计算卷积的方法.ppt

合集下载

CNN(卷积神经网络) ppt课件

CNN(卷积神经网络)  ppt课件
为了处理一维序列数据,便有了循环神经网络,以及基于循环神经网络 优化而来的lstm,attention机制等.
目录
Contents
2. 卷积神经网络
2.1. 卷积神经网络和深度学习的历史 2.2. 卷积神经网络的设计和原理 2.3. 卷积神经网络的神经科学基础
CNN处理图像
卷积神经网络的计算效率提升,参数量:10^12 -> 10^6
卷积神经网络池化有最大池化(max_pool)和平均池化(avg_pool),顾名 思义,最大池化取区域内最大值,平均池化取区域内平均值.其它池化包 括L 2 范数以及依靠据中心像素距离的加权平均池化.
CNN池化过程
CNN 特性-池化
为什么要池化?
1.减少参数的量,提高计算效率. 2.最大池化能显著增强局部特征,平均池化可减少噪声.
深度学习以及卷积神经网络的适用需要大量的有效训练数据,过去的互联网时代为 深度学习提供了大量的训练数据,同时随着几十年来硬件技术的发展,为利用和计算 大量数据提供了条件.所以,近年来,每一次模型算法的更新,都取得了良好的效果, 为深度学习这把火炬增添了燃料.
卷积神经网络和深度学习的历史
卷积神经网络提供了一种方法来专业化神经网络,以处理具有清楚的网 络结构的数据,以及将这样的模型放大到非常大的尺寸(加深层数).这种方法 在二维图像拓扑上的应用是最成功的.同时,卷积神经网络比全连接网络计 算效率更高,使用他们运行多个实验并调整它们的实现和超参数更容易,更 大的网络也更容易训练.
CNN特性-权值共享和多卷积核
卷积神经网络之所以计算效率高,对特征提取的效果好,主要是由于卷 积神经网络具有以下三个特性:权值共享,多卷积核,池化.
权值共享
请在这里输入论文答辩

卷积和计算方法

卷积和计算方法
褶积(英语:Convolution)是通过两个函数f和g生成第三个函数的一种数学运算,其本质是一种特殊的积分变换,表征函数f与g经过翻转和平移的重叠部分函数值乘积对重叠长度的积分。
如果将参加卷积的一个函数看作区间的指示函数,卷积还可以被看作是“滑动平均”的推广。
求y1与y2两个多项式的乘积,即y=y1×y2=(2+x-2x^2)×(1+2x-x^2),求出的结果为y=2+5x-2x^2-5x^3+2x^4。转化成卷积结果为y(n)=[2,5,-2,-5,2],即多项式乘积结果的系数。
假设两个求卷积的序列为x(n)=[2,1,-2]和h(n)=[1,2,-1],求二者的卷积y(n)=x(n)*h(n)。
其实卷积的计算步骤和多项式乘法的计算步骤是一样的,把上面两个求卷积的序列转化成多项式,即y1=2+x-2x^2,多项式的零阶、一阶、二阶系数分别为x(n)的x(0),x(1),x(2),同y2=1+2x-x^2,多项式的零阶、一阶、二阶系数分别为h(n)的h(0),h(1),h(2).

离散卷积计算方法(一)

离散卷积计算方法(一)

离散卷积计算方法(一)离散卷积计算离散卷积计算是数字信号处理中的一种重要操作,用于信号的滤波、信号频域变换等应用。

本文将详细介绍离散卷积计算的方法。

什么是离散卷积计算?离散卷积计算是指对两个离散信号进行卷积操作。

其中一个信号通常称为“输入信号”,另一个信号称为“卷积核”或“滤波器”。

卷积操作将输入信号和卷积核进行逐点乘积,并将乘积结果相加得到输出信号。

离散卷积计算的方法1. 直接计算法直接计算法是最简单直观的离散卷积计算方法。

将卷积核按照时间反转并平移到输入信号上,逐点相乘并相加即可得到输出信号。

这种方法简单易懂,但计算效率较低,特别是对于较长的信号序列。

2. 快速傅里叶变换(FFT)法快速傅里叶变换(FFT)法是一种基于离散傅里叶变换(DFT)的离散卷积计算方法。

通过将输入信号和卷积核都转换到频域进行计算,可以大大提高计算效率。

具体步骤如下:1.对输入信号和卷积核进行零填充,使它们的长度相等且为2的幂次方。

2.对输入信号和卷积核进行快速傅里叶变换得到频域表示。

3.将频域表示的两个序列相乘。

4.对相乘结果进行反变换得到输出信号。

快速傅里叶变换法的优点在于计算复杂度较低,适用于长时间序列的离散卷积计算。

3. 卷积定理法卷积定理法是基于卷积定理的离散卷积计算方法。

卷积定理指出,信号的时域卷积等于其频域表示的乘积,即y[n]=IDFT(DFT(x[n])⋅DFT(ℎ[n]))。

因此,可以通过对输入信号和卷积核进行离散傅里叶变换,再相乘并进行反变换得到输出信号。

卷积定理法的优点在于可以直接利用快速傅里叶变换进行计算,计算复杂度较低。

4. 快速卷积法快速卷积法是一种利用信号的特性进行加速的离散卷积计算方法。

它通过对卷积核进行分解和递推计算,减少重复计算的次数,从而提高计算效率。

同时,快速卷积法还可以通过组合不同长度的卷积核来适应不同长度的输入信号。

快速卷积法的优点在于计算效率高,适用于大规模的离散卷积计算。

卷积计算(图解法)

卷积计算(图解法)
Байду номын сангаас
an4 a7
1 a
,
6 n 10
2021/3/11
0,
10 n 8
(4)相加:把所有的乘积累加起来,即得y(n)。
2021/3/11
1
计算卷积时,一般要分几个区间分别加以 考虑,下面举例说明。
例 已知x(n)和h(n)分别为:
1, 0 n 4 x(n) 0, 其它
an , 0 n 6
和 h(n)
0,
其它
a为常数,且1<a,试求x(n)和h(n)的卷积。
2021/3/11
5
x(m)
(3)在4<n≤6区间上
4
y(n) x(m)h(n m)
m0
m 04
h(n-m)
4
4
1 anm an am
m0
m0
m
n-6 0
46 n
an 1 a(14) an4 a1n
1 a1
1 a
2021/3/11
6
x(m)
(4)在6<n≤10区间上
n
y(n) x(m)h(n m)
2021/3/11
2
解 参看图,分段考虑如下:
x(m)
n 04
h(m)
n 06
h(n-m)
(1)对于n<0;
n-6 n
(2)对于0≤n≤4;
(3)对于n>4,且n-6≤0,即4<n≤6;
(4)对于n>6,且n-6≤4,即6<n≤10;
(5)对于(n-6)>4,即n>10。
2021/3/11
m
3
(1) n<0

卷积的几种计算方法以及程序实现FFT算法

卷积的几种计算方法以及程序实现FFT算法

e ( t 1) )u(t 2)
Made by 霏烟似雨
数字信号处理
ht 1
e

t 2
u (t ) u (t 2)
e t 1
e t u (t )
O
t
波形
O
2
t
2. 今有一输油管道,长 12 米,请用数字信号处理的方法探测管道内部的损伤,管道的损伤可能为焊 缝,腐蚀。叙述你的探测原理,方法与结果。 (不是很清楚) 探测原理:因为输油管道不是很长,可以考虑设计滤波器器通过信号测量来测试管道的损伤,当有 焊缝时,所接受的信号会有所损失,当管道式腐蚀时,由于管壁变得不再是平滑的时候,信号的频率 就会有所改变。
rk r ( k N / 2)
,则后半段的 DFT 值表达式:
X 1[
N N / 2 1 N / 2 1 r ( k ) N N rk k ] x1[r ]WN / 22 x1[r ]WN , k ] X 2 [k ] ( k=0,1, … ,N/2-1 ) / 2 X 1[ k ] ,同样, X 2 [ 2 2 r 0 r 0
d it L Ri t et dt


t
t 2
u(t ) u(
i(t )
L 1H
2) 冲激响应为 h(t ) e u(t ) 3)
i(t ) e( ) h(t ) d

程序: function test x = rand(1 , 2 .^ 13) ; tic X1 = fft(x) ; toc tic X2 = dit2(x) ; toc tic X3 = dif2(x) ; toc tic X4 = real_fft(x) ; toc max(abs(X1 - X2)) max(abs(X1 - X3)) max(abs(X1 - X4)) return ; function X = dit2(x) N = length(x) ; if N == 1 X=x; else X1 = dit2(x(1:2:(N-1))) ; X2 = dit2(x(2:2:N)) ; W = exp(-1i * 2 * pi / N * (0:(N/2-1))) ; X = [X1 + W .* X2 , X1 - W .* X2] ; end return ;

计算卷积的方法.ppt

计算卷积的方法.ppt
' t
dg ( t ) r ( t ) e ( t ) h ( t ) e ( t ) dt
de (t) *g(t) dt
e ( t ) e ( t ) u ( t )
de ( t ) d ( e ( t ) u ( t ))de ( t ) u ( t ) e ( t ) ( t ) dt dt dt
方法一:

h (t )
t
e( )
0


*
0
h(t ) 非零值下限是- 卷积分下限是零 u( ) 非零值下限是 0
h(t ) 非零值上限是 t 卷积分上限是 t u( ) 非零值上限是
若两个函数的左边界分别为tl1,tl2,右边界分别为 tr1,tr2,积分的 下限为max[tl1,tl2];积分的上限为min[tr1,tr2].


f f ( ) f ( t ) d 1 2 1 2 f
0 t-2 1
t
3 . if 1 t 2
1
b ab 2 ab 2 t a ( t ) d ( t ) 0 t 0 2 4 4
t
a t-2 0 t 1
ab (2 t 1 ) 4
2.各分段内卷积积分限的确定 。
分解成单位阶跃分量之和
f (t1 )
f( t t ) 1 1 f ( 0)
t1
t1
u ( t ) g ( t ) DaHarma ln tegr
*.Duharmal integral
r(t) e(0 )g(t) e ( )g(t )d 0
1
b ab 2 1 f f a ( t ) d ( t ) 1 2 0 02 4

卷积积分及其性质 ppt课件

卷积积分及其性质  ppt课件


d dx
(t)是奇函数 [ (x t)] f (x) d x [ f (t)] f (t)
第2-15页
PPT课件
15

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
2.4 卷积积分的性质
3. f(t)*ε(t)

t
f ( ) (t ) d f ( ) d
¥
ò yzs (t) =f (t) * h(t) =
et [6 e- 2(t- t )- 1]e(t - t ) d t
-?
当t <τ,即τ> t时,ε(t -τ) = 0
蝌t
yzs (t) =
et [6 e- 2(t- t )- 1]d t =
-?
t
(6 e- e2t 3t - et ) d t
?
(t)
t0
)
f
(
t
)
d
t

f (t0)

'(t) f (t) d t f '(0)


PPT课件
(t
t0 )
f
(t) d t


f

(t0 )
16
第2-16页

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
2.4 卷积积分的性质
三、卷积的微积分性质
1.
dn dtn
第2-11页
PPT课件
11

©西安电子科技大学电路与系统教研中心
信号与系统 电子教案
2.4 卷积积分的性质
下面讨论均设卷积积分是收敛的(或存在的)。

圆周卷积

圆周卷积
The Discrete Fourier Transform ( DFT )
五. 圆周卷积定理 ( Circular convolution )
1. 圆周卷积和的定义:
两个长度为 N 的序列 的如下计算称为圆周卷积和,用 符号 N 表示: (N表示圆周卷积的点数)
x1(n)
N
x2
(n)
N 1 m0
将 Y (k) 周期延拓: Y~(k) X~1(k)X~2(k)
则有: ~y (n) IDFS Y~(k)
N 1
~x1 (m)
~x2
(n
m)
m0
N 1
x1((m))N x2 n mN m0
在主值区间 0 m N 1, x1((m)) N x1(m) ,所以:
y(n) ~y(n)RN (n)
其中
k e j
k
z
z e j
1 zN
N (1WNk z 1) ze j
1 N
1 e jN
j k 2
1 e N
k e j
1 N
1 e jN e j 2k
j k 2
1 e N
1 1 e j (N 2k ) j k 2
N 1e N
j N 2k
N
1
W (mn N
)
k
k 0
x(n rN ) r
利用性质
N 1 j 2 pk N ,p rN
eN
k 0
0
,其他
p
由 ~xN (n) x(n rN ) 可知: r ~xN (n) 是 x(n) 以 N 为周期的周期延拓; 也就是说: 频域抽样造成时域周期延拓。
3. 频域抽样定理:
x1

与冲激函数或阶跃函数的卷积

与冲激函数或阶跃函数的卷积


表明:LTI系统对任意激励信号e(n)的零状态响 应r(n)等于e(n)与单位样值响应的卷积和。
(1)对因果序列
r (n) e(n) * h(n)
k
e(k )h(n k )
0 k n

k 0, e(k ) n k 0 k n, h(n k ) 0
f1 (t t1 ) * f 2 (t t2 ) s(t t1 t2 )
3.3 卷积和定义
r ( n) e( n) * h( n)
3.4 图解法、列表法、解析法
k
e(k )h(n k )
•L=L1+L2-1

作业:1-9, 2-1(1) ,2-3, 2-15(2),2-16(1) 作业:2-4(1) (3)
r ( n)

k n
e(k )u(k )h(n k )u(n k )
k 0
e( k ) h ( n k )
(2)任意两个序列的卷积和
f (n) f1 (n) f 2 (n)
k
f (k ) f
1

2
(n k )
满足交换律、分配率、结合律
f1 (t ) * f 2 (t ) * (t t1 ) * (t t2 ) s(t ) * (t t1 t2 ) s(t t1 t2 )
(2)与冲激偶‘(t)的卷 积
卷积的微分性质
f (t ) * ' (t )
f ' (t ) * (t ) f ' (t )
t1 0
t1
e(t )t (t t )

最新线性卷积与循环卷积的关系及相关算法应用(下附讲稿)课件PPT

最新线性卷积与循环卷积的关系及相关算法应用(下附讲稿)课件PPT
线性卷积与循环卷积的关系 及相关算法应用(下附讲稿)
线性卷积的计算
一、定义计算 二、利用DFT循环卷积
为了获得使线性卷 积与循环卷积相等
的条件
x(n) y(n) N
引入了两周期 序列的周期卷

综上所述……
终极结论
两序列的循环卷积序列是它 们线性卷积序列以循环卷积的 长度为周期进行周期延拓后的 主值序列。
归纳、推论
7
重叠保留法 6
xk=[1 2 3];
h=[1 2];
N=3;M=2;
5
for L=1:10
x((L-1)*N+1:L*N)=xk; 4
end
Hk=fft(h,M+N-1);
3
y=zeros(1,M+N*10-1);
overlap=zeros(1,M-1); y(1:M+N-1)=ifft(fft([overlap2 x(1:N)],M+N-1).*Hk);
18
n
100
50
0
-50
-100
0
2
4
6
8
10
12
14
16
18
n
通过循环卷积求卷积
方剂学课件
福建中医学院方剂学教研室
第十一章 补益剂
❖ 一、定义:凡用补益药为主组成,具有补养人体气血阴阳等 作用,主治各种虚证的方剂,统称补益药。
❖ 二、立论根据:损者益之”
❖ 三、适应范围:先天不足。
❖ 后天失调
八珍汤
❖ A组成内容 ❖ 人参: 益气养血 ❖ 熟地黄: ❖ 白朮: 健脾渗湿 ❖ 白茯苓: ❖ 当归: 养血和营 ❖ 白芍药: ❖ 川芎:活血行气 ❖ 甘草:益气和中,调和诸药

卷积积分介绍

卷积积分介绍

h(t)
(1) 1
O
(1) t
g(t)
1
O12 1
g(t)f(1)(t)h(1)(t)
t 3 2t
t 3
0t 1 1t 2 2t 3
3 t
注意
28
注意
当f1(t)
t df1(t)dt时, dt
f 1 ( t) f 2 ( t) f 1 ( t) f 2 ( 1 )( t)
例 sg t: n t
系统并联运算
3.结合律
f ( t ) f 1 ( t ) f 2 ( t ) f ( t ) [ f 1 ( t ) f 2 ( t )]
系统级联运算
22
系统并联
f 1 ( t ) [ f 2 ( t ) f 3 ( t ) f ] 1 ( t ) f 2 ( t ) f 1 ( t ) f 3 ( t ) 系统并联,框图表示:
一般数学表示: g(t) f1()f2(t)d 信号无起因时: g(t) f()h(t)d
(4)卷积是数学方法,也可运用于其他学科 。
(5)积分限由 f1(t),f2(t)存在的区间决定,即由
f1()f2(t)0的范围决定。
20
总结
求解响应的方法: 时域经典法: 完全解=齐次解 + 特解 双零法:
: 信号作用的时刻,积分变量
从因果关系看,必定有 t
(2)分析信号是手段,卷积中没有冲激形式,但有其内容;
f() 是h(t-)的加权,求和
即d f() 是h(t-)的加权,积分
(t-)的响应
19
(3)卷积是系统分析中的重要方法,通过冲激响应h(t)建 立了响应r(t)与激励e(t)之间的关系。
零输入响应:解齐次方程,用初(起)始条件求系数;

卷积

卷积

1 1 2
1 (t ) d 2
t2 t 1 4 4 16
h(t ) 1
1 2
(c ) 1 t
3 2
1
0
t 1
3 2

(c ) 1 t
1 e(t ) * h(t ) 1 1 (t )d 2 2 3 3 t 4 16
X
第 12 页
第 14 页
X

• 练习
已知
1 f1 ( t ) 0 t 1 t 1 t f 2 (t ) 2 ( 0 t 3)
第 15 页
求卷积。
解:
t t 1 4 2 4 t g( t ) 2 t t 2 4 2 0
2
g (t )
1 2
1
0(a) t Nhomakorabeat
1 (a) t 2
1
e(t ) * h(t ) 0
X
第 11 页
h(t )
1 2
e( )
1
1 (b) t 1 2

e(t ) * h(t )
1t (b) t 1 2
e( )
0
1

t

§2.6卷积
•卷积
•利用卷积积分求系统的零状态响应
•卷积图解说明
•卷积积分的几点认识

一.卷积(Convolution)
设有两个 函数
2 页
f1 (t ) f 2 (t ) ,积分
f (t ) f1 ( ) f 2 (t ) d


称为
f1 (t ) f 2 (t ) 的卷积积分,简称卷积,记为

计算卷积的方法

计算卷积的方法
总结词
详细描述了系统传递函数的计算过程,包括系统传递 函数的定义、系统函数的表示、系统传递函数的计算 步骤以及计算实例。
详细描述
系统传递函数是描述线性时不变系统动态特性的数学模 型,可以通过系统的输入输出关系来计算。具体来说, 假设有一个线性时不变系统,其输入为x(t),输出为y(t), 系统的传递函数可以通过以下步骤得到:首先根据系统 的输入输出关系列出微分方程,然后通过拉普拉斯变换 求解微分方程,得到传递函数H(s)。
04
卷积的特性
时移性
总结词
卷积的结果可以通过将其中一个信号进 行时间平移来获得。
VS
详细描述
卷积运算具有时移性,即当一个信号在时 间上平移时,其与另一个信号的卷积结果 也会相应地发生平移。这种特性在信号处 理和控制系统等领域中非常重要,因为它 允许我们通过改变输入信号的时间位置来 控制输出信号的时间响应。
滤波器
滤波器
卷积在信号处理中常常用于实现滤波器功能。通过设计特定 的滤波器系数(相当于冲激响应),可以对输入信号进行滤 波处理,提取出需要的信号成分或者抑制不需要的噪声干扰 。
IIR滤波器和FIR滤波器
在数字信号处理中,滤波器可以分为无限冲激响应(IIR)滤波 器和有限冲激响应(FIR)滤波器。IIR滤波器具有反馈结构,可 以实现对信号的递归处理;而FIR滤波器没有反馈结构,只能实 现线性相位响应。
计算卷积的方法
• 卷积的定义 • 卷积的物理意义 • 计算卷积的方法 • 卷积的特性 • 卷积的计算实例
01
卷积的定义
数学定义
数学上,卷积是一种二元运算,表示为 *。 对于两个函数 f 和 g,它们的卷积定义为
(f * g)[n] = sum_{k=-infty}^{+infty} f[k] g[n-k])

离散卷积(卷积和)

离散卷积(卷积和)

y(n)= x1(n)* x2(n)= x1(n)* x2(n)
n
x1(n)*i x2
i =
x1(n)*
x2(n)
n
i
si
=
n i
x1
i
*x2(n)=
x1(n)*
n i
x2
i
返回
三.卷积计算 yn
xn* hn
xmhn m
m
m的范围由x(n)、h(n)的范围共同决定。
6
*
n
6
n
1
1 n 6n 7un 6 un 15un un 5
2
1 n 1n 2un 1 un 5
2
这与前面所得结果是相同的,但运算过程比较简单。
返回
例7-6-7已知离散信号 x1(n)=n[u(n)-u(n-6)]
利用单x2位(n样)=值u(信n+号6)d-(un()n求+1卷) 积 y(n)= x1(n)*x2(n)
mumun m 6 mum 6un m 6
m
m
mumun m 1 mum 6un m 1
m
m
n6
mun
6
n6
mun
n1
mun
1
n1
mun
5
m0
m6
m0
m6
n6
mun
6
n6
m
5
mun
n1
mun
1
n1
m
5
mun 5
i
i
i0 i6
1 2
nn
1un
1 2
nn
1un
15un

卷积和相关

卷积和相关

g
x
11 0
d
1
2
(图c) (图d,e)
(4)2< x <3, g x 1 1 d 9 3x x2 (图f)
x2
2
2
(5)x≥3, g x f xhx 0
(图g,h)
综合上述各式,可知所求二函数的卷积为:
0
x x2
2
g x
f
xhx
12
9 2
3x 0
x2 2
x0 0 x1 1 x2
三、卷积的物理意义和几何意义
物理意义:像强度分布是物强度分布与单位强度点 光源对应的像强度分布的卷积.
几何意义:可采用图解分析法帮助理解卷积运算的 含义。其运算过程分为折叠,位移,相 乘,积分4个步骤
卷积运算的两个效应:⑴展宽效应 ⑵平滑化效应
四、卷积计算方法--借助几何作图
步骤:
f(t)
h(t)
(1)当x 0或x 4,
g
x
rect
x
2
1
rect
x 1 2
0
(2)当0 < x≤2(图a) ,
g
x
x
0
d
x
2
1
x
2
2
(3)当2≤ x<4(图b),
gx
2 x2
d
4
x
2 1
x
2
2
rect
x
1 2
rect
ab
f
(ax,by) h(ax,by)
f
a , b
h ax
a ,by
b
dd
1 ab
f
a ,b hax a ,by b d a d b
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档