a|<0”是必然事件;B.在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖;C.随机抛一枚均匀硬币,落地后正面一定朝上;D.在一副52张扑g牌(没有大小王)中任意抽一张,抽到的牌是6的概率是.12、下列说法中正确的是()A.“打开电视,正在播放新闻节目”是必然事件B.“抛一枚硬币,正面向上的概率为”表示每抛两次就有一次正面朝上C.“抛一枚均匀的正方体骰子,朝上的点数是6的概率为”表示随着抛掷次数的增加,“抛出朝上的点数是6”这一事件发生的频率稳定在附近 D.为了解某种节能灯的使用寿命,选择全面调查13、我校举行A,B两项趣味比赛,甲、乙两名学生各自随机选择其中一项,则他们恰好参加同一项比赛的概率是( )A. B. C. D.14、下列事件为必然事件的是()A.打开电视,正在播放新闻B.买一张电影票,座位号是奇数号C.抛一枚骰子,抛到的数是整数D.掷一枚质地均匀的硬币,正面朝上15、在一个不透明的口袋中,装有若干个红球和6个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球试验发现,摸到黄球的频率是0.3,则估计口袋中红球约有()A.12个B.14个C.18个D.20个二、填空题(共10题,共计30分)16、某市民政部门举行“即开式福利彩票”销售活动,发行彩票10万张(每张彩票2元),在这些彩票中,设置如下奖项:奖金(元)10000 5000 1000 500 100 50数量(个)1 4 20 40 100 200如果花2元钱购买1张彩票,那么所得奖金不多于100元的概率是________17、并不是所有的随机事件都能通过理论计算得出概率,如:抛掷一个瓶盖,求落地后盖面朝上的概率,求这类问题的概率可以通过________的方法得到.18、从﹣2,﹣1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是________.19、有四张扑g牌,分别为红桃3,红桃4,红桃5,黑桃6,背面朝上洗匀后放在桌面上,从中任取一张后记下数字和颜色,再背面朝上洗匀,然后再从中随机取一张,两次都为红桃,并且数字之和不小于8的概率为________ .20、某校举行唱歌比赛活动,每个班级唱两首歌曲,一首是必唱曲目校歌,另外一首是从A,B,C,D四首歌曲随机抽取1首,则九年级(1)班和(2)班抽取到同一首歌曲的概率是________。
人教版九年级数学上册《25.1随机事件与概率》同步练习题(附答案)
人教版九年级数学上册《25.1随机事件与概率》同步练习题(附答案)姓名班级学号成绩一、选择题:(本题共8小题,每小题5分,共40分.)1.下列事件是必然事件的是()A.抛掷一枚硬币,硬币落地时正面朝上B.两个无理数相加,结果仍是无理数C.任意打开九年级上册数学教科书,正好是97页D.两个负数相乘,结果必为正数.2.袋中装有4个红球和2个黄球,这些球的形状、大小、质地完全相同,在看不到球的条件下,随机地从袋子中摸出三个球,下列事件是不可能事件的是()A.摸出的三个球中至少有一个红球B.摸出的三个球中有两个球是黄球C.摸出的三个球都是红球D.摸出的三个球都是黄球3.一个不透明的盒子中装有15个除颜色外无其他差别的小球,其中有2个黄球和3个绿球,其余都是红球,从中随机摸出一个小球,恰好是红球的概率为()A.B.C.D.4.袋中有白球3个,红球若干个,他们只有颜色上的区别.从袋中随机取出一个球,如果取到白球的可能性更大,那么袋中红球的个数可能是()A.2个B.3个C.4个D.4个或4个以上5.张大伯有事想打电话,但由于年龄的缘故,电话号码(萧山区的家庭电话号码是8位),只记得8899*179那么他随意拨了一个数码补上,恰好打通的概率是()A.1 B.C.D.6.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是( )A.B.C.D.17.某商场为了吸引顾客,设计了如图所示的可自由转动的转盘,当指针指向阴影部分时,顾客可获得一份奖品,那么顾客获奖的概率为()A.B.C.D.8.如图,在4×4的正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A.B.C.D.二、填空题:(本题共5小题,每小题3分,共15分.)9.四个实数,和,π中,任取一个数是无理数的概率为.10.从小明、小聪、小惠和小颖四人中随机选取1人参加学校组织的敬老活动,则小明被选中的概率是.11.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.3,摸出白球的概率是0.4,那么摸出黑球的概率是.12.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为.13.如图,甲、乙、丙3人站在网格中的三个格子中,小王随机站在剩下的空格中,与图中3人均不在同一行的概率是.三、解答题:(本题共5题,共45分)14.从3名八年级男生和n名九年级男生中任选1名参加市第十二届运动会,其中选出学生为九年级男生的概率为,则n的值是多少?15.中央电视台“幸运 52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标牌中,有5个商标牌的背面注明一定的奖金额,其余商标牌的背面是一张哭脸,若翻到哭脸,就不得奖,参与这个游戏的观众有三次翻牌机会(翻过的牌不能再翻).某观众前两次翻牌均获得若干奖金,那么他第三次翻牌获奖的概率是多少?16.如图,从一个大正方形中截去面积为3cm²和12cm²的两个小正方形,若随机向大正方形内投一粒米,求米粒落在图中阴影部分的概率.17.在三个不透明的布袋中分别放入一些除颜色不同外其他都相同的玻璃球,并搅匀,具体情况如下表:在下列事件中,哪些是随机事件,哪些是必然事件,哪些是不可能事件?(1)随机从第一个布袋中摸出一个玻璃球,该球是黄色、绿色或红色的;(2)随机的从第二个布袋中摸出两个玻璃球,两个球中至少有一个不是绿色的;(3)随机的从第三个布袋中摸出一个玻璃球,该球是红色的;(4)随机的从第一个布袋中和第二个布袋中各摸出一个玻璃球,两个球的颜色一致.18.如图,端午节期间,某商场为了吸引顾客,设立了一个可以自由转动的转盘,并规定顾客每购买200元商品,就能获得一次转动转盘的机会,如果转盘停止后,指针上对准红、黄、绿的区域,顾客就可以分别获得50元、20元、10元的奖金,对准无色区域则无奖金(转盘等分成16份).(1)小明购物180元,他获得奖金的概率是多少?(2)小德购物210元,那么获得奖金的概率是多少?(3)现商场想调整获得10元奖金的概率为,其他金额的获奖率不变,则需要将多少个无色区域涂上绿色?参考答案:1.D 2.D 3.D 4.A 5.D 6.C 7.D 8.B9.10.11.0.312.13.14.由题意得:解得:n=10答:n的值是1015.解:∵20个商标中2个已翻出,还剩18张,18张中还有3张有奖的,∴第三次翻牌获奖的概率是:16.解:∵两个空白正方形的面积分别为12 cm²和3 cm²∴边长分别为cm和cm∴大正方形的边长为cm∴大正方形的面积为cm²∴阴影部分的面积为27-12-3=12 cm²∴米粒落在图中阴影部分的概率.17.解:(1)一定会发生,是必然事件;(2)一定会发生,是必然事件;(3)一定不会发生,是不可能事件;(4)可能发生,也可能不发生,是随机事件.18.(1)解:180 < 200小明购物180元,不能获得转动转盘的机会小明获得奖金的概率为0;(2)解:小德购物210元,能获得一次转动转盘的机会获得奖金的概率是(3)解:设需要将个无色区域涂上绿色则有解得:,所以需要将1个无色区域涂上绿色。
九年级数学上册《第二十五章 随机事件与概率》同步练习题及答案(人教版)
九年级数学上册《第二十五章随机事件与概率》同步练习题及答案(人教版)一、选择题(共8题)1.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6投掷一次,朝上一面的数字是偶数的概率为( )A.16B.13C.12D.232.抛掷一枚均匀的骰子,所得的点数能被3整除的概率为( )A.12B.13C.14D.153.下列事件中,必然事件是( )A.抛掷1枚质地均匀的骰子,向上的点数为6B.两直线被第三条直线所截,同位角相等C.抛一枚硬币,落地后正面朝上D.实数的绝对值是非负数4.一个袋子里有16个除颜色外其他完全相同的球,若摸到红球的机会为34,则可估计袋中红球的个数为( )A.12B.4C.6D.不能确定5.在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.10 B.8 C.5 D.36.小明把如图所示的平行四边形纸板挂在墙上,玩飞镖游戏(每次飞镖均落在纸板上,且落在纸板的任何—个点的机会都相等),则飞镖落在阴影区域的概率是( )A.12B.13C.14D.167.抛掷一枚质地均匀的立方体骰子一次,骰子的六个面上分别标有数字1,2,3,4,5,6,则朝上一面的数字为2的概率是( )A.16B.13C.12D.568.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )A.16B.13C.12D.23二、填空题(共5题)9.小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是.10.不透明袋子中装有7个球,其中有3个红球,4个黄球,这些球除颜色外无其他差别,从袋子中随机取出1个球,则它是红球的概率是.11.有三张外观完全相同的卡片,在卡片的正面分别标上数字-1,0,-2,将正面朝下放在桌面上,现随机翻开一张卡片,则卡片上的数字为负数的概率为.12.某小区共有学生200人,随机抽查50名学生,其中有30人看中央电视台的晚间新闻.在该小区随便问一位学生,他看中央电视台晚间新闻的概率大约是.13.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是1,则黄球的个数为个.3三、解答题(共6题)14.一个不透明的布袋里装有16个只有颜色不同的球,其中红球有x个,白球有2x个,其他均为黄球,现甲从布袋中随机摸出一个球,若是红球则甲同学获胜,甲同学把摸出的球放回并搅匀,由乙同学随机摸出一个球,若为黄球,则乙同学获胜.(1) 当x=3时,谁获胜的可能性大?(2) 当x为何值时,游戏对双方是公平的?15.在一个不透明的袋中装有红、黄、白三种颜色的球共50个,且红球比黄球多5个,它们除颜色外都相同.已知从袋中随机摸出一个球,摸到的球是白球的概率为3.10(1) 求原来袋中白球的个数.(2) 现从原来装有50个球的袋中随机摸出一个球,求摸到的球是红球的概率.16.一个质地均匀的正方体骰子,其中一个面上标有“1”,两个面上标有“2”,三个面上标有“3”,求将这个骰子掷出后:(1) 朝上的概率最大的数是什么,并求出其概率.(2) 如果规定朝上的数为1或2时,甲胜;朝上的数为3时,乙胜,则这个游戏是否公平?.17.已知一纸箱中放有大小均匀的x只白球和y只黄球,从箱中随机地取出一只白球的概率是25(1) 试写出y与x的函数关系式.(2) 当x=10时,再往箱中放进20只白球,求随机地取出一只黄球的概率P.18.一个不透明的袋中,装有10个红球、2个黄球、8个蓝球,它们除颜色外都相同.(1) 求从袋中摸出一个球是红球的概率.(2) 现从袋中取出若干个红球,并放入相同数量的黄球,搅拌均匀后,使从袋中摸出一个球是黄球的概率是2,问取出了多少个红球?519.现有足够多除颜色外均相同的球,请你从中选9个球设计摸球游戏.(1) 使摸到红球的概率和摸到白球的概率相等.(2) 使摸到红球、白球、黑球的概率都相等.(3) 使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.答案1. C2. B3. D4. A5. B6. C7. A8. D9. 12 10. 3711. 2312. 35 13. 2414.(1) 当 x =3 时,甲同学获胜可能性为 316,乙同学获胜可能性为 16−3−616=716∵ 316<716∴ 当 x =3 时,乙同学获胜可能性大.(2) 游戏对双方公平必须有:x 16=16−3x 16,解得:x =4答:当 x =4 时,游戏对双方是公平的.15.(1) 已知摸到的球为白球的概率为 310,则白球共 50×310=15(个).(2) 已知白球 15 个,则红球和黄球一共 50−15=35 个设红球有 x 个,则黄球有 x −5 个∴x +x −5=35∴x =20从而摸到为红球的概率为 2050=25.16.(1) 根据已知条件可知,此正方体骰子共有 6 个面上面标有“1”、“2”、“3”的面各有 1,2,3 个.“2”朝上的概率为 26=13;“1”朝上的概率为 16,“3”朝上的概率为 36=12.∵16<13<12 ∴ 朝上概率最大的数为“3”.(2) 朝上的数字为 1 或 2 时的概率为1+26=12 朝上数字为 3 的概率为 12.∴ 甲、乙获胜的概率一样∴ 这样的规定对甲、乙来说公平.17.(1) 由题意得 x y+x =25 即 5x =2y +2x∴y =32x . (2) 由(1)知当 x =10 时y =32×10=15 ∴ 取得黄球的概率 P =1510+20+15=1545=13.18.(1) ∵ 一个不透明的袋中,装有 10 个红球、 2 个黄球、 8 个蓝球,它们除颜色外都相同∴ 从袋中摸出一个球是红球的概率为:1010+2+8=12.(2) 设取出了 x 个红球根据题意得:2+x 10+2+8=25,解得:x =6,答:取出了 6 个红球.19.(1) 9个球中,有4个红球,4个白球,1个黑球可使摸到红球的概率和摸到白球的概率相等.(2) 9个球中,有3个红球,3个白球,3个黑球可使摸到红球、白球、黑球的概率都相等.(3) 9个球中,有2个红球,2个白球,5个黑球可使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率.。
华师大九年级上《第25章随机事件的概率》单元测试含答案解析(K12教育文档)
华师大九年级上《第25章随机事件的概率》单元测试含答案解析(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(华师大九年级上《第25章随机事件的概率》单元测试含答案解析(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为华师大九年级上《第25章随机事件的概率》单元测试含答案解析(word版可编辑修改)的全部内容。
第25章随机事件的概率单元测试一、单选题(共10题;共30分)1。
若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是A、13B、12C、23D、562。
一枚质地均匀的昔通硬币重复掷两次,落地后两次都是正面朝上的概率是( ) A、1 B、 C、 D、3。
下列说法正确的是().①抛一枚硬币,正面一定朝上;②“明天的降水概率为80%”,表示明天会有80%的地方下雨.③为了解一种灯泡的使用寿命,宜采用普查的方法;④掷一颗骰子,点数一定不大于6.A、1个B、2个C、3个D、4个4。
有5条线段长度分别为1,3,4,5,7,从中任取三条为一组,它们一定能构成三角形的频率为()A.0。
15 B。
0.10 C.0。
20 D。
0。
305.一套书共有上,中,下三册,将它们任意摆放到书架的同一层上,这三册书从左到右恰好成上,中,下顺序的概率为()A.112 B。
16 C.13 D。
126。
在一个不透明的袋子中有1个红球和1个白球,这些球除颜色外都相同,现从中随机摸出一个球,记下颜色后放回,再从中随机摸出一个球,则两次摸到不同颜色的球的概率是()A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
21
31
∴P(红球)= 6 ,P(绿球)= 6 3 ,P(白球)= 6 2 ,
∴摸到白球的可能性最大.
故答案为:白
1 故答案为: 6 ,白.
19.在一个不透明的盒子里装有 4 个黑球和若干个白球,它们除颜色外完全相同,摇匀后从中随机摸出 一个球记下颜色,再把它放回盒子中,不断重复,共摸球 40 次,其中 10 次摸到黑球,则估计盒子中大 约有________个白球.
a A. b c
b B. a c
c C. a b c
b D. a b c
【答案】D
【解析】
b 白球的概率为 a b c ,故本题选 D
9.十字路口的交通信号灯每分钟红灯亮 30 秒,绿灯亮 25 秒,黄灯亮 5 秒.当你抬头看信号灯时,是黄灯
的概率为(
)
1 A. 2
5 B. 12
1 C. 3
D.在一个仅装着白球和黑球的袋中摸球,摸出红球
【答案】A
【解析】
A. 随意掷一块质地均匀的骰子,掷出的点数是奇数是随机事件,故符合题意;
B. 在一个标准大气压下,把水加热到 100℃,水就会沸腾是必然事件,故不符合题意;
C. 有一名运动员奔跑的速度是 80 米/秒是不可能事件,故不符合题意;
D. 在一个仅装着白球和黑球的袋中摸球,摸出红球是不可能事件,故不符合题意;
【答案】(1)袋中红、黄、白三种颜色的球的个数分别是 4 个、 4 个、 2 个;(2)向袋中放入10 个红球;
(3)摸出一个球是白球的概率是 0.1. 【解析】
(1)黄球个数:10 0.4 4 (个),白球个数: 4 2 3 2 (个),红球个数:10 4 2 4 (个),
即袋中红、黄、白三种颜色的球的个数分别是 4 个、 4 个、 2 个;
1 D. 12
【答案】D
【解析】
m 根据概率的定义公式 P(A)= n
得知,m=5,n=60
51 则 P= 60 = 12 .
故答案为 D.
10.下列事件中,是不确定事件的是( )
A.同位角相等,两条直线平行
B.三条线段可以组成一个三角形
C.平行于同一条直线的两条直线平行
D.对顶角相等
【答案】B
【解析】
【答案】12
【解析】
解:∵共试验 40 次,其中有 10 次摸到黑球,
40 10 3 ∴白球所占的比例为: 40 4 ,
设盒子中共有白球 x 个,则
x 3 ∴x4 4,
解得:x=12, 经检验,x=12 是原方程的根, 故答案为:12. 20.一只蚂蚁在如图所示的树枝上寻找食物,假定蚂蚁在每个岔路口都会随机地选择一条路径,则它获得 食物的概率是__.
②正确,这是三角形的性质;
③错误,三角形的一个外角大于与它不相邻的任一内角;
④错误,在三角形中至少有一个角大于等于 60°;
⑤正确,同角的余角相等;
2 5 个命题中,有两个真命题,故概率为 5 ,
故选 C.
7.在一个不透明的盒子里装有 2 个红球和 1 个黄球,每个球除颜色外都相同,从中任意摸出 2 个球。下 列事件中,不可能事件是( )
1 【答案】 3
【解析】
1 共有 6 条路径,有食物的有 2 条,所以概率是 3 .
三、解答题
21.现有足够多除颜色外均相同的球,请你从中选 9 个球设计摸球游戏.
(1)使摸到红球的概率和摸到白球的概率相等; (2)使摸到红球、白球、黑球的概率都相等; (3)使摸到红球的概率和摸到白球的概率相等,且都小于摸到黑球的概率. 【答案】(1)见解析;(2)见解析;(3)见解析.
1 1 个球是红球的概率为 3 ,则 m 的值为( )
A.2
B.3
C.5
D.7
【答案】A
【解析】
由题意可得,
1 m=3÷ 3 ﹣3﹣4=9﹣3﹣4=2.
故选:A.
二、空题
17.“随时打开电视机,正在播新闻”是_______事件.(填“必然”、“不可能”或“随机”)
【答案】随机事件
【解析】
“随时打开电视机,正在播新闻”有可能发生也有可能不发生,所以为随机事件.
故选:C.
12.抛掷一枚质地均匀的硬币 2000 次,正面朝上的次数最有可能为( )
A. 500
B. 800
C.1000
D.1200
【答案】C 【解析】
抛掷一枚质地均匀的硬币 2000 次,正面朝上的次数最有可能为1000 次,
故选 C. 13.如图,一个圆形转盘被平均分成 6 个全等的扇形,任意旋转这个转盘 1 次,则当转盘停止转动时,指 针指向阴影部分的概率是( )
(1)参与本次调查的学生共有_____人;
(2)在扇形统计图中,m 的值为_____;圆心角 α=_____度.
(3)补全条形统计图;
(4)中学生上网玩游戏、聊天交友已经对正常的学习产生较多负面影响,为此学校计划开展一次“合理 上网”专题讲座,每班随机抽取 15 名学生参加,小明所在的班级有 50 名学生,他被抽到听讲座的概率是 多少?
故选 A.
4.在一个不透明的口袋中,装有 5 个红球和 2 个白球,它们除颜色外都相同,从中任意摸出有一个球, 摸到红球的概率是( )
1 A. 5
2 B. 5
2 C. 7
5 D. 7
【答案】D
【解析】
袋子中球的总数为 5+2=7,而红球有 5 个,
5 则摸出红球的概率为 7 .
故选 D.
5.下列成语描述的事件为随机事件的是(
4 【答案】(1)小刚去参加活动的概率是 9 ;(2)这个游戏不公平,见解析.
【解析】
解:(1) 因为转盘被均匀地分成 9 个区间,其中是偶数的区间有 4 个, 4
因此 P (小刚去参加活动) 9 ,
4 所以小刚去参加活动的概率是 9 .
(2) 这个游戏不公平.
理由: 因为转盘被均匀地分成 9 个区间,其中是奇数的区间有 5 个 ,
【解析】 解:可以按如下设计:
4
1
(1)袋中放入红球 4 个,白球 4 个,黑球1个,则 P (红球) P (白球) 9 , P (黑球) 9 ;
(2)袋中放入红球
3
个,白球 3
个,黑球 3
个,则
P
(红球)
P
(白球)
P
(黑球)
1 3
;
2P
5
(3)袋中放入红球 2 个,白球 2 个,黑球 5 个,则 P (红球) P (白球) 9 (黑球) 9 ;
A. 25%
【答案】B 【解析】
B. 50%
C. 75%
D.100%
抛一枚质地均匀的硬币,出现正面朝上的概率是 50%
故选 B.
3.下列事件是随机事件的是( )
A.随意掷一块质地均匀的骰子,掷出的点数是奇数
B.在一个标准大气压下,把水加热到 100℃,水就会沸腾
C.有一名运动员奔跑的速度是 80 米/秒
1 A. 2
1 B. 3
1 C. 4
1 D. 6
【答案】D
【解析】
1 解:当转盘停止转动时,指针指向阴影部分的概率是 6 ,
故选:D.
14.某校艺术节的乒乓球比赛中,小东同学顺利进入决赛.有同学预测“小东夺冠的可能性是 80%”,则对 该同学的说法理解最合理的是( )
A.小东夺冠的可能性较大
B.如果小东和他的对手比赛 10 局,他一定会赢 8 局
3 B.摸到黄球的概率是 4
D.摸到红球是必然事件
1 解:A.摸到黄球的概率是 4 ,有可能摸到黄球,此选项错误;
1 B.摸到黄球的概率是 4 ,此选项错误;
3 C.摸到红球的概率是 4 ,属于随机事件,此选项正确;
3
1
D.摸到红球的概率是 4 ,摸到黄球的概率是 4 ,有 2 种可能,此选项错误;
①同位角相等;②三角形中至少有两个锐角;③三角形的一个外角大于任何一个内角;④三角形中至少有 一个角大于 60°;⑤同角的余角相等。从中任意抽取张卡片,抽取到的卡片写有真命题的概率是( )
4 A. 5
3 B. 5
2 C. 5
1 D. 5
【答案】C
【解析】
解:①错误,同位角只有在两直线平行时才相等,故错误;
18.在一个不透明的袋子中有 1 个红球,2 个绿球和 3 个白球,这些球除了颜色外完全一样,摇匀后,从 袋子中任意摸出 1 个球,则摸到红球的概率是______;你认为摸出_________颜色的球的可能性最大.
1 【答案】 6 白
【解析】 解:∵一只不透明的袋子中有 1 个红球,2 个绿球和 3 个白球,这些球除颜色外都相同,
【答案】B
【解析】
D.4 个
①当 x 是非负实数时, x 0,是必然事件;
②打开数学课本时刚好翻到第 12 页,是随机事件; ③13 个人中至少有 2 人的生日是同一个月,是必然事件; ④在一个只装有白球和绿球的袋中摸球,摸出黑球,是不可能事件. 必然事件有①③共 2 个. 故选 B. 2.小明抛一枚质地均匀的硬币,出现正面朝上的概率是( )
)
A.一箭双雕
B.水涨船高
C.水中捞月
D.海枯石烂
【答案】A
【解析】
A 选项“一箭双雕”是不一定发生的事件,可能出现也可能不出现,是随机事件;
B 选项“水涨船高”是必然事件;
C 选项“水中捞月”是不可能事件;
D 选项“海枯石烂”是不可能事件;
故答案选 A.
6.在 5 张完全相同的卡片上,分别写有下列 5 个命题:
(2)设放入红球 x 个,则 4 x 10 x 0.7 , x 10 ,即向袋中放入10 个红球;
P 摸出一个球是白球 2 0.1