中考数学5月模拟试卷(含解析)
江苏省镇江市2021年中考第一次(5月)模拟数学试题(含答案与解析)...
【解析】
【分析】科学记数法的表示形式为 ( ), 为整数,确定 的值时,要看把原数变成 时,小数点移动了多少位, 的绝对值与小数点移动的位数相同.
【详解】按照科学记数法的表示方式,439000可以表示为: ,
故答案为: .
【点睛】本题考查了科学记数法的表示方法,科学记数法的表示形式为 的形式,其中 , 为整数,准确确定 的值以及 的值是解答本题的关键.
【答案】
【解析】
【分析】设地球的半径为 ,根据平行线的性质和弧长公式可得出 ,再根据圆的周长的公式即可得出答案.
【详解】解:如图所示:设地球的半径为
根据弧长公式可得:
地球的周长约为 .
故答案为: .
【点睛】本题考查了圆的弧长公式、平行线的性质,熟练掌握弧长公式是解题的关键.
12.在平面直角坐标系中,已知点 ,点 ,点P在一次函数 的图像上,若满足 的点P只有1个,则b的取值范围是_____.
7.如图, 中, ,直尺的一边与 平行,则 ____ .
【答案】
【解析】
【分析】根据平行线的性质,同位角相等,再利用三角形外角的性质即可求得.
【详解】如图, 直尺的一边与 平行
故答案为: .
【点睛】本题考查了平行线的性质,三角形外角性质,熟悉平行线的性质,三角形外角性质是解题的关键.
8.已知一次函数 ,当 时,y的最小值等于_____.
4.如图,飞镖游戏板( 方格)中每一块小正方形除标注的数字外都相同,假设飞镖击中每一块小正方形是等可能的(击中小正方形的边界线或没有击中游戏板,则重投1次),任意投掷飞镖1次,击中标有数字“1”的小正方形的概率等于______.
1
2
3
2
3
2
2020年安徽省宣城市中考数学模拟试卷(5月份) (解析版)
2020年安徽省宣城市中考数学模拟试卷(5月份)一、选择题1.﹣1绝对值的相反数是()A.﹣2B.﹣1C.0D.12.计算a3•a•(﹣1)的结果是()A.a2B.﹣a2C.a4D.﹣a43.太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×105C.0.696×107D.6.96×1084.如图,该几何体的俯视图是()A.B.C.D.5.化简的结果是()A.x+1B.x﹣1C.﹣x D.x6.已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<47.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则劣弧的长为()A.B.C.2πD.8.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a29.如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=.其中正确结论的个数是()A.4B.3C.2D.110.如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,图1中某线段的长度为y,y与x的函数关系的大致图象如图2,则这条线段可能是图1中的()A.线段AD B.线段AP C.线段PD D.线段CD二、填空题(本大题共4小题,每小题5分,满分20分)11.函数y=的自变量x的取值范围是.12.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是.13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是.14.小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为分.三、(本大题共2小题,每小题0分,满分0分)15.计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|16.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.四、(本大题共2小题,每小题0分,满分0分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.18.浮式起重机是海上打捞、海上救援和海上装卸的重要设备(如图①),某公司的浮式起重机需更换悬索,该公司设计了一个数学模型(如图②),测量知,∠A=30°,∠C =49°,AB=60m.请你利用以上数据,求出悬索AC和支架BC的长(结果取整数).参考数据:≈1.73,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15..五、(本大题共2小题,每小题0分,满分0分)19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.这本书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.用现代白话文可以这样理解:甲口袋中装有黄金9枚(每枚黄金重量相同),乙口袋中装有白银11枚(每枚白银重量相同),用称分别称这两个口袋的重量,它们的重量相等.若从甲口袋中拿出1枚黄金放入乙口袋中,乙口袋中拿出1枚白银放入甲口袋中,则甲口袋的重量比乙口袋的重量轻了13两(袋子重量忽略不计).问一枚黄金和一枚白银分别重多少两?请根据题意列方程(组)解之.20.如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.(2)若PC=PA,PF=1,求AF的长.六、(本大题满分0分)21.鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2016年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;根据以上信息解答下列问题:(1)2016年7月份,鄂尔多斯市共接待游客万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是,并补全条形统计图;(2)预计2017年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.七、(本大题满分0分)22.2020年3月,我国湖北省A、B两市遭受严重新冠肺炎影响,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(2)经过当地政府的大力支持,从D市到B市的运输时间缩短了,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.八、(本大题满分0分)23.已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=90°.(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的.1.﹣1绝对值的相反数是()A.﹣2B.﹣1C.0D.1【分析】先根据负数的绝对值是其相反数,再利用相反数得出答案.解:﹣1的绝对值为1,所以﹣1绝对值的相反数是﹣1,故选:B.2.计算a3•a•(﹣1)的结果是()A.a2B.﹣a2C.a4D.﹣a4【分析】根据同底数幂的乘法法则计算即可.解:a3•a•(﹣1)=a3+1•(﹣1)=﹣a4.故选:D.3.太阳半径约696000千米,则696000千米用科学记数法可表示为()A.0.696×106B.6.96×105C.0.696×107D.6.96×108【分析】根据科学记数法的表示方法可以将题目中的数据用科学记数法表示,本题得以解决.解:696000千米=6.96×105米,故选:B.4.如图,该几何体的俯视图是()A.B.C.D.【分析】找到从几何体的上面所看到的图形即可.解:从几何体的上面看可得,故选:A.5.化简的结果是()A.x+1B.x﹣1C.﹣x D.x【分析】将分母化为同分母,通分,再将分子因式分解,约分.解:=﹣===x,故选:D.6.已知一次函数y1=x﹣3和反比例函数y2=的图象在平面直角坐标系中交于A、B两点,当y1>y2时,x的取值范围是()A.x<﹣1或x>4B.﹣1<x<0或x>4C.﹣1<x<0或0<x<4D.x<﹣1或0<x<4【分析】先求出两个函数的交点坐标,再根据函数的图象和性质得出即可.解:解方程组得:,,即A(4,1),B(﹣1,﹣4),所以当y1>y2时,x的取值范围是﹣1<x<0或x>4,故选:B.7.如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则劣弧的长为()A.B.C.2πD.【分析】先计算圆心角为120°,根据弧长公式=,可得结果.解:连接OD,∵∠ABD=30°,∴∠AOD=2∠ABD=60°,∴∠BOD=120°,∴的长==,故选:D.8.为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为()A.2a2B.3a2C.4a2D.5a2【分析】根据正八边形的性质得出∠CAB=∠CBA=45°,进而得出AC=BC=a,再利用正八边形周围四个三角形的特殊性得出阴影部分面积即可.解:∵某小区将原来正方形地砖更换为如图所示的正八边形植草砖,设正八边形与其内部小正方形的边长都为a,∴AB=a,且∠CAB=∠CBA=45°,∴sin45°===,∴AC=BC=a,∴S△ABC=×a×a=,∴正八边形周围是四个全等三角形,面积和为:×4=a2.正八边形中间是边长为a的正方形,∴阴影部分的面积为:a2+a2=2a2,故选:A.9.如图,在矩形ABCD中,点E是AD边的中点,BE⊥AC,垂足为点F,连接DF,分析下列四个结论:①△AEF∽△CAB;②DF=DC;③S△DCF=4S△DEF;④tan∠CAD=.其中正确结论的个数是()A.4B.3C.2D.1【分析】①正确.只要证明∠EAC=∠ACB,∠ABC=∠AFE=90°即可;②根据已知条件得到四边形BMDE是平行四边形,求得BM=DE=BC,根据线段垂直平分线的性质得到DM垂直平分CF,于是得到结论,③根据三角形的面积公式即可得到结论;④设AE=a,AB=b,则AD=2a,根据相似三角形的性质即可得到结论.解:如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,S△DCF=4S△DEF∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;②∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故②正确;③∵点E是AD边的中点,∴S△DEF=S△ADF,∵△AEF∽△CBF,∴AF:CF=AE:BC=,∴S△CDF=2S△ADF=4S△DEF,故③正确;④设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,有=,即b=a,∴tan∠CAD===.故④正确;故选:A.10.如图1,正△ABC的边长为4,点P为BC边上的任意一点,且∠APD=60°,PD交AC于点D,设线段PB的长度为x,图1中某线段的长度为y,y与x的函数关系的大致图象如图2,则这条线段可能是图1中的()A.线段AD B.线段AP C.线段PD D.线段CD【分析】设出等边三角形的边长,根据等边三角形的性质确定各个线段取最小值时,x 的范围,结合图象得到答案.解:由图2知,当x取最小值2时,y=3.正△ABC的边长为4,则0≤x≤4,根据等边三角形的性质可知,当AP⊥BC即x=2时,线段AP、PD有最小值,此时AP=2,PD=AP=,AD=AP cos30°=3,CD=AC﹣AD=1,故选:A.二、填空题(本大题共4小题,每小题5分,满分20分)11.函数y=的自变量x的取值范围是x≥2.【分析】根据被开方数大于等于0列式计算即可得解.解:根据题意得,x﹣2≥0,解得x≥2.故答案为:x≥2.12.如图,由一些点组成形如正多边形的图案,按照这样的规律摆下去,则第n(n>0)个图案需要点的个数是n2+2n.【分析】由第1个图形是2×3﹣3、第2个图形是3×4﹣4、第3个图形是4×5﹣5,据此可得答案.解:第1个图形是2×3﹣3,第2个图形是3×4﹣4,第3个图形是4×5﹣5,按照这样的规律摆下去,则第n个图形需要云子的个数是(n+1)(n+2)﹣(n+2)=n2+2n,故答案为:n2+2n.13.在一张直角三角形纸片的两直角边上各取一点,分别沿斜边中点与这两点的连线剪去两个三角形,剩下的部分是如图所示的直角梯形,其中三边长分别为2、4、3,则原直角三角形纸片的斜边长是10或4.【分析】先根据题意画出图形,再根据勾股定理求出斜边上的中线,即可求出斜边的长.解:①如图,因为CD=,点D是斜边AB的中点,所以AB=2CD=4;②如图,因为CE═=5,E是斜边AB的中点,所以AB=2CE=10,综上,原直角三角形纸片的斜边长是10或4,故答案为:10或4.14.小光和小王玩“石头、剪子、布”游戏,规定:一局比赛后,胜者得3分,负者得﹣1分,平局两人都得0分,小光和小王都制订了自己的游戏策略,并且两人都不知道对方的策略.小光的策略是:石头、剪子、布、石头、剪子、布、……小王的策略是:剪子、随机、剪子、随机……(说明:随机指石头、剪子、布中任意一个)例如,某次游戏的前9局比赛中,两人当时的策略和得分情况如下表局数123456789小光实际策略石头剪子布石头剪子布石头剪子布小王实际策略剪子布剪子石头剪子剪子剪子石头剪子小光得分33﹣100﹣13﹣1﹣1小王得分﹣1﹣13003﹣133已知在另一次游戏中,50局比赛后,小光总得分为﹣6分,则小王总得分为90分.【分析】观察二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分,进而可得出五十局中可预知的小光胜9局、平8局、负8局,设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据50局比赛后小光总得分为﹣6分,即可得出关于x、y的二元一次方程,由x、y、(25﹣x﹣y)均非负,可得出x=0、y=25,再由胜一局得3分、负一局得﹣1分、平不得分,可求出小王的总得分.解:由二人的策略可知:每6局一循环,每个循环中第一局小光拿3分,第三局小光拿﹣1分,第五局小光拿0分.∵50÷6=8(组)……2(局),∴(3﹣1+0)×8+3=19(分).设其它二十五局中,小光胜了x局,负了y局,则平了(25﹣x﹣y)局,根据题意得:19+3x﹣y=﹣6,∴y=3x+25.∵x、y、(25﹣x﹣y)均非负,∴x=0,y=25,∴小王的总得分=(﹣1+3+0)×8﹣1+25×3=90(分).故答案为:90.三、(本大题共2小题,每小题0分,满分0分)15.计算:()﹣2+(π2﹣π)0+cos60°+|﹣2|【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质、零指数幂的性质进而化简得出答案.解:原式=+1++2﹣=+1++2﹣=4﹣.16.如图,四边形ABCD为平行四边形,∠BAD和∠BCD的平分线AE,CF分别交DC,BA的延长线于点E,F,交边BC,AD于点H,G.(1)求证:四边形AECF是平行四边形.(2)若AB=5,BC=8,求AF+AG的值.【分析】(1)由平行四边形的性质,结合角平分线的定义可证得AE∥CF,结合AF∥CE,可证得结论;(2)由条件可证得△DCG∽△AFG,利用相似三角形的性质可求得DG与AG的关系,结合条件可求得AG的长,从而可求得答案.【解答】(1)证明:∵四边形ABCD为平行四边形,∴AD∥BC,∠BAD=∠BCD,∵AE、CF分别平分∠BAD和∠BCD,∴∠BCG=∠CGD=∠HAD,∴AE∥CF,∵AF∥CE,∴四边形AECF是平行四边形;(2)解:由(1)可知∠BCF=∠DCF=∠F,∴BF=BC=AD=8,∵AB=CD=5,∴AF=BF﹣AB=3,∵BF∥DE,∴∠DCG=∠F,∠D=∠FAG,∴△DCG∽△AFG,∴==,∴DG=AG,∴AD=AG+DG=AG=8,∴AG=3,∴AF+AG=3+3=6.四、(本大题共2小题,每小题0分,满分0分)17.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.(1)画出一个格点△A1B1C1,并使它与△ABC全等且A与A1是对应点;(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得到的.【分析】(1)利用△ABC三边长度,画出以A1为顶点的三角形三边长度即可,利用图象平移,可得出△A1B1C1,(2)利用点B关于直线AC的对称点D,得出D点坐标即可得出AD与AB的位置关系.解:(1)如图所示:根据AC=3,AB=,BC=5,利用△ABC≌△A1B1C1,利用图象平移,可得出△A1B1C1,(2)如图所示:AD可以看成是AB绕着点A逆时针旋转90度得到的.18.浮式起重机是海上打捞、海上救援和海上装卸的重要设备(如图①),某公司的浮式起重机需更换悬索,该公司设计了一个数学模型(如图②),测量知,∠A=30°,∠C =49°,AB=60m.请你利用以上数据,求出悬索AC和支架BC的长(结果取整数).参考数据:≈1.73,sin49°≈0.75,cos49°≈0.66,tan49°≈1.15..【分析】过点B作CD⊥AC于点D,根据锐角三角函数的定义即可求出答案.解:过点B作CD⊥AC于点D,∵∠A=30°,AB=60,∴BD=AB=30,∴AD=BD=30,在Rt△CBD中,tan49°=,sin49°=,∴CD≈26,BC≈40,∴AC=AD+CD≈78.五、(本大题共2小题,每小题0分,满分0分)19.《九章算术》是中国传统数学最重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开方术、正负术和方程术.这本书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.用现代白话文可以这样理解:甲口袋中装有黄金9枚(每枚黄金重量相同),乙口袋中装有白银11枚(每枚白银重量相同),用称分别称这两个口袋的重量,它们的重量相等.若从甲口袋中拿出1枚黄金放入乙口袋中,乙口袋中拿出1枚白银放入甲口袋中,则甲口袋的重量比乙口袋的重量轻了13两(袋子重量忽略不计).问一枚黄金和一枚白银分别重多少两?请根据题意列方程(组)解之.【分析】设每枚黄金重x两,每枚白银重y两,根据题意列出方程组即可求出答案.解:设每枚黄金重x两,每枚白银重y两,由题意得,解得,答:每枚黄金重两,每枚白银重两20.如图,△ACE,△ACD均为直角三角形,∠ACE=90°,∠ADC=90°,AE与CD相交于点P,以CD为直径的⊙O恰好经过点E,并与AC,AE分别交于点B和点F.(1)求证:∠ADF=∠EAC.(2)若PC=PA,PF=1,求AF的长.【分析】(1)根据圆周角定理,等角的余角相等可以证明结论成立;(2)根据(1)中的结论和三角形相似的知识可以求得AF的长.【解答】(1)证明:∵∠ADC=90°,∠ACE=90°,∴∠ADF+∠FDC=90°,∠EAC+∠CEF=90°,∵∠FDC=∠CEF,∴∠ADF=∠EAC;(2)连接FC,∵CD是圆O的直径,∴∠DFC=90°,∴∠FDC+∠FCD=90°,∵∠ADF+∠FDC=90°,∠ADF=∠EAC,∴∠FCD=∠EAC,即∠FCP=CAP,∵∠FPC=∠CPA,∴△FPC∽△CPA,∴,∵PC=PA,PF=1,∴,解得,PA=,∴AF=PA﹣PF=,即AF=.六、(本大题满分0分)21.鄂尔多斯市加快国家旅游改革先行示范区建设,越来越多的游客慕名而来,感受鄂尔多斯市“24℃夏天的独特魅力”,市旅游局工作人员依据2016年7月份鄂尔多斯市各景点的游客数量,绘制了如下尚不完整的统计图;根据以上信息解答下列问题:(1)2016年7月份,鄂尔多斯市共接待游客150万人,扇形统计图中乌兰木伦景观湖所对应的圆心角的度数是72,并补全条形统计图;(2)预计2017年7月份约有200万人选择来鄂尔多斯市旅游,通过计算预估其中选择去响沙湾旅游的人数;(3)甲、乙两个旅行团准备去响沙湾、成吉思汗陵、蒙古源流三个景点旅游,若这三个景点分别记作a、b、c,请用树状图或列表法求他们选择去同一个景点的概率.【分析】(1)根据条形图和扇形图得到游“其他”的人数和所占的百分比,计算出共接待游客人数,用“乌兰木伦景观湖”所占的百分比乘以360°求出圆心角;用总人数减去各个旅游景点的人数求出黄河大峡谷的人数,从而补全条形统计图;(2)用总人数乘以去响沙湾旅游的人数所占的百分比,即可得出答案;(3)列树状图得出共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种,根据概率公式计算即可.解:(1)由条形图和扇形图可知,游其他的人数是12万人,占8%,则鄂尔多斯市共接待游客人数为:12÷8%=150(万人),乌兰木伦景观湖所对应的圆心角的度数是:360°×=72°,黄河大峡谷人数为:150﹣45﹣27﹣30﹣24﹣12=12(万人),补全条形统计图如图:故答案为:150,72;(2)根据题意得:200×=60(万人)答:估计其中选择去响沙湾旅游的人数有60万人;(3)设a,b,c分别表示响沙湾、成吉思汗陵、蒙古源流,列树状图如下:由此可见,共有9种可能出现的结果,这些结果出现的可能性相等,其中同时选择去同一个景点的结果有3种则同时选择去同一个景点的概率是=七、(本大题满分0分)22.2020年3月,我国湖北省A、B两市遭受严重新冠肺炎影响,邻近县市C、D获知A、B两市分别急需救灾物资200吨和300吨的消息后,决定调运物资支援灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市.已知从C市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(2)经过当地政府的大力支持,从D市到B市的运输时间缩短了,运费每吨减少m元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.【分析】(1)根据题意可以求得w与x的函数关系式,并写出x的取值范围;(2)根据题意,利用分类讨论的数学思想可以解答本题.解:(1)由题意可得,w=20(x﹣60)+25(300﹣x)+15(260﹣x)+30x=10x+10200,∴w=10x+10200(60≤x≤260);(2)由题意可得,w=10x+10200﹣mx=(10﹣m)x+10200,当0<m<10时,x=60时,w取得最小值,此时w=(10﹣m)×60+10200≥10320,解得,0<m≤8,当m>10时,x=260时,w取得最小值,此时,w=(10﹣m)×260+10200≥10320,解得,m≤.∵<10,∴m>10这种情况不符合题意,由上可得,m的取值范围是0<m≤8.八、(本大题满分0分)23.已知:△ABC和△ADE按如图所示方式放置,点D在△ABC内,连接BD、CD和CE,且∠DCE=90°.(1)如图①,当△ABC和△ADE均为等边三角形时,试确定AD、BD、CD三条线段的关系,并说明理由;(2)如图②,当BA=BC=2AC,DA=DE=2AE时,试确定AD、BD、CD三条线段的关系,并说明理由;(3)如图③,当AB:BC:AC=AD:DE:AE=m:n:p时,请直接写出AD、BD、CD三条线段的关系.【分析】(1)先判断出∠BAD=∠CAE,进而判断出△ABD≌△ACE,最后用勾股定理即可得出结论;(2)先判断出△ABC∽△ADE,进而得出∠BAC=∠DAE,即可判断出△BAD∽△CAE,最后用勾股定理即可得出结论.解:(1)CD2+BD2=AD2,理由:∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE=DE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS),∴BD=CE,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,(2)CD2+BD2=AD2,理由:∵BA=BC=2AC,DA=DE=2AE,∴,∴△ABC∽△ADE,∴∠BAC=∠DAE,∴∠BAD=∠CAE,∵,∴△BAD∽△CAE,∴=2,∴BD=2CE,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,(3)(mCD)2+(pBD)2=(nAD)2,理由:∵AB:BC:AC=AD:DE:AE=m:n:p,∴DE=AD,△ABC∽△ADE,∴∠BAC=∠DAE,∵,∴△ABD∽△ACE,∴,∴CE=BD,在Rt△DCE中,CD2+CE2=DE2,∴CD2+BD2=AD2,∴(mCD)2+(pBD)2=(nAD)2。
最新2022独家原创中考数学模拟试卷(5月份) (解析版)
一、选择题1.若一个数的绝对值是5,则这个数是()A.5B.﹣5C.±5D.0或52.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为()A.13×105B.1.3×105C.1.3×106D.1.3×1073.下列计算正确的是()A.a4+a4=a8B.a5•a4=a20C.a4÷a=a3D.(﹣a3)2=a5 4.如图,在▱ABCD中,以A为圆心,AB长为半径画弧交AD于F.分别以点F,B为圆心,大于BF长为半径作弧,两弧交于点G,作射线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.105.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.6.已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.47.如图,四边形ABCD是平行四边形,⊙O经过点A、C、D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=()A.70°B.50°C.40°D.30°8.在2017年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数和平均数分别是()A.26和26B.25和26C.27和28D.28和299.如图,正方形ABCO的顶点A、C在坐标轴上,BC是菱形BDCE 的对角线,若∠EBD=120°,BC=2,则点E的坐标是()A.(﹣2+,﹣1)B.(2﹣,﹣1)C.(,﹣1)D.(2﹣,1)10.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为()A.14B.11C.6D.3二、填空题(每小题3分,共15分)11.化简:2﹣=.12.一个不透明的口袋里装有分别标有汉字“文”、“明”、“濮”、“阳”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,两个球上的汉字能组成“文明”的概率是.13.不等式组的解集为.14.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是.15.在Rt△ABC中,∠ACB=90°,∠A=30°,D是线段AB上一动点,连接CD,把△ADC沿CD翻折得到△DCE,连接BE,AB=4,当△DBE是等腰三角形时,其腰长为.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:,其中a=1+.17.2019年12月12日被首次于中国武汉发现“新型冠状病毒”.为防范新型冠状病毒,油田某社区为了解辖区居民对“新型冠状病毒”的重视程度,在全社区范围内随机抽取部分居民进行问卷调查.根据调查结果,把居民对“新型冠状病毒”的重视程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两个不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为;(4)若该社区有1500人,则可以估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有人.18.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,=,过点C作CD∥AB交BE的延长线于D,连AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF.①当∠ABC=°时,点F为弧AE的中点;②若∠AOF=3∠FOE且AF=3,则⊙O的半径是.19.某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A 处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M 的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)20.2020年初,新冠肺炎肆虐全球.我国政府和人民采取了积极有效的防疫措施,疫情在我国得到了有效控制.小明为复学到药店购买N95口罩和一次性医用口罩.已知购买5个N95口罩和8个一次性医用口罩共需50元;购买7个N95口罩和6个一次性医用口罩共需57元.(1)求N95口罩与一次性医用口罩的单价;(2)小明准备购买N95口罩和一次性医用口罩共50个,且N95口罩的数量不少于一次性医用口罩数量的.请设计出最省钱的购买方案,并说明理由.21.小明为探究函数y=的图象和性质,需要画出函数图象,列表如下:x …﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 …y … 1 2 3 3 2 1 …根据如表数据,在平面直角坐标系中描点,画出函数图象,如图如示,小明画出了图象的一部分.(1)请你帮小明画出完整的y=的图象;(2)观察函数图象,请写出这个函数的两条性质;性质一:;性质二:.(3)利用上述图象,探究函数y=,图象与直线y=﹣x+b的关系:①当b=时,直线y=﹣x+b与函数y=在第一象限的图象有一个交点A,则A的坐标是;②当b为何值时,讨论函数y=的图象与直线y=﹣x+b的交点个数.22.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E 分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG=90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为.【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.23.如图1,在平面直角坐标系中,O为原点,抛物线y=ax2+bx+c 经过A、B、C三点,且其对称轴为x=1,其中点C(0,),点B(3,0).(1)求抛物线的解析式;(2)①如图(1),点D是直线CB上方抛物线上的动点,当四边形DCAB的面积取最大值时,求点D的坐标;②如图(2),连接CA,在抛物线上有一点M,满足∠MCB=∠ACO,请直接写出点M的横坐标.参考答案一、选择题(每小题3分,共30分)1.若一个数的绝对值是5,则这个数是()A.5B.﹣5C.±5D.0或5【分析】当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数﹣a;所以若一个数的绝对值是5,则这个数是±5,据此判定即可.解:若一个数的绝对值是5,则这个数是±5.故选:C.2.5G是第五代移动通信技术,5G网络理论下载速度可以达到每秒1300000KB以上,这意味着下载一部高清电影只需要1秒.将1300000用科学记数法表示应为()A.13×105B.1.3×105C.1.3×106D.1.3×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:将1300000用科学记数法表示为:1.3×106.故选:C.3.下列计算正确的是()A.a4+a4=a8B.a5•a4=a20C.a4÷a=a3D.(﹣a3)2=a5【分析】根据整式的运算法则即可求出答案.解:(A)a4+a4=2a4,故A错误;(B)a5•a4=a9,故B错误;(C)a4÷a=a3,故B正确;(D)(﹣a3)2=a6,故D错误;故选:C.4.如图,在▱ABCD中,以A为圆心,AB长为半径画弧交AD于F.分别以点F,B为圆心,大于BF长为半径作弧,两弧交于点G,作射线AG交BC于点E,若BF=6,AB=5,则AE的长为()A.4B.6C.8D.10【分析】设AE交BF于点O.证明四边形ABEF是菱形,利用勾股定理求出OA即可解决问题.解:如图,设AE交BF于点O.由作图可知:AB=AF,AE⊥BF,∴OB=OF,∠BAE=∠EAF,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAF=∠AEB,∴∠BAE=∠AEB,∴AB=BE=AF,∵AF∥BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴OA=OE,OB=OF=3,在Rt△AOB中,∵∠AOB=90°,∴OA==4,∴AE=2OA=8.故选:C.5.如图是由几个相同的正方体搭成的一个几何体,从正面看到的平面图形是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.解:从正面看第一层是三个小正方形,第二层在中间位置一个小正方形,故D符合题意,故选:D.6.已知一元二次方程x2+kx﹣3=0有一个根为1,则k的值为()A.﹣2B.2C.﹣4D.4【分析】根据一元二次方程的解的定义,把把x=1代入方程得关于k的一次方程1﹣3+k=0,然后解一次方程即可.解:把x=1代入方程得1+k﹣3=0,解得k=2.故选:B.7.如图,四边形ABCD是平行四边形,⊙O经过点A、C、D,与BC交于点E,连接AE,若∠D=70°,则∠BAE=()A.70°B.50°C.40°D.30°【分析】由平行四边形的性质得出∠DCB=180°﹣∠D=110°,∠B =∠D=70°,由圆内接四边形的性质得到∠AEB=∠D=70°,由三角形的内角和定理即可得到结论.解:∵四边形ABCD是平行四边形,∠D=70°,∴∠DCB=180°﹣∠D=110°,∠B=∠D=70°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=70°,∴∠BAE=180°﹣70°﹣70°=40°,故选:C.8.在2017年的体育考试中某校6名学生的体育成绩统计如图所示,这组数据的中位数和平均数分别是()A.26和26B.25和26C.27和28D.28和29【分析】根据中位数、平均数的计算方法进行计算即可.解:6名同学的体育成绩从小到大排列处在第3、4位的数都是26分,因此中位数是26分,平均数为=26(分),故选:A.9.如图,正方形ABCO的顶点A、C在坐标轴上,BC是菱形BDCE 的对角线,若∠EBD=120°,BC=2,则点E的坐标是()A.(﹣2+,﹣1)B.(2﹣,﹣1)C.(,﹣1)D.(2﹣,1)【分析】连接ED交BC于H,根据正方形的性质得到OC=BC=2,根据菱形的性质求出EH,根据坐标与图形的性质解答即可.解:连接ED交BC于H,∵四边形ABCO是正方形,∴OC=BC=2,∵四边形BDCE是菱形,∴∠EBC=∠EBD=60°,EB=EC,CE=BH=BC=1,∴EH=BH×tan∠EBC=,∴点E的坐标是(2﹣,﹣1),故选:B.10.小明以二次函数y=2x2﹣4x+8的图象为灵感为“2017北京•房山国际葡萄酒大赛”设计了一款杯子,如图为杯子的设计稿,若AB=4,DE=3,则杯子的高CE为()A.14B.11C.6D.3【分析】首先由y=2x2﹣4x+8求出D点的坐标为(1,6),然后根据AB=4,可知B点的横坐标为x=3,代入y=2x2﹣4x+8,得到y=14,所以CD=14﹣6=8,又DE=3,所以可知杯子高度.解:∵y=2x2﹣4x+8=2(x﹣1)2+6,∴抛物线顶点D的坐标为(1,6),∵AB=4,∴B点的横坐标为x=3,把x=3代入y=2x2﹣4x+8,得到y=14,∴CD=14﹣6=8,∴CE=CD+DE=8+3=11.故选:B.二、填空题(每小题3分,共15分)11.化简:2﹣=5.【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可.解:原式=6﹣=5.故答案为5.12.一个不透明的口袋里装有分别标有汉字“文”、“明”、“濮”、“阳”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.从中任取一球,不放回,再从中任取一球,两个球上的汉字能组成“文明”的概率是.【分析】画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得.解:画树状图如下:由树状图知,共有12种等可能结果,其中两个球上的汉字能组成“文明”的有2种结果,∴两个球上的汉字能组成“文明”的概率为=,故答案为:.13.不等式组的解集为2<x<6 .【分析】分别求出各不等式的解集,再求出其公共解集即可.解:,由①得,x>2,由②得,x<6,故不等式组的解集为:2<x<6.故答案为:2<x<6.14.如图,在Rt△AOB中,∠AOB=90°,OA=3,OB=2,将Rt△AOB绕点O顺时针旋转90°后得Rt△FOE,将线段EF绕点E逆时针旋转90°后得线段ED,分别以O,E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分面积是8﹣π.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF 的面积、利用扇形面积公式计算即可.解:作DH⊥AE于H,∵∠AOB=90°,OA=3,OB=2,∴AB==,由旋转的性质可知,OE=OB=2,DE=EF=AB=,△DHE≌△BOA,∴DH=OB=2,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×5×2+×2×3+﹣=8﹣π,故答案为:8﹣π.15.在Rt△ABC中,∠ACB=90°,∠A=30°,D是线段AB上一动点,连接CD,把△ADC沿CD翻折得到△DCE,连接BE,AB=4,当△DBE是等腰三角形时,其腰长为2或.【分析】本题分两种情况:第一种情况,如图(1),当D为AB 的中点时,此时△DBE是等边三角形,腰长也是边长是AB的一半2;第二种情况,如图(2),当边CE与CB重合时,此时△DBE是等腰三角形,腰长BE=BD=,问题得解.解:(1)第一种情况,如图(1),当D为AB的中点时,∵∠ACB=90°,∠A=30°,AB=4,∴AD=BD=CD=AB=2,∴∠DCA=∠A=30°,∴∠BDC=60°,∵把△ADC沿CD翻折得到△DCE,∴∠DEC=∠A=30°,AD=DE=CD,∴∠ECD=∠A=30°,∴∠EDC=120°,∴∠BDE=60°,∴△BED是等边三角形,∴BD=DE=BE=2;(2)第二种情况,如图(2),当边CE与CB重合时,此时△DBE 是等腰三角形,∵把△ADC沿CD翻折得到△DCE,∴CE=AC,∵CB=2,AB=4,∴AC==2,∴CE=2,∴腰长BE=BD=CE﹣BC=.故答案为:2或.三、解答题(本题共8个小题,满分75分)16.先化简,再求值:,其中a=1+.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a与b的值代入计算即可求出值.解:原式=•=•=,当a=1+,b=1﹣时,原式==.17.2019年12月12日被首次于中国武汉发现“新型冠状病毒”.为防范新型冠状病毒,油田某社区为了解辖区居民对“新型冠状病毒”的重视程度,在全社区范围内随机抽取部分居民进行问卷调查.根据调查结果,把居民对“新型冠状病毒”的重视程度分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如下两个不完整的统计图:请结合图表中的信息,解答下列问题:(1)此次调查一共随机抽取了120 名居民;(2)请将条形统计图补充完整;(3)扇形统计图中,“很强”所对应扇形圆心角的度数为108°;(4)若该社区有1500人,则可以估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有150 人.【分析】(1)根据一般的人数和所占的百分比求出抽取的总人数;(2)用总人数乘以较强的人数所占的百分比,求出较强的人数,从而补全统计图;(3)用360°乘以“很强”的人数所占的百分比即可得出答案;(4)用该社区的人数乘以“淡薄”层次的人数所占的百分比即可得出答案.解:(1)18÷15%=120(名),即本次调查一共随机抽取了120名居民;故答案为:120;(2)“较强”层次的有:120×45%=54(名),补全统计图如下:(3)扇形统计图中,“很强”所对应扇形圆心角的度数为:360°×=108°,故答案为:108°;(4)1500×=150(人),答:估计该社区居民对“新型冠状病毒”重视程度为“淡薄”层次的约有150人;故答案为:150.18.如图,在⊙O上依次有A、B、C三点,BO的延长线交⊙O于E,=,过点C作CD∥AB交BE的延长线于D,连AD交⊙O于点F.(1)求证:四边形ABCD是菱形;(2)连接OA、OF.①当∠ABC=72 °时,点F为弧AE的中点;②若∠AOF=3∠FOE且AF=3,则⊙O的半径是 3 .【分析】(1)先根据圆的性质得:∠CBD=∠ABD,由平行线的性质得:∠ABD=∠CDB,根据直径和等式的性质得,则AB=BC,即可得出结论;(2)①由题意得出∠AOF=∠EOF=m,证出∠ABE=∠ADE=m,则∠OAF=∠OFA=∠EOF+∠ADE=2m,由三角形内角和定理得出方程,解方程即可;②先设∠FOE=x,则∠AOF=3x,根据∠ABC+∠BAD=180°,列方程求出x的值,证△AOF是等边三角形,得出OF=AF=3即可.【解答】(1)证明:∵=,∴∠CBD=∠ABD,∵CD∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴CB=CD,∵BE是⊙O的直径,∴,∴AB=BC=CD,∵CD∥AB,∴四边形ABCD是菱形;(2)解:如图所示:①F为弧AE的中点,则∠AOF=∠EOF,设∠AOF=∠EOF=m,∵四边形ABCD是菱形,∴AB=AD,∠ABE=∠ADE,∵∠AOD=2∠ABE,∴∠ABE=∠ADE=m,∴∠OAF=∠OFA=∠EOF+∠ADE=2m,∵∠AOF+∠OAF+∠OFA=180°,∴2m+2m+m=180°,∴m=36°,∴∠ABE=72°,即∠ABC=72°时,点F为弧AE的中点,故答案为:72;②∵∠AOF=3∠FOE,设∠FOE=x,则∠AOF=3x,∠AOD=∠FOE+∠AOF=4x,∵OA=OF,∴∠OAF=∠OFA=(180°﹣3x),∵OA=OB,∴∠OAB=∠OBA=2x,∴∠ABC=4x,∵BC∥AD,∴∠ABC+∠BAD=180°,∴4x+2x+(180°﹣3x)=180°,解得:x=20°,∴∠AOF=3x=60°,∵OA=OF,∴△AOF是等边三角形,∴OF=AF=3,即⊙O的半径是3;故答案为:3.19.某数学社团成员想利用所学的知识测量某广告牌的宽度(图中线段MN的长),直线MN垂直于地面,垂足为点P.在地面A 处测得点M的仰角为58°、点N的仰角为45°,在B处测得点M 的仰角为31°,AB=5米,且A、B、P三点在一直线上.请根据以上数据求广告牌的宽MN的长.(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60,sin31°=0.52,cos31°=0.86,tan31°=0.60.)【分析】在Rt△APN中根据已知条件得到PA=PN,设PA=PN=x,得到MP=AP•tan∠MAP=1.6x,根据三角函数的定义列方程即可得到结论.解:在Rt△APN中,∠NAP=45°,∴PA=PN,在Rt△APM中,tan∠MAP=,设PA=PN=x,∵∠MAP=58°,∴MP=AP•tan∠MAP=1.6x,在Rt△BPM中,tan∠MBP=,∵∠MBP=31°,AB=5,∴0.6=,∴x=3,∴MN=MP﹣NP=0.6x=1.8(米),答:广告牌的宽MN的长为1.8米.20.2020年初,新冠肺炎肆虐全球.我国政府和人民采取了积极有效的防疫措施,疫情在我国得到了有效控制.小明为复学到药店购买N95口罩和一次性医用口罩.已知购买5个N95口罩和8个一次性医用口罩共需50元;购买7个N95口罩和6个一次性医用口罩共需57元.(1)求N95口罩与一次性医用口罩的单价;(2)小明准备购买N95口罩和一次性医用口罩共50个,且N95口罩的数量不少于一次性医用口罩数量的.请设计出最省钱的购买方案,并说明理由.【分析】(1)设N95口罩单价为x元,一次性医用口罩的单价为y元,根据题意列方程组解答即可;(2)设购买N95罩z个,购买口罩的花费为W元,根据题意列不等式求出z的取值范围,并求出W与z之间的函数关系式,再根据一次函数的性质解答即可.解:(1)设N95口罩单价为x元,一次性医用口罩的单价为y元,根据题意,得:,∴,∴N95口罩单价为6元,一次性医用口罩单价2.5元;(2)设购买N95罩z个,则购买一次性医用口罩为(50﹣z)个,购买口罩的花费为W元,由题意可知,z≥(50﹣z),∴z≥12.5,W=6z+2.5(50﹣z)=3.5z+125,∵3.5>0,∴W随z的增大而增大,∴当z=13时,W有最小值为170.5元,即购买N95口罩13个,购买一次性医用口罩37个,花费最少.21.小明为探究函数y=的图象和性质,需要画出函数图象,列表如下:x …﹣3 ﹣2 ﹣1 ﹣﹣ 1 2 3 …y … 1 2 3 3 2 1 …根据如表数据,在平面直角坐标系中描点,画出函数图象,如图如示,小明画出了图象的一部分.(1)请你帮小明画出完整的y=的图象;(2)观察函数图象,请写出这个函数的两条性质;性质一:图象有两个分支,分别在第一、第二象限;性质二:图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大.(3)利用上述图象,探究函数y=,图象与直线y=﹣x+b的关系:①当b= 2 时,直线y=﹣x+b与函数y=在第一象限的图象有一个交点A,则A的坐标是(1,1);②当b为何值时,讨论函数y=的图象与直线y=﹣x+b的交点个数.【分析】(1)描点即可绘制完整图象;(2)指出函数的性质即可,答案不唯一,只要说法合理都给满分;(3)①在第一象限时,则y=,将该式与y=﹣x+b联立并整理得:x2﹣bx+1=0,由△=b2﹣4=0,求得b=2;②由①知,当b=2时,两个函数有两个交点;故当b<2时,两函数有一个交点,当b>2时,两个函数有三个交点;解:(1)绘制完整图象如下图:(2)性质一:图象有两个分支,分别在第一、第二象限;性质二:图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大;故答案为:图象有两个分支,分别在第一、第二象限;图象在第一象限时,y随x的增大而减小,在第二象限时,y随x的增大而增大;说明:答案不唯一,只要说法合理都给满分;(3)①在第一象限时,则y=,将该式与y=﹣x+b联立并整理得:x2﹣bx+1=0,∵两个函数只有一个交点,故△=b2﹣4=0,解得:b=±2(舍去负值),故b=2,则,解得:,故当b=2时,点A的坐标为(1,1),答案为:2,(1,1);②由①知,当b=2时,两个函数有两个交点;∴当b<2时,两函数有一个交点,当b>2时,两个函数有三个交点;22.如图(1),在Rt△ABC中,∠C=90°,∠ABC=30°,点D,E 分别是AB,AC的中点,过点B作直线DE的垂线段BM,垂足为M,点F是直线ED上一动点,作Rt△BFG,使∠BFG=90°,∠FGB=30°,连接GD.【观察猜想】如图(2),当点F与点D重合时,则的值为 2 .【问题探究】如图(1),当点F与点D不重合时,请求出的值及两直线GD、ED夹角锐角的度数,并说明理由.【问题解决】如图(3),当点F、G、A在同一直线上时,请直接写出的值.【分析】【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.设BM=a,求出DM,GD即可解决问题.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED 夹角锐角的度数为60°.证明△BGD∽△BFM,可得结论.【问题解决】分两种情形:如图(3)﹣1中,当点G在线段AF 上时,如图(3)﹣2中.当点G在线段AF的延长线上时,分别求解即可.解:【观察猜想】如图(2)中,结论:当点F与点D重合时,则的值为2.理由:设BM=a.∵AE=EC,AD=DB,∴DE∥BC,∴∠BDM=∠ABC=30°,∵BM⊥EM,∴∠BMD=90°,∴BD=2BM=2a,DM=BM=a,在Rt△GDB中,∵∠GDB=90°,∠G=30°,∴GD=BD=2a,∴==2.故答案为2.【问题探究】如图(1)中,结论:的值为2,两直线GD、ED 夹角锐角的度数为60°.理由:延长GD交BF的延长线于P.在Rt△BDM中,设BM=a,则BD=2a,DM=a,在Rt△BGF中,设BF=b,则BG=2b,FG=,在△BGD与△BFM中,∵BG:BF=2b:b=2a:a=BF:BM,∠DBG=60°﹣∠FBD=∠FBM,∴△BGD∽△BFM,∴DG:FM=BD:BM=2a:a=2:1,即的值为2,∵△BGD∽△BFM,∴∠PFD=∠MFB=∠BGD,则在△PDF与△PBG中,∠PDF=∠PBG=60°.故的值为2,两直线GD、ED夹角锐角的度数为60°.【问题解决】结论:的值为4+或4﹣.如图(3)﹣1中,当点G在线段AF上时,∵△BDG∽△BMF,∴∠BDG=∠BMF=90°,∴GD⊥AB,∵AD=BD,∴GD垂直平分线段AB,∴GA=GB,设BF=x,则BG=2x=AG,FG=,∴BG:AF=2x:=4﹣.如图(3)﹣2中,当点G在线段AF的延长线上时,设BF=x,同法可得:BG=AG=2x,GF=x,∴AF=2x﹣x,∴BG:AF=2x:(2x﹣x)=4+.∴的值为4+或4﹣.23.如图1,在平面直角坐标系中,O为原点,抛物线y=ax2+bx+c 经过A、B、C三点,且其对称轴为x=1,其中点C(0,),点B(3,0).(1)求抛物线的解析式;(2)①如图(1),点D是直线CB上方抛物线上的动点,当四边形DCAB的面积取最大值时,求点D的坐标;②如图(2),连接CA,在抛物线上有一点M,满足∠MCB=∠ACO,请直接写出点M的横坐标.【分析】(1)由题意得:,即可求解;(2)①当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值,进而求出直线m的表达式,即可求解;②分点M在CB的上方和下方两种情况,分别求解即可.解:(1)由题意得:,解得:,故抛物线的解析式是:①;(2)①设直线BC的解析式为y=kx+.∵直线BC过点B(3,0),∴0=3k+,则k=,故直线BC解析式为y=x+.设直线m解析式为,且直线m∥直线BC,当直线m与抛物线只有一个交点时,点D到BC的距离最远,此时△BCD取最大值,故四边形DCAB有最大值.令,∴,△=(﹣3)2﹣4××(3b﹣3)=0时,直线m与抛物线有唯一交点,解之得:,则直线m的表达式为:y=﹣x+②,联立①②并解得,∴D;②存在,点M的横坐标为或;符合条件的直线有两条:CM1和CM2(分别在CB的上方和下方),(Ⅰ)∵在Rt△ACO中,∠ACO=30°,在Rt△COB中,∠CBO=30°,∴∠BCM1=∠BCM2=15°,∵在△BCE中,∠BCE=∠BEC2=15°,∴BC=BE=,则E(,0),设直线CE解析式为:,∴,解之得:k=,∴直线CE解析式为:,∴,解得:x1=0,x2=2﹣1;(Ⅱ)∵在Rt△OCF中,∠CBO=30°,∠BCF=15°,∴在Rt△COF中,∠CFO=45°,∴OC=OF=,∴F(,0),∴直线CF的解析式为③,联立①③并解得:x3=0(舍去),,即点M的横坐标为:或.。
2024年江苏省南通市海门区东洲国际学校中考数学模拟试卷(5月份)(含解析)
2024年江苏省南通市海门区东洲国际学校中考数学模拟试卷(5月份)一、选择题:本题共10小题,每小题3分,共30分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.5的倒数是( )A. 5B. −5C. 15D. −152.广州市作为国家公交都市建设示范城市,市内公共交通日均客运量已达15233000人次.将15233000用科学记数法表示应为( )A. 152.33×105B. 15.233×106C. 1.5233×107D. 0.15233×1083.下列4个袋子中,装有除颜色外完全相同的10个小球,任意摸出一个球,摸到红球可能性最大的是( )A. B. C. D.4.如图是由4个相同的小正方体组成的立体图形,它的俯视图为( )A.B.C. D.5.解一元一次方程12(x +1)=1−13x 时,去分母正确的是( )A. 3(x +1)=1−2x B. 2(x +1)=1−3x C. 2(x +1)=6−3xD. 3(x +1)=6−2x6.从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是( )A. 423米B. 143米C. 21米D. 42米7.如图,∠A=∠B=90°,AB=7,AD=2,BC=3,在边AB上取点P,使得△PAD与△PBC相似,则这样的P点共有( )A. 1个B. 2个C. 3个D. 4个8.如图,经过原点的⊙P与两坐标轴分别交于点A,B,点C是OAB上的任意一点(不与点O,B重合)如果tan∠BCO=33,则点A和点B的坐标可能为( )A. A(23,0)和B(0,2)B. A(2,0)和B(0,23)C. A(3,0)和B(0,2)D. A(2,0)和B(0,3)9.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E 作EF⊥BD,垂足为F,则OE+EF的值为( )A. 485B. 325C. 245D. 12510.已知二次函数y=ax2+bx+c的图象经过(−3,0)与(1,0)两点,关于x的方程ax2+bx+c+m=0(m>0)有两个根,其中一个根是3,则关于x的方程ax2+bx+c+n=0(0<n<m)有两个整数根,这两个整数根是( )A. −2或0B. −4或2C. −5或3D. −6或4二、填空题:本题共8小题,共30分。
辽宁省大连市甘井子区2022年中考五模数学试题含解析
2021-2022中考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)1.如图,正方形ABCD 中,对角线AC 、BD 交于点O ,∠BAC 的平分线交BD 于E ,交BC 于F ,BH ⊥AF 于H ,交AC 于G ,交CD 于P ,连接GE 、GF ,以下结论:①△OAE ≌△OBG ;②四边形BEGF 是菱形;③BE =CG ;④PG 2AE=﹣1;⑤S △PBC :S △AFC =1:2,其中正确的有( )个.A .2B .3C .4D .52.在圆锥、圆柱、球、正方体这四个几何体中,主视图不可能...是多边形的是( ) A .圆锥 B .圆柱 C .球 D .正方体3.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上,若∠1=35°,则∠2的度数为( )A .10°B .20°C .25°D .30°4.2016年底安徽省已有13个市迈入“高铁时代”,现正在建设的“合安高铁”项目,计划总投资334亿元人民币.把334亿用科学记数法可表示为( ) A .0.334 B . C .D . 5.关于x 的正比例函数,y=(m+1)23mx -若y 随x 的增大而减小,则m 的值为 ( ) A .2 B .-2 C .±2 D .-126.在Rt △ABC 中,∠ACB=90°,AC=12,BC=9,D 是AB 的中点,G 是△ABC 的重心,如果以点D 为圆心DG 为半径的圆和以点C 为圆心半径为r 的圆相交,那么r 的取值范围是( )A .r <5B .r >5C .r <10D .5<r <107.小明早上从家骑自行车去上学,先走平路到达点A,再走上坡路到达点B,最后走下坡路到达学校,小明骑自行车所走的路程s(单位:千米)与他所用的时间t(单位:分钟)的关系如图所示,放学后,小明沿原路返回,且走平路、上坡路、下坡路的速度分别保持和去上学时一致,下列说法:①小明家距学校4千米;②小明上学所用的时间为12分钟;③小明上坡的速度是0.5千米/分钟;④小明放学回家所用时间为15分钟.其中正确的个数是()A.1个B.2个C.3个D.4个8.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD 的最小值是()A.10B.103C.9 D.29.《孙子算经》是中国传统数学的重要著作,其中有一道题,原文是:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺,问木头长多少尺?可设木头长为x尺,绳子长为y尺,则所列方程组正确的是( )A.4.50.51y xy x=+⎧⎨=-⎩B.4.521y xy x=+⎧⎨=-⎩C.4.50.51y xy x=-⎧⎨=+⎩D.4.521y xy x=-⎧⎨=-⎩10.下列计算正确的是()A.2x2-3x2=x2B.x+x=x2C.-(x-1)=-x+1 D.3+x=3x二、填空题(本大题共6个小题,每小题3分,共18分)11.下列图形是用火柴棒摆成的“金鱼”,如果第1个图形需要8根火柴,则第2个图形需要14根火柴,第n根图形需要____________根火柴.12.如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为_米.(结果精确到0.1米,参考数据:≈1.41,≈1.73)13.分解因式:3ax 2﹣3ay 2=_____.14.若关于x 的方程220x x a +-=有两个不相等的实数根,则实数a 的取值范围是______.15.关于x 的一元二次方程x 2+4x ﹣k =0有实数根,则k 的取值范围是__________.16.已知二次函数y=ax 2+bx (a≠0)的最小值是﹣3,若关于x 的一元二次方程ax 2+bx+c=0有实数根,则c 的最大值是_____.三、解答题(共8题,共72分)17.(8分)已知,平面直角坐标系中的点A (a ,1),t =ab ﹣a 2﹣b 2(a ,b 是实数)(1)若关于x 的反比例函数y =2a x过点A ,求t 的取值范围. (2)若关于x 的一次函数y =bx 过点A ,求t 的取值范围.(3)若关于x 的二次函数y =x 2+bx+b 2过点A ,求t 的取值范围.18.(8分)已知四边形ABCD 是⊙O 的内接四边形,AC 是⊙O 的直径,DE ⊥AB ,垂足为E(1)延长DE 交⊙O 于点F ,延长DC ,FB 交于点P ,如图1.求证:PC=PB ;(2)过点B 作BG ⊥AD ,垂足为G ,BG 交DE 于点H ,且点O 和点A 都在DE 的左侧,如图2.若AB=3 ,DH=1,∠OHD=80°,求∠BDE 的大小.19.(8分)科技改变生活,手机导航极大方便了人们的出行,如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西55°方向行驶4千米至B地,再沿北偏东35°方向行驶一段距离到达古镇C,小明发现古镇C 恰好在A地的正北方向,求B、C两地的距离(结果保留整数)(参考数据:tan55°≈1.4,tan35°≈0.7,sin55°≈0.8)20.(8分)如图,在矩形ABCD中,AB═2,AD=3,P是BC边上的一点,且BP=2CP.(1)用尺规在图①中作出CD边上的中点E,连接AE、BE(保留作图痕迹,不写作法);(2)如图②,在(1)的条体下,判断EB是否平分∠AEC,并说明理由;(3)如图③,在(2)的条件下,连接EP并廷长交AB的廷长线于点F,连接AP,不添加辅助线,△PFB能否由都经过P点的两次变换与△PAE组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)21.(8分)如图,在平面直角坐标系中,已知△ABC三个顶点的坐标分别是A(2,2),B(4,0),C(4,﹣4).请在图中,画出△ABC向左平移6个单位长度后得到的△A1B1C1;以点O为位似中心,将△ABC缩小为原来的12,得到△A2B2C2,请在图中y轴右侧,画出△A2B2C2,并求出∠A2C2B2的正弦值.22.(10分)(1)问题发现:如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC 与AB的位置关系为;(2)深入探究:如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;(3)拓展延伸:如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=2,试求EF的长.23.(12分)如图,抛物线y=ax2﹣2ax+c(a≠0)与y轴交于点C(0,4),与x轴交于点A、B,点A坐标为(4,0).(1)求该抛物线的解析式;(2)抛物线的顶点为N,在x轴上找一点K,使CK+KN最小,并求出点K的坐标;(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;(4)若平行于x轴的动直线l与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线l,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由.24.如图,以△ABC的边AB为直径的⊙O分别交BC、AC于F、G,且G是AF的中点,过点G作DE⊥BC,垂足为E,交BA的延长线于点D(1)求证:DE是的⊙O切线;(2)若AB=6,BG=4,求BE的长;(3)若AB=6,CE=1.2,请直接写出AD的长.参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】根据AF 是∠BAC 的平分线,BH ⊥AF ,可证AF 为BG 的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EG =EB ,FG =FB ,即可判定②选项;设OA =OB =OC =a ,菱形BEGF 的边长为b ,由四边形BEGF 是菱形转换得到CF 2GF 2BF ,由四边形ABCD 是正方形和角度转换证明△OAE ≌△OBG ,即可判定①;则△GOE 是等腰直角三角形,得到GE 2OG ,整理得出a ,b 的关系式,再由△PGC ∽△BGA ,得到BG PG=2,从而判断得出④;得出∠EAB =∠GBC 从而证明△EAB ≌△GBC ,即可判定③;证明△FAB ≌△PBC 得到BF =CP ,即可求出PBC AFC S S,从而判断⑤.【详解】 解:∵AF 是∠BAC 的平分线,∴∠GAH =∠BAH ,∵BH ⊥AF ,∴∠AHG =∠AHB =90°,在△AHG 和△AHB 中GAH BAH AH AHAHG AHB ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AHG ≌△AHB (ASA ),∴GH =BH ,∴AF 是线段BG 的垂直平分线,∴EG =EB ,FG =FB ,∵四边形ABCD 是正方形,∴∠BAF =∠CAF =12×45°=22.5°,∠ABE =45°,∠ABF =90°, ∴∠BEF =∠BAF+∠ABE =67.5°,∠BFE =90°﹣∠BAF =67.5°,∴∠BEF =∠BFE ,∴EB =FB ,∴EG =EB =FB =FG ,∴四边形BEGF 是菱形;②正确;设OA =OB =OC =a ,菱形BEGF 的边长为b ,∵四边形BEGF 是菱形,∴GF ∥OB ,∴∠CGF =∠COB =90°,∴∠GFC =∠GCF =45°,∴CG =GF =b ,∠CGF =90°,∴CFGFBF ,∵四边形ABCD 是正方形,∴OA =OB ,∠AOE =∠BOG =90°,∵BH ⊥AF ,∴∠GAH+∠AGH =90°=∠OBG+∠AGH ,∴∠OAE =∠OBG ,在△OAE 和△OBG 中OAE OBGOA OB AOE BOG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△OAE ≌△OBG (ASA ),①正确;∴OG =OE =a ﹣b ,∴△GOE 是等腰直角三角形,∴GEOG ,∴ba ﹣b ),整理得a=22+, ∴AC =2a =()b ,AG =AC ﹣CG =()b ,∵四边形ABCD 是正方形,∴PC ∥AB , ∴BG PG =AG C G=, ∵△OAE ≌△OBG ,∴AE =BG , ∴AE PG=, ∴PG AE=1,④正确; ∵∠OAE =∠OBG ,∠CAB =∠DBC =45°,∴∠EAB =∠GBC ,在△EAB 和△GBC 中EAB GBC AB BCABE BCG 45︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△EAB ≌△GBC (ASA ),∴BE =CG ,③正确;在△FAB 和△PBC 中FAB PBC AB BCABF BCP 90︒∠=∠⎧⎪=⎨⎪∠=∠=⎩, ∴△FAB ≌△PBC (ASA ),∴BF =CP , ∴PBC AFC S S =1212BC CP AB CF ⋅⋅=CP CF,⑤错误; 综上所述,正确的有4个,故选:C.【点睛】本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题.该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握.2、C【解析】【分析】根据各几何体的主视图可能出现的情况进行讨论即可作出判断.【详解】A. 圆锥的主视图可以是三角形也可能是圆,故不符合题意;B. 圆柱的主视图可能是长方形也可能是圆,故不符合题意;C. 球的主视图只能是圆,故符合题意;D. 正方体的主视图是正方形或长方形(中间有一竖),故不符合题意,故选C.【点睛】本题考查了简单几何体的三视图——主视图,明确主视图是从物体正面看得到的图形是关键.3、C【解析】分析:如图,延长AB交CF于E,∵∠ACB=90°,∠A=30°,∴∠ABC=60°.∵∠1=35°,∴∠AEC=∠ABC﹣∠1=25°.∵GH∥EF,∴∠2=∠AEC=25°.故选C.4、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:334亿=3.34×1010“点睛”此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a 的值以及n 的值.5、B【解析】根据正比例函数定义可得m 2-3=1,再根据正比例函数的性质可得m+1<0,再解即可.【详解】由题意得:m 2-3=1,且m+1<0,解得:m=-2,故选:B .【点睛】此题主要考查了正比例函数的性质和定义,关键是掌握正比例函数y=kx (k≠0)的自变量指数为1,当k <0时,y 随x 的增大而减小.6、D【解析】延长CD 交⊙D 于点E ,∵∠ACB=90°,AC=12,BC=9,∴AB=22AC BC +=15, ∵D 是AB 中点,∴CD=115AB=22, ∵G 是△ABC 的重心,∴CG=2CD 3=5,DG=2.5, ∴CE=CD+DE=CD+DF=10,∵⊙C 与⊙D 相交,⊙C 的半径为r ,∴ 510r <<,故选D.【点睛】本题考查了三角形的重心的性质、直角三角形斜边中线等于斜边一半、两圆相交等,根据知求出CG的长是解题的关键.7、C【解析】从开始到A是平路,是1千米,用了3分钟,则从学校到家门口走平路仍用3分钟,根据图象求得上坡(AB段)、下坡(B到学校段)的路程与速度,利用路程除以速度求得每段所用的时间,相加即可求解.【详解】解:①小明家距学校4千米,正确;②小明上学所用的时间为12分钟,正确;③小明上坡的速度是210.283-=-千米/分钟,错误;④小明放学回家所用时间为3+2+10=15分钟,正确;故选:C.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.需注意计算单位的统一.8、A【解析】解:如图,连接BE,设BE与AC交于点P′,∵四边形ABCD是正方形,∴点B与D关于AC对称,∴P′D=P′B,∴P′D+P′E=P′B+P′E=BE最小.即P在AC与BE的交点上时,PD+PE最小,为BE的长度.∵直角△CBE中,∠BCE=90°,BC=9,CE=13CD=3,∴BE=2293+=310.故选A.点睛:此题考查了轴对称﹣﹣最短路线问题,正方形的性质,要灵活运用对称性解决此类问题.找出P点位置是解题的关键.9、A【解析】根据“用一根绳子去量一根木头的长、绳子还剩余4.5尺;将绳子对折再量木头,则木头还剩余1尺”可以列出相应的方程组,本题得以解决.由题意可得,4.50.51y x y x =+⎧⎨=-⎩, 故选A .【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的方程组.10、C【解析】根据合并同类项法则和去括号法则逐一判断即可得.【详解】解:A .2x 2-3x 2=-x 2,故此选项错误;B .x+x=2x ,故此选项错误;C .-(x-1)=-x+1,故此选项正确;D .3与x 不能合并,此选项错误;故选C .【点睛】本题考查了整式的加减,熟练掌握运算法则是解题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、62n +【解析】根据图形可得每增加一个金鱼就增加6根火柴棒即可解答.【详解】第一个图中有8根火柴棒组成,第二个图中有8+6个火柴棒组成,第三个图中有8+2×6个火柴组成, ……∴组成n 个系列正方形形的火柴棒的根数是8+6(n-1)=6n+2.故答案为6n+2【点睛】本题考查数字规律问题,通过归纳与总结,得到其中的规律是解题关键.【解析】试题分析:在Rt△AMD中,∠MAD=45°,AM=4米,可得MD=4米;在Rt△BMC中,BM=AM+AB=12米,∠MBC=30°,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.13、3a(x+y)(x-y)【解析】解:3ax2-3ay2=3a(x2-y2)=3a(x+y)(x-y).【点睛】本题考查提公因式法与公式法的综合运用.14、a>﹣.【解析】试题分析:已知关于x的方程2x2+x﹣a=0有两个不相等的实数根,所以△=12﹣4×2×(﹣a)=1+8a>0,解得a>﹣.考点:根的判别式.15、k≥﹣1【解析】分析:根据方程的系数结合根的判别式△≥0,即可得出关于k的一元一次不等式,解之即可得出结论.详解:∵关于x的一元二次方程x2+1x-k=0有实数根,∴△=12-1×1×(-k)=16+1k≥0,解得:k≥-1.故答案为k≥-1.点睛:本题考查了根的判别式,牢记“当△≥0时,方程有实数根”是解题的关键.16、3【解析】由一元二次方程ax2+bx+c=0有实数根,可得y=ax2+bx(a≠0)和y=-c有交点,由此即可解答.【详解】∵一元二次方程ax2+bx+c=0有实数根,∴抛物线y=ax2+bx(a≠0)和直线y=-c有交点,∴-c≥-3,即c≤3,∴c的最大值为3.故答案为:3.【点睛】本题考查了一元二次方程与二次函数,根据一元二次方程有实数根得到抛物线y=ax2+bx(a≠0)和直线y=-c有交点是解决问题的关键.三、解答题(共8题,共72分)17、(1)t≤﹣34;(2)t≤3;(3)t≤1.【解析】(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围.(2)把点A的坐标代入一次函数解析式求得a=1b;然后利用二次函数的最值的求法得到t的取值范围.(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围.【详解】解:(1)把A(a,1)代入y=2ax得到:1=2aa,解得a=1,则t=ab﹣a2﹣b2=b﹣1﹣b2=﹣(b﹣12)2﹣34.因为抛物线t=﹣(b﹣12)2﹣34的开口方向向下,且顶点坐标是(12,﹣34),所以t的取值范围为:t≤﹣34;(2)把A(a,1)代入y=bx得到:1=ab,所以a=1b,则t=ab﹣a2﹣b2=﹣(a2+b2)+1=﹣(b+1b)2+3≤3,故t的取值范围为:t≤3;(3)把A(a,1)代入y=x2+bx+b2得到:1=a2+ab+b2,所以ab=1﹣(a2+b2),则t=ab﹣a2﹣b2=1﹣2(a2+b2)≤1,故t的取值范围为:t≤1.【点睛】本题考查了反比例函数、一次函数以及二次函数的性质.代入求值时,注意配方法的应用.18、(1)详见解析;(2)∠BDE=20°.【解析】(1)根据已知条件易证BC∥DF,根据平行线的性质可得∠F=∠PBC;再利用同角的补角相等证得∠F=∠PCB,所以∠PBC=∠PCB,由此即可得出结论;(2)连接OD,先证明四边形DHBC是平行四边形,根据平行四边形的性质可得BC=DH=1,在Rt△ABC中,用锐角三角函数求出∠ACB=60°,进而判断出DH=OD,求出∠ODH=20°,再求得∠NOH=∠DOC=40°,根据三角形外角的性质可得∠OAD=12∠DOC=20°,最后根据圆周角定理及平行线的性质即可求解.【详解】(1)如图1,∵AC是⊙O的直径,∴∠ABC=90°,∵DE⊥AB,∴∠DEA=90°,∴∠DEA=∠ABC,∴BC∥DF,∴∠F=∠PBC,∵四边形BCDF是圆内接四边形,∴∠F+∠DCB=180°,∵∠PCB+∠DCB=180°,∴∠F=∠PCB,∴∠PBC=∠PCB,∴PC=PB;(2)如图2,连接OD,∵AC是⊙O的直径,∴∠ADC=90°,∵BG ⊥AD ,∴∠AGB=90°,∴∠ADC=∠AGB ,∴BG ∥DC ,∵BC ∥DE ,∴四边形DHBC 是平行四边形,∴BC=DH=1,在Rt △ABC 中,tan ∠ACB=AB BC ∴∠ACB=60°,∴BC=12AC=OD , ∴DH=OD ,在等腰△DOH 中,∠DOH=∠OHD=80°,∴∠ODH=20°,设DE 交AC 于N ,∵BC ∥DE ,∴∠ONH=∠ACB=60°,∴∠NOH=180°﹣(∠ONH+∠OHD )=40°,∴∠DOC=∠DOH ﹣∠NOH=40°,∵OA=OD ,∴∠OAD=12∠DOC=20°, ∴∠CBD=∠OAD=20°,∵BC ∥DE ,∴∠BDE=∠CBD=20°.【点睛】本题考查了圆内接四边形的性质、圆周角定理、平行四边形的判定与性质、等腰三角形的性质等知识点,解决第(2)问,作出辅助线,求得∠ODH=20°是解决本题的关键.19、B 、C 两地的距离大约是6千米.【解析】过B 作BD ⊥AC 于点D ,在直角△ABD 中利用三角函数求得BD 的长,然后在直角△BCD 中利用三角函数求得BC 的长.【详解】解:过B 作BD AC ⊥于点D .在Rt ABD 中,BD AB sin BAD 40.8 3.2(∠=⋅=⨯=千米), BCD 中,CBD 903555∠=-=,CD BD tan CBD 4.48(∠∴=⋅=千米),BC CD sin CBD 6(∠∴=÷≈千米).答:B 、C 两地的距离大约是6千米.【点睛】此题考查了方向角问题.此题难度适中,解此题的关键是将方向角问题转化为解直角三角形的知识,利用三角函数的知识求解.20、(1)作图见解析;(2)EB 是平分∠AEC ,理由见解析; (3)△PFB 能由都经过P 点的两次变换与△PAE 组成一个等腰三角形,变换的方法为:将△BPF 绕点B 顺时针旋转120°和△EPA 重合,①沿PF 折叠,②沿AE 折叠.【解析】【分析】(1)根据作线段的垂直平分线的方法作图即可得出结论;(2)先求出DE=CE=1,进而判断出△ADE ≌△BCE ,得出∠AED=∠BEC ,再用锐角三角函数求出∠AED ,即可得出结论;(3)先判断出△AEP ≌△FBP ,即可得出结论.【详解】(1)依题意作出图形如图①所示;(2)EB 是平分∠AEC ,理由:∵四边形ABCD 是矩形,∴∠C=∠D=90°,CD=AB=2,BC=AD=3, ∵点E 是CD 的中点,∴DE=CE=12CD=1, 在△ADE 和△BCE 中,90AD BC C D DE CE =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ADE ≌△BCE ,∴∠AED=∠BEC ,在Rt △ADE 中,AD=3,DE=1,∴tan ∠AED=AD DE =3, ∴∠AED=60°,∴∠BCE=∠AED=60°,∴∠AEB=180°﹣∠AED ﹣∠BEC=60°=∠BEC , ∴BE 平分∠AEC ;(3)∵BP=2CP ,BC=3=,∴323 在Rt △CEP 中,tan ∠CEP=CP CE 3 ∴∠CEP=30°,∴∠BEP=30°,∴∠AEP=90°,∵CD ∥AB ,∴∠F=∠CEP=30°,在Rt △ABP 中,tan ∠BAP=BP AB 3 ∴∠PAB=30°,∴∠EAP=30°=∠F=∠PAB,∵CB⊥AF,∴AP=FP,∴△AEP≌△FBP,∴△PFB能由都经过P点的两次变换与△PAE组成一个等腰三角形,变换的方法为:将△BPF绕点B顺时针旋转120°和△EPA重合,①沿PF折叠,②沿AE折叠.【点睛】本题考查了矩形的性质,全等三角形的判定和性质,解直角三角形,图形的变换等,熟练掌握和灵活应用相关的性质与定理、判断出△AEP≌△△FBP是解本题的关键.21、(1)见解析(2)10 10【解析】试题分析:(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用位似图形的性质得出对应点位置,再利用锐角三角三角函数关系得出答案.试题解析:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求,由图形可知,∠A2C2B2=∠ACB,过点A作AD⊥BC交BC的延长线于点D,由A(2,2),C(4,﹣4),B(4,0),易得D(4,2),故AD=2,CD=6,AC==,∴sin∠ACB===,即sin∠A2C2B2=.考点:作图﹣位似变换;作图﹣平移变换;解直角三角形.22、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3)41【解析】(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.(2)根据△ABC ,△AMN 为等腰三角形,得到AB :BC=1:1且∠ABC=∠AMN ,根据相似三角形的性质得到AB AC AM AN =,利用等腰三角形的性质得到∠BAC=∠MAN ,根据相似三角形的性质即可得到结论; (3)如图3,连接AB ,AN ,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出BM AB CN AC=,得到BM=2,CM=8,再根据勾股定理即可得到答案. 【详解】(1)NC ∥AB ,理由如下:∵△ABC 与△MN 是等边三角形,∴AB=AC ,AM=AN ,∠BAC=∠MAN =60°,∴∠BAM=∠CAN ,在△ABM 与△ACN 中,AB AC BAM CAN AM AN =⎧⎪∠=∠⎨⎪=⎩ ,∴△ABM ≌△ACN (SAS ),∴∠B=∠ACN=60°,∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,∴CN ∥AB ;(2)∠ABC=∠ACN ,理由如下:∵AB AM BC MN==1且∠ABC=∠AMN , ∴△ABC ~△AMN ∴AB AC AM AN=, ∵AB=BC , ∴∠BAC=12(180°﹣∠ABC ), ∵AM=MN ∴∠MAN=12(180°﹣∠AMN ), ∵∠ABC=∠AMN ,∴∠BAC=∠MAN ,∴∠BAM=∠CAN ,∴△ABM ~△ACN ,∴∠ABC=∠ACN ;(3)如图3,连接AB ,AN ,∵四边形ADBC ,AMEF 为正方形,∴∠ABC=∠BAC=45°,∠MAN=45°,∴∠BAC ﹣∠MAC=∠MAN ﹣∠MAC即∠BAM=∠CAN , ∵2AB AM BC AN ==, ∴AB AC AM AN =, ∴△ABM ~△ACN∴BM AB CN AC=, ∴CN AC BM AB ==cos45°=22, ∴222BM =, ∴BM=2,∴CM=BC ﹣BM=8,在Rt △AMC ,AM=2222108241AC MC +=+=,∴EF=AM=241.【点睛】本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.23、(1)y=﹣2142x x ++;(1)点K 的坐标为(817,0);(2)点P 的坐标为:(1+5,1)或(1﹣5,1)或(1+3,2)或(1﹣3,2).【解析】试题分析:(1)把A 、C 两点坐标代入抛物线解析式可求得a 、c 的值,可求得抛物线解析;(1)可求得点C 关于x 轴的对称点C′的坐标,连接C′N 交x 轴于点K ,再求得直线C′K 的解析式,可求得K 点坐标;(2)过点E 作EG ⊥x 轴于点G ,设Q (m ,0),可表示出AB 、BQ ,再证明△BQE ≌△BAC ,可表示出EG ,可得出△CQE 关于m 的解析式,再根据二次函数的性质可求得Q 点的坐标;(4)分DO=DF 、FO=FD 和OD=OF 三种情况,分别根据等腰三角形的性质求得F 点的坐标,进一步求得P 点坐标即可.试题解析:(1)∵抛物线经过点C (0,4),A (4,0),∴416840c a a =⎧⎨-+=⎩,解得124a c ⎧=-⎪⎨⎪=⎩ , ∴抛物线解析式为y=﹣12x 1+x+4; (1)由(1)可求得抛物线顶点为N (1,92 ), 如图1,作点C 关于x 轴的对称点C′(0,﹣4),连接C′N 交x 轴于点K ,则K 点即为所求,设直线C′N 的解析式为y=kx+b ,把C′、N 点坐标代入可得924k b b ⎧+=⎪⎨⎪=-⎩ ,解得1724k b ⎧=⎪⎨⎪=-⎩ ,∴直线C′N 的解析式为y=172x-4 ,令y=0,解得x=817, ∴点K 的坐标为(817,0); (2)设点Q (m ,0),过点E 作EG ⊥x 轴于点G ,如图1,由﹣12x 1+x+4=0,得x 1=﹣1,x 1=4, ∴点B 的坐标为(﹣1,0),AB=6,BQ=m+1,又∵QE ∥AC ,∴△BQE ≌△BAC ,∴EG BQ CO BA = ,即246EG m += ,解得EG=243m + ; ∴S △CQE =S △CBQ ﹣S △EBQ =12(CO-EG )·BQ=12(m+1)(4-243m +) =2128-333m m ++ =-13(m-1)1+2 . 又∵﹣1≤m≤4,∴当m=1时,S △CQE 有最大值2,此时Q (1,0);(4)存在.在△ODF 中,(ⅰ)若DO=DF ,∵A (4,0),D (1,0),∴AD=OD=DF=1.又在Rt △AOC 中,OA=OC=4,∴∠OAC=45°.∴∠DFA=∠OAC=45°.∴∠ADF=90°.此时,点F 的坐标为(1,1).由﹣12x 1+x+4=1,得x 15,x 1=15 此时,点P 的坐标为:P 1(51)或P 1(151);(ⅱ)若FO=FD ,过点F 作FM ⊥x 轴于点M .由等腰三角形的性质得:OM=12OD=1,∴AM=2.∴在等腰直角△AMF中,MF=AM=2.∴F(1,2).由﹣12x1+x+4=2,得x13,x1=13此时,点P的坐标为:P2(32)或P4(132);(ⅲ)若OD=OF,∵OA=OC=4,且∠AOC=90°.∴2.∴点O到AC的距离为2而OF=OD=1<2,与2矛盾.∴在AC上不存在点使得OF=OD=1.此时,不存在这样的直线l,使得△ODF是等腰三角形.综上所述,存在这样的直线l,使得△ODF是等腰三角形.所求点P的坐标为:(51)或(151)或(3 2)或(132).点睛:本题是二次函数综合题,主要考查待定系数法、三角形全等的判定与性质、等腰三角形的性质等,能正确地利用数形结合思想、分类讨论思想等进行解题是关键.24、(1)证明见解析;(1)83;(3)1.【解析】(1)要证明DE是的⊙O切线,证明OG⊥DE即可;(1)先证明△GBA∽△EBG,即可得出ABBG=BGBE,根据已知条件即可求出BE;(3)先证明△AGB≌△CGB,得出BC=AB=6,BE=4.8再根据OG∥BE得出OGBE=DODB,即可计算出AD.【详解】证明:(1)如图,连接OG,GB,∵G是弧AF的中点,∴∠GBF=∠GBA,∵OB=OG,∴∠OBG=∠OGB,∴∠GBF=∠OGB,∴OG∥BC,∴∠OGD=∠GEB,∵DE⊥CB,∴∠GEB=90°,∴∠OGD=90°,即OG⊥DE且G为半径外端,∴DE为⊙O切线;(1)∵AB为⊙O直径,∴∠AGB=90°,∴∠AGB=∠GEB,且∠GBA=∠GBE,∴△GBA∽△EBG,∴AB BG BG BE=,∴224863BGBEAB===;(3)AD=1,根据SAS可知△AGB≌△CGB,则BC=AB=6,∴BE=4.8,∵OG∥BE,∴OG DOBE DB=,即334.86DADA+=+,解得:AD=1.【点睛】本题考查了相似三角形与全等三角形的判定与性质与切线的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质与切线的性质.。
2022届安徽省滁州地区中考数学五模试卷(含答案解析)
2022届安徽省滁州地区中考数学五模试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.如图,数轴上的四个点A ,B ,C ,D 对应的数为整数,且AB =BC =CD =1,若|a |+|b |=2,则原点的位置可能是( )A .A 或BB .B 或CC .C 或DD .D 或A2.函数2y ax b y ax bx c =+=++和在同一直角坐标系内的图象大致是( )A .B .C .D .3.4的算术平方根为( ) A .2±B .2C .2±D .24.化简16的结果是( ) A .±4B .4C .2D .±25.估算9153+÷的运算结果应在( ) A .2到3之间 B .3到4之间 C .4到5之间D .5到6之间6.根据如图所示的程序计算函数y 的值,若输入的x 值是4或7时,输出的y 值相等,则b 等于( )A .9B .7C .﹣9D .﹣77.实数a 、b 在数轴上的对应点的位置如图所示,则正确的结论是( )A .a <﹣1B .ab >0C .a ﹣b <0D .a +b <08.如图,在菱形ABCD 中,AB=BD ,点E 、F 分别是AB 、AD 上任意的点(不与端点重合),且AE=DF ,连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H .给出如下几个结论:①△AED ≌△DFB ;②S 四边形BCDG =;③若AF=2DF ,则BG=6GF ;④CG 与BD 一定不垂直;⑤∠BGE 的大小为定值. 其中正确的结论个数为( )A .4B .3C .2D .19.下列各式正确的是( ) A .0.360.6=± B 93=± C 33(3)3-=D 2(2)2-=-10.在下列二次函数中,其图象的对称轴为2x =-的是 A .()22y x =+B .222y x =-C .222y x =--D .()222y x =-11.下列命题中错误的有( )个 (1)等腰三角形的两个底角相等(2)对角线相等且互相垂直的四边形是正方形 (3)对角线相等的四边形为矩形 (4)圆的切线垂直于半径 (5)平分弦的直径垂直于弦 A .1 B .2 C .3 D .412.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若AB BC CD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.一元二次方程2x 2﹣3x ﹣4=0根的判别式的值等于_____.14.如图,四边形OABC 是矩形,ADEF 是正方形,点A 、D 在x 轴的正半轴上,点C 在y 轴的正半轴上,点F 在AB 上,点B 、E 在反比例函数的图像上,OA=1,OC=6,则正方形ADEF 的边长为 .15.计算2(252) 的结果等于__________.16.观察下列的“蜂窝图”按照它呈现的规律第n 个图案中的“”的个数是_____(用含n 的代数式表示)17.如图,点O (0,0),B (0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.18.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在锐角△ABC中,边BC长为18,高AD长为12如图,矩形EFCH的边GH在BC边上,其余两个顶点E、F分别在AB、AC边上,EF交AD于点K,求EFAK的值;设EH=x,矩形EFGH的面积为S,求S与x的函数关系式,并求S的最大值.20.(6分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为,图①中m的值为;求统计的这组跳水运动员年龄数据的平均数、众数和中位数.21.(6分)商场某种商品平均每天可销售30件,每件盈利50元,为了尽快减少库存,商场决定采取适当的降价措施.经调査发现,每件商品每降价1元,商场平均每天可多售出2件.若某天该商品每件降价3元,当天可获利多少元?设每件商品降价x元,则商场日销售量增加____件,每件商品,盈利______元(用含x的代数式表示);在上述销售正常情况下,每件商品降价多少元时,商场日盈利可达到2000元?22.(8分)如图,在平面直角坐标系中,等边三角形ABC的顶点B与原点O重合,点C在x轴上,点C坐标为(6,0),等边三角形ABC的三边上有三个动点D、E、F(不考虑与A、B、C重合),点D从A向B运动,点E从B向C运动,点F从C向A运动,三点同时运动,到终点结束,且速度均为1cm/s,设运动的时间为ts,解答下列问题:(1)求证:如图①,不论t如何变化,△DEF始终为等边三角形.(2)如图②过点E作EQ∥AB,交AC于点Q,设△AEQ的面积为S,求S与t的函数关系式及t为何值时△AEQ的面积最大?求出这个最大值.(3)在(2)的条件下,当△AEQ的面积最大时,平面内是否存在一点P,使A、D、Q、P构成的四边形是菱形,若存在请直接写出P坐标,若不存在请说明理由?23.(8分)图 1 和图 2 中,优弧AB纸片所在⊙O 的半径为2,AB=23,点P为优弧AB上一点(点P 不与A,B 重合),将图形沿BP 折叠,得到点A 的对称点A′.发现:(1)点O 到弦AB 的距离是,当BP 经过点O 时,∠ABA′=;(2)当BA′与⊙O 相切时,如图2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN 剪裁,得到半圆形纸片,点P(不与点M,N 重合)为半圆上一点,将圆形沿NP 折叠,分别得到点M,O 的对称点A′,O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图3,判断A′C 与半圆O 的位置关系,并说明理由;(2)如图4,当α=°时,NA′与半圆O 相切,当α=°时,点O′落在NP上.(3)当线段NO′与半圆O 只有一个公共点N 时,直接写出β的取值范围.24.(10分)如图所示,在坡角为30°的山坡上有一竖立的旗杆AB,其正前方矗立一墙,当阳光与水平线成45°角时,测得旗杆AB落在坡上的影子BD的长为8米,落在墙上的影子CD的长为6米,求旗杆AB的高(结果保留根号).25.(10分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y (件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为_____件,图中d值为_____.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?26.(12分)为迎接“世界华人炎帝故里寻根节”,某工厂接到一批纪念品生产订单,按要求在15天内完成,约定这批纪念品的出厂价为每件20元,设第x天(1≤x≤15,且x为整数)每件产品的成本是p元,p与x之间符合一次函数关系,部分数据如表:天数(x) 1 3 6 10每件成本p(元)7.5 8.5 10 12任务完成后,统计发现工人李师傅第x天生产的产品件数y(件)与x(天)满足如下关系:y=() () 220110401015x x xx x⎧+≤<⎪⎨≤≤⎪⎩,且为整数,且为整数,设李师傅第x天创造的产品利润为W元.直接写出p与x,W与x之间的函数关系式,并注明自变量x的取值范围:求李师傅第几天创造的利润最大?最大利润是多少元?任务完成后.统计发现平均每个工人每天创造的利润为299元.工厂制定如下奖励制度:如果一个工人某天创造的利润超过该平均值,则该工人当天可获得20元奖金.请计算李师傅共可获得多少元奖金?27.(12分)如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)画出△ABC关于点B成中心对称的图形△A1BC1;以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.2022学年模拟测试卷参考答案(含详细解析)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、B【答案解析】根据AB=BC=CD=1,|a|+|b|=2,分四种情况进行讨论判断即可.【题目详解】∵AB=BC=CD=1,∴当点A为原点时,|a|+|b|>2,不合题意;当点B为原点时,|a|+|b|=2,符合题意;当点C为原点时,|a|+|b|=2,符合题意;当点D为原点时,|a|+|b|>2,不合题意;故选:B.【答案点睛】此题主要考查了数轴以及绝对值,解题时注意:数轴上某个数与原点的距离叫做这个数的绝对值. 2、C 【答案解析】根据a 、b 的符号,针对二次函数、一次函数的图象位置,开口方向,分类讨论,逐一排除. 【题目详解】当a >0时,二次函数的图象开口向上,一次函数的图象经过一、三或一、二、三或一、三、四象限, 故A 、D 不正确;由B 、C 中二次函数的图象可知,对称轴x=-2ba>0,且a >0,则b <0, 但B 中,一次函数a >0,b >0,排除B . 故选C . 3、B 【答案解析】的值,再继续求所求数的算术平方根即可.,而2, 故选B .点睛:此题主要考查了算术平方根的定义,解题时应先明确是求哪个数的算术平方根,否则容易出现选A 的错误. 4、B 【答案解析】根据算术平方根的意义求解即可. 【题目详解】4,故选:B . 【答案点睛】本题考查了算术平方根的意义,一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,正数a 有一个正的算术平方根,0的算术平方根是0,负数没有算术平方根.5、D【答案解析】3,∵2<3,∴35到6之间.故选D.【答案点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.6、C【答案解析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【题目详解】∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选C.【答案点睛】本题主要考查函数值,解题的关键是掌握函数值的计算方法.7、C【答案解析】直接利用a,b在数轴上的位置,进而分别对各个选项进行分析得出答案.【题目详解】选项A,从数轴上看出,a在﹣1与0之间,∴﹣1<a<0,故选项A不合题意;选项B,从数轴上看出,a在原点左侧,b在原点右侧,∴a<0,b>0,∴ab<0,故选项B不合题意;选项C,从数轴上看出,a在b的左侧,∴a<b,即a﹣b<0,故选项C符合题意;选项D,从数轴上看出,a在﹣1与0之间,∴1<b<2,∴|a|<|b|,∵a<0,b>0,所以a+b=|b|﹣|a|>0,故选项D不合题意.故选:C.【答案点睛】本题考查数轴和有理数的四则运算,解题的关键是掌握利用数轴表示有理数的大小.8、B【答案解析】测试卷分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.9、A【答案解析】3=,则B3=-,则C2,则D错,故选A.10、A【答案解析】y=(x+2)2的对称轴为x=–2,A正确;y=2x2–2的对称轴为x=0,B错误;y=–2x2–2的对称轴为x=0,C错误;y=2(x–2)2的对称轴为x=2,D错误.故选A.1.11、D【答案解析】分析:根据等腰三角形的性质、正方形的判定定理、矩形的判定定理、切线的性质、垂径定理判断即可.详解:等腰三角形的两个底角相等,(1)正确;对角线相等、互相平分且互相垂直的四边形是正方形,(2)错误;对角线相等的平行四边形为矩形,(3)错误;圆的切线垂直于过切点的半径,(4)错误;平分弦(不是直径)的直径垂直于弦,(5)错误.故选D.点睛:本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.12、A【答案解析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可.【题目详解】∵AB BC CD==,∴∠AOB=∠BOC=∠COD=60°.∴阴影部分面积=2606=6 360⨯ππ.故答案为:A.【答案点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°.二、填空题:(本大题共6个小题,每小题4分,共24分.)13、41【答案解析】已知一元二次方程的根判别式为△=b 2﹣4ac ,代入计算即可求解.【题目详解】依题意,一元二次方程2x 2﹣3x ﹣4=0,a =2,b =﹣3,c =﹣4∴根的判别式为:△=b 2﹣4ac =(﹣3)2﹣4×2×(﹣4)=41故答案为:41【答案点睛】本题考查了一元二次方程的根的判别式,熟知一元二次方程 ax 2+bx +c =0(a ≠0)的根的判别式为△=b 2﹣4ac 是解决问题的关键.14、2【答案解析】测试卷分析:由OA=1,OC=6,可得矩形OABC 的面积为6;再根据反比例函数系数k 的几何意义,可知k=6,∴反比例函数的解析式为6y x =;设正方形ADEF 的边长为a ,则点E 的坐标为(a+1,a ),∵点E 在抛物线上,∴61a a =+,整理得260a a +-=,解得2a =或3a =-(舍去),故正方形ADEF 的边长是2.考点:反比例函数系数k 的几何意义.15、22-【答案解析】根据完全平方公式进行展开,然后再进行同类项合并即可.【题目详解】解:2.故填22-【答案点睛】主要考查的是完全平方公式及二次根式的混合运算,注意最终结果要化成最简二次根式的形式.16、3n +1【答案解析】根据题意可知:第1个图有4个图案,第2个共有7个图案,第3个共有10个图案,第4个共有13个图案,由此可得出规律.【题目详解】解:由题意可知:每1个都比前一个多出了3个“”,∴第n个图案中共有“”为:4+3(n﹣1)=3n+1故答案为:3n+1.【答案点睛】本题考查学生的观察能力,解题的关键是熟练正确找出图中的规律,本题属于基础题型.17、(-1,0)【答案解析】根据已知条件由图中可以得到B1所在的正方形的对角线长为2,B2所在的正方形的对角线长为(2)2,B3所在的正方形的对角线长为(2)3;B4所在的正方形的对角线长为(2)4;B5所在的正方形的对角线长为(2)5;可推出B6所在的正方形的对角线长为(2)6=1.又因为B6在x轴负半轴,所以B6(-1,0).解:如图所示∵正方形OBB1C,∴OB12,B1所在的象限为第一象限;∴OB2=2)2,B2在x轴正半轴;∴OB3=2)3,B3所在的象限为第四象限;∴OB4=2)4,B4在y轴负半轴;∴OB5=)5,B5所在的象限为第三象限;∴OB6=)6=1,B6在x轴负半轴.∴B6(-1,0).故答案为(-1,0).18、小林【答案解析】观察图形可知,小林的成绩波动比较大,故小林是新手.故答案是:小林.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19、(1)32;(2)1.【答案解析】(1)根据相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比进行计算即可;(2)根据EH=KD=x,得出AK=12﹣x,EF=32(12﹣x),再根据S=32x(12﹣x)=﹣32(x﹣6)2+1,可得当x=6时,S有最大值为1.【题目详解】解:(1)∵△AEF∽△ABC,∴EF AK BC AD=,∵边BC长为18,高AD长为12,∴EF BCAK AD==32;(2)∵EH=KD=x,∴AK=12﹣x,EF=32(12﹣x),∴S=32x(12﹣x)=﹣32(x﹣6)2+1.当x=6时,S有最大值为1.【答案点睛】本题主要考查了相似三角形的判定与性质的综合应用,解题时注意:确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标.20、(1)40人;1;(2)平均数是15;众数16;中位数15.【答案解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【题目详解】解:(1)4÷10%=40(人),m=100-27.5-25-7.5-10=1;故答案为40,1.(2)观察条形统计图,∵1341410151116121731540x⨯+⨯+⨯+⨯+⨯==,∴这组数据的平均数为15;∵在这组数据中,16出现了12次,出现的次数最多,∴这组数据的众数为16;∵将这组数据按照从小到大的顺序排列,其中处于中间的两个数都是15,有15+15=15 2,∴这组数据的中位数为15.【答案点睛】本题考查了条形统计图,扇形统计图,掌握平均数、众数和中位数的定义是解题的关键.21、(1)若某天该商品每件降价3元,当天可获利1692元;(2)2x;50﹣x.(3)每件商品降价1元时,商场日盈利可达到2000元.【答案解析】(1)根据“盈利=单件利润×销售数量”即可得出结论;(2)根据“每件商品每降价1元,商场平均每天可多售出2件”结合每件商品降价x元,即可找出日销售量增加的件数,再根据原来没见盈利50元,即可得出降价后的每件盈利额;(3)根据“盈利=单件利润×销售数量”即可列出关于x的一元二次方程,解之即可得出x的值,再根据尽快减少库存即可确定x的值.【题目详解】(1)当天盈利:(50-3)×(30+2×3)=1692(元).答:若某天该商品每件降价3元,当天可获利1692元.(2)∵每件商品每降价1元,商场平均每天可多售出2件,∴设每件商品降价x元,则商场日销售量增加2x件,每件商品,盈利(50-x)元.故答案为2x;50-x.(3)根据题意,得:(50-x)×(30+2x)=2000,整理,得:x2-35x+10=0,解得:x1=10,x2=1,∵商城要尽快减少库存,∴x=1.答:每件商品降价1元时,商场日盈利可达到2000元.【答案点睛】考查了一元二次方程的应用,解题的关键是根据题意找出数量关系列出一元二次方程(或算式).22、(1)证明见解析;(2)当t=3时,△AEQ cm2;(3)(3,0)或(6,0,【答案解析】(1)由三角形ABC为等边三角形,以及AD=BE=CF,进而得出三角形ADF与三角形CFE与三角形BED全等,利用全等三角形对应边相等得到BF=DF=DE,即可得证;(2)先表示出三角形AEC面积,根据EQ与AB平行,得到三角形CEQ与三角形ABC相似,利用相似三角形面积比等于相似比的平方表示出三角形CEQ面积,进而表示出AEQ 面积,利用二次函数的性质求出面积最大值,并求出此时Q的坐标即可;(3)当△AEQ的面积最大时,D、E、F都是中点,分两种情形讨论即可解决问题;【题目详解】(1)如图①中,∵C(6,0),∴BC=6在等边三角形ABC中,AB=BC=AC=6,∠A=∠B=∠C=60°,由题意知,当0<t<6时,AD=BE=CF=t,∴BD=CE=AF=6﹣t,∴△ADF≌△CFE≌△BED(SAS),∴EF=DF=DE,∴△DEF是等边三角形,∴不论t如何变化,△DEF始终为等边三角形;(2)如图②中,作AH ⊥BC 于H ,则AH=AB•sin60°=33,∴S △AEC =12×3(6﹣t )33(6)t -, ∵EQ ∥AB ,∴△CEQ ∽△ABC ,∴CEQ ABC S S =(CE CB )2=2(6)36t -,即S △CEQ =2(6)36t -S △ABC =2(6)36t -×323(6)t -, ∴S △AEQ =S △AEC ﹣S △CEQ 33(6)t -23(6)t -=3t ﹣3)293 ∵a=﹣30, ∴抛物线开口向下,有最大值,∴当t=3时,△AEQ 932, (3)如图③中,由(2)知,E 点为BC 的中点,线段EQ 为△ABC 的中位线,当AD为菱形的边时,可得P1(3,0),P3(6,33),当AD为对角线时,P2(0,33),综上所述,满足条件的点P坐标为(3,0)或(6,33)或(0,33).【答案点睛】本题考查四边形综合题、等边三角形的性质和判定、菱形的判定和性质、二次函数的性质等知识,解题的关键是学会构建二次函数解决最值问题,学会用分类讨论的思想思考问题,属于中考压轴题.23、发现:(1)1,60°;(2)23;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【答案解析】发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=12A'N=12MN=2可判定A′C与半圆相切;(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在PB时,连接MO′,则可知NO′=12MN,可求得∠MNO′=60°,可求得α=30°;(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.【题目详解】发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,∵⊙O的半径为2,AB=23,∴OH=22OB HB-=222(3)1-=在△BOH中,OH=1,BO=2∴∠ABO=30°∵图形沿BP折叠,得到点A的对称点A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=12OB=1.∴3∵OG⊥BP,∴3∴33拓展:(1)相切.分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,∵A'C∥MN∴四边形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=12A'N=12MN=2∴A'C与半圆(2)当NA′与半圆O相切时,则ON⊥NA′,∴∠ONA′=2α=90°,∴α=45当O′在PB上时,连接MO′,则可知NO′=12 MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案为:45°;30°.(3)∵点P,M不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.【答案点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.24、旗杆AB的高为(3)m.【答案解析】测试卷分析:过点C作CE⊥AB于E,过点B作BF⊥CD于F.在Rt△BFD中,分别求出DF、BF的长度.在Rt△ACE 中,求出AE、CE的长度,继而可求得AB的长度.测试卷解析:解:过点C作CE⊥AB于E,过点B作BF⊥CD于F,过点B作BF⊥CD于F.在Rt△BFD中,∵∠DBF=30°,sin∠DBF=DFBD=12,cos∠DBF=BFBD=32.∵BD=8,∴DF=4,BF22228443BD DF-=-=∵AB∥CD,CE⊥AB,BF⊥CD,∴四边形BFCE为矩形,∴BF=CE=43,CF=BE=CD﹣DF=1.在Rt△ACE中,∠ACE=45°,∴AE=CE=43,∴AB=43+1(m).答:旗杆AB的高为(3)m.25、80 770【答案解析】(1)由图象的信息解答即可;(2)利用待定系数法确定解析式即可;(3)根据题意列出方程解答即可.【题目详解】(1)由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设y BC=kx+b,过B、C,∴12047709k bk b=+⎧⎨=+⎩,解得130400kb=⎧⎨=-⎩,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=20 3答:甲车间加工203天时,两车间加工零件总数为1000件【答案点睛】一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.26、(1)W=216260(11020520(1015x x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数);(2)李师傅第8天创造的利润最大,最大利润是324元;(3)李师傅共可获得160元奖金.【答案解析】(1)根据题意和表格中的数据可以求得p 与x ,W 与x 之间的函数关系式,并注明自变量x 的取值范围:(2)根据题意和题目中的函数表达式可以解答本题;(3)根据(2)中的结果和不等式的性质可以解答本题.【题目详解】(1)设p 与x 之间的函数关系式为p=kx+b ,则有7.538.5k b k b +=⎧⎨+=⎩,解得,0.57k b =⎧⎨=⎩, 即p 与x 的函数关系式为p=0.5x+7(1≤x≤15,x 为整数),当1≤x <10时,W=[20﹣(0.5x+7)](2x+20)=﹣x 2+16x+260,当10≤x≤15时,W=[20﹣(0.5x+7)]×40=﹣20x+520,即W=2x 16260(11020520(1015x x x x x x ⎧-++≤<⎨-+≤≤⎩,为整数),为整数); (2)当1≤x <10时,W=﹣x 2+16x+260=﹣(x ﹣8)2+324,∴当x=8时,W 取得最大值,此时W=324,当10≤x≤15时,W=﹣20x+520,∴当x=10时,W 取得最大值,此时W=320,∵324>320,∴李师傅第8天创造的利润最大,最大利润是324元;(3)当1≤x <10时,令﹣x 2+16x+260=299,得x 1=3,x 2=13,当W >299时,3<x <13,∵1≤x <10,∴3<x <10,当10≤x≤15时,令W=﹣20x+520>299,得x<11.05,∴10≤x≤11,由上可得,李师傅获得奖金的的天数是第4天到第11天,李师傅共获得奖金为:20×(11﹣3)=160(元),即李师傅共可获得160元奖金.【答案点睛】本题考查了一次函数的应用,二次函数的应用等,明确题意,找出各个量之间的关系,确立函数解析式,利用函数的性质进行解答是关键.27、(1)画图见解析;(2)画图见解析,C2的坐标为(﹣6,4).【答案解析】测试卷分析:()1利用关于点对称的性质得出11,A C的坐标进而得出答案;()2利用关于原点位似图形的性质得出对应点位置进而得出答案.测试卷解析:(1)△A1BC1如图所示.(2)△A2B2C2如图所示,点C2的坐标为(-6,4).。
【解析版】福建省莆田市中考数学模拟试卷(5月份)
福建省莆田市中考数学模拟试卷(5月份)一、精心选一选:本大题共10小题,每小题4分,共40分.每小题給出的四个选项中有且只有一个选项是符合要求的.答对得4分,答错、不答或答案超过一个的一律得0分. 1.(4分)下列各数中,比﹣2小的是()A.﹣1 B.0C.﹣3 D.π2.(4分)如图,已知AB∥CD,BE平分∠ABC,且交CD于点D,∠CDE=150°,则∠C为()A.120°B.150°C.135°D.110°3.(4分)某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.4.(4分)在一次体育测试中,小芳所在小组8人的成绩分别是66,67,78,78,79,79,79,80,则这8人体育成绩的中位数是()A.77 B.78 C.78.5 D.795.(4分)若a、b为实数,a>0,b<0,且|a|<|b|,那么下列正确的是()A.a+b<0 B.a+b=0 C.a+b>0 D.以上都不对6.(4分)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB 的中点,BC=8,AO=6,则四边形DEFG的周长为()A.12 B.14 C.16 D.187.(4分)在Rt△ABC中,∠C=90°,若AC=2BC,则cosA的值是()A.B.2C.D.8.(4分)若点A(﹣2,a)、B(﹣1,b)、C(3,c)都在二次函数y=mx2(m<0)图象上,则a、b、c的大小关系是()A.c<a<b B.b<a<c C.a<b<c D.c<b<a9.(4分)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.3D.410.(4分)对于一个自然数n,如果能找到正整数x、y,使得n=x+y+xy,则称n为“好数”,例如:3=1+1+1×1,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数为()A.1B.2C.3D.4二、细心填一填:本大题共6小题,每小题4分,共24分.11.(4分)=.12.(4分)“任意打开一本200页的数学书,正好是第50页”,这是事件(选填“随机”,“必然”或“不可能”).13.(4分)“一带一路”是国家的发展,计划用10年左右的时间,使中国同沿线国家的年贸易额突破25000亿美元.把25000用科学记数法表示为.14.(4分)若a x=2,a y=3,则a2x+y=.15.(4分)已知圆锥的母线长是6cm,侧面积是12πcm,则圆锥侧面展开图的圆心角为.16.(4分)如图,在菱形ABCD中,AB=6,∠ABC=60°,点M、N分别在AB、AD边上,AM=AN=2,P是对角线BD上的动点,则PM+PN的最小值是.三、耐心做一做:本大题共10小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:(+π)0﹣4sin60°﹣|4﹣2|.18.(8分)先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=﹣2.19.(8分)解不等式﹣≥1,并把它的解集在数轴上表示出来.20.(8分)在“中国莆田房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共200辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有辆;(2)通过计算说明,哪一种型号的轿车销售的成交率最高?(3)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.21.(8分)如图,在△ABC中,AB=AC,AD⊥BC于D点,把△ACD绕着A点顺时针旋转,使得AC与AB重合,点D落在点E处,延长AE、CB相交于M点,延长EB、AD 相交于N点.求证:AM=AN.22.(8分)小红为班级数学课题学习小组的同学每人购买一盒学习用品,商场给出如下优惠条件:如果一次性购买不超过10盒,单价为3.8元;如果一次性购买多于10盒,那么每多一盒,所有的单价都降低0.2元,但不得低于3元;小红一次性购买这种学习用品付了40.8元.请问她购买了多少盒这种学习用品?23.(8分)如图,直线AB与x轴交于点C,与双曲线y=交于A(3,)、B(﹣5,a)两点,AD⊥x轴于点D,BE∥x轴且与y轴交于点E,判断四边形CBED的形状,并说明理由.24.(8分)如图,AB是⊙O的直径,弦CD=2,AB⊥CD于E点,延长AB到F,使得BF=OB,连接CF,若CF是⊙O的切线.求:⊙O的半径.25.(10分)(1)如图1,若点M、N分别在正方形ABCD的边CB、DC的延长线上,且∠MAN=45°,判断S△AMN、S△ABM、S△ADN之间的等量关系,并加以证明;(2)如图2,在△ABC中,∠BAC=45°且AD⊥BC于D,若BD=3,CD=10,求:S△ABC.26.(12分)抛物线C1:y=(x﹣m)2+m+1(m>0)的顶点为A,抛物线C2开口向下且顶点B在y轴上,若A、B两点关于点P(1,2)对称.(1)求m的值;(2)若抛物线C2与x轴的正半轴的交点是C,当△ABC为直角三角形时,求抛物线C2的解析式.福建省莆田市中考数学模拟试卷(5月份)参考答案与试题解析一、精心选一选:本大题共10小题,每小题4分,共40分.每小题給出的四个选项中有且只有一个选项是符合要求的.答对得4分,答错、不答或答案超过一个的一律得0分. 1.(4分)下列各数中,比﹣2小的是()A.﹣1 B.0C.﹣3 D.π考点:实数大小比较.专题:应用题.分析:根据题意,结合实数大小的比较,从符号和绝对值两个方面分析可得答案.解答:解:比﹣2小的数是应该是负数,且绝对值大于2的数,分析选项可得,只有C符合.故选C.点评:本题考查实数大小的比较,是基础性的题目,比较简单.2.(4分)如图,已知AB∥CD,BE平分∠ABC,且交CD于点D,∠CDE=150°,则∠C为()A.120°B.150°C.135°D.110°考点:平行线的性质.分析:先根据平行线及角平分线的性质求出∠CDB=∠CBD,再根据平角的性质求出∠CDB的度数,再根据平行线的性质求出∠C的度数即可.解答:解:∵直线AB∥CD,∴∠CDB=∠ABD,∵∠CDB=180°﹣∠CDE=30°,∴∠ABD=30°,∵BE平分∠ABC,∴∠ABD=∠CBD,∴∠ABC=∠CBD+∠ABD=60°,∵AB∥CD,∴∠C=180°﹣∠ABC=180°﹣60°=120°.故选A.点评:本题考查的是平行线的性质,用到的知识点为:两直线平行,同旁内角互补.3.(4分)某种零件模型如图,该几何体(空心圆柱)的俯视图是()A.B.C.D.考点:简单组合体的三视图.分析:找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:由上向下看空心圆柱,看到的是一个圆环,中间的圆要画成实线.故选:D.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.(4分)在一次体育测试中,小芳所在小组8人的成绩分别是66,67,78,78,79,79,79,80,则这8人体育成绩的中位数是()A.77 B.78 C.78.5 D.79考点:中位数.分析:先把这些数据从小到大排列,再找出最中间的两个数的平均数,即可得出答案.解答:解:把这些数据从小到大排列为:66,67,78,78,79,79,79,80,最中间的数是78,79的平均数,即=78.5,则这8人体育成绩的中位数是78.5;故选C.点评:此题考查了中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.5.(4分)若a、b为实数,a>0,b<0,且|a|<|b|,那么下列正确的是()A.a+b<0 B.a+b=0 C.a+b>0 D.以上都不对考点:绝对值.分析:根据题意取a=2,b=﹣3,求出a+b=﹣1,再比较即可.解答:解:∵|b|>|a|,且a>0,b<0,∴取a=2,b=﹣3,∴a+b=﹣1,故选A.点评:本题有理数的大小比较的应用,采取了取特殊值法.6.(4分)如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB 的中点,BC=8,AO=6,则四边形DEFG的周长为()A.12 B.14 C.16 D.18考点:三角形中位线定理.分析:根据三角形中位线定理,可得ED=FG=BC=4,GD=EF=AO=3,进而求出四边形DEFG的周长.解答:解:∵BD,CE是△ABC的中线,∴ED∥BC且ED=BC,∵F是BO的中点,G是CO的中点,∴FG∥BC且FG=BC,∴ED=FG=BC=4,同理GD=EF=AO=3,∴四边形DEFG的周长为3+4+3+4=14.故选B.点评:本题考查了三角形中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半.三角形中位线的性质定理,为证明线段相等和平行提供了依据.7.(4分)在Rt△ABC中,∠C=90°,若AC=2BC,则cosA的值是()A.B.2C.D.考点:锐角三角函数的定义.分析:根据勾股定理,可得AB与BC的关系,根据余弦函数的定义,可得答案.解答:解:由勾股定理,得AB=BC.由余弦函数的定义,得cosA===,故选:D.点评:本题考查了锐角三角函数的定义,先利用勾股定理得出BA与BC的关系,再利用余弦函数的定义.8.(4分)若点A(﹣2,a)、B(﹣1,b)、C(3,c)都在二次函数y=mx2(m<0)图象上,则a、b、c的大小关系是()A. c<a<b B.b<a<c C.a<b<c D.c<b<a考点:二次函数图象上点的坐标特征.分析:先根据二次函数的性质得到抛物线的对称轴为y轴,然后比较三个点离对称轴的远近得到a、b、c的大小关系.解答:解:∵二次函数y=mx2(m<0)∴抛物线的对称轴为y轴,∵A(﹣2,a)、B(﹣1,b)、C(3,c)∴点C离y轴最远,点B离y轴最近,而抛物线开口向下,∴b>a>c;故选A.点评:本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足其解析式.9.(4分)如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3B.4C.3D.4考点:垂径定理;勾股定理.分析:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OM的长.解答:解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理、勾股定理得:OM=ON==3,∵弦AB、CD互相垂直,∴∠D PB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=3故选:C.点评:本题考查了垂径定理及勾股定理的知识,解题的关键是正确地作出辅助线.10.(4分)对于一个自然数n,如果能找到正整数x、y,使得n=x+y+xy,则称n为“好数”,例如:3=1+1+1×1,则3是一个“好数”,在8,9,10,11这四个数中,“好数”的个数为()A.1B.2C. 3 D. 4考点:有理数的混合运算.专题:新定义.分析:根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.解答:解:根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.点评:(1)此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.(2)此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n+1是合数,则n是“好数”.二、细心填一填:本大题共6小题,每小题4分,共24分.11.(4分)=5.考点:算术平方根.分析:根据开方运算,可得一个正数的算术平方根.解答:解:=5,故答案为:5.点评:本题考查了算术平方根,注意一个正数只有一个算术平方根.12.(4分)“任意打开一本200页的数学书,正好是第50页”,这是随机事件(选填“随机”,“必然”或“不可能”).考点:随机事件.分析:根据不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件,可得答案.解答:解:任意打开一本200页的数学书,正好是第50页”,这是随机事件,故答案为:随机.点评:考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.13.(4分)“一带一路”是国家的发展,计划用10年左右的时间,使中国同沿线国家的年贸易额突破25000亿美元.把25000用科学记数法表示为2.5×104.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将25000用科学记数法表示为2.5×104.故答案为:2.5×104.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.(4分)若a x=2,a y=3,则a2x+y=12.考点:幂的乘方与积的乘方;同底数幂的乘法.分析:根据幂的乘方和同底数幂的乘法法则计算即可.解答:解:∵a x=2,a y=3,∴a2x+y=a2x•a y,=(a x)2•a y,=4×3,=12.点评:本题主要考查了幂的有关运算.幂的乘方法则:底数不变指数相乘.同底数幂的乘法法则:底数不变指数相加.15.(4分)已知圆锥的母线长是6cm,侧面积是12πcm,则圆锥侧面展开图的圆心角为120°.考点:圆锥的计算.分析:直接利用扇形的侧面积公式计算即可确定本题的答案.解答:解:设圆心角的度数为n°,根据题意得:=12π,解得:n=120,所以圆心角为120°,故答案为:120°.点评:本题考查了圆锥的计算.牢记圆锥的计算公式是解答本题的关键,难度不大.16.(4分)如图,在菱形ABCD中,AB=6,∠ABC=60°,点M、N分别在AB、AD边上,AM=AN=2,P是对角线BD上的动点,则PM+PN的最小值是2.考点:轴对称-最短路线问题;菱形的性质.分析:首先利用菱形的性质和勾股定理求出菱形对角线BD为6,再作点M关于AC 的对称点M′,连接M′N交BD于P,此时MP+NP有最小值.然后根据勾股定理即可求出MP+NP=M′N=2.解答:解:∵在菱形ABCD中,AB=6,∠ABC=60°,∴AC=6,BD=6,作点M关于AC的对称点M′,连接M′N交BD于P,此时MP+NP有最小值,最小值为M′N的长.∵菱形ABCD关于BD对称,∴BM′=BM,又∵,∠ABC=60°,∴△BMM′是等边三角形,∴MM′=BM=AB﹣AM=6﹣2=4,∵AB=AD,AM=AN,∴MN∥BD,∴===,∴MN=×6=2,∵MM′⊥BD,MN∥BD,∴MM′⊥MN,∴M′N==2∴MP+NP=M′N=2,即MP+NP的最小值为2.故答案为2.点评:本题考查的是轴对称﹣最短路线问题及菱形的性质和勾股定理的运用,熟知两点之间线段最短的知识是解答此题的关键.三、耐心做一做:本大题共10小题,共86分.解答应写出必要的文字说明、证明过程或演算步骤.17.(8分)计算:(+π)0﹣4sin60°﹣|4﹣2|.考点:实数的运算;零指数幂;特殊角的三角函数值.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用特殊角的三角函数值计算,最后一项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1﹣4×﹣4+2=﹣3.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.18.(8分)先化简,再求值:(a+b)2﹣2a(b+1)﹣a2b÷b,其中a=,b=﹣2.考点:整式的混合运算—化简求值.分析:先算乘法,再合并同类项,最后代入求出即可.解答:解:原式=a2+2ab+b2﹣2ab﹣2a﹣a2=b2﹣2a,当,b=﹣2时,原式=.点评:本题考查了整式的混合运算和求值的应用,能运用整式的运算法则进行化简是解此题的关键,难度适中.19.(8分)解不等式﹣≥1,并把它的解集在数轴上表示出来.考点:解一元一次不等式;在数轴上表示不等式的解集.分析:去分母,去括号,移项,合并同类项,系数化成1即可.解答:解:去分母得:2(2x﹣1)﹣3(5x+1)≥6,4x﹣2﹣15x﹣3≥6,﹣11x≥11,x≤﹣1,在数轴上表示不等式的解集为:.点评:本题考查了解一元一次不等式,在数轴上表示不等式的解集的应用,能求出不等式的解集是解此题的关键,难度适中.20.(8分)在“中国莆田房•车生活文化节”期间,某汽车经销商推出A、B、C、D四种型号的小轿车共200辆进行展销.C型号轿车销售的成交率为50%,其它型号轿车的销售情况绘制在图1和图2两幅尚不完整的统计图中.(1)参加展销的D型号轿车有50辆;(2)通过计算说明,哪一种型号的轿车销售的成交率最高?(3)若对已售出轿车进行抽奖,现将已售出A、B、C、D四种型号轿车的发票(一车一票)放到一起,从中随机抽取一张,求抽到A型号轿车发票的概率.考点:条形统计图;扇形统计图;概率公式.分析:(1)根据展销总量乘以D类所占的百分比,可得答案;(2)根据各类的成交量比上各类展销量,可得成交率,根据有理数的大小比较,可得答案;(3)根据A类的成交量比上总成交量,可得答案.解答:解:(1)参加展销的D型号轿车有200×(1﹣35%﹣20%﹣20%)=50(辆)(2)A类的成交率,B类的成交率,D类的成交率,C类的成交率,∵>,∴A型号的轿车销售的成交率最高.(3)总成交量45+25+20+30=120,A类成交量的概率;D类所占的百分比:1﹣35%﹣20%﹣20%=35,C类的展销量200×20%=40(辆),C类的成交量40×50%=20,补充如图:.点评:本题考查了条形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.21.(8分)如图,在△ABC中,AB=AC,AD⊥BC于D点,把△ACD绕着A点顺时针旋转,使得AC与AB重合,点D落在点E处,延长AE、CB相交于M点,延长EB、AD 相交于N点.求证:AM=AN.考点:全等三角形的判定与性质.专题:证明题.分析:由旋转可以得出∠AEM=∠ADM=90°,就可以得出∠M=∠N,∠MAB=∠NAB就可以得出△ABM≌△ABN,由全等三角形的旋转就可以得出结论.解答:证明:∵AB=AC,AD⊥BC于D点,∴∠ACD=∠ABD,∠CAD=∠BAD,∠ADC=ADB=90°.∵△AEB是由△A DC旋转得到的,∴△AEB≌△ADC,∴∠AEB=∠ADC=90°,∠MAB=∠CAD.∴∠AEB=∠ADB=90°.∠MAB=∠NAB∴∠M+∠MAD=90°,∠N+∠EAN=90°,∴∠M=∠N.在△ABM和△ABN中,∴△ABM≌△ABN(AAS),∴AM=AN.点评:本题考查了旋转的旋转的运用,直角三角形的旋转的运用,全等三角形的判定及旋转的运用,解答时证明三角形全等是关键.22.(8分)小红为班级数学课题学习小组的同学每人购买一盒学习用品,商场给出如下优惠条件:如果一次性购买不超过10盒,单价为3.8元;如果一次性购买多于10盒,那么每多一盒,所有的单价都降低0.2元,但不得低于3元;小红一次性购买这种学习用品付了40.8元.请问她购买了多少盒这种学习用品?考点:一元二次方程的应用.专题:销售问题.分析:根据题意表示出购买这种学习用品的数量,进而利用单价×数量=总钱数,进而求出即可.解答:解:设小红购买x盒学习用品.根据题意得:x[3.8﹣0.2(x﹣10)]=40.8解得:x1=12,x2=17当x=12时,单价为:3.8﹣2×0.2=3.4,当x=17时,单价为:3.8﹣7×0.2=2.4<3(不合题意舍去),所以小红购买了12盒学习用品.点评:此题主要考查了一元二次方程的应用,根据题意得出正确等量关系是解题关键.23.(8分)如图,直线AB与x轴交于点C,与双曲线y=交于A(3,)、B(﹣5,a)两点,AD⊥x轴于点D,BE∥x轴且与y轴交于点E,判断四边形CBED的形状,并说明理由.考点:菱形的判定;反比例函数与一次函数的交点问题.分析:由点C、D的坐标、已知条件“BE∥x轴”及两点间的距离公式求得,CD=5,BE=5,且BE∥CD,从而可以证明四边形CBED是平行四边形;然后在Rt△OED中根据勾股定理求得ED=5,所以ED=CD,从而证明四边形CBED是菱形.解答:解:四边形CBED是菱形.∵双曲线过A(3,),∴k=20.把B(﹣5,a)代入,得a=﹣4.∴点B的坐标是(﹣5,﹣4).∵AD⊥x轴于D,∴D(3,0),设直线AB的解析式为y=mx+n,将 A(3,)、B(﹣5,﹣4)代入得:解得:.∴直线AB的解析式为:.∴点C的坐标是(﹣2,0).∵BE∥x轴,∴点E的坐标是(0,﹣4).而CD=5,BE=5,且BE∥CD.∴四边形CBED是平行四边形.在Rt△OED中,ED2=OE2+OD2,∴ED==5,∴ED=CD.∴□CBED是菱形.点评:本题考查了反比例函数综合题及菱形的判定的知识.解答此题时,利用了反比例函数图象上点的坐标特征.24.(8分)如图,AB是⊙O的直径,弦CD=2,AB⊥CD于E点,延长AB到F,使得BF=OB,连接CF,若CF是⊙O的切线.求:⊙O的半径.考点:切线的性质;相似三角形的判定与性质.分析:首先证得△COF∽△EOC,再由BF=OB,得出OE与OC的比,进一步求得CE,在直角三角形OEC中利用勾股定理求得答案即可.解答:解:∵CF是⊙O的切线∴∠OCF=90°,∴∠OCF=∠OEC,∵∠COF=∠EOC∴△COF∽△EOC,∴∵,∴,∴,∵AB⊥CD于E,∴,设OE=2x,则OC=3x.∵OC2=OE2+CE2,∴,∴⊙O的半径为3.点评:此题考查切线的性质,相似三角形的判定与性质,勾股定理的运用,垂径定理,注意结合图形,灵活利用数据解决问题.25.(10分)(1)如图1,若点M、N分别在正方形ABCD的边CB、DC的延长线上,且∠MAN=45°,判断S△AMN、S△ABM、S△ADN之间的等量关系,并加以证明;(2)如图2,在△ABC中,∠BAC=45°且AD⊥BC于D,若BD=3,CD=10,求:S△ABC.考点:全等三角形的判定与性质;正方形的性质.分析:(1)如图1,在CD上截取DE=MB,连接AE由正方形的性质就可以得出Rt△ABM≌Rt△ADE,就可以得出AM=AE,∠DAE=∠BAN,进而得出△ANM≌△ANE 就可以得出结论;(2)以AD为边作正方形ADEF,在EF上截取FQ=BD,就可以得出△ABD≌△AQF,得出∠CAQ=45°,∠BAC=∠CAQ,就有△BAC≌△QAC,从而得出BC=CQ=13,设AD=x,则QE=x﹣3,CE=x﹣10.由勾股定理就可以求出x的值,得出AD的值,由三角形的面积公式就可以求出结论.解答:解:(1)如图1,在CD上截取DE=MB,连接AE.∵四边形ABCD是正方形∴AB=BC=AD,∠ABC=∠D=90°在△ABM和△ADE中,∴△ABM≌△ADE(SAS),∴∠BAM=∠DAE,AM=AE∵∠MAN=45°∴∠DAE+∠BAN=45°.即∠NAE=45°.在△ANM和△ANE中,∴△ANM≌△ANE(SAS),∴S△AMN=S△AEN.∵S△ADN=S△AEN+S△ADE,∴S△ADN=S△ANE+S△ADE=S△AMN+S△ABM;(2)以AD为边作正方形ADEF,在EF上截取FQ=BD.在△ABD和△AQF中,∴△ABD≌△AQF(SAS),∴AB=AQ,∠BAD=∠FAQ∵∠BAC=45°∴∠BAD+∠DAC=45°∴∠DAC+∠FAQ=45°即∠CAQ=45°∴∠BAC=∠CAQ.在△BAC和△QAC中,∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=13.设AD=x,则QE=x﹣3,CE=x﹣10.在Rt△CQE中,∠E=90°∵CE2+QE2=CQ2∴(x﹣10)2+(x﹣3)2=132解得:x1=15,x2=﹣2(不合舍去)∴AD=15∴.点评:本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的性质的运用,解答时证明三角形全等是关键.26.(12分)抛物线C1:y=(x﹣m)2+m+1(m>0)的顶点为A,抛物线C2开口向下且顶点B在y轴上,若A、B两点关于点P(1,2)对称.(1)求m的值;(2)若抛物线C2与x轴的正半轴的交点是C,当△ABC为直角三角形时,求抛物线C2的解析式.考点:抛物线与x轴的交点.分析:(1)由C1:y=(x﹣m)2+m+1(m>0),可求得顶点A(m,m+1),由于点B 在y轴上,根据对称即可解得m=2;(2)由(1)知A(2,3)、B(0,1)根据勾股定理可得AB2=(2﹣0)2+(3﹣1)2=8由抛物线C2的顶点B(0,1)在y轴上得到抛物线C2的解析式为y=ax2+1设点C坐标为(c,0),根据勾股定理得到AC2=(2﹣c)2+32=c2﹣4c+13;BC2=c2+1由于△ABC是直角三角形,进行分类讨论即可求出结果.解答:解:(1)∵C1:y=(x﹣m)2+m+1(m>0)∴顶点A(m,m+1),∵点B在y轴上,∴设B(0,b),又A、B关于点P(1,2)对称,∴,解得:m=2;(2)由(1)知A(2,3)、B(0,1)∴AB2=(2﹣0)2+(3﹣1)2=8∵抛物线C2的顶点B(0,1)在y轴上∴抛物线C2的解析式为y=ax2+1设点C坐标为(c,0),∴AC2=(2﹣c)2+32=c2﹣4c+13;BC2=c2+1∵△ABC是直角三角形,则:①当∠ABC=90°时,AC2=BC2+AB2,即c2﹣4c+13=(c2+1)+8,解得:c=1∴C1(1,0),将点C1坐标代入y=ax2+1得:a+1=0;解得:a=﹣1,∴抛物线C2的解析式为:y=﹣x2+1,②当∠BAC=90°时,BC2=AC2+AB2,即c2+1=(c2﹣4c+13)+8,解得:c=5,∴C2(5,0),将点C2坐标代入y=ax2+1得:25a+1=0,解得:a=﹣,∴抛物线C2的解析式为:y=﹣x2+1,综上,当△ABC为直角三角形时,抛物线C2的解析式为:y=﹣x2+1或y=﹣x2+1.点评:本题考查了抛物线与X轴的交点,关于点对称,正确理解关于点对称是解题的关键.21 / 21。
2019年湖北省武汉市江夏区中考数学模拟试卷(5月份) 解析版
2019年湖北省武汉市江夏区中考数学模拟试卷(5月份)一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼4.下列四个图形中,是轴对称图形的是()A.B.C.D.5.下列几何体的左视图为长方形的是()A.B.C.D.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60 7.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.8.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A.第3天B.第4天C.第5天D.第6天9.如图,直线y=n交y轴于点A,交双曲线于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线于点D,若,则n的值()A.4B.6C.2D.510.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+C.y=x2+2D.y=x2+2二.填空题(共6小题)11.16的平方根是.12.对于一组统计数据3,3,6,5,3.这组数据的中位数是.13.计算:(1﹣)•=14.在△ABC中,AC=BC,AD⊥BC交直线BC于点D,若,则△ABC的顶角的度数为.15.已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是.16.如图△ABC中,AB=AC,∠BAC=120°,D是AB上一点,且=,E为CB延长线上一点,且∠BAE=∠BCD,若BE=,则BC的长是.三.解答题(共8小题)17.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.18.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.19.为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.20.已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均在格点上,点D为AC边上的一点.(1)线段AC的长为.(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP 的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置.21.如图,在△ABC中,AB=AC,⊙O分别切AB于M,BC于N,连接BO、CO,BO=CO.(1)求证:AC是⊙O的切线;(2)连接MC,若tan∠MCB=,求sin∠B的值.22.某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C 市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.23.已知:△ABC中,点D在边AC上,且AB2=AD•AC.(1)如图1.求证:∠ABD=∠C.(2)如图2.在边BC上截取BE=BD,ED、BA的延长线交于点F,求证:=.(3)在(2)的条件下,若AD=4,CD=5,cos∠BAC=,试直接写出△FBE的面积.24.已知:抛物线y=a(x2﹣2mx﹣3m2)(m˃0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.(1)若A点坐标为(﹣1,0),则B点坐标为.(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO =∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C的下方),直线P A、PB分别交抛物线于点E、F,若=,求的值.参考答案与试题解析一.选择题(共10小题)1.8的倒数是()A.﹣8B.8C.﹣D.【分析】根据倒数的定义,互为倒数的两数乘积为1,即可解答.【解答】解:8的倒数是,故选:D.2.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()A.B.C.D.【分析】根据二次根式有意义的条件列出不等式,解不等式,把解集在数轴上表示即可.【解答】解:由题意得x+2≥0,解得x≥﹣2.故选:D.3.下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可.【解答】解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.4.下列四个图形中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:D选项的图形是轴对称图形,A,B,C选项的图形不是轴对称图形.故选:D.5.下列几何体的左视图为长方形的是()A.B.C.D.【分析】找到各图形从左边看所得到的图形即可得出结论.【解答】解:A.球的左视图是圆;B.圆台的左视图是梯形;C.圆柱的左视图是长方形;D.圆锥的左视图是三角形.故选:C.6.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则()A.x﹣y=20B.x+y=20C.5x﹣2y=60D.5x+2y=60【分析】设圆圆答对了x道题,答错了y道题,根据“每答对一道题得+5分,每答错一道题得﹣2分,不答的题得0分,已知圆圆这次竞赛得了60分”列出方程.【解答】解:设圆圆答对了x道题,答错了y道题,依题意得:5x﹣2y+(20﹣x﹣y)×0=60.故选:C.7.将分别标有“青”“春”“仪”“式”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其他差别,每次摸球前先搅拌均匀,随机摸出一球后放回;再随机摸出一球,两次摸出的球上的汉字组成“青春”的概率是()A.B.C.D.【分析】画树状图展示所以16种等可能的结果数,再找出两次摸出的球上的汉字组成“青春”的结果数,然后根据概率公式求解.【解答】解:根据题意画图如下:共有16种等可能的结果数,其中两次摸出的球上的汉字组成“青春”的结果数为2,所以两次摸出的球上的汉字组成“青春”的概率是=;故选:A.8.课题研究小组对附着在物体表面的三个微生物(课题小组成员把他们分别标号为1,2,3)的生长情况进行观察记录.这三个微生物第一天各自一分为二,产生新的微生物(分别被标号为4,5,6,7,8,9),接下去每天都按照这样的规律变化,即每个微生物一分为二,形成新的微生物(课题组成员用如图所示的图形进行形象的记录).那么标号为100的微生物会出现在()A.第3天B.第4天C.第5天D.第6天【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.通过分析找到各部分的变化规律后用一个统一的式子表示出变化规律是此类题目中的难点.【解答】解:由图和题意可知,第一天产生新的微生物有6个标号,第二天产生新的微生物有12个标号,以此类推,第三天、第四天、第五天产生新的微生物分别有24个,48个,96个,而前四天所有微生物的标号共有3+6+12+24+48=93个,所以标号为100的微生物会出现在第五天.故选:C.9.如图,直线y=n交y轴于点A,交双曲线于点B,将直线y=n向下平移4个单位长度后与y轴交于点C,交双曲线于点D,若,则n的值()A.4B.6C.2D.5【分析】先根据平移的性质求出平移后直线的解析式,由于,故可得出设B(a,n),D(3a,n﹣4),再根据反比例函数中k=xy为定值求出n.【解答】解:∵将直线y=n向下平移4个单位长度后,∴平移后直线的解析式为y=n﹣4,∵,∴CD=3AB,设B(a,n),D(3a,n﹣4),∵B、D在反比例函数的图象上,∴an=3a•(n﹣4)∴n=6故选:B.10.如图,在△ABC中,AB=AC,BC=6,E为AC边上的点且AE=2EC,点D在BC边上且满足BD=DE,设BD=y,S△ABC=x,则y与x的函数关系式为()A.y=x2+B.y=x2+C.y=x2+2D.y=x2+2【分析】过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,由此得出关于x和y的方程,即可得出关系式.【解答】解:过A作AH⊥BC,过E作EP⊥BC,则AH∥EP,∴HC=3,PC=1,BP=5,PE=AH,∵BD=DE=y,∴在Rt△EDP中,y2=(5﹣y)2+PE2,∵x=6AH÷2=3AH,∴y2=(5﹣y)2+,∴y=x2+,故选:A.二.填空题(共6小题)11.16的平方根是±4.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:∵(±4)2=16,∴16的平方根是±4.故答案为:±4.12.对于一组统计数据3,3,6,5,3.这组数据的中位数是3.【分析】根据中位数的定义直接解答即可.【解答】解:把这些数从小到大排列为3,3,3,5,6,则这组数据的中位数是3;故答案为:3.13.计算:(1﹣)•=【分析】先计算括号内分式的减法,再计算乘法即可得.【解答】解:原式=(﹣)•=•=,故答案为:.14.在△ABC中,AC=BC,AD⊥BC交直线BC于点D,若,则△ABC的顶角的度数为30°或150°.【分析】分两种情况,根据直角三角形30°角所对的直角边等于斜边的一半判断出∠ACD =30°,然后分AD在△ABC内部和外部两种情况求解即可.【解答】解:如图1,∵AD⊥BC于点D,AD=BC,∴∠ACD=30°,如图1,AD在△ABC内部时,顶角∠C=30°,如图2,AD在△ABC外部时,顶角∠ACB=180°﹣30°=150°,综上所述,等腰三角形ABC的顶角度数为30°或150°.故答案为:30°或150°.15.已知函数y=|x2﹣2x﹣3|的大致图象如图所示,如果方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,则m的取值范围是m=0或m>4.【分析】有2个不相等的实数根,其含义是当y=m时,对应的x值有两个不同的数值,根据图象可以看出与x轴有两个交点,所以此时m=0;当y取的值比抛物线顶点处值大时,对应的x值有两个,所以m值应该大于抛物线顶点的纵坐标.综合表述即可.【解答】解:从图象可以看出当y=0时,y=|x2﹣2x﹣3|的x值对应两个不等实数根,即m=0时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根;从图象可出y的值取其抛物线部分的顶点处纵坐标值时,在整个函数图象上对应的x的值有三个,当y的值比抛物线顶点处纵坐标的值大时,对于整个函数图象上对应的x值有两个不相等的实数根.|x2﹣2x﹣3|=|(x﹣1)2﹣4|,其最大值为4,所以当m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根,综上所述当m=0或m>4时,方程|x2﹣2x﹣3|=m(m为实数)有2个不相等的实数根.故答案为m=0或m>4.16.如图△ABC中,AB=AC,∠BAC=120°,D是AB上一点,且=,E为CB延长线上一点,且∠BAE=∠BCD,若BE=,则BC的长是.【分析】注意到∠BAE=∠BCD,于是作DF∥AC交BC于F,可得△ABE∼CFD,再根据相似三角形的性质列出比例方程解决问题.【解答】解:如图,作DF∥AC交BC于F.∵AB=AC,∠BAC=120°,∴∠ABC=∠ACB=30°,∴∠DFB=∠ACB=30°,∴BD=FD,∠ABE=∠CFD=120°,∵∠BAE=∠BCD,∴△ABE∼CFD,∴=,∵=,∴设AD=2x,BD=3x,∴AB=5x,DF=3x,BF=3x,BC=5x,CF=2x∴,解得x=,∴BC=5x=.三.解答题(共8小题)17.计算:﹣a4•a3•a+(a2)4﹣(﹣2a4)2.【分析】根据同底数幂的乘法法则,幂的乘方与积的乘方运算法则逐一判断即可.【解答】解:原式=﹣a8+a8﹣4a8=﹣4a8.18.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.【分析】运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.【解答】证明:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°.∴AB∥CD(同旁内角互补,两直线平行).19.为提升学生的艺术素养,学校计划开设四门艺术选修课:A.书法;B.绘画;C.乐器;D.舞蹈.为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).将数据进行整理,并绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有多少人?扇形统计图中∠α的度数是多少?(2)请把条形统计图补充完整;(3)学校为举办2018年度校园文化艺术节,决定从A.书法;B.绘画;C.乐器;D.舞蹈四项艺术形式中选择其中两项组成一个新的节目形式,请用列表法或树状图求出选中书法与乐器组合在一起的概率.【分析】(1)用A科目人数除以其对应的百分比可得总人数,用360°乘以C对应的百分比可得∠α的度数;(2)用总人数乘以C科目的百分比即可得出其人数,从而补全图形;(3)画树状图展示所有12种等可能的结果数,再找出恰好是“书法”“乐器”的结果数,然后根据概率公式求解.【解答】解:(1)本次调查的学生总人数为4÷10%=40人,∠α=360°×(1﹣10%﹣20%﹣40%)=108°;(2)C科目人数为40×(1﹣10%﹣20%﹣40%)=12人,补全图形如下:(3)画树状图为:共有12种等可能的结果数,其中恰好是书法与乐器组合在一起的结果数为2,所以书法与乐器组合在一起的概率为=.20.已知:如图,在每个小正方形的边长为1的网格中,△ABC的顶点A、B、C均在格点上,点D为AC边上的一点.(1)线段AC的长为5.(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP 的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置.【分析】(1)依据勾股定理即可得到AC的长;(2)取格点H、G,连AH交BC于点M,依据△ACH与△AGH全等,即可得到AM是∠BAC的平分线,连DG交AM于点P,则CP+DP的最小值等于线段DG的长.【解答】解:(1)由图可得,AC==5;故答案为:5;(2)如图取格点H、G,连AH交BC于点M,连DG交AM于点P,则CP+DP最小.21.如图,在△ABC中,AB=AC,⊙O分别切AB于M,BC于N,连接BO、CO,BO=CO.(1)求证:AC是⊙O的切线;(2)连接MC,若tan∠MCB=,求sin∠B的值.【分析】(1)连接NO,过点O作OE⊥AC于点E,可得∠ABC=∠ACB,证明∠ACM =∠BCM=∠CBE,可得NO=EO,则结论得证;(2)过点M作MF⊥BC于点F,连结OM,ON,证得BM=BN=,设BC=a,CF =b,则MF=,BF=a﹣b,BM=,可得,解方程得b=,可求出答案.【解答】(1)证明:如图1,连接NO,过点O作OE⊥AC于点E,∵AB=AC,∴∠ABC=∠ACB,∵⊙O分别切AB于M,BC于N,∴∠ABO=∠CBO,∴∠ACM=∠BCM=∠CBE,∵ON⊥BC,OE⊥AC,∴NO=EO,∴AC是⊙O的切线;(2)解:如图2,过点M作MF⊥BC于点F,连结OM,ON,∵OM=ON,OB=OB,∴Rt△BOM≌Rt△BON(HL),∴BM=BN,∵OB=OC,ON⊥BC,∴BN=CN=BC,∴BC,∵,∴,∴sin=,设BC=a,CF=b,则MF=,BF=a﹣b,BM=,∵BF2+EM2=BM2,∴,解得b=或b=a(舍去).∴sin.22.某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C 市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m 的取值范围.【分析】(1)根据题意,可以列出相应的方程,从而可以求得A、B两市各需救灾物资多少吨;(2)根据题意,可以写出w与x之间的函数关系式,并写出自变量x的取值范围;(3)根据题意,可以得到w与x的函数关系式,然后根据一次函数的性质和分类讨论的方法可以解答m的取值范围.【解答】解:(1)设A市需救灾物资a吨,a+a+100=260+240解得,a=200,则a+100=300,答:A市需救灾物资200吨,B市需救灾物资300吨;(2)由题意可得,w=20[200﹣(260﹣x)]+25(300﹣x)+15(260﹣x)+30x=10x+10200,∵260﹣x≤200且x≤260,∴60≤x≤260,即w与x的函数关系式为w=10x+10200(60≤x≤260);(3)∵经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变,∴w=10x+10200﹣mx=(10﹣m)x+10200,①当10﹣m>0,m>0时,即0<m<10时,则w随x的增大而增大,∴x=60时,w有最小值,w最小值是(10﹣m)×60+10200,∴(10﹣m)×60+10200≥10320,解得m≤8,又∵0<m<10,∴0<m≤8;②当10﹣m=0,即m=10时无论如何调运,运费都一样.w=10200<10320,不合题意舍去;③当10﹣m<0,即m>10时,则w随x的增大而减小,∴x=260时,w有最小值,此时最小值是(10﹣m)×260+10200,∴(10﹣m)×260+10200≥10320,解得,m≤,又∵m>10,∴m≤不合题意,舍去.综上所述,0<m≤8,即m的取值范围是0<m≤8.23.已知:△ABC中,点D在边AC上,且AB2=AD•AC.(1)如图1.求证:∠ABD=∠C.(2)如图2.在边BC上截取BE=BD,ED、BA的延长线交于点F,求证:=.(3)在(2)的条件下,若AD=4,CD=5,cos∠BAC=,试直接写出△FBE的面积.【分析】(1)根据两边成比例夹角相等两三角形相似证明△ABD∽△ACB即可解决问题.(2)过点B作BG∥AC交FE的延长线于点G.证明△BDF≌△BEG(ASA),推出DF =EG,推出EF=GD,由BG∥AC推出=可得=.(3)如图2中,过点B作BG∥AC交FE的延长线于点G,作CH⊥AB于H,FJ⊥BE 于J.利用相似三角形的性质求出AB,再证明CA=CB,再利用相似三角形的性质求出BD,解直角三角形求出FJ即可解决问题.【解答】(1)证明:如图1中,∵AB2=AD•AC即=,又∵∠A=∠A∴△ABD∽△ACB,∴∠ABD=∠C.(2)解:过点B作BG∥AC交FE的延长线于点G.∵BG∥AC,∴∠C=∠GBE,∵∠ABD=∠C,∴∠GBE=∠C=∠ABD,∵BD=BE,∴∠BDE=∠BED,∴∠BDF=∠BEG,∴△BDF≌△BEG(ASA),∴DF=EG,∴EF=GD,∵BG∥AC,∴=,即=.(3)解:如图2中,过点B作BG∥AC交FE的延长线于点G,作CH⊥AB于H,FJ ⊥BE于J.∵AB2=AD•AC,AD=4.CD=5,∴AB2=4×9,∴AB=6,在Rt△AHC中,∵cos∠CAH==,∴AH=3,∴BH=AH=3,∵CH⊥AB,∴CA=CB,∴∠CAB=∠CBA,∵AD∥BG,∴=,∵FB=BG,∴AF=AD=4,∴BF=AB+AF=6+4=10,∵cos∠FBJ=cos∠BAC==,∴BJ=,∴FJ===,∵△ABD∽△ACB,∴=,∴=,∴BD=BE=6,∴S△BEF=•BE•FJ=×=20.24.已知:抛物线y=a(x2﹣2mx﹣3m2)(m˃0)交x轴于A、B两点(其中A点在B点左侧),交y轴于点C.(1)若A点坐标为(﹣1,0),则B点坐标为(3,0).(2)如图1,在(1)的条件下,且am=1,设点M在y轴上且满足∠OCA+∠AMO =∠ABC,试求点M坐标.(3)如图2,在y轴上有一点P(0,n)(点P在点C的下方),直线P A、PB分别交抛物线于点E、F,若=,求的值.【分析】(1)将A点坐标代入抛物线解析式中求出m的值,然后可将抛物线解析式写成交点式即可知道B点坐标.(2)先考虑M在y轴负半轴的情况,在y轴负半轴上截取OG=OA=1,连AG,可证△GMA∽△GAC,然后根据得出的等式列方程即可求出M点坐标,由对称性可直接写出另一种情况.(3)作EG⊥x轴于点G,FH⊥y轴于点H,由△EAG∽P AO得到线段比例等式推出OP 的长度,得出P点坐标,算出直线PB解析式,与抛物线解析式联立可求出F点横坐标,再由△PFH∽△PBO即可得到所求线段比.【解答】解:(1)将(﹣1,0)代入y=a(x2﹣2mx﹣3m2)得:1+2m﹣3m2=0,解得:m=1或m=﹣(舍),∴y=a(x2﹣2mx﹣3m2)=a(x+1)(x﹣3),∴B(3,0).故答案为:(3,0).(2)当am=1时,抛物线解析式为y=x2﹣2x﹣3,∴C(0,﹣3)∴OB=OC=3,∠ABC=45°,如图1,M在y轴负半轴上,在y轴负半轴上截取OG=OA=1,连AG,则∠AGO=45°=∠ABC,AG=,∴∠OCA+∠AMO=45°,又∵∠OCA+∠GAC=∠AGO=45°,∴∠AMG=∠GAC,又∵∠AGM=∠CGA,∴△GMA∽△GAC,∴AG2=MG•GC,又GC=OC﹣OG=2,设M(0,a)∴2=(﹣1﹣a)•2,∴a=﹣2,∴M的坐标为(0,﹣2).根据对称性可知(0,2)也符合要求.综上所述,满足要求的M点的坐标有:(0,﹣2)、(0,2).(3)由抛物线解析式可得:A(﹣m,0),B(3m,0).∵,∴,如图2,作EG⊥x轴于点G,FH⊥y轴于点H,则△EAG∽P AO,△PFH∽△PBO,∴===,∴AG=AO=m,OP=2EG,∴x E=﹣m,y E=am2,即EG=am2,∴OP=am2,∴P(0,﹣am2),又∵B(3m,0),∴直线PB的解析式为:y=amx﹣am2,∴amx﹣am2=a(x2﹣2mx﹣3m2),∴2x2﹣7mx+3m2=0,∴x1=3m(舍),x2=m,∴FH=m,∴===.。
常州市中考数学模拟试卷(5月份)含答案解析
江苏省常州市中考数学模拟试卷(5月份)一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一个是正确的)1.的相反数是()A.B.C.D.2.将161000用科学记数法表示为()A.0.161×106B.1.61×105C.16.1×104D.161×1033.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C.D.4.为参加“常州市初中毕业生升学体育考试”,小芳同学刻苦训练,在跳绳练习中,测得5次跳绳的成绩(单位:个/分钟)为150,158,162,158,166,这组数据的众数,中位数依次是()A.158,158 B.158,162 C.162,160 D.160,1605.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20° B.40°C.60°D.80°6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米 B.米C.500•cosα米D.米7.已知点A(﹣3,m)与点B(2,n)是直线y=﹣x+b上的两点,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定8.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则CG的长为()A.B. C.D.2二、填空题(每小题2分,共20分)9.|﹣2|﹣()﹣1=.10.若式子有意义,则x的取值范围是.11.分解因式:3x2﹣6xy+3y2=.12.如图,线段AD与BC相交于点O,AB∥CD,若AB:CD=2:3,△ABO的面积是2,则△CDO的面积等于.13.方程=0的解是.14.已知圆锥的高是4cm,圆锥的底面半径是3cm,则该圆锥的侧面积是cm2.15.若二次函数y=2x2﹣mx+1的图象与x轴有且只有一个公共点,则m=.16.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=36°,则∠C=.17.已知点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,当△AOA′为直角三角形时,点A的坐标是.18.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A′BC′,连接A′C,则A′C的长为.三、解答题(共10小题,共84分)19.先化简,再求值:(a+b)(a﹣b)+b(b﹣2),其中a=2,b=1.5.20.解方程和不等式组(1)x2﹣3x=x﹣3(2).21.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C 级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生是;(2)求图1中∠α的度数是°,把图2条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为.22.甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;(2)求三位同学中至少有一人抽到自己制作卡片的概率.23.如图,△ABC中,∠C=90°,∠BAC=30°,点E是AB的中点.以△ABC的边AB向外作等边△ABD,连接DE.求证:AC=DE.24.图l、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD(点C、D在小正方形的顶点上),使得四边形ABCD为中心对称图形,且△ABD为轴对称图形(画出一个即可);(2)在图2中以AB为边作四边形ABEF(点E、F在小正方形的顶点上),使得四边形ABEF中心对称图形但不是轴对称图形,且tan∠FAB=3.25.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?26.如图,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)求甲船加快速度后,追赶乙船时的速度.(结果保留根号)27.如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥AC.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x 的函数解析式,并写出自变量x的取值范围;(2)是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.28.如图,在平面直角坐标系xOy中,直线y=kx﹣7与y轴交于点C,与x轴交于点B,抛物线y=ax2+bx+14a经过B、C两点,与x轴的正半轴交于另一点A,且OA:OC=2:7.(1)求抛物线的解析式;(2)点D为线段CB上一点,点P在对称轴的右侧抛物线上,PD=PB,当tan∠PDB=2,求P点的坐标;(3)在(2)的条件下,点Q(7,m)在第四象限内,点R在对称轴的右侧抛物线上,若以点P、D、Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.江苏省常州市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分,在每小题所给的四个选项中,只有一个是正确的)1.的相反数是()A.B.C.D.【考点】相反数.【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:的相反数是,故选:D.2.将161000用科学记数法表示为()A.0.161×106B.1.61×105C.16.1×104D.161×103【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:161000=.612×105.故选B.3.下列汽车标志中,既是轴对称图形,又是中心对称图形的是()A. B. C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解::A、是轴对称图形,不是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、是轴对称图形,也是中心对称图形.故正确;D、圆是轴对称图形,不是中心对称图形.故错误.故选C.4.为参加“常州市初中毕业生升学体育考试”,小芳同学刻苦训练,在跳绳练习中,测得5次跳绳的成绩(单位:个/分钟)为150,158,162,158,166,这组数据的众数,中位数依次是()A.158,158 B.158,162 C.162,160 D.160,160【考点】众数;中位数.【分析】将这5个数据按照从小到大或从大到小的顺序排列,数据个数是5为奇数个,则中间那个数据就是这组数据的中位数;这5个数据中出现次数最多的数是37,则37就是这组数据的众数.据此进行解答.【解答】解:将数据按照从小到大的顺序排列为:150,158,158,160,162,这5个数据中位于中间的数据是158,所以中位数为:158;数据中出现次数最多的数是158,158就是这组数据的众数;故选A.5.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于()A.20° B.40°C.60°D.80°【考点】平行线的性质.【分析】先根据平行线的性质求出∠2+∠3的度数,再由∠2=∠3即可得出结论.【解答】解:∵a∥b,∠1=80°,∴∠2+∠3=80°,∠3=∠4.∵∠2=∠3,∴∠3=40°,∴∠4=40°.故选B.6.斜坡的倾斜角为α,一辆汽车沿这个斜坡前进了500米,则它上升的高度是()A.500•sinα米 B.米C.500•cosα米D.米【考点】解直角三角形的应用-坡度坡角问题.【分析】根据题意画出图形,再利用坡角的正弦值即可求解.【解答】解:如图,∠A=α,AE=500.则EF=500sinα.故选A.7.已知点A(﹣3,m)与点B(2,n)是直线y=﹣x+b上的两点,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定【考点】一次函数图象上点的坐标特征.【分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【解答】解:∵直线y=﹣x+b中,k=﹣<0,∴此函数是减函数.∵﹣3<2,∴m>n.故选A.8.如图,3个正方形在⊙O直径的同侧,顶点B、C、G、H都在⊙O的直径上,正方形ABCD的顶点A在⊙O上,顶点D在PC上,正方形EFGH的顶点E在⊙O上、顶点F在QG上,正方形PCGQ的顶点P也在⊙O上,若BC=1,GH=2,则CG的长为()A.B. C.D.2【考点】正方形的性质;勾股定理;圆的认识.【分析】连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,列出方程组即可解决问题.【解答】解:连接AO、PO、EO,设⊙O的半径为r,OC=x,OG=y,由勾股定理可知:②﹣③得到:x2+(x+y)2﹣(y+2)2﹣22=0,∴(x+y)2﹣22=(y+2)2﹣x2,∴(x+y+2)(x+y﹣2)=(y+2+x)(y+2﹣x),∵x+y+2≠0,∴x+y﹣2=y+2﹣x,∴x=2,代入①得到r2=10,代入②得到:10=4+(x+y)2,∴(x+y)2=6,∵x+y>0,∴x+y=,∴y=﹣2.∴CG=x+y=.故选B.二、填空题(每小题2分,共20分)9.|﹣2|﹣()﹣1=.【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,负数的绝对值是正数,可化简各数,根据有理数的减法,可得答案.【解答】解:原式=2﹣=,故答案为:.10.若式子有意义,则x的取值范围是x≥3.【考点】二次根式有意义的条件.【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,就可以求解.【解答】解:式子有意义,得x﹣3≥0,解得x≥3,故答案为:x≥3.11.分解因式:3x2﹣6xy+3y2=3(x﹣y)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用完全平方公式继续分解.【解答】解:3x2﹣6xy+3y2,=3(x2﹣2xy+y2),=3(x﹣y)2.故答案为:3(x﹣y)2.12.如图,线段AD与BC相交于点O,AB∥CD,若AB:CD=2:3,△ABO的面积是2,则△CDO的面积等于 4.5.【考点】相似三角形的判定与性质.【分析】根据AB∥CD,于是得到△ABO∽△CDO,然后根据相似三角形面积的比等于相似比的平方即可得到结论.【解答】解:∵AB∥CD,∴△ABO∽△CDO,∴=()2=()2=,∵△ABO的面积是2,∴△CDO的面积等于4.5.故答案为:4.5.13.方程=0的解是x=3.【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣10+x+1=0,解得:x=3,经检验x=3是分式方程的解.故答案为:x=314.已知圆锥的高是4cm,圆锥的底面半径是3cm,则该圆锥的侧面积是15πcm2.【考点】圆锥的计算.【分析】根据圆锥的底面半径和高求出圆锥的母线长,再根据圆锥的底面周长等于圆锥的侧面展开扇形的弧长,最后利用扇形的面积计算方法求得侧面积.【解答】解:由勾股定理得:圆锥的母线长==5cm,∵圆锥的底面周长为2πr=2π×3=6πcm,∴圆锥的侧面展开扇形的弧长为6πcm,∴圆锥的侧面积为:×6π×5=15πcm2.故答案为:15π.15.若二次函数y=2x2﹣mx+1的图象与x轴有且只有一个公共点,则m=.【考点】抛物线与x轴的交点.【分析】二次函数的图象与x轴有且只有一个公共点,则对应的△=0,据此即可求解.【解答】解:依题意有△=m2﹣8=0,解得:m=±2.故答案是:±2.16.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠A=36°,则∠C=27°.【考点】切线的性质.【分析】连接OB,求出∠OBA,求出∠BOA,根据圆周角定理求出∠C=∠BOA,即可求出答案.【解答】解:连接OB,∵AB与⊙O相切于点B,∴∠ABO=90°,∵∠A=36°,∴∠BOA=54°,∴由圆周角定理得:∠C=∠BOA=27°,故答案为:27°.17.已知点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,当△AOA′为直角三角形时,点A的坐标是(,).【考点】反比例函数图象上点的坐标特征.【分析】根据反比例函数的解析式和点A在函数的图象上可求出点A与点A',由于△AOA′为直角三角形解答即可.【解答】解:因为点A是反比例函数y=(x>0)图象上的一点,点A′是点A关于y轴的对称点,设点A坐标为(x,),点A'的坐标为(﹣x,),因为△AOA′为直角三角形,可得:x2=2,解得x=,所以点A的坐标为(,),故答案为:(,).18.如图,在△ABC中,AB=AC=5,BC=6,将△ABC绕点B逆时针旋转60°得到△A′BC′,连接A′C,则A′C的长为4+3.【考点】旋转的性质.【分析】连结CC′,A′C交BC于O点,如图,利用旋转的性质得BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,则可判断△BCC′为等边三角形,接着利用线段垂直平分线定理的逆定理说明A′C垂直平分B′C,则BO=BC′=3,然后利用勾股定理计算出A′O,利用三角函数计算出OC,最后计算A′O+OC即可.【解答】解:连结CC′,A′C交BC于O点,如图,∵△ABC绕点B逆时针旋转60°得到△A′BC′,∴BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,∴△BCC′为等边三角形,∴CB=CB′,而A′B=A′C′,∴A′C垂直平分B′C,∴BO=BC′=3,在Rt△A′OB中,A′O===4,在Rt△OBC中,∵tsin∠CBO=sin60°=,∴OC=6×=3,∴A′C=A′O+OC=4+3.故答案为4+3.三、解答题(共10小题,共84分)19.先化简,再求值:(a+b)(a﹣b)+b(b﹣2),其中a=2,b=1.5.【考点】整式的混合运算—化简求值.【分析】先算乘法,再算加减,把a=2,b=1.5代入进行计算即可.【解答】解:原式=a2﹣b2+b2﹣2b=a2﹣2b.当a=2,b=1.5时,原式=4﹣2×1.5=4﹣3=1.20.解方程和不等式组(1)x2﹣3x=x﹣3(2).【考点】解一元一次不等式组;解一元二次方程-因式分解法.【分析】(1)移项后分解因式,即可得出两个方程,求出方程的解即可;(2)先求出每个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:(1)x2﹣3x=x﹣3,x(x﹣3)﹣(x﹣3)=0,(x﹣3)(x﹣1)=0,x﹣3=0,x﹣1=0,x1=3,x2=1;(2)∵解不等式①得:x≥﹣2,解不等式②得:x<1,∴原不等式组的解集是﹣2≤x<1.21.为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C 级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生是40;(2)求图1中∠α的度数是144°,把图2条形统计图补充完整;(3)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为175.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据B级的人数除以B级所占的百分比,可得抽测的人数;(2)根据A级的人数除以抽测的人数,可得A级人数所占抽测人数的百分比,根据圆周角乘以A级人数所占抽测人数的百分比,可得A级的扇形的圆心角,根据有理数的减法,可得C级抽测的人数,然后补出条形统计图;(3)根据D级抽测的人数除以抽测的总人数,可得D级所占抽测人数的百分比,根据八年级的人数乘以D级所占抽测人数的百分比,可得答案.【解答】解:(1)本次抽样的人数是14÷35%=40(人),故答案是:40;(2)∠α=×360=144°,C级的人数是40﹣16﹣14﹣2=8(人),故答案是:144.;(3)估计不及格的人数是3500×=175(人),故答案是:175.22.甲、乙、丙三位同学用质地、大小完全一样的纸片分别制作一张卡片a、b、c,收集后放在一个不透明的箱子中,然后每人从箱子中随机抽取一张.(1)用列表或画树状图的方法表示三位同学抽到卡片的所有可能的结果;(2)求三位同学中至少有一人抽到自己制作卡片的概率.【考点】列表法与树状图法.【分析】此题可以采用列举法求概率,要注意不重不漏;此题需要三步完成,可以采用树状图法,注意此题为不放回实验;此题也可认为两步完成,因为确定了甲乙,也就确定了丙,所以也可采用列表法求概率.【解答】解:(1)列表或画树状图表示三位同学抽到卡片的所有可能结果如下:甲 a a b b c c乙 b c a c a b丙 c b c a b a(2)如图可知,三位同学抽到卡片的所有可能的结果共有6种,所以三位同学中有一人抽到自己制作的卡片有3种,有三人抽到自己制作的卡片有1种.所以,三位同学中至少有一人抽到自己制作卡片有4种,8分所以,三位同学中至少有一人抽到自己制作的卡片的概率为:.10分23.如图,△ABC中,∠C=90°,∠BAC=30°,点E是AB的中点.以△ABC的边AB向外作等边△ABD,连接DE.求证:AC=DE.【考点】全等三角形的判定与性质.【分析】根据等边三角形的性质就可以得出∠DAB=60°,∠DAC=90°.就可以得出△ACB≌△DEB,进而可以得出结论.【解答】证明:∵△ABC是等边三角形,∴AB=BD,∠ABD=60°,∵AB=BD,点E是AB的中点,∴DE⊥AB,∴∠DEB=90°,∵∠C=90°,∴∠DEB=∠C,∵∠BAC=30°,∴∠ABC=60°,∴∠ABD=∠ABC,在△ACB与△DEB中,,∴△ACB≌△DEB(AAS),∴AC=DE.24.图l、图2分别是7×6的网格,网格中的每个小正方形的边长均为1,点A、B在小正方形的顶点上.请在网格中按照下列要求画出图形:(1)在图1中以AB为边作四边形ABCD(点C、D在小正方形的顶点上),使得四边形ABCD为中心对称图形,且△ABD为轴对称图形(画出一个即可);(2)在图2中以AB为边作四边形ABEF(点E、F在小正方形的顶点上),使得四边形ABEF中心对称图形但不是轴对称图形,且tan∠FAB=3.【考点】利用旋转设计图案;利用轴对称设计图案.【分析】(1)根据轴对称图形以及中心对称图形的性质得出符合题意的图形即可;(2)利用轴对称图形以及中心对称图形的性质,再利用锐角三角函数关系得出答案.【解答】解:(1)如图1所示:(2)如图2所示.25.某景区的三个景点A,B,C在同一线路上,甲、乙两名游客从景点A出发,甲步行到景点C,乙乘景区观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离开景点A后的路程S(米)关于时间t(分钟)的函数图象如图所示.根据以上信息回答下列问题:(1)乙出发后多长时间与甲相遇?(2)若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?【考点】一次函数的应用.【分析】(1)根据图象确定出甲步行路程与时间的解析式;确定出20≤t≤30时,乙乘观光车由景点A到B时的路程与时间的函数解析式,联立即可确定出相遇的时间;(2)设当60≤t≤90时,乙步行由景点B到C的速度为x米/分钟,根据题意列出方程,求出方程的解得到x的值,即可确定出乙步行由B到C的速度.【解答】解:(1)当0≤t≤90时,甲步行路程与时间的函数解析式为S=60t;当20≤t≤30时,设乙乘观光车由景点A到B时的路程与时间的函数解析式为S=mt+n,把(20,0)与(20,3000)代入得:,解得:,∴函数解析式为S=300t﹣6000(20≤t≤30);联立得:,解得:,∵25﹣20=5,∴乙出发5分钟后与甲相遇;(2)设当60≤t≤90时,乙步行由景点B到C的速度为x米/分钟,根据题意,得5400﹣3000﹣(90﹣60)x=360,解得:x=68,∴乙步行由B到C的速度为68米/分钟.26.如图,甲、乙两只捕捞船同时从A港出海捕鱼,甲船以每小时千米的速度沿北偏西60°方向前进,乙船以每小时15千米的速度沿东北方向前进,甲船航行2小时到达C 处,此时甲船发现渔具丢在乙船上,于是甲船加快速度(匀速)沿北偏东75°的方向追赶,结果两船在B处相遇.(1)甲船从C处追赶上乙船用了多少时间?(2)求甲船加快速度后,追赶乙船时的速度.(结果保留根号)【考点】解直角三角形的应用-方向角问题.【分析】(1)过点A作AD⊥BC于D,利用锐角三角函数关系得出AC的长,进而得出AB的长即可得出答案;(2)利用(1)求出BD的长,再利用速度=,求出答案即可.【解答】解:(1)过点A作AD⊥BC于D,由题意得:∠B=30°,∠BAC=105°,则∠BCA=45°,AC=30千米,在Rt△ADC中,CD=AD=AC.cos45°=30(千米),在Rt△ABD中,AB=2AD=60千米,t==4(时).4﹣2=2(时),答:甲船从C处追赶上乙船用了2小时;(2)由(1)知:BD=AB•cos30°=30千米,∴BC=30+30(千米),v=(30+30)=(15+15)千米/时.答:甲船加快速度后,追赶乙船时的速度为:(15+15)千米/时.27.如图,△ABC中,∠ACB=90°,BC=6,AC=8.点E与点B在AC的同侧,且AE⊥AC.(1)如图1,点E不与点A重合,连结CE交AB于点P.设AE=x,AP=y,求y关于x 的函数解析式,并写出自变量x的取值范围;(2)是否存在点E,使△PAE与△ABC相似,若存在,求AE的长;若不存在,请说明理由;(3)如图2,过点B作BD⊥AE,垂足为D.将以点E为圆心,ED为半径的圆记为⊙E.若点C到⊙E上点的距离的最小值为8,求⊙E的半径.【考点】圆的综合题.【分析】(1)由AE⊥AC,∠ACB=90°,可得AE∥BC,然后由平行线分线段成比例定理,求得y关于x的函数解析式;(2)由题意易得要使△PAE与△ABC相似,只有∠EPA=90°,即CE⊥AB,然后由△ABC∽△EAC,求得答案;(3)易得点C必在⊙E外部,此时点C到⊙E上点的距离的最小值为CE﹣DE.然后分别从当点E在线段AD上时与当点E在线段AD延长线上时,去分析求解即可求得答案.【解答】解:(1)∵AE⊥AC,∠ACB=90°,∴AE∥BC,∴=,∵BC=6,AC=8,∴AB==10,∵AE=x,AP=y,∴=,∴y=(x>0);(2)∵∠ACB=90°,而∠PAE与∠PEA都是锐角,∴要使△PAE与△ABC相似,只有∠EPA=90°,即CE⊥AB,此时△ABC∽△EAC,则=,∴AE=.故存在点E,使△ABC∽△EAP,此时AE=;(3)∵点C必在⊙E外部,∴此时点C到⊙E上点的距离的最小值为CE﹣DE.设AE=x.①当点E在线段AD上时,ED=6﹣x,EC=6﹣x+8=14﹣x,∴x2+82=(14﹣x)2,解得:x=,即⊙E的半径为.②当点E在线段AD延长线上时,ED=x﹣6,EC=x﹣6+8=x+2,∴x2+82=(x+2)2,解得:x=15,即⊙E的半径为9.∴⊙E的半径为9或.28.如图,在平面直角坐标系xOy中,直线y=kx﹣7与y轴交于点C,与x轴交于点B,抛物线y=ax2+bx+14a经过B、C两点,与x轴的正半轴交于另一点A,且OA:OC=2:7.(1)求抛物线的解析式;(2)点D为线段CB上一点,点P在对称轴的右侧抛物线上,PD=PB,当tan∠PDB=2,求P点的坐标;(3)在(2)的条件下,点Q(7,m)在第四象限内,点R在对称轴的右侧抛物线上,若以点P、D、Q、R为顶点的四边形为平行四边形,求点Q、R的坐标.【考点】二次函数综合题.【分析】(1)由直线可求得C点坐标,代入抛物线可求得a的值,结合条件可求得A点坐标,代入可求得b的值,可求得抛物线解析式;(2)可先求得B点坐标,过P作PF⊥x轴于点G,交BC于点F,作PE⊥BC,结合条件可找到PG与GF关系,再求得直线BC的解析式,设出F点的坐标,可表示出P点坐标,代入抛物线可求得P点的坐标;(3)分DP∥QR和DR∥QP,当DP∥QR时,过P作PN∥BQ,过D作DN⊥BQ交PN 于点N,过R作RM⊥BQ于点M.设PD交BQ于点T,DN交BM于点I,可求得RM=DN,MQ=PN,结合条件可求得D点坐标,设出R的坐标,可求得横坐标,代入抛物线可求得R的坐标,再根据平行四边形的性质可求得Q的坐标;同理可求得当DR∥QP时的R、Q的坐标.【解答】解:(1)∵直线y=kx﹣7与y轴的负半轴交于点C∴C(0,﹣7),∴OC=7,∵抛物线y=ax2+bx+14a经过点C,∴14a=﹣7,∴a=﹣,∴y=﹣x2+bx﹣7,∵OA:OC=2:7.∴OA=2,∴A(2,0)∵抛物线y=﹣x2+bx﹣7经过点A,∴b=∴抛物线的解析式为y=﹣x2+x﹣7,(2)如图1,∵抛物线y=﹣x2+x﹣7经过B点,令y=0解得x=7或x=2(舍去),∴B(7,0),∴OB=7,∴OC=OB,∴∠OCB=∠OBC=45°过点P作PF⊥x轴于点G,交CB延长线于点F,则PF∥y轴,∴∠CFG=∠OCB=45°,∴BF=GF,过P作PE⊥BC于点E,∵PD=PB,∴∠PBD=∠PDB,∴tan∠PBD=tan∠PDB=2,∴PE=2BE,∵EF=PE,∴BF=BE,∴PF=PE=2BE=2BF=4GF,∴PG=3GF,∵直线y=kx﹣7过B点,∴k=1,∴y=x﹣7,设F(m,m﹣7),则P(m,﹣3(m﹣7)),∵点P在抛物线y=﹣x2+x﹣7上,∴,解得m=7(舍去)或m=8,∴P(8,﹣3);(3)如图2,当DP∥QR时,即四边形DQRP是平行四边形,∵B(7,0),Q(7,m)∴BQ∥y轴过P作PN∥BQ,过D作DN⊥BQ交PN于点N,过R作RM⊥BQ于点M.设PD交BQ于点T,DN交BM于点I,∴∠DTB=∠DPN,∠PTQ=∠RQM,∵∠DTB=∠PTQ,∴∠DPN=∠RQM,∵四边形DPRQ是平行四边形,∴DP=RQ,在△RMQ和△DNP中,,∴△RMQ≌△DNP(AAS),∴RM=DN,MQ=PN,由(2)可求F(8,1),GF=1,BD=2BE=2BF=2GF=∵∠QBC=45°,∴BI=DI=2,∴D(5,﹣2),设R点的横坐标为t,∵RM=DN,∴t﹣7=8﹣5,解得t=10,∵点R在抛物线y=﹣x2+x﹣7 上,∴当t=10时,,∴R(10,﹣12),∵MQ=PN,∴3﹣2=﹣12﹣n,∴n=﹣11,∴R(10,﹣12),Q(7,﹣11),如图3,当DR∥QP时,即四边形DQPR是平行四边形同理可求得R(6,2),Q(7,﹣7).6月3日。
2024年中考数学模拟考试试卷(含有答案)
解不等式①得:
解不等式②得:
∴原不等式组的解集为:
∵不等式组的解集是
∴
∴
∴
故选:B.
【点睛】本题考查了根据一元一次不等式组的解集求参数,准确熟练地进行计算是解题的关键.
7.象棋起源于中国,中国象棋文化历史悠久.如图所示是某次对弈的残图,如果建立平面直角坐标系,使棋子“帅”位于点 的位置,则在同一坐标系下,经过棋子“帅”和“马”所在的点的一次函数解析式为( )
3.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种,3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为( )
A. B. C. D.
【答案】B
8.如图,在 中 , 和 ,点 为 的中点,以 为圆心, 长为半径作半圆,交 于点 ,则图中阴影部分的面积是( )
A. B. C. D.
【答案】C
【解析】
【分析】连接 ,BD,作 交 于点 ,首先根据勾股定理求出 的长度,然后利用解直角三角形求出 、 的长度,进而得到 是等边三角形 ,然后根据 角直角三角形的性质求出 的长度,最后根据 进行计算即可.
【详解】解:如图所示,连接 ,BD,作 交 于点
∵在 中 ,AB=4
∴
∵点 为 的中点,以 为圆心, 长为半径作半圆
∴ 是半圆的直径
∴
∵
∴
又∵
∴
∴பைடு நூலகம்是等边三角形
∴
∵
∴
∴ .
故选:C.
【点睛】本题考查了 角直角三角形的性质,解直角三角形,等边三角形的性质和判定,扇形面积,勾股定理等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.
福建省泉州实验中学中考数学模拟试卷(5月份)(解析版)
2020年福建省泉州实验中学中考数学模拟试卷(5月份)一.选择题(共10小题)1.计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣92.下列哪个图形是正方体的展开图()A.B.C.D.3.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD4.计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.5.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π6.已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.7.点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差8.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 9.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1 10.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x…﹣2﹣1012……t m﹣2﹣2n…y=ax2+bx+c且当x=﹣时,与其对应的函数值y>0.有下列结论:①abc>0;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<.其中,正确结论的个数是()A.0B.1C.2D.3二.填空题(共6小题)11.若有意义,则实数x的取值范围是.12.二元一次方程组的解为.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为.14.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有cm.15.如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=.16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,连接AE,若BD=1,AD=5,则=.三.解答题(共9小题)17.计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.18.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.19.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.20.如图,AB为半圆O的直径,C为半圆上一点,AC<BC.(1)请用直尺(不含刻度)与圆规在BC上作一点D,使得直线OD平分ABC的周长;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,若AB=10,OD=,求△ABC的面积.21.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)22.某商场举办的购物狂欢节期间与一知名APP支付平台合作,为答谢顾客,该商场对某款价格为a元/件(a>0)的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如表:支付方式现金支付购物卡支付APP支付频率10%30%60%优惠方式按9折支付按8折支付其中有的顾客按4折支付,顾客按6折支付,的顾客按8折支付将上述频率作为事件发生的概率,回答下列问题:(1)顾客购买该商品使用APP支付的概率是;(2)求顾客购买该商品获得的优惠超过20%的概率;(3)该商品在促销优惠期间平均每件商品优惠多少元.23.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.24.已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标(直接写出);②求的最大值.25.如图,抛物线y=ax2+bx+c的顶点为C(0,),与x轴交于A、B两点,且A(﹣1,0).(1)求抛物线的解析式;(2)点P从点B出发,以每秒1个单位的速度向点A运动,同时点Q从点C出发,以每秒v个单位的速度向y轴负方向匀速运动,运动时间为t秒,连接PQ交射线BC于点D,当点P到达点A时,点Q停止运动,以点P为圆心,PB为半径的圆与射线BC交于点E.①求BE的长;当t=1时,求DE的长;②若在点P,Q运动的过程中,线段DE的长始终是一个定值,求v的值及DE长.参考答案与试题解析一.选择题(共10小题)1.计算下列各式,值最小的是()A.2×0+1﹣9B.2+0×1﹣9C.2+0﹣1×9D.2+0+1﹣9【分析】有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:A.2×0+1﹣9=﹣8,B.2+0×1﹣9=﹣7C.2+0﹣1×9=﹣7D.2+0+1﹣9=﹣6,故选:A.2.下列哪个图形是正方体的展开图()A.B.C.D.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:根据正方体展开图的特征,选项A、C、D不是正方体展开图;选项B是正方体展开图..故选:B.3.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM=,∴∠MCD=180°﹣α,又∵∠CMN=∠CON=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.4.计算﹣a﹣1的正确结果是()A.﹣B.C.﹣D.【分析】先将后两项结合起来,然后再化成同分母分式,按照同分母分式加减的法则计算就可以了.【解答】解:原式=,=,=.故选:B.5.如图,⊙O中,=,∠ACB=75°,BC=2,则阴影部分的面积是()A.2+πB.2++πC.4+πD.2+π【分析】连接OB、OC,先利用同弧所对的圆周角等于所对的圆心角的一半,求出扇形的圆心角为60度,即可求出半径的长2,利用三角形和扇形的面积公式即可求解;【解答】解:作OD⊥BC,则BD=CD,连接OB,OC,∴OD是BC的垂直平分线,∵=,∴AB=AC,∴A在BC的垂直平分线上,∴A、O、D共线,∵∠ACB=75°,AB=AC,∴∠ABC=∠ACB=75°,∴∠BAC=30°,∴∠BOC=60°,∵OB=OC,∴△BOC是等边三角形,∴OA=OB=OC=BC=2,∵AD⊥BC,AB=AC,∴BD=CD,∴OD=OB=,∴AD=2+,∴S△ABC=BC•AD=2+,S△BOC=BC•OD=,∴S阴影=S△ABC+S扇形BOC﹣S△BOC=2++﹣=2+π,故选:A.6.已知y=ax2+bx+c(a≠0)的图象如图,则y=ax+b和y=的图象为()A.B.C.D.【分析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线y=在二、四象限.【解答】解:根据二次函数y=ax2+bx+c(a≠0)的图象,可得a<0,b>0,c<0,∴y=ax+b过一、二、四象限,双曲线y=在二、四象限,∴C是正确的.故选:C.7.点点同学对数据26,36,46,5□,52进行统计分析,发现其中一个两位数的个位数字被黑水涂污看不到了,则计算结果与被涂污数字无关的是()A.平均数B.中位数C.方差D.标准差【分析】利用平均数、中位数、方差和标准差的定义对各选项进行判断.【解答】解:这组数据的平均数、方差和标准差都与第4个数有关,而这组数据的中位数为46,与第4个数无关.故选:B.8.如图,将△ABC绕点C顺时针旋转得到△DEC,使点A的对应点D恰好落在边AB上,点B的对应点为E,连接BE,下列结论一定正确的是()A.AC=AD B.AB⊥EB C.BC=DE D.∠A=∠EBC 【分析】根据旋转的性质得到AC=CD,BC=CE,AB=DE,故A错误,C错误;得到∠ACD=∠BCE,根据三角形的内角和得到∠A=∠ADC=,∠CBE =,求得∠A=∠EBC,故D正确;由于∠A+∠ABC不一定等于90°,于是得到∠ABC+∠CBE不一定等于90°,故B错误.【解答】解:∵将△ABC绕点C顺时针旋转得到△DEC,∴AC=CD,BC=CE,AB=DE,故A错误,C错误;∴∠ACD=∠BCE,∴∠A=∠ADC=,∠CBE=,∴∠A=∠EBC,故D正确;∵∠A+∠ABC不一定等于90°,∴∠ABC+∠CBE不一定等于90°,故B错误故选:D.9.若点A(﹣3,y1),B(﹣2,y2),C(1,y3)都在反比例函数y=﹣的图象上,则y1,y2,y3的大小关系是()A.y2<y1<y3B.y3<y1<y2C.y1<y2<y3D.y3<y2<y1【分析】分别计算出自变量为﹣3、﹣2和1对应的函数值,从而得到y1,y2,y3的大小关系.【解答】解:当x=﹣3,y1=﹣=4;当x=﹣2,y2=﹣=6;当x=1,y3=﹣=﹣12,所以y3<y1<y2.故选:B.10.二次函数y=ax2+bx+c(a,b,c是常数,a≠0)的自变量x与函数值y的部分对应值如下表:x …﹣2﹣1012……t m﹣2﹣2n…y=ax2+bx+c且当x=﹣时,与其对应的函数值y>0.有下列结论:①abc>0;②﹣2和3是关于x的方程ax2+bx+c=t的两个根;③0<m+n<.其中,正确结论的个数是()A.0B.1C.2D.3【分析】①当x=0时,c=﹣2,当x=1时,a+b=0,abc>0,①正确;②x=是对称轴,x=﹣2时y=t,则x=3时,y=t,②正确;③m+n=4a﹣4;当x=﹣时,y>0,a>,m+n>,③错误;【解答】解:当x=0时,c=﹣2,当x=1时,a+b﹣2=﹣2,∴a+b=0,∴y=ax2﹣ax﹣2,∴abc>0,①正确;x=是对称轴,x=﹣2时y=t,则x=3时,y=t,∴﹣2和3是关于x的方程ax2+bx+c=t的两个根;②正确;m=a+a﹣2,n=4a﹣2a﹣2,∴m=n=2a﹣2,∴m+n=4a﹣4,∵当x=﹣时,y>0,∴m+n>,③错误;故选:C.二.填空题(共6小题)11.若有意义,则实数x的取值范围是x≤,且x≠1.【分析】直接利用二次根式的性质得出答案.【解答】解:若有意义,则x﹣1≠0,3﹣2x≥0,解得:x≤,且x≠1.故答案为:x≤,且x≠1.12.二元一次方程组的解为.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×8﹣②得:5x=10,解得:x=2,把x=2代入①得:y=﹣1,则方程组的解为.故答案为:.13.在平面直角坐标系xOy中,点A(a,b)(a>0,b>0)在双曲线y=上,点A关于x轴的对称点B在双曲线y=,则k1+k2的值为0.【分析】由点A(a,b)(a>0,b>0)在双曲线y=上,可得k1=ab,由点A与点B 关于x轴的对称,可得到点B的坐标,进而表示出k2,然后得出答案.【解答】解:∵点A(a,b)(a>0,b>0)在双曲线y=上,又∵点A与点B关于x轴的对称,∴B(a,﹣b)∵点B在双曲线y=上,∴k2=﹣ab;∴k1+k2=ab+(﹣ab)=0;故答案为:0.14.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有5cm.【分析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【解答】解:由题意可得:杯子内的筷子长度为:=15,则筷子露在杯子外面的筷子长度为:20﹣15=5(cm).故答案为:5.15.如图,P A、PB是⊙O的切线,A、B为切点,点C、D在⊙O上.若∠P=102°,则∠A+∠C=219°.【分析】连接AB,根据切线的性质得到P A=PB,根据等腰三角形的性质得到∠P AB=∠PBA=(180°﹣102°)=39°,由圆内接四边形的性质得到∠DAB+∠C=180°,于是得到结论.【解答】解:连接AB,∵P A、PB是⊙O的切线,∵∠P=102°,∴∠P AB=∠PBA=(180°﹣102°)=39°,∵∠DAB+∠C=180°,∴∠P AD+∠C=∠P AB+∠DAB+∠C=180°+39°=219°,故答案为:219°.16.如图,两个大小不同的三角板放在同一平面内,直角顶点重合于点C,点D在AB上,∠BAC=∠DEC=30°,AC与DE交于点F,连接AE,若BD=1,AD=5,则=.【分析】过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,先证△BCD∽△ACE,求出AE的长及∠CAE=60°,推出∠DAE=90°,在Rt△DAE中利用勾股定理求出DE 的长,进一步求出CD的长,分别在Rt△DCM和Rt△AEN中,求出MC和NE的长,再证△MFC∽△NFE,利用相似三角形对应边的比相等即可求出CF与EF的比值.【解答】解:如图,过点C作CM⊥DE于点M,过点E作EN⊥AC于点N,∵BD=1,AD=5,∴AB=BD+AD=6,∵在Rt△ABC中,∠BAC=30°,∠B=90°﹣∠BAC=60°,∴BC=AB=3,AC=BC=3,在Rt△BCA与Rt△DCE中,∵∠BAC=∠DEC=30°,∴tan∠BAC=tan∠DEC,∴,∵∠BCA=∠DCE=90°,∴∠BCA﹣∠DCA=∠DCE﹣∠DCA,∴∠BCD=∠ACE,∴△BCD∽△ACE,∴∠CAE=∠B=60°,,∴∠DAE=∠DAC+∠CAE=30°+60°=90°,,∴AE=,在Rt△ADE中,DE===2,在Rt△DCE中,∠DEC=30°,∴∠EDC=60°,DC=DE=,在Rt△DCM中,MC=DC=,在Rt△AEN中,NE=AE=,∵∠MFC=∠NFE,∠FMC=∠FNE=90°,∴△MFC∽△NFE,∴===,故答案为:.三.解答题(共9小题)17.计算:|﹣|﹣(4﹣π)0+2sin60°+()﹣1.【分析】直接利用绝对值的性质以及零指数幂的性质、特殊角的三角函数值、负指数幂的性质分别化简得出答案【解答】解:原式=﹣1+2×+4=﹣1++4=3+.18.关于x的方程x2﹣2x+2m﹣1=0有实数根,且m为正整数,求m的值及此时方程的根.【分析】直接利用根的判别式得出m的取值范围进而解方程得出答案.【解答】解:∵关于x的方程x2﹣2x+2m﹣1=0有实数根,∴b2﹣4ac=4﹣4(2m﹣1)≥0,解得:m≤1,∵m为正整数,∴m=1,∴原方程可化为x2﹣2x+1=0,则(x﹣1)2=0,解得:x1=x2=1.19.如图,在菱形ABCD中,AC为对角线,点E,F分别在AB,AD上,BE=DF,连接EF.(1)求证:AC⊥EF;(2)延长EF交CD的延长线于点G,连接BD交AC于点O.若BD=4,tan G=,求AO的长.【分析】(1)由菱形的性质得出AB=AD,AC⊥BD,OB=OD,OA=OC,得出AB:BE =AD:DF,证出EF∥BD即可得出结论;(2)由平行线的性质得出∠G=∠ADO,由三角函数得出tan G=tan∠CDO==,得出OC=OD,由BD=4,得出OD=2,得出OC=1,即可得出结果.【解答】(1)证明:连接BD,交AC于O,如图1所示:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,OB=OD,OA=OC,∵BE=DF,∴AB:BE=AD:DF,∴EF∥BD,∴AC⊥EF;(2)解:如图2所示:∵由(1)得:EF∥BD,∴∠G=∠CDO,∴tan G=tan∠CDO==,∴OC=OD,∵BD=4,∴OD=2,∴OC=1,∴OA=OC=1.20.如图,AB为半圆O的直径,C为半圆上一点,AC<BC.(1)请用直尺(不含刻度)与圆规在BC上作一点D,使得直线OD平分ABC的周长;(不要求写作法,但要保留作图痕迹)(2)在(1)的条件下,若AB=10,OD=,求△ABC的面积.【分析】(1)延长BC,在BC延长线上截取CE=CA,作BE的中垂线,垂足为D,作直线OD即可得;(2)由作图知OD是△ABE中位线,据此知AE=2OD=4,继而由△ACE为等腰直角三角形得出AC=2,利用勾股定理求出BC的长,进一步计算得出答案.【解答】解:(1)如图所示,直线OD即为所求;(2)如图,∵OD为△ABE的中位线,∵AB是⊙O的直径,∴∠ACB=90°,∵CE=CA,∴△ACE是等腰直角三角形,∴AC=AE=2,由勾股定理可得BC=2,则△ABC的面积为AC•BC=×2×2=10.21.如图,山顶有一塔AB,塔高33m.计划在塔的正下方沿直线CD开通穿山隧道EF.从与E点相距80m的C处测得A、B的仰角分别为27°、22°,从与F点相距50m的D 处测得A的仰角为45°.求隧道EF的长度.(参考数据:tan22°≈0.40,tan27°≈0.51.)【分析】延长AB交CD于H,利用正切的定义用CH表示出AH、BH,根据题意列式求出CH,计算即可.【解答】解:延长AB交CD于H,则AH⊥CD,在Rt△AHD中,∠D=45°,∴AH=DH,在Rt△AHC中,tan∠ACH=,∴AH=CH•tan∠ACH≈0.51CH,在Rt△BHC中,tan∠BCH=,∴BH=CH•tan∠BCH≈0.4CH,由题意得,0.51CH﹣0.4CH=33,解得,CH=300,∴EH=CH﹣CE=220,BH=120,∴DH=AH=153,∴HF=DH﹣DF=103,∴EF=EH+FH=323,答:隧道EF的长度为323m.22.某商场举办的购物狂欢节期间与一知名APP支付平台合作,为答谢顾客,该商场对某款价格为a元/件(a>0)的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如表:支付方式现金支付购物卡支付APP支付频率10%30%60%优惠方式按9折支付按8折支付其中有的顾客按4折支付,顾客按6折支付,的顾客按8折支付将上述频率作为事件发生的概率,回答下列问题:(1)顾客购买该商品使用APP支付的概率是;(2)求顾客购买该商品获得的优惠超过20%的概率;(3)该商品在促销优惠期间平均每件商品优惠多少元.【分析】(1)由表格中选择APP支付的频率即可得;(2)优惠超过20%即优惠超过8折,结合表格可得;(3)先利用加权平均数计算出优惠后的价格,再用原价减去优惠后价格即可得.【解答】解:(1)顾客购买该商品使用APP支付的概率是60%=,故答案为:;(2)顾客购买该商品获得的优惠超过20%的概率为(+)×60%=;(3)10%a×0.9+30%a×0.8+60%a××0.4+60%a××0.6+60%a××0.8=0.69a,则该商品在促销优惠期间平均每件商品优惠a﹣0.69a=0.31a(元).23.某商店销售一种商品,经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价﹣进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是40元/件;当售价是70元/件时,周销售利润最大,最大利润是1800元.(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.【分析】(1)①依题意设y=kx+b,解方程组即可得到结论;②该商品进价是50﹣1000÷100=40,设每周获得利润w=ax2+bx+c:解方程组即可得到结论;(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣800﹣200m,把x=65,w=1400代入函数解析式,解方程即可得到结论.【解答】解:(1)①依题意设y=kx+b,则有解得:所以y关于x的函数解析式为y=﹣2x+200;②该商品进价是50﹣1000÷100=40,设每周获得利润w=ax2+bx+c:则有,解得:,∴w=﹣2x2+280x﹣8000=﹣2(x﹣70)2+1800,∴当售价是70元/件时,周销售利润最大,最大利润是1800元;故答案为:40,70,1800;(2)根据题意得,w=(x﹣40﹣m)(﹣2x+200)=﹣2x2+(280+2m)x﹣8000﹣200m =﹣2(x﹣)2+m2﹣60m+1800,∵m>0,∴对称轴x=>70,∵﹣2<0,∴抛物线的开口向下,∵x≤65,∴w随x的增大而增大,当x=65时,w最大=1400,即1400=﹣2×652+(280+2m)×65﹣8000﹣200m,解得:m=5.24.已知在平面直角坐标系中,点A(3,0),B(﹣3,0),C(﹣3,8),以线段BC为直径作圆,圆心为E,直线AC交⊙E于点D,连接OD.(1)求证:直线OD是⊙E的切线;(2)点F为x轴上任意一动点,连接CF交⊙E于点G,连接BG;①当tan∠ACF=时,求所有F点的坐标,F2(5,0)(直接写出);②求的最大值.【分析】(1)连接ED,证明∠EDO=90°即可,可通过半径相等得到∠EDB=∠EBD,根据直角三角形斜边上中线等于斜边一半得DO=BO=AO,∠ODB=∠OBD,得证;(2)①分两种情况:a)F位于线段AB上,b)F位于BA的延长线上;过F作AC的垂线,构造相似三角形,应用相似三角形性质可求得点F坐标;②应用相似三角形性质和三角函数值表示出=,令y=CG2(64﹣CG2)=﹣(CG2﹣32)2+322,应用二次函数最值可得到结论.【解答】解:(1)证明:如图1,连接DE,∵BC为圆的直径,∴∠BDC=90°,∴∠BDA=90°∵OA=OB∴OD=OB=OA∴∠OBD=∠ODB∵EB=ED∴∠EBD=∠EDB∴EBD+∠OBD=∠EDB+∠ODB即:∠EBO=∠EDO∵CB⊥x轴∴∠EBO=90°∴∠EDO=90°∵点D在⊙E上∴直线OD为⊙E的切线.(2)①如图2,当F位于AB上时,过F作F1N⊥AC于N,∵F1N⊥AC∴∠ANF1=∠ABC=90°∴△ANF∽△ABC∴∵AB=6,BC=8,∴AC===10,即AB:BC:AC=6:8:10=3:4:5∴设AN=3k,则NF1=4k,AF1=5k∴CN=CA﹣AN=10﹣3k∴tan∠ACF===,解得:k=∴即F1(,0)如图3,当F位于BA的延长线上时,过F2作F2M⊥CA于M,∵△AMF2∽△ABC∴设AM=3k,则MF2=4k,AF2=5k∴CM=CA+AM=10+3k∴tan∠ACF=解得:∴AF2=5k=2OF2=3+2=5即F2(5,0)故答案为:F1(,0),F2(5,0).②方法1:如图4,过G作GH⊥BC于H,∵CB为直径∴∠CGB=∠CBF=90°∴△CBG∽△CFB∴∴BC2=CG•CF∴===≤∴当H为BC中点,即GH=BC时,的最大值=.方法2:设∠BCG=α,则sinα=,cosα=,∴sinαcosα=∵(sinα﹣cosα)2≥0,即:sin2α+cos2α≥2sinαcosα∵sin2α+cos2α=1,∴sinαcosα≤,即≤∴的最大值=.25.如图,抛物线y=ax2+bx+c的顶点为C(0,),与x轴交于A、B两点,且A(﹣1,0).(1)求抛物线的解析式;(2)点P从点B出发,以每秒1个单位的速度向点A运动,同时点Q从点C出发,以每秒v个单位的速度向y轴负方向匀速运动,运动时间为t秒,连接PQ交射线BC于点D,当点P到达点A时,点Q停止运动,以点P为圆心,PB为半径的圆与射线BC交于点E.①求BE的长;当t=1时,求DE的长;②若在点P,Q运动的过程中,线段DE的长始终是一个定值,求v的值及DE长.【分析】(1)由抛物线y=ax2+bx+c的顶点为C(0,﹣),可得对称轴,将抛物线解析式改为顶点式,将A(﹣1,0)代入即可;(2)连接PE,过D作D⊥y轴于H,设DH=a,设经过t秒时,①当0<t<1时,利用△QDH∽△QPO即可得DE的长与t无关,为定值;当t=1时,易得DE=CE=BC =1为定值;②当1<t≤2时,△QDH∽△QPO,可得DE为定值.【解答】解:(1)∵抛物线y=ax2+bx+c的顶点为C(0,﹣),∴抛物线的对称轴是y轴,∴b=0,设抛物线的解析式为y=ax2﹣,把A(﹣1,0)代入y=ax2﹣,得a=,∴抛物线的解析式为y=﹣;(2)如图1,连接PE,过D作D⊥y轴于H,设DH=a,设经过t秒时,PB=t,CQ=vt,①当0<t<1时,∵PB=PE=t,∠PBE=60°,∴△PBE是等边三角形,∴BE=PB=t;又OP=1﹣t,CQ=vt,QH=HC+CQ=vt+a,QO=OC+CQ=vt+,∵△QDH∽△QPO,∴,即,∴a=,∴DC=2DH=,∴DE=CB﹣EB﹣DC=2﹣t﹣=t+,依题意,DE为定值,故当v=时,DE的长与t无关,即DE=1;当t=1时,P到O点,C与D重合,显然DE=CE=BC=1为定值;②如图2,当1<t ≤2时,OP=PB﹣OB=t﹣1,∵DH=a,CH=a,QH=CQ﹣CH =vt﹣a ,QO=CQ+OC=vt+,同理,△QDH∽△QPO,得,即,∴a=,∴DC=2DH=,∴DE=DC+CE=+(2﹣t )=t+,依题意,DE为定值,故当v=时,DE=1,综上所述,在点P运动的过程中,v=,线段DE的长是定值1.31。
浙江省宁波市海曙区2022年中考数学五模试卷含解析
2021-2022中考数学模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置. 3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效. 5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.二次函数2y ax bx c =++(a 、b 、c 是常数,且a≠0)的图象如图所示,下列结论错误的是( )A .4ac <b 2B .abc <0C .b+c >3aD .a <b2.下列各式计算正确的是( ) A .a 4•a 3=a 12B .3a•4a=12aC .(a 3)4=a 12D .a 12÷a 3=a 43.如图,在平面直角坐标系中,△ABC 位于第二象限,点B 的坐标是(﹣5,2),先把△ABC 向右平移4个单位长度得到△A 1B 1C 1,再作与△A 1B 1C 1关于于x 轴对称的△A 2B 2C 2,则点B 的对应点B 2的坐标是( )A .(﹣3,2)B .(2,﹣3)C .(1,2)D .(﹣1,﹣2)4.如图,有一张三角形纸片ABC ,已知∠B =∠C =x°,按下列方案用剪刀沿着箭头方向剪开,可能得不到全等三角形纸片的是( )A.B.C.D.5.小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法错误的是().A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是6.下列运算,结果正确的是()A.m2+m2=m4B.2m2n÷12mn=4mC.(3mn2)2=6m2n4D.(m+2)2=m2+47.如图,D是等边△ABC边AD上的一点,且AD:DB=1:2,现将△ABC折叠,使点C与D重合,折痕为EF,点E、F分别在AC、BC上,则CE:CF=()A.34B.45C.56D.67A .﹣2018B .2018C .±2018D .﹣120189.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( ) A .方差 B .中位数C .众数D .平均数10.将二次函数2y x 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+二、填空题(共7小题,每小题3分,满分21分)11.在如图的正方形方格纸中,每个小的四边形都是相同的正方形,A ,B ,C ,D 都在格点处,AB 与CD 相交于O ,则tan ∠BOD 的值等于__________.12.如图,在ABC ∆中,AB AC =,点D 、E 分别在边BC 、AB 上,且ADE B ∠=∠,如果:2:5DE AD =,3BD =,那么AC =________.13.如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是_______.14.如图,在△ABC 中,AB =AC ,D 、E 、F 分别为AB 、BC 、AC 的中点,则下列结论:①△ADF ≌△FEC ;②四边形ADEF 为菱形;③:1:4ADF ABC S S ∆∆=.其中正确的结论是____________.(填写所有正确结论的序号)15.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=1x的图象上.若点B在反比例函数y=kx的图象上,则k的值为_____.16.高速公路某收费站出城方向有编号为,,,,A B C D E的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号,A B,B C,C D,D E,E A通过小客车数量(辆)260 330 300 360 240 在,,,,A B C D E五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是___________.17.若一个多边形的内角和为1080°,则这个多边形的边数为__________.三、解答题(共7小题,满分69分)18.(10分)九(1)班同学分成甲、乙两组,开展“四个城市建设”知识竞赛,满分得5分,得分均为整数.小马虎根据竞赛成绩,绘制了如图所示的统计图.经确认,扇形统计图是正确的,条形统计图也只有乙组成绩统计有一处错误.(1)指出条形统计图中存在的错误,并求出正确值;(3)九(1)班张明、李刚两位成绩优秀的同学被选中参加市里组织的“四个城市建设”知识竞赛.预赛分为A 、B 、C 、D 四组进行,选手由抽签确定.张明、李刚两名同学恰好分在同一组的概率是多少? 19.(5分)如图,,,,,交于点.求的值.20.(8分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:1()求本次调查的学生人数;2()求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整; 3()若该校共有学生1200人,试估计每周课外阅读时间满足3t 4≤<的人数. 21.(10分)一定数量的石子可以摆成如图所示的三角形和四边形,古希腊科学家把1,3,6,10,15,21,…,称为“三角形数”;把1,4,9,16,25,…,称为“正方形数”.三角形数 1 3 6 10 15 21 a … 正方形数1491625b49…五边形数 1 5 12 22 C 51 70 …(1)按照规律,表格中a=___,b=___,c=___.(2)观察表中规律,第n个“正方形数”是________;若第n个“三角形数”是x,则用含x、n的代数式表示第n个“五边形数”是___________.22.(10分)某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就“学生体育活动兴趣爱好”的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:(1)在这次调查中,喜欢篮球项目的同学有______人,在扇形统计图中,“乒乓球”的百分比为______%,如果学校有800名学生,估计全校学生中有______人喜欢篮球项目.(2)请将条形统计图补充完整.(3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.23.(12分)如图,⊙O是△ABC的外接圆,AB为直径,OD∥BC交⊙O于点D,交AC于点E,连接AD、BD、CD.(1)求证:AD=CD;(2)若AB=10,OE=3,求tan∠DBC的值.24.(14分)某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求A、B两种钢笔每支各多少元?(2)若该文具店要购进A,B两种钢笔共90支,总费用不超过1588元,并且A种钢笔的数量少于B种钢笔的数量,那么该文具店有哪几种购买方案?种钢笔,涨价卖出,经统计,B 种钢笔售价为30元时,每月可卖68支;每涨价1元,每月将少卖4支,设文具店将新购进的B 种钢笔每支涨价a 元(a 为正整数),销售这批钢笔每月获利W 元,试求W 与a 之间的函数关系式,并且求出B 种铅笔销售单价定为多少元时,每月获利最大?最大利润是多少元?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分) 1、D 【解析】根据二次函数的图象与性质逐一判断即可求出答案. 【详解】由图象可知:△>0, ∴b 2﹣4ac >0, ∴b 2>4ac , 故A 正确; ∵抛物线开口向上, ∴a <0,∵抛物线与y 轴的负半轴, ∴c <0,∵抛物线对称轴为x=2ba<0, ∴b <0, ∴abc <0, 故B 正确;∵当x=1时,y=a+b+c >0, ∵4a <0, ∴a+b+c >4a , ∴b+c >3a ,∵当x=﹣1时,y=a﹣b+c>0,∴a﹣b+c>c,∴a﹣b>0,∴a>b,故D错误;故选D.考点:本题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程、不等式之间的转换,根的判别式的熟练运用.2、C【解析】根据同底数幂的乘法,可判断A、B,根据幂的乘方,可判断C,根据同底数幂的除法,可判断D.【详解】A.a4•a3=a7,故A错误;B.3a•4a=12a2,故B错误;C.(a3)4=a12,故C正确;D.a12÷a3=a9,故D错误.故选C.【点睛】本题考查了同底数幂的除法,同底数幂的除法底数不变指数相减是解题的关键.3、D【解析】首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.【详解】解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),故选D.【点睛】此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.4、C根据全等三角形的判定定理进行判断.【详解】解:A、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;B、由全等三角形的判定定理SAS证得图中两个小三角形全等,故本选项不符合题意;C、如图1,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,所以其对应边应该是BE和CF,而已知给的是BD=FC=3,所以不能判定两个小三角形全等,故本选项符合题意;D、如图2,∵∠DEC=∠B+∠BDE,∴x°+∠FEC=x°+∠BDE,∴∠FEC=∠BDE,∵BD=EC=2,∠B=∠C,∴△BDE≌△CEF,所以能判定两个小三角形全等,故本选项不符合题意;由于本题选择可能得不到全等三角形纸片的图形,故选C.【点睛】本题考查了全等三角形的判定,注意三角形边和角的对应关系是关键.5、C【解析】试题分析:根据众数、平均数、中位数、方差:一组数据中出现次数最多的数据叫做这组数据的众数.将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数.一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].数据:3,4,5,6,6,6,中位数是5.5,故选C考点:1、方差;2、平均数;3、中位数;4、众数6、B【解析】直接利用积的乘方运算法则、合并同类项法则和单项式除以单项式运算法则计算得出答案.【详解】A. m2+m2=2m2,故此选项错误;B. 2m2n÷12mn=4m,正确;C. (3mn2)2=9m2n4,故此选项错误;D. (m+2)2=m2+4m+4,故此选项错误.故答案选:B.【点睛】本题考查了乘方运算法则、合并同类项法则和单项式除以单项式运算法则,解题的关键是熟练的掌握乘方运算法则、合并同类项法则和单项式除以单项式运算法则.7、B【解析】解:由折叠的性质可得,∠EDF=∠C=60º,CE=DE,CF=DF再由∠BDF+∠ADE=∠BDF+∠BFD=120º可得∠ADE=∠BFD,又因∠A=∠B=60º,根据两角对应相等的两三角形相似可得△AED∽△BDF所以DE AD AE DF BF BD==,设AD=a,BD=2a,AB=BC=CA=3a,再设CE==DE=x,CF==DF=y,则AE=3a-x,BF=3a-y,所以332x a a x y a y a-==-整理可得ay=3ax-xy,2ax=3ay-xy,即xy=3ax-ay①,xy=3ay-2ax②;把①代入②可得3ax-ay=3ay-2ax,所以5ax=4ay,4455x ay a==,即45 CE CF故选B.【点睛】本题考查相似三角形的判定及性质.8、B【解析】分析:只有符号不同的两个数叫做互为相反数.详解:-1的相反数是1.故选:B.点睛:本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.9、A【解析】试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.故选A.考点:1、计算器-平均数,2、中位数,3、众数,4、方差10、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果.【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h)1+k,代入得:y=(x+1)1-1.∴所得图象的解析式为:y=(x+1)1-1;故选:B.【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标.二、填空题(共7小题,每小题3分,满分21分)11、3【解析】试题解析:平移CD到C′D′交AB于O′,如图所示,则∠BO′D′=∠BOD,∴tan∠BOD=tan∠BO′D′,设每个小正方形的边长为a,则O′B=,O′D′=,BD′=3a,作BE⊥O′D′于点E,则BE=,∴O′E=,∴tanBO′E=,∴tan∠BOD=3.考点:解直角三角形.12、15 2【解析】根据ADE B ∠=∠,EAD DAB ∠=∠,得出AED ABD ∆∆∽,利用相似三角形的性质解答即可. 【详解】∵ADE B ∠=∠,EAD DAB ∠=∠, ∴AED ABD ∆∆∽,∴DE BD AD AB =,即325AB =, ∴152AB =,∵AB AC =,∴152AC =, 故答案为:152【点睛】本题考查了相似三角形的判定与性质.关键是要懂得找相似三角形,利用相似三角形的性质求解. 13、2 【解析】分析:∵由主视图得出长方体的长是6,宽是2,这个几何体的体积是16, ∴设高为h ,则6×2×h=16,解得:h=1. ∴它的表面积是:2×1×2+2×6×2+1×6×2=2. 14、①②③ 【解析】①根据三角形的中位线定理可得出AD=FE 、AF=FC 、DF=EC ,进而可证出△ADF ≌△FEC (SSS ),结论①正确; ②根据三角形中位线定理可得出EF ∥AB 、EF=AD ,进而可证出四边形ADEF 为平行四边形,由AB=AC 结合D 、F 分别为AB 、AC 的中点可得出AD=AF ,进而可得出四边形ADEF 为菱形,结论②正确; ③根据三角形中位线定理可得出DF ∥BC 、DF=12BC ,进而可得出△ADF ∽△ABC ,再利用相似三角形的性质可得出14ADF ABCS S=,结论③正确.此题得解. 【详解】解:①∵D 、E 、F 分别为AB 、BC 、AC 的中点, ∴DE 、DF 、EF 为△ABC 的中位线, ∴AD=12AB=FE ,AF=12AC=FC ,DF=12BC=EC . 在△ADF 和△FEC 中,AD FE AF FC DF EC ⎧⎪⎨⎪⎩===, ∴△ADF ≌△FEC (SSS ),结论①正确; ②∵E 、F 分别为BC 、AC 的中点, ∴EF 为△ABC 的中位线, ∴EF ∥AB ,EF=12AB=AD , ∴四边形ADEF 为平行四边形.∵AB=AC ,D 、F 分别为AB 、AC 的中点, ∴AD=AF ,∴四边形ADEF 为菱形,结论②正确; ③∵D 、F 分别为AB 、AC 的中点, ∴DF 为△ABC 的中位线, ∴DF ∥BC ,DF=12BC , ∴△ADF ∽△ABC , ∴214ADF ABCS DF SBC ==(),结论③正确. 故答案为①②③. 【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、相似三角形的判定与性质以及三角形中位线定理,逐一分析三条结论的正误是解题的关键. 15、﹣2 【解析】要求函数的解析式只要求出B 点的坐标就可以,过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .根据条件得到△ACO ∽△ODB ,得到:BD OD OBOC AC OA===1,然后用待定系数法即可. 【详解】过点A ,B 作AC ⊥x 轴,BD ⊥x 轴,分别于C ,D .设点A的坐标是(m,n),则AC=n,OC=m.∵∠AOB=90°,∴∠AOC+∠BOD=90°.∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC.∵∠BDO=∠ACO=90°,∴△BDO∽△OCA.∴BD OD OB OC AC OA==,∵OB=1OA,∴BD=1m,OD=1n.因为点A在反比例函数y=2x的图象上,∴mn=1.∵点B在反比例函数y=kx的图象上,∴B点的坐标是(-1n,1m).∴k=-1n•1m=-4mn=-2.故答案为-2.【点睛】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,利用相似三角形的性质求得点B的坐标(用含n的式子表示)是解题的关键.16、B【解析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果.【详解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放BC与CD进行对比,可知B疏散乘客比D快;同理同时开放BC与AB进行对比,可知C疏散乘客比A快;同理同时开放DE与CD进行对比,可知E疏散乘客比C快;同理同时开放AB与AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B.【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.17、1【解析】根据多边形内角和定理:(n﹣2)•110 (n≥3)可得方程110(x﹣2)=1010,再解方程即可.【详解】解:设多边形边数有x条,由题意得:110(x﹣2)=1010,解得:x=1,故答案为:1.【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n﹣2)•110 (n≥3).三、解答题(共7小题,满分69分)18、(1)见解析;(2)140人;(1)1 4 .【解析】(1)分别利用条形统计图和扇形统计图得出总人数,进而得出错误的哪组;(2)求出1分以下所占的百分比即可估计成绩未达到合格的有多少名学生;(1)根据题意可以画出相应的树状图,从而可以求得张明、李刚两名同恰好分在同一组的概率.【详解】(1)由统计图可得:乙组得分的人数统计有误,理由:由条形统计图和扇形统计图的对应可得,2÷5%=40,(1+2)÷12.5%=40,(7+5)÷10%=40,(6+8)÷15%=40,(4+4)÷17.5%≠40,故乙组得5分的人数统计有误,正确人数应为:40×17.5%﹣4=1.(2)800×(5%+12.5%)=140(人);(1)如图得:∵共有16种等可能的结果,所选两人正好分在一组的有4种情况,∴所选两人正好分在一组的概率是:41= 164.【点睛】本题考查列表法与树状图法、用样本估计总体、条形统计图、扇形统计图,解答本题的关键是明确题意,找出所求问题需要的条件.19、【解析】试题分析:本题考查了相似三角形的判定与性质,解直角三角形.由∠A=∠ACD,∠AOB=∠COD可证△ABO∽△CDO,从而;再在Rt△ABC和Rt△BCD中分别求出AB和CD的长,代入即可.解:∵∠ABC=∠BCD=90°,∴AB∥CD,∴∠A=∠ACD,∴△ABO∽△CDO,∴.在Rt△ABC中,∠ABC=90°,∠A=45°,BC=1,∴AB=1.在Rt△BCD中,∠BCD =90°,∠D=30°,BC=1,∴CD=,∴.20、()1本次调查的学生人数为200人;()2B所在扇形的圆心角为54,补全条形图见解析;()3全校每周课外阅读时间满足3t4≤<的约有360人.【解析】【分析】()1根据等级A 的人数及所占百分比即可得出调查学生人数;()2先计算出C 在扇形图中的百分比,用()1[A D C -++在扇形图中的百分比]可计算出B 在扇形图中的百分比,再计算出B 在扇形的圆心角;()3总人数⨯课外阅读时间满足3t 4≤<的百分比即得所求.【详解】()1由条形图知,A 级的人数为20人,由扇形图知:A 级人数占总调查人数的10%, 所以:1002010%20200(10÷=⨯=人), 即本次调查的学生人数为200人;()2由条形图知:C 级的人数为60人,所以C 级所占的百分比为:60100%30%200⨯=, B 级所占的百分比为:110%30%45%15%---=, B 级的人数为20015%30(⨯=人), D 级的人数为:20045%90(⨯=人), B 所在扇形的圆心角为:36015%54⨯=, 补全条形图如图所示:;()3因为C 级所占的百分比为30%,所以全校每周课外阅读时间满足3t 4≤<的人数为:120030%360(⨯=人), 答:全校每周课外阅读时间满足3t 4≤<的约有360人.【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比100%=⨯该项人数总人数,扇形图中某项圆心角的度数360=⨯该项在扇形图中的百分比.21、1 2 3 n 2 n 2 +x-n 【解析】分析:(1)、首先根据题意得出前6个“三角形数”分别是多少,从而得出a 的值;前5个“正方形数”分别是多少,从而得出b 的值;前4个“正方形数”分别是多少,从而得出c 的值;(2)、根据前面得出的一般性得出答案. 详解:(1)∵前6个“三角形数”分别是:1=122⨯、3=232⨯、6=342⨯、10=452⨯、15=562⨯、21=672⨯,∴第n 个“三角形数”是()12n n +, ∴a=7×82=17×82=1. ∵前5个“正方形数”分别是: 1=12,4=22,9=32,16=42,25=52, ∴第n 个“正方形数”是n 2, ∴b=62=2. ∵前4个“正方形数”分别是:1=()13112⨯⨯-,5=()23212⨯⨯-,12=()33312⨯⨯-,22=()43412⨯⨯-,∴第n 个“五边形数”是n (3n−1)2n (3n−1)2, ∴c=()53512⨯⨯-=3.(2)第n 个“正方形数”是n 2;1+1-1=1,3+4-5=2,6+9-12=3,10+16-22=4,…, ∴第n 个“五边形数”是n 2+x-n .点睛:此题主要考查了图形的变化类问题,要熟练掌握,解答此类问题的关键是首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.22、(1)5,20,80;(2)图见解析;(3)35. 【解析】【分析】(1)根据喜欢跳绳的人数以及所占的比例求得总人数,然后用总人数减去喜欢跳绳、乒乓球、其它的人数即可得;(2)用乒乓球的人数除以总人数即可得; (3)用800乘以喜欢篮球人数所占的比例即可得; (4)根据(1)中求得的喜欢篮球的人数即可补全条形图;(5)画树状图可得所有可能的情况,根据树状图求得2名同学恰好是1名女同学和1名男同学的结果,根据概率公式进行计算即可.【详解】(1)调查的总人数为20÷40%=50(人),喜欢篮球项目的同学的人数=50﹣20﹣10﹣15=5(人);(2)“乒乓球”的百分比=10100%50⨯=20%;(3)800×550=80,所以估计全校学生中有80人喜欢篮球项目;(4)如图所示,(5)画树状图为:共有20种等可能的结果数,其中所抽取的2名同学恰好是1名女同学和1名男同学的结果数为12,所以所抽取的2名同学恰好是1名女同学和1名男同学的概率=123 205=.23、(1)见解析;(2)tan∠DBC=12.【解析】(1)先利用圆周角定理得到∠ACB=90°,再利用平行线的性质得∠AEO=90°,则根据垂径定理得到AD DC=,从而有AD=CD;(2)先在Rt△OAE中利用勾股定理计算出AE,则根据正切的定义得到tan∠DAE的值,然后根据圆周角定理得到∠DAC=∠DBC,从而可确定tan∠DBC的值.【详解】(1)证明:∵AB为直径,∴∠ACB=90°,∵OD∥BC,∴∠AEO=∠ACB=90°,∴OE⊥AC,∴AD DC=,∴AD=CD;(2)解:∵AB=10,∴OA=OD=5,∴DE=OD﹣OE=5﹣3=2,在Rt△OAE中,AE4,∴tan∠DAE=2142 DEAE==,∵∠DAC=∠DBC,∴tan∠DBC=12.【点睛】垂径定理及圆周角定理是本题的考点,熟练掌握垂径定理及圆周角定理是解题的关键.24、(1)A种钢笔每只15元B种钢笔每只20元;(2)方案有两种,一方案为:购进A种钢笔43支,购进B种钢笔为47支方案二:购进A种钢笔44支,购进B种钢笔46支;(3)定价为33元或34元,最大利润是728元.【解析】(1)设A种钢笔每只x元,B种钢笔每支y元,由题意得2390 35145x yx y+=⎧⎨+=⎩,解得:1520xy=⎧⎨=⎩,答:A种钢笔每只15元,B种钢笔每支20元;(2)设购进A种钢笔z支,由题意得:() 152090158890z zz z⎧+-≤⎨<-⎩,∴42.4≤z<45,∵z是整数z=43,44,∴90-z=47,或46;∴共有两种方案:方案一:购进A种钢笔43支,购进B种钢笔47支,方案二:购进A种钢笔44只,购进B种钢笔46只;(3)W=(30-20+a)(68-4a)=-4a²+28a+680=-4(a-72)²+729,∵-4<0,∴W有最大值,∵a为正整数,∴当a=3,或a=4时,W最大,∴W最大==-4×(3-72)²+729=728,30+a=33,或34;答:B种铅笔销售单价定为33元或34元时,每月获利最大,最大利润是728元.。
2021年广东省深圳市中考数学模拟试卷(5月份)(含答案)
2021年广东省中考模拟数学试卷(5月份)一、选择题(共10小题).1.2的相反数是()A.B.﹣C.2D.﹣22.函数y=中自变量x的取值范围是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣13.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A.B.C.D.4.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b35.南方某市2020年财政收入10500亿元,用科学记数法表示应为()元.A.1.05×104B.1.05×1011C.1.05×1012D.1.05×1013 6.如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,若∠C=100°,则∠BAD的大小是()A.25°B.50°C.60°D.80°7.分别由五个大小相同的正方形组成的甲、乙两个几何体如图所示,它们的三视图中完全一致的是()A .主视图B .左视图C .俯视图D .三视图8.设x 1,x 2是一元二次方程x 2﹣2x ﹣3=0的两根,则x 1+x 2=( )A .﹣2B .2C .3D .﹣39.古希腊的毕达哥拉斯学派把1,3,6,10,…称为三角形数;把1,4,9,16,…称为数正方形数.“三角形数”和“正方形数”之间存在如下图所示的关系:即两个相邻的“三角形数”的和为一个“正方形数”,则下列等式符合以上规律的是( )A .6+15=21B .36+45=81C .9+16=25D .30+34=64 10.如图,在矩形ABCD 中,AB =2BC ,E 为CD 上一点,且AE =AB ,M 为AE 的中点.下列结论:①DM =DA ;②EB 平分∠AEC ;③S △ABE =S △ADE ;④BE 2=2AE •EC .其中结论正确的个数是( )A .1B .2C .3D .4二、填空题(本题共5小题,每小题3分,共15分)11.分解因式:﹣m 3+2m 2﹣m = .12.已知整数a 1,a 2,…,a n (n 为正整数)满足a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,以此类推,则a 2021= .13.如图,在△ABC 中,∠C =90°,D 是AC 边上一点,且AD =BD =5,tan ∠CBD =,线段AB 的长度是 .14.在平面直角坐标系中,直线y=kx向右平移2个单位后,刚好经过点(0,4),则不等式2x>kx+4的解集为.15.如图,P为正方形ABCD的边BC的中点,BG⊥AP于点G,在AP的延长线上取点E,使AG=GE,若正方形的边长为2,则CE=.三、解答题(本题共7小题,其中第16题11分,第17题7分,第18题6分,第19题7分,第20题7分,第21题8分,第22题9分,共55分)16.①计算:+|2﹣tan60°|﹣(﹣π)0+(﹣)﹣2.②先化简,再求值:÷(﹣x﹣2),其中x=﹣3.17.北关中学为了解本校中考体育情况,随机抽取了部分学生的体育成绩进行统计分析,发现最低分为45分,且成绩为45分的学生占抽查人数的10%,现将抽查结果绘制成了如下不完整的折线统计图,请根据图中信息,回答下列问题:(1)此次抽查的学生人数为人,抽查的学生体育考试成绩的中位数是分,抽查的女生体育考试成绩的平均数是分;(2)补全折线统计图;(3)为了今后中考体育取得更好的成绩,学校决定分别从成绩为50分的男生和女生中各选一名参加“经验座谈会”,若成绩为50分的男、女生中各有两名体育特长生,请用列表或画树状图的方法求出所选的两名学生刚好都不是体育特长生的概率.18.如图,在平行四边形ABCD中,对角线AC,BD交于点O.过点O作BD的垂线,交BA延长线于点E,交AD于F,交BC于点N,若EF=OF,∠CBD=30°,BD=6.(1)求证:EF=EN;(2)求AF的长.19.如图,一次函数的图象与反比例函数的图象相交于A点,与y轴、x 轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=的图象与的图象关于y轴对称,在y2=的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.20.某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240.(1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资)(2)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?21.如图,在直角坐标系中,直线y=﹣x+4与x轴交于A点,与y轴交于B点,以AB 为直径作圆O1,过B作圆O1的切线交x轴于点C.(1)求C点的坐标;(2)设点D为BC延长线上一点,CD=BC,P为线段BC上的一个动点,(异于B,C)过P点作x轴的平行线交AB于M,交DA的延长线于N,试判断PM+PN的值是否为定值,如果是,则求出这个值;如果不是,请说明理由.22.已知抛物线y=a(x﹣1)2+3a,其顶点为E,与y轴交于点D(0,4).(1)求抛物线的解析式;(2)若直线l:y=﹣x+8与抛物线在第一象限交于点B,交y轴于点A,求∠ABD﹣∠DBE的值;(3)若有两个定点F(1,),A(0,8),请在抛物线上找一点K,使得△KFA的周长最小,请求出周长的最小值.2021年广东省中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上)1.2的相反数是()A.B.﹣C.2D.﹣2【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【解答】解:2的相反数是﹣2,故选:D.2.函数y=中自变量x的取值范围是()A.x≥1B.x≥﹣1C.x≤1D.x≤﹣1【分析】根据二次根式的意义,被开方数是非负数即可求解.【解答】解:根据题意得:x﹣1≥0,解得x≥1.故选:A.3.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是()A.B.C.D.【分析】先根据在数轴上表示不等式解集的方法得出该不等式组的解集,再找出符合条件的不等式组即可.【解答】解:A、此不等式组的解集为x<2,不符合题意;B、此不等式组的解集为2<x<4,符合题意;C、此不等式组的解集为x>4,不符合题意;D、此不等式组的无解,不符合题意;故选:B.4.下列计算正确的是()A.(a3)2=a5B.a6÷a3=a2C.a3•a2=a6D.(﹣ab)3=﹣a3b3【分析】直接利用幂的乘方运算法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简得出答案.【解答】解:A、(a3)2=a6,故此选项错误;B、a6÷a3=a3,故此选项错误;C、a3•a2=a5,故此选项错误;D、(﹣ab)3=﹣a3b3,正确.故选:D.5.南方某市2020年财政收入10500亿元,用科学记数法表示应为()元.A.1.05×104B.1.05×1011C.1.05×1012D.1.05×1013【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:10500亿=1050000000000=1.05×1012.故选:C.6.如图,四边形ABCD内有一点E,AE=BE=DE=BC=DC,AB=AD,若∠C=100°,则∠BAD的大小是()A.25°B.50°C.60°D.80°【分析】由题干BE=DE=BC=DC,可知四边形BECD为菱形,又∠C=100°,所以∠BED=100°,∠CBE=∠CDE=80°.连接BD,易知AE、BE、DE是△ABD的角平分线.再根据菱形的性质即可得出答案.【解答】解:连接BD,并延长AE交BD于点O,∵AE=BE=DE=BC=DC,AB=AD,∴四边形BCDE是菱形,∴AE、BE、DE是△ABD的角平分线.∴A、E、O、C四点共线,∵∠C=100°,∴∠BED=100°,∴∠BEO=∠BED=50°,∴∠ABE=25°,∴∠BAD=50°,故选:B.7.分别由五个大小相同的正方形组成的甲、乙两个几何体如图所示,它们的三视图中完全一致的是()A.主视图B.左视图C.俯视图D.三视图【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:从正面可看到甲从左往右三列小正方形的个数为:3,1,1,乙从左往右3列小正方形的个数为:3,1,1,符合题意;从左面可看到甲1列小正方形的个数为:3,乙从左往右3列小正方形的个数为:3,1,1,不符合题意;从上面可看到甲从左往右三列小正方形的个数为:1,1,1,乙从左往右3列小正方形的个数为:1,1,1,但位置不同,不符合题意.故选:A.8.设x1,x2是一元二次方程x2﹣2x﹣3=0的两根,则x1+x2=()A .﹣2B .2C .3D .﹣3【分析】根据两根和与系数的关系,直接可得结论.【解答】解:根据根与系数的关系,x 1+x 2=﹣=2.故选:B .9.古希腊的毕达哥拉斯学派把1,3,6,10,…称为三角形数;把1,4,9,16,…称为数正方形数.“三角形数”和“正方形数”之间存在如下图所示的关系:即两个相邻的“三角形数”的和为一个“正方形数”,则下列等式符合以上规律的是( )A .6+15=21B .36+45=81C .9+16=25D .30+34=64【分析】符合条件的两个三角形数要满足二个条件:两个三角形数之和等于正方形数,两个三角形数之差等于正方形数的平方根.【解答】解:A 、6+15=21,15﹣6=9≠,所以A 是错误的; B 、36+45=81,45﹣36=9=,所以B 是正确的; C 、9+16=25,16﹣9=7≠,所以C 是错误的; D 、30+34=64,34﹣30=4≠,所以D 是错误的.故选:B .10.如图,在矩形ABCD 中,AB =2BC ,E 为CD 上一点,且AE =AB ,M 为AE 的中点.下列结论:①DM =DA ;②EB 平分∠AEC ;③S △ABE =S △ADE ;④BE 2=2AE •EC .其中结论正确的个数是( )A .1B .2C .3D .4【分析】①由于DM 是直角△ADE 斜边AE 上的中线,欲证DM =DA ,只需证明AD =AE 即可;②在直角△ADE 中,由于∠ADE =90°,AD =AE ,得出∠DEA =30°,然后分别算出∠AEB 与∠CEB 的度数即可;③由于S △ABE =S 矩形ABCD ,S △ADE <S 矩形ABCD ,从而进行判断;④如果设BC =DA =a ,则可用含a 的代数式表示BC 、AE 、EC 的长度,然后在直角△BCE 中运用勾股定理算出BE 2的值,再算出2AE •EC 的值,比较即可.【解答】解:①∵在直角△ADE 中,∠ADE =90°,M 为AE 的中点,∴DM =AE ,∵AE =AB ,AB =2BC =2DA ,∴DM =DA ,正确;②在直角△ADE 中,∠ADE =90°,AD =AE ,∴∠DEA =30°.∵CD ∥AB ,∴∠EAB =∠DEA =30°,∠CEB =∠ABE .在△EAB 中,∠EAB =30°,AE =AB ,∴∠AEB =∠ABE =75°,∴∠CEB =75°,∴EB 平分∠AEC ,正确;③∵S △ABE =S 矩形ABCD ,S △ADE <S △ADC =S 矩形ABCD ,∴S △ABE >S △ADE ,错误; ④在矩形ABCD 中,设BC =DA =a ,则AE =AB =DC =2BC =2a ,DE =AD =a ,∴EC =(2﹣)a .在直角△BCE 中,BE 2=BC 2+CE 2=a 2+[(2﹣)a ]2=(8﹣4)a 2,2AE •EC =2×2a ×(2﹣)a =(8﹣4)a 2,正确. 故选:C .二、填空题(本题共5小题,每小题3分,共15分)11.分解因式:﹣m 3+2m 2﹣m = ﹣m (m ﹣1)2 .【分析】原式提取﹣m 后,利用完全平方公式分解即可.【解答】解:原式=﹣m (m 2﹣2m +1)=﹣m (m ﹣1)2.故答案为:﹣m (m ﹣1)212.已知整数a 1,a 2,…,a n (n 为正整数)满足a 1=0,a 2=﹣|a 1+1|,a 3=﹣|a 2+2|,a 4=﹣|a 3+3|,…,以此类推,则a 2021= ﹣1010 .【分析】根据给出的代数式多写出几项找出规律即可.【解答】解:由题知a 1=0,a 2=﹣|a 1+1|=﹣1,a 3=﹣|a 2+2|=﹣1,a 4=﹣|a 3+3|=﹣2,a 5=﹣|a 4+4|=﹣2,a 6=﹣|a 5+5|=﹣3,…,所以n是奇数时,a n=﹣,n是偶数时,a n=﹣,∴a2021=﹣1010,故答案为:﹣1010.13.如图,在△ABC中,∠C=90°,D是AC边上一点,且AD=BD=5,tan∠CBD=,线段AB的长度是.【分析】利用tan∠CBD=,设DC=3x,BC=4x,通过勾股定理可推出DC、BC的长,再由勾股定理可算出AB的长.【解答】解:由题易知:△BCD为直角三角形,AD=BD=5,tan∠CBD=,设DC=3x,BC=4x,由勾股定理易得:BD=5x=5,∴x=1,DC=3,BC=4,在Rt△ACB中,AC=AD+DC=5+3=8,BC=4,∴AB===4.故答案为:4.14.在平面直角坐标系中,直线y=kx向右平移2个单位后,刚好经过点(0,4),则不等式2x>kx+4的解集为x>1.【分析】由题意直线y=kx向右平移2个单位后,刚好经过点(0,4),根据待定系数法求出直线的解析式,然后代入不等式中,从而求出不等式的解集.【解答】解:∵直线y=kx向右平移2个单位得:y=k(x﹣2),又其过点(0,4),∴4=﹣2k,解得:k=﹣2,∴不等式2x>kx+4可化为:2x>﹣2x+4解得x>1.故答案为:x>1.15.如图,P为正方形ABCD的边BC的中点,BG⊥AP于点G,在AP的延长线上取点E,使AG=GE,若正方形的边长为2,则CE=.【解答】解:如图,过C作CH⊥AE于H,∵AG=GE,∴AB=BE,∴∠BAE=BEA,∵BG⊥AE,∴∠BGP=∠CHP=90°,∵P为BC的中点,∴BP=CP,在△BGP和△CHP中,,∴△BGP≌△CHP(AAS),∴BG=CH,∠GBP=∠PCH,∵四边形ABCD是正方形,∴AB=BC,∴BC=BE,∴∠BCE=∠BEC,∵∠ABC=∠ABG+∠GBP=90°,∠ABG+∠BAG=90°,∴∠GBP=∠BAG,∴∠PCH=∠BEP,∴∠HCE=∠HEC,∴CH=EH,∵∠CHE=90°,∴CE=CH,即CE=BG,在Rt△ABP中,AB=2,BP=BC=1,∴AP==,∵S=AB•BP=AP•BG,△ABP∴BG==,∴CE=×=,故答案为.三、解答题(本题共7小题,其中第16题11分,第17题7分,第18题6分,第19题7分,第20题7分,第21题8分,第22题9分,共55分)16.①计算:+|2﹣tan60°|﹣(﹣π)0+(﹣)﹣2.②先化简,再求值:÷(﹣x﹣2),其中x=﹣3.【解答】解:①原式=×+|2﹣|﹣1+4=+2﹣+3=5;②原式=÷(﹣)=÷=•==,当x=﹣3时,原式===.17.北关中学为了解本校中考体育情况,随机抽取了部分学生的体育成绩进行统计分析,发现最低分为45分,且成绩为45分的学生占抽查人数的10%,现将抽查结果绘制成了如下不完整的折线统计图,请根据图中信息,回答下列问题:(1)此次抽查的学生人数为50人,抽查的学生体育考试成绩的中位数是48.5分,抽查的女生体育考试成绩的平均数是48分;(2)补全折线统计图;(3)为了今后中考体育取得更好的成绩,学校决定分别从成绩为50分的男生和女生中各选一名参加“经验座谈会”,若成绩为50分的男、女生中各有两名体育特长生,请用列表或画树状图的方法求出所选的两名学生刚好都不是体育特长生的概率.【解答】解:(1)抽查的学生人数为:(3+2)÷10%=50人;由图可知,得分为45分的人数为:3+2=5,得分为46分的人数为:2+4=6,得分为47分的人数为:4+3=7,得分为48分的人数为:3+4=7,得分为49分的人数为:9+7=16,所以,第25人的得分为48分,第26人的得分为49分,中位数为=48.5;得分50分的女生人数为:50﹣5﹣6﹣7﹣7﹣16﹣4=50﹣45=5人.所以,女生成绩的平均数为:==48;故答案为:50,48.5,48;(2)女生得分50分的有5人,所以补全图形如图;(3)设得分50分的男生分别为男1、男2、男3、男4,其中男1、男2是体育特长生,得分50分的女生分别为女1、女2、女3、女4、女5,其中女1、女2是体育特长生,列表如下:由表可知,一共有20种等可能情况,其中都不是体育特长生的有6种情况,所以,P(都不是体育特长生)==.18.如图,在平行四边形ABCD中,对角线AC,BD交于点O.过点O作BD的垂线,交BA延长线于点E,交AD于F,交BC于点N,若EF=OF,∠CBD=30°,BD=6.(1)求证:EF=EN;(2)求AF的长.【解答】证明:(1)如图所示;∵四边形ABCD是平行四边形,∴AD∥BC,AO=OC,BO=OD,∴∠DAO=∠BCO,在△AOF与△CON中,,∴△AOF≌△CON(ASA),∴OF=ON,∵EF=OF,∴EF=EN;(2)∵EF⊥BD,∴∠BON=90°,∵∠OBN=30°,BO=BD=3,∴BN==6,∵AF∥BN,∴△EAF∽△EBN,∴,∴,∴AF=2.19.如图,一次函数的图象与反比例函数的图象相交于A点,与y轴、x 轴分别相交于B、C两点,且C(2,0).当x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时,一次函数值小于反比例函数值.(1)求一次函数的解析式;(2)设函数y2=的图象与的图象关于y轴对称,在y2=的图象上取一点P(P点的横坐标大于2),过P作PQ⊥x轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标.【解答】解:(1)∵x<﹣1时,一次函数值大于反比例函数值,当x>﹣1时候,一次函数值小于反比例函数值.∴A点的横坐标是﹣1,∴A(﹣1,3),设一次函数的解析式为y=kx+b,因直线过A、C,则,解之得,∴一次函数的解析式为y=﹣x+2;(2)∵y2=的图象与的图象关于y轴对称,∴y2=(x>0),∵B点是直线y=﹣x+2与y轴的交点,∴B(0,2),设P(n,)n>2,S四边形BCQP =S四边形OQPB﹣S△OBC=2,∴(2+)n﹣×2×2=2,n=,∴P(,).20.某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶成本50元/千克,在第一个月的试销时间内发现,销量w(kg)与销售单价x(元/kg)满足关系式:w=﹣2x+240.(1)设该绿茶的月销售利润为y(元),求y与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,y的值最大?(销售利润=单价×销售量﹣成本﹣投资)(2)若在第一个月里,按使y获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于90元,要想在全部收回投资的基础上使第二个月的利润达到1700元,那么第二个月里应该确定销售单价为多少元?【解答】解:(1)由题意可得,y与x的函数关系式为:y=(x﹣50)•w﹣3000=(x﹣50)•(﹣2x+240)﹣3000=﹣2x2+340x ﹣15000;∵y=﹣2x2+340x﹣15000=﹣2(x﹣85)2﹣550,∴当x=85时,y的值最大为﹣550元.(2)∵在第一个月里,按使y获得最大值的销售单价进行销售所获利润为﹣550元,∴第1个月还有550元的投资成本没有收回.∴要想在全部收回投资的基础上使第二个月的利润达到1700元,即y=2250才可以,∴(x﹣50)•(﹣2x+240)=2250,解得,x1=75,x2=95.根据题意,x2=95不合题意应舍去.答:当销售单价为75元时,可获得销售利润2250元,即在全部收回投资的基础上使第二个月的利润达到1700元.21.如图,在直角坐标系中,直线y=﹣x+4与x轴交于A点,与y轴交于B点,以AB 为直径作圆O1,过B作圆O1的切线交x轴于点C.(1)求C点的坐标;(2)设点D为BC延长线上一点,CD=BC,P为线段BC上的一个动点,(异于B,C)过P点作x轴的平行线交AB于M,交DA的延长线于N,试判断PM+PN的值是否为定值,如果是,则求出这个值;如果不是,请说明理由.【解答】解:(1)∵BC是⊙O1的切线,∴BC⊥AB,∵直线AB的解析式为y=﹣x+4,∴直线BC的解析式为y=2x+4,令y=0,∴2x+4=0,∴x=﹣2,∴C(﹣2,0);(2)PM+PN的值是定值,定值为20,理由:针对于直线y=﹣x+4,令x=0,∴y=4,∴B(0,4),令y=0,则﹣x+4=0,∴x=8,∴A(8,0),由(1)知,C(﹣2,0),∵CD=BC,∴D(﹣4,﹣4),∵A(8,0),∴直线AD的解析式为y=x﹣,∵点P在线段BC上,设P(m,2m+4)(﹣2<m<0),∵PM∥x轴,∴M(﹣4m,2m+4),N(6m+20,2m+4),∴PM+PN=﹣4m﹣m+(6m+20﹣m)=20,即:PM+PN的值是定值,定值为20.22.已知抛物线y=a(x﹣1)2+3a,其顶点为E,与y轴交于点D(0,4).(1)求抛物线的解析式;(2)若直线l:y=﹣x+8与抛物线在第一象限交于点B,交y轴于点A,求∠ABD﹣∠DBE的值;(3)若有两个定点F(1,),A(0,8),请在抛物线上找一点K,使得△KFA的周长最小,请求出周长的最小值.解:(1)将D点(0,4)代入y=a(x﹣1)2+3a得:4=a+3a,解得a=1,∴y=x2﹣2x+4;(2)由点B、D、E坐标知,BE2=BD2+BE2,故BD⊥ED,连接DE并延长至点E′,使DE=DE′,则BD是EE′的中垂线,连接BE′交y轴于点H,由中点公式可得:点E′(﹣1,5),则∠HBD=∠EBD,则∠ABH=∠ABD﹣∠DBE,同理可得直线BE′的函数表达式为:y=x+,故点H(0,),在△ABH中,AB=,AH=,BH=,过点H作HK⊥AB与点K,设:KB=x,则AK=﹣x,则HK2=()2﹣()2=()2﹣x2,解得:x=,则cos∠ABH==,故∠ABH=45°,即:∠ABD﹣∠DBE=45°;(3)作直线m:y=,交y轴于点G,过点K作KH⊥直线m交于点H,连接AH,则点G(0,),设点K(x,y),则KF2=(x﹣1)2+(y﹣)2=x2﹣2x+1+y2+﹣y=y2﹣y+=(y﹣)2,则KF=y﹣,而HK=y﹣,即KF=HK,而AK+KF=AK+KH≥AH≥AG(点K位于点D时取等号),故AK+KF的最小值为AG=8﹣=,而AF=,故周长的最小值为:.。
福建省南平市剑津片区中考数学5月模拟试卷(含解析)-人教版初中九年级全册数学试题
2016年某某省某某市剑津片区中考数学模拟试卷(5月份)一、选择题:(本大题10个小题,每小题4分,共40分,其中只有一个是正确的选项,请在答题卡相应位置填涂)1.﹣3的倒数是()A.﹣3 B.3 C.D.﹣2.某机构对30万人的调查显示,沉迷于手机上网的初中生大约占7%,则这部分沉迷于手机上网的初中生人数,可用科学记数法表示为()×105B.21×103×105×1043.函数y=的自变量x的取值X围是()A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣34.如图,若m∥n,∠1=105°,则∠2=()A.75° B.85° C.95° D.105°5.下列计算正确的是()A.a3+a2=a5B.(3a﹣b)2=9a2﹣b2C.(﹣ab3)2=a2b6 D.a6b÷a2=a3b6.下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.8.在一次投掷实心球训练中,小丽同学5次投掷的成绩(单位:cm)为:6,8,9,8,9,则关于这组数据的说法不正确的是()A.极差是3 B.平均数是8 C.众数是8和9 D.中位数是99.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6 B.7 C.8 D.910.如图,点A在双曲线上,点B在双曲线上,且 AB∥y轴,点P是y轴上的任意一点,则△PAB的面积为()A.0.5 B.1 C.1.5 D.2二、填空题(每小题4分,共24分)第10题11.端午节期间,“惠民超市”销售的粽子打6折后卖a元,则粽子的原价卖______元.12.正六边形的内角和为______度.13.分解因式:ax2﹣2ax+a=______.14.若A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为______.15.若3a2﹣a﹣3=0,则5+2a﹣6a2=______.16.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB边中线CD,得到第一个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第二个三角形DEF;依此作下去…则第n个三角形的面积等于______.三、解答题(本大题9个小题,共86分,请在答题卡相应位置作答)17.计算:﹣()0﹣4sin60°.18.先化简再求值:,其中x=3.19.解方程:+3=.20.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是______(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共______件,其中B班征集到作品______件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)21.如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AD=4,∠AOD=50°,求AB的长.(精确到0.1)22.已知⊙O的弦CD与直径AB垂直于F,点E在CD上,且AE=CE.(1)求证:CA2=CE•CD;(2)已知CA=5,EA=3,求sin∠EAF.23.我校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,若购买1X两人学习桌,1X三人学习桌需230元;若购买2X两人学习桌,3X三人学习桌需590元.(1)求两人学习桌和三人学习桌的单价;(2)学校欲投入资金不超过6600元,购买两种学习桌共60X,以至少满足137名学生的需求,有几种购买方案?并求哪种购买方案费用最低?24.如图1和2,四边形ABCD是菱形,点P是对角线AC上一点,以点P为圆心,PB为半径的弧,交BC的延长线于点F,连接PF,PD,PB.(1)如图1,点P是AC的中点,请写出PF和PD的数量关系:______;(2)如图2,点P不是AC的中点,①求证:PF=PD.②若∠ABC=50°,直接写出∠DPF的度数.25.已知:抛物线y=x2﹣4x﹣m(m>0)与x轴交于A、B两点,与y轴交于点C,D为抛物线的顶点,C点关于抛物线对称轴的对称点为C′点.(1)若m=5时,求△ABD的面积.(2)若在(1)的条件下,点E在线段BC下方的抛物线上运动,求△BCE面积的最大值.(3)写出C点(______,______)、C′点(______,______)坐标(用含m的代数式表示)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C、C′、P、Q为顶点的四边形是平行四边形,直接写出Q点和P点的坐标(可用含m的代数式表示)2016年某某省某某市剑津片区中考数学模拟试卷(5月份)参考答案与试题解析一、选择题:(本大题10个小题,每小题4分,共40分,其中只有一个是正确的选项,请在答题卡相应位置填涂)1.﹣3的倒数是()A.﹣3 B.3 C.D.﹣【考点】倒数.【分析】根据乘积为的1两个数互为倒数,可得到一个数的倒数.【解答】解:﹣3的倒数是﹣,故选:D.2.某机构对30万人的调查显示,沉迷于手机上网的初中生大约占7%,则这部分沉迷于手机上网的初中生人数,可用科学记数法表示为()×105B.21×103×105×104【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将30万××104.故选:D.3.函数y=的自变量x的取值X围是()A.x>﹣3 B.x<﹣3 C.x≠﹣3 D.x≥﹣3【考点】函数自变量的取值X围;分式有意义的条件.【分析】求函数自变量的取值X围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不等于0.【解答】解:根据题意得:x+3≠0,解得:x≠﹣3.故选C.4.如图,若m∥n,∠1=105°,则∠2=()A.75° B.85° C.95° D.105°【考点】平行线的性质.【分析】直接根据平行线的性质即可得出结论.【解答】解:∵m∥n,∠1=105°,∴∠2=180°﹣∠1=180°﹣105°=75°.故选A.5.下列计算正确的是()A.a3+a2=a5B.(3a﹣b)2=9a2﹣b2C.(﹣ab3)2=a2b6 D.a6b÷a2=a3b【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;整式的除法.【分析】根据同类项的定义,完全平方公式,幂的乘方以及单项式的除法法则即可判断.【解答】解:A、不是同类项,不能合并,选项错误;B、(3a﹣b)2=9a2﹣6ab+b2,故选项错误;C、正确;D、a6b÷a2=a4b,选项错误.故选C.6.下列学生剪纸作品中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,是中心对称图形.故错误.故选B.7.用两块完全相同的长方体搭成如图所示的几何体,这个几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据主视图的定义,找到从正面看所得到的图形即可.【解答】解:从物体正面看,左边1列、右边1列上下各一个正方形,且左右正方形中间是虚线,故选:C.8.在一次投掷实心球训练中,小丽同学5次投掷的成绩(单位:cm)为:6,8,9,8,9,则关于这组数据的说法不正确的是()A.极差是3 B.平均数是8 C.众数是8和9 D.中位数是9【考点】极差;算术平均数;中位数;众数.【分析】根据极差,中位数,平均数和众数的定义分别计算即可解答.【解答】解:A、极差是9﹣6=3,故此选项正确,不符合题意.B、平均数为(6+8+9+8+9)÷5=8,故此选项正确,不符合题意;C、∵8,9各有2个,∴众数是8和9,故此选项正确,不符合题意;D.从低到高排列后,为6,8,8,9,9.中位数是8,故此选项错误,符合题意;故选:D.9.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为()A.6 B.7 C.8 D.9【考点】扇形面积的计算.【分析】由正方形的边长为3,可得弧BD的弧长为6,然后利用扇形的面积公式:S扇形DAB=,计算即可.【解答】解:∵正方形的边长为3,∴弧BD的弧长=6,∴S扇形DAB==×6×3=9.故选D.10.如图,点A在双曲线上,点B在双曲线上,且 AB∥y轴,点P是y轴上的任意一点,则△PAB的面积为()A.0.5 B.1 C.1.5 D.2【考点】反比例函数系数k的几何意义.【分析】设A(x,),则B(x,),再根据三角形的面积公式求解.【解答】解:设A(x,),∵AB∥y轴,∴B(x,),∴S△ABP=AB•x=(﹣)×x=1.故选B.二、填空题(每小题4分,共24分)第10题11.端午节期间,“惠民超市”销售的粽子打6折后卖a元,则粽子的原价卖 a 元.【考点】列代数式.【分析】设粽子的原价卖x元,根据打6折后卖a元,列出代数式,再进行求解即可.【解答】解:设粽子的原价卖x元,根据题意得:60%x=a,解得:x=a,答:粽子的原价卖a元.故答案为:a.12.正六边形的内角和为720 度.【考点】多边形内角与外角.【分析】由多边形的内角和公式:180°(n﹣2),即可求得正六边形的内角和.【解答】解:正六边形的内角和为:180°×(6﹣2)=180°×4=720°.故答案为:720.13.分解因式:ax2﹣2ax+a= a(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提公因式a,再利用完全平方公式继续分解因式.【解答】解:ax2﹣2ax+a,=a(x2﹣2x+1),=a(x﹣1)2.14.若A、B、C是⊙O上的三点,∠AOC=100°,则∠ABC的度数为50°或130°.【考点】圆周角定理.【分析】根据题意画出图形,利用圆周角定理即可得出结论.【解答】解:如图所示,当点B在优弧AC上时,∵∠AOC=100°,∴∠ABC=50°;当点B在劣弧AC上时,∠AB′C=180°﹣50°=130°.故答案为:50°或130°.15.若3a2﹣a﹣3=0,则5+2a﹣6a2= ﹣1 .【考点】代数式求值.【分析】先观察3a2﹣a﹣3=0,找出与代数式5+2a﹣6a2之间的内在联系后,代入求值.【解答】解:∵3a2﹣a﹣3=0,∴3a2﹣a=3,∴5+2a﹣6a2=﹣2(3a2﹣a)+5=﹣2×3+5=﹣1,故答案为:﹣1.16.如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB边中线CD,得到第一个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第二个三角形DEF;依此作下去…则第n个三角形的面积等于.【考点】直角三角形斜边上的中线;三角形的面积;三角形中位线定理.【分析】根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,然后判定出△ACD是等边三角形,同理可得被分成的第二个、第三个…第n个三角形都是等边三角形,再根据后一个等边三角形的边长是前一个等边三角形的边长的一半求出第n个三角形的边长,然后根据等边三角形的面积公式求解即可.【解答】解:∵∠ACB=90°,CD是斜边AB上的中线,∴CD=AD,∵∠A=60°,∴△ACD是等边三角形,同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,∵CD是AB的中线,EF是DB的中线,…,∴第一个等边三角形的边长CD=DB=AB=AC=a,第二个等边三角形的边长EF=DB=a,…第n个等边三角形的边长为a,所以,第n个三角形的面积=×a×(•a)=.故答案为:.三、解答题(本大题9个小题,共86分,请在答题卡相应位置作答)17.计算:﹣()0﹣4sin60°.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及零指数幂的性质、算术平方根的性质化简各数进而得出答案.【解答】解:原式=3﹣1﹣4×=2﹣2.18.先化简再求值:,其中x=3.【考点】分式的化简求值.【分析】先算括号里面的,再进行因式分解,约分即可,最后把x=3代入计算.【解答】解:原式=•=,当x=3时,原式=.19.解方程:+3=.【考点】解分式方程.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2+3x﹣6=x﹣1,移项合并得:2x=3,解得:x=1.5,经检验x=1.5是分式方程的解.20.我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.(1)王老师采取的调查方式是抽样调查(填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共12 件,其中B班征集到作品 3 件,请把图2补充完整;(2)王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?(3)如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,求恰好抽中一男一女的概率.(要求写出用树状图或列表分析过程)【考点】条形统计图;用样本估计总体;扇形统计图;列表法与树状图法.【分析】(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;(2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;(3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.【解答】解:(1)抽样调查,所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为:抽样调查;12;3;把图2补充完整如下:(2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);(3)画树状图如下:列表如下:共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.21.如图,在▱ABCD中,对角线AC,BD相交于点O,且OA=OB.(1)求证:四边形ABCD是矩形;(2)若AD=4,∠AOD=50°,求AB的长.(精确到0.1)【考点】矩形的判定与性质;平行四边形的性质.【分析】(1)根据对角线相等的平行四边形是矩形即可判定.(2)在RT△ADB中,根据tan∠ABD=,求出∠ADB即可解决问题.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵OA=OB,∴OA=OB=OD=OC,∴BD=AC,∴四边形ABCD是矩形.(2)解:∵四边形ABCD是矩形,∴OA=OB,∠DAB=90°,∠OAB=∠OBA,∵∠AOD=∠OAB+∠OBA=50°,在RT△ADB中,=tan∠ABD,∴AB=≈8.6.22.已知⊙O的弦CD与直径AB垂直于F,点E在CD上,且AE=CE.(1)求证:CA2=CE•CD;(2)已知CA=5,EA=3,求sin∠EAF.【考点】相似三角形的判定与性质;垂径定理;锐角三角函数的定义.【分析】(1)由⊙O的弦CD与直径AB垂直于F,根据垂径定理,易证得∠C=∠D,又由AE=CE,根据等边对等角,可得∠C=∠CAE,即可得∠CAE=∠D,又由∠C是公共角,即可证得△CEA ∽△CAD,然后由相似三角形的对应边成比例,证得结论;(2)由CA2=CE•CD;CA=5,EA=3,可求得CD的长,然后由垂径定理,求得CF的长,继而求得EF的长,然后由正弦函数的定义,求得答案.【解答】(1)证明:在△CEA和△CAD中,∵弦CD⊥直径AB,∴=,∴∠D=∠C,又∵AE=EC,∴∠CAE=∠C,∴∠CAE=∠D,∵∠C是公共角,∴△CEA∽△CAD,∴,即CA2=CE•CD;(2)解:∵CA2=CE•CD,AC=5,EC=3,∴52=CD•3,解得:CD=,又∵CF=FD,∴CF=CD=×=,∴EF=CF﹣CE=﹣3=,在Rt△AFE中,sin∠EAF=.23.我校为开展研究性学习,准备购买一定数量的两人学习桌和三人学习桌,若购买1X两人学习桌,1X三人学习桌需230元;若购买2X两人学习桌,3X三人学习桌需590元.(1)求两人学习桌和三人学习桌的单价;(2)学校欲投入资金不超过6600元,购买两种学习桌共60X,以至少满足137名学生的需求,有几种购买方案?并求哪种购买方案费用最低?【考点】一次函数的应用;二元一次方程组的应用.【分析】(1)设两人学习桌和三人学习桌的单价分别是x元、y元,然后列出二元一次方程组,求解即可;(2)表示出三人桌的X数,然后根据资金和学生数列出不等式组,再求解得到m的取值X 围,再根据资金=两人桌和三人桌的费用之和列式整理即可得解;【解答】解:(1)设两人桌每Xx元,三人桌每Xy元,根据题意得,解得;(2)设两人桌mX,则三人桌(60﹣m)X,根据题意可得,解得 40≤m≤43m为正整数,m为40、41、42、43 共有4种方案设费用为WW=100m+130(60﹣m)=﹣30m+7800m=43时,W最小为6510元.24.如图1和2,四边形ABCD是菱形,点P是对角线AC上一点,以点P为圆心,PB为半径的弧,交BC的延长线于点F,连接PF,PD,PB.(1)如图1,点P是AC的中点,请写出PF和PD的数量关系:PF=PD ;(2)如图2,点P不是AC的中点,①求证:PF=PD.②若∠ABC=50°,直接写出∠DPF的度数.【考点】四边形综合题;全等三角形的判定与性质;菱形的性质.【分析】(1)根据作图和菱形的性质可以得到PF和PD的数量关系;(2)①根据作图得到PB=PF,再根据△PCB≌△PCD得到PB=PD,进而得出结论;②根据PB=PF 得出∠PBC=∠PFB,根据△PCB≌△PCD得出∠PBC=∠PDC,进而得到∠DCF=∠DPF,最后根据∠DCF的度数进行求解.【解答】(1)根据以点P为圆心,PB为半径的弧,交BC的延长线于点F,可知PB=PF当点P是AC的中点时,点P也是BD的中点,即PB=PD∴PF和PD的数量关系为PF=PD(2)①证明:根据以点P为圆心,PB为半径的弧,交BC的延长线于点F,可知PB=PF∵菱形ABCD∴BC=DC,∠PCB=∠PCD在△PCB和△PCD中∴△PCB≌△PCD(SAS)∴PB=PD∴PF=PD②根据PB=PF,可得∠PBC=∠PFB根据△PCB≌△PCD,可得∠PBC=∠PDC∴∠PFB=∠PDC又∵∠DOP=∠COF∴∠DCF=∠DPF由AB∥CD可知,∠DCF=∠ABC=50°∴∠DPF=50°25.已知:抛物线y=x2﹣4x﹣m(m>0)与x轴交于A、B两点,与y轴交于点C,D为抛物线的顶点,C点关于抛物线对称轴的对称点为C′点.(1)若m=5时,求△ABD的面积.(2)若在(1)的条件下,点E在线段BC下方的抛物线上运动,求△BCE面积的最大值.(3)写出C点(0 ,﹣m )、C′点( 4 ,﹣m )坐标(用含m的代数式表示)如果点Q在抛物线的对称轴上,点P在抛物线上,以点C、C′、P、Q为顶点的四边形是平行四边形,直接写出Q点和P点的坐标(可用含m的代数式表示)【考点】二次函数综合题.【分析】(1)将m=5代入y=x2﹣4x﹣m,得y=x2﹣4x﹣5,求出A、B、D三点的坐标,根据三角形面积公式即可求出△ABD的面积;(2)点E在线段BC下方的抛物线上时,设E(m,m2﹣4m﹣5),过点E作y轴的平行线交BC于F.利用待定系数法求出直线BC的解析式,可用含m的代数式表示点F的坐标,继而可得线段EF的长,然后利用S△BCE=S△CEF+S△BEF=EF•BO,得出S关于m的二次函数解析式,然后利用二次函数的性质求出最大值;(3)把x=0代入y=x2﹣4x﹣m,求出C点坐标,再根据二次函数的对称性求出C′点的坐标;以点C、C′、P、Q为顶点的四边形是平行四边形时,可分两种情况:①CC′为对角线,由平行四边形对角线的性质可求出Q点和P点的坐标;②CC′为一条边,根据平行四边形对边平行且相等,亦能求出Q点和P点的坐标.【解答】解:(1)若m=5时,抛物线即为y=x2﹣4x﹣5,令y=0,得x2﹣4x﹣5=0,解得x=5或x=﹣1,则A(﹣1,0),B(5,0),AB=6.∵y=x2﹣4x﹣5=(x﹣2)2﹣9,∴顶点D的坐标为(2,﹣9),∴△ABD的面积=×AB×|y D|=×6×9=27;(2)如图1,过点E作y轴的平行线交BC于F.在(1)的条件下,有y=x2﹣4x﹣5,则C(0,﹣5),设直线BC的解析式为y=kx﹣5(k≠0).把B(5,0)代入,得0=5k﹣5,解得k=1.故直线BC的解析式为:y=x﹣5.设E(m,m2﹣4m﹣5),则F(m,m﹣5),∴S△BCE=EF•OB=×(m﹣5﹣m2+4m+5)×5=﹣(m﹣)2+,即S△BCE=﹣(m﹣)2+,∴当m=时,△BCE面积的最大值是;(3)∵y=x2﹣4x﹣m(m>0),∴x=0时,y=﹣m,对称轴为直线x=2,∴C(0,﹣m),∵C点关于抛物线对称轴的对称点为C′点,∴C′(4,﹣m).以点C、C′、P、Q为顶点的四边形是平行四边形分两种情况:①线段CC′为对角线,如图2,∵平行四边对角线互相平分,∴PQ在对称轴上,此时P点为抛物线的顶点,与D点重合,∵y=x2﹣4x﹣m=(x﹣2)2﹣4﹣m,∴P(2,﹣4﹣m),∵线段PQ与CC′中点重合,C(0,﹣m),C′(4,﹣m),设Q(2,y),∴=﹣m,解得y=4﹣m,∴Q(2,4﹣m);②线段CC′为边,如图3,∵以点C、C′、P、Q为顶点的四边形是平行四边形,∴PQ=CC′=4,设点Q的坐标为(2,y),则点P坐标为(6,y)或(﹣2,y),∵点P在抛物线上,将x=6和x=﹣2分别代入y=x2﹣4x﹣m中,解得y均为12﹣m,故点P的坐标为(6,12﹣m)或(﹣2,12﹣m),Q(2,12﹣m).综上所述,如果点Q在抛物线的对称轴上,点P在抛物线上,以点C、C′、P、Q为顶点的四边形是平行四边形,Q点和P点的坐标分别是:Q(2,4﹣m),P(2,﹣4﹣m)或Q(2,12﹣m),P(6,12﹣m)或Q(2,12﹣m),P(﹣2,12﹣m).故答案为0,﹣m,4,﹣m.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019-2020年中考数学5月模拟试卷(含解析)一、选择题(共10小题,每小题4分,满分40分)1.(﹣)0的值是()A.1 B.﹣1 C.0 D.﹣2.如图是将正方体切去一个角后形成的几何体,则其主(正)视图为()A.B.C.D.3.不透明袋子装有4个红球,2个白球,它们除颜色不同外其余都相同,从中任取3个,则下列事件为必然事件的是()A.至少有1个球是红球B.至少有1个球是白球C.至少有2个球是红球D.至少有2个球是白球4.下列各式运算结果为a5的是()A.(a2)3B.a2+a3C.a2•a3D.a10÷a25.已知命题:“三角形外心一定不在三角形内部”,下列选项中,可以作为该命题是假命题的反例是()A.等腰三角形 B.直角三角形 C.锐角三角形 D.钝角三角形6.小明在五天投掷铅球训练中,每天训练的最好成绩(单位:m)分别为10.1,10.4,10.6,10.5,10.4,关于这组数据,下列说法错误的是()A.平均数是10.4 B.中位数是10.6 C.众数是10.4 D.方差是0.0287.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A.B.C.D.8.若﹣2a<﹣2b,则a>b,则根据是()A.不等式的基本性质1 B.不等式的基本性质2C.不等式的基本性质3 D.等式的基本性质29.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)10.如图,菱形ABCD对角线AC,BD相交于点O,有下列结论:①OA=OD,②AC⊥BD,③∠1=∠2,④S菱形ABCD=AC•BD.其中正确的序号是()A.①② B.③④ C.②④ D.②③二、填空题(共6小题,每小题4分,满分24分)11.到xx年底,漳州市户籍人口数量首次突破5000000人,则数据5000000用科学记数法表示为.12.一个正方形的面积是a2+2a+1(a>0),则其边长为.13.如图,A(0,2),B(2,0),双曲线y=经过线段AB的中点P,则k的值是.14.如图,四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF ∥AD,FN∥DC,则∠B= 度.15.如图,有红、黄、蓝粗细均匀的木棍各一根分别穿过木板,甲乙两人在木板的两侧同时随机抓住一根木棍,则他们抓住的木棍颜色相同的概率是.16.如图,在边长为6的等边△ABC中,AD⊥BC于D,点E,F分别在AD,AB上,则BE+EF 的最小值是.三、解答题(共9小题,满分86分)17.计算:|﹣6|﹣﹣()﹣1.18.观察下列方程组,解答问题:①;②;③;…(1)在以上3个方程组的解中,你发现x与y有什么数量关系?(不必说理)(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.19.数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.20.国家在对某校八年级学生进行质量监测(满分100分)后,从中随机抽查若干名学生的成绩,根据成绩等级(A级:85﹣100;B级:70﹣84,C级:60﹣69;D级:0﹣59),绘制成两幅不完整的统计图,请回答问题:(1)此次抽查到的学生数为人;(2)补充两幅统计图;(3)若该年级学生共500人,估计其中成绩为A级的人数是人.21.如图,⊙O直径AB与弦AC的夹角∠A=30°,过C点的切线与AB的延长线交于点P.(1)求证:CA=CP;(2)已知⊙O的半径r=,求图中阴影部分的面积S.22.如图是某校体育场内一看台的截面图,看台CD与水平线的夹角为30°,最低处C与地面的距离BC为2.5米,在C,D正前方有垂直于地面的旗杆EF,在C,D两处测得旗杆顶端F的仰角分别为60°和30°,CD长为10米,升旗仪式中,当国歌开始播放时,国旗也在离地面1.5米的P处同时冉冉升起,国歌播放结束时,国旗刚好上升到旗杆顶端F,已知国歌播放时间为46秒,求国旗上升的平均速度.(结果精确到0.01米/秒)23.某校在去年购买A,B两种足球,费用分别为2400元和xx元,其中A种足球数量是B 种足球数量的2倍,B种足球单价比A种足球单价多80元/个.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,且本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?24.如图1,抛物线l1:y=﹣x2+2x+3与x轴的正半轴和y轴分别交于点A,B,顶点为C,直线BC交x轴于点D.(1)直接写出点A和C的坐标;(2)把抛物线l1沿直线BC方向平移,使平移后的抛物线l2经过点A,点E为其顶点.求抛物线l2的解析式,并在图1中画出其大致图象,标出点E的位置;在x轴上是否存在点P,使△CEP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.(注:该步若要用到备用图,则不要求再画出抛物线l2的大致图象)25.在四边形ABCD中,M是AB边上的动点,点F在AD的延长线上,且DF=DC,N为MD的中点.连接BN,CN,作NE⊥BN交直线CF于点E.(1)如图1,若四边形ABCD为正方形,当点M与A重合时,求证;NB=NC=NE;(2)如图2,若四边形ABCD为正方形,当点M与A不重合时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)如图3,若四边形ABCD为矩形,当点M与A不重合,点E在FC的延长线上时,请你就线段NB,NC,NE提出一个正确的结论.(不必说理)xx年福建省漳州市中考数学模拟试卷(5月份)参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(﹣)0的值是()A.1 B.﹣1 C.0 D.﹣【考点】零指数幂.【分析】根据零指数幂的运算方法:a0=1(a≠0),求出(﹣)0的值是多少即可.【解答】解:∵﹣≠0,∴(﹣)0=1.故选:A.2.如图是将正方体切去一个角后形成的几何体,则其主(正)视图为()A. B. C. D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从正面看所得到的图形是正方形,切去部分的棱用虚线表示,故选:B.3.不透明袋子装有4个红球,2个白球,它们除颜色不同外其余都相同,从中任取3个,则下列事件为必然事件的是()A.至少有1个球是红球B.至少有1个球是白球C.至少有2个球是红球D.至少有2个球是白球【考点】随机事件.【分析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【解答】解:至少有1个球是红球是必然事件,A正确;至少有1个球是白球是随机事件,B错误;至少有2个球是红球是随机事件,C错误;至少有2个球是白球是随机事件,D错误,故选:A.4.下列各式运算结果为a5的是()A.(a2)3B.a2+a3 C.a2•a3 D.a10÷a2【考点】同底数幂的除法;同底数幂的乘法;幂的乘方与积的乘方.【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=a6,不合题意;B、原式不能合并,不合题意;C、原式=a5,符合题意;D、原式=a8,不合题意,故选C5.已知命题:“三角形外心一定不在三角形内部”,下列选项中,可以作为该命题是假命题的反例是()A.等腰三角形B.直角三角形C.锐角三角形D.钝角三角形【考点】命题与定理.【分析】根据证明命题为假命题,通常用反例说明,此反例满足命题的题设,但不满足命题的结论解答即可.【解答】解:如图所示:△ABC是锐角三角形,则它的外心在三角形内部,所以可以作为该命题是假命题的反例,故选C.6.小明在五天投掷铅球训练中,每天训练的最好成绩(单位:m)分别为10.1,10.4,10.6,10.5,10.4,关于这组数据,下列说法错误的是()A.平均数是10.4 B.中位数是10.6 C.众数是10.4 D.方差是0.028【考点】方差;算术平均数;中位数;众数.【分析】根据方差,中位数,平均数和众数的定义分别计算即可解答.【解答】解:平均数=,中位数是10.4,众数是10.4,方差==0.028,故选B7.如图,已知△ABC,AB<BC,用尺规作图的方法在BC上取一点P,使得PA+PC=BC,则下列选项正确的是()A. B. C. D.【考点】作图—复杂作图.【分析】由PB+PC=BC和PA+PC=BC易得PA=PB,根据线段垂直平分线定理的逆定理可得点P 在AB的垂直平分线上,于是可判断D选项正确.【解答】解:∵PB+PC=BC,而PA+PC=BC,∴PA=PB,∴点P在AB的垂直平分线上,即点P为AB的垂直平分线与BC的交点.故选D.8.若﹣2a<﹣2b,则a>b,则根据是()A.不等式的基本性质1 B.不等式的基本性质2C.不等式的基本性质3 D.等式的基本性质2【考点】不等式的性质.【分析】两边都除以﹣2可得,其依据是不等式基本性质3.【解答】解:将不等式﹣2a<﹣2b两边都除以﹣2,得:a>b,其依据是不等式基本性质3,故选:C.9.如图,是在直角坐标系中围棋子摆出的图案,若再摆放一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则这两枚棋子的坐标是()A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)【考点】中心对称图形;坐标确定位置;轴对称图形.【分析】首先根据各选项棋子的位置,进而结合轴对称图形和中心对称图形的性质判断得出即可.【解答】解:A、当摆放黑(3,3),白(3,1)时,此时是轴对称图形,也是中心对称图形,故此选项正确;B、当摆放黑(3,1),白(3,3)时,此时是轴对称图形,不是中心对称图形,故此选项错误;C、当摆放黑(1,5),白(5,5)时,此时不是轴对称图形也不是中心对称图形,故此选项错误;D、当摆放黑(3,2),白(3,3)时,此时是轴对称图形不是中心对称图形,故此选项错误.故选:A.10.如图,菱形ABCD对角线AC,BD相交于点O,有下列结论:①OA=OD,②AC⊥BD,③∠1=∠2,④S菱形ABCD=AC•BD.其中正确的序号是()A.①② B.③④ C.②④ D.②③【考点】菱形的性质.【分析】直接利用菱形的性质对角线对角线互相垂直,并且每一条对角线平分一组对角;菱形面积=对角线乘积的一半.【解答】解:∵四边形ABCD是菱形,∴①OA=OC,故此选项错误;②AC⊥BD,正确;③∠1=∠2,正确;④S菱形ABCD=AC•BD,故此选项错误.故选:D.二、填空题(共6小题,每小题4分,满分24分)11.到xx年底,漳州市户籍人口数量首次突破5000000人,则数据5000000用科学记数法表示为5×106.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5000000=5×106.故答案为:5×106.12.一个正方形的面积是a2+2a+1(a>0),则其边长为a+1 .【考点】完全平方式.【分析】根据完全平方公式,可得答案.【解答】解:是a2+2a+1=(a+1)2,边长是a+1,故答案为:a+1.13.如图,A(0,2),B(2,0),双曲线y=经过线段AB的中点P,则k的值是 1 .【考点】反比例函数图象上点的坐标特征.【分析】先根据中点坐标的特点求出P点坐标,再代入反比例函数求出k的值即可.【解答】解:∵A(0,2),B(2,0),点P是线段AB的中点,∴P(1,1),∴k=1×1=1.故答案为:1.14.如图,四边形ABCD中,∠A=100°,∠C=70°.将△BMN沿MN翻折,得△FMN,若MF ∥AD,FN∥DC,则∠B= 95 度.【考点】多边形内角与外角.【分析】根据两直线平行,同位角相等求出∠BMF,∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.15.如图,有红、黄、蓝粗细均匀的木棍各一根分别穿过木板,甲乙两人在木板的两侧同时随机抓住一根木棍,则他们抓住的木棍颜色相同的概率是.【考点】列表法与树状图法.【分析】画树状图展示所有9种等可能的结果数,再找出他们抓住的木棍颜色相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中他们抓住的木棍颜色相同的结果数为3,所以他们抓住的木棍颜色相同的概率==.故答案为.16.如图,在边长为6的等边△ABC中,AD⊥BC于D,点E,F分别在AD,AB上,则BE+EF 的最小值是 3 .【考点】轴对称-最短路线问题;等边三角形的性质.【分析】过C作CF⊥AB于F,交AD于E,连接BE,根据两点之间线段最短和垂线段最短得出此时BE+EF最小,由于C和B关于AD对称,则BE+EF=CF,根据勾股定理求出CF,即可求出答案.【解答】解:过C作CF⊥AB于F,交AD于E,连接BE,则BE+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BE+EF=CF,∵等边△ABC中,AD平分∠CAB,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CE=BE,即BE+EF=CE+EF=CF,∵CF⊥AB,∴∠CNB=90°,CF是∠ACB的平分线,AF=BF(三线合一),∵∠ACB=60°,∴∠BCF=30°,∵AB=6,∴BF=AB=3,在△BCF中,由勾股定理得:CF===3,即BE+EF的最小值是3.故答案为3.三、解答题(共9小题,满分86分)17.计算:|﹣6|﹣﹣()﹣1.【考点】实数的运算;负整数指数幂.【分析】原式利用绝对值的代数意义,算术平方根定义,以及负整数指数幂法则计算即可得到结果.【解答】解:原式=6﹣3﹣3=0.18.观察下列方程组,解答问题:①;②;③;…(1)在以上3个方程组的解中,你发现x与y有什么数量关系?(不必说理)(2)请你构造第④个方程组,使其满足上述方程组的结构特征,并验证(1)中的结论.【考点】二元一次方程组的解.【分析】(1)观察已知方程组,得到x与y的数量关系即可;(2)归纳总结得到第④个方程组,求出方程组的解,验证即可.【解答】解:(1)在以上3个方程组的解中,发现x+y=0;(2)第④个方程组为,①+②得:6x=24,即x=4,把x=4代入①得:y=﹣4,则x+y=4﹣4=0.19.数学课上,老师要求学生证明命题:“角平分线上的点到这个角的两边距离相等”,以下是小华解答的部分内容(缺少图形和证明过程).请你把缺少内容补充完整.已知:点P在∠AOB的角平分线OC上,PD⊥OA于D,PE⊥OB于E,求证:PD=PE.【考点】角平分线的性质.【分析】结合已知条件,根据全等三角形的判定定理,推出△POD≌△POE即可.【解答】证明:∵OC是∠AOB的平分线,∴∠POD=∠POE,∵PD⊥OA,PE⊥OB,∴∠PDO=∠PEO=90°,在△POD与△POE中,,∴△POD≌△POE,∴PD=PE.20.国家在对某校八年级学生进行质量监测(满分100分)后,从中随机抽查若干名学生的成绩,根据成绩等级(A级:85﹣100;B级:70﹣84,C级:60﹣69;D级:0﹣59),绘制成两幅不完整的统计图,请回答问题:(1)此次抽查到的学生数为150 人;(2)补充两幅统计图;(3)若该年级学生共500人,估计其中成绩为A级的人数是150 人.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据D组有15人,所占的百分比是10%,据此即可求得调查的总人数;(2)利用百分比的意义求得B和C对应的百分比,补全统计图;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)调查的总人数是15÷10%=150(人),故答案是:150;(2)B组的人数是150×40%=60(人),A组的百分比是×100%=30%,C组的百分比是×100%=20%.;(3)成绩为A级的人数是500×30%=150(人).答:成绩为A组的人数是150人.21.如图,⊙O直径AB与弦AC的夹角∠A=30°,过C点的切线与AB的延长线交于点P.(1)求证:CA=CP;(2)已知⊙O的半径r=,求图中阴影部分的面积S.【考点】切线的性质;扇形面积的计算.【分析】(1)求出∠ACO=∠A=30°,根据三角形外角性质求出∠CO B=60°,求出∠P,即可得出答案;(2)解直角三角形求出PC,求出△OCP和扇形COB的面积,即可得出答案.【解答】(1)证明:连接OC,∵OA=OC,∠A=30°,∴∠ACO=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC为⊙O的切线,∴∠OCP=90°,∴∠P=30°,∴∠A=∠P,∴AC=PC;(2)解:在Rt△OCP中,CP=OC×tan60°=×=3,所以图中阴影部分的面积是:S=S△OCP﹣S扇形COB=﹣=3﹣π.22.如图是某校体育场内一看台的截面图,看台CD与水平线的夹角为30°,最低处C与地面的距离BC为2.5米,在C,D正前方有垂直于地面的旗杆EF,在C,D两处测得旗杆顶端F的仰角分别为60°和30°,CD长为10米,升旗仪式中,当国歌开始播放时,国旗也在离地面1.5米的P处同时冉冉升起,国歌播放结束时,国旗刚好上升到旗杆顶端F,已知国歌播放时间为46秒,求国旗上升的平均速度.(结果精确到0.01米/秒)【考点】解直角三角形的应用-仰角俯角问题.【分析】根据正切的概念求出FC的长,根据正弦的概念求出FG的长,结合图形计算即可.【解答】解:由题意得,∠FCD=90°,∠FDC=60°,∴FC=CD•tan∠FDC=10,在Rt△CGF中,FG=FC•sin∠FCG=10×=15,∴PF=FG+GE﹣PE=15+2.5﹣1.5=16,16÷46≈0.35,答:国旗上升的平均速度约为0.35米/秒.23.某校在去年购买A,B两种足球,费用分别为2400元和xx元,其中A种足球数量是B 种足球数量的2倍,B种足球单价比A种足球单价多80元/个.(1)求A,B两种足球的单价;(2)由于该校今年被定为“足球特色校”,学校决定再次购买A,B两种足球共18个,且本次购买B种足球的数量不少于A种足球数量的2倍,若单价不变,则本次如何购买才能使费用W最少?【考点】一次函数的应用;分式方程的应用.【分析】(1)设A种足球单价为x元/个,则B足球单价为(x+80)元/个,根据:A种足球个数=2×B种足球个数,列分式方程求解可得;(2)设再次购买A种足球x个,则B种足球为(18﹣x)个,购买总费用为W,根据:总费用=A种足球单价×A种足球数量+B种足球单价×B种足球数量,列出W关于x的函数关系式,由B种足球的数量不少于A种足球数量的2倍可得x的范围,继而根据一次函数性质可得最值情况.【解答】解:(1)设A种足球单价为x元/个,则B足球单价为(x+80)元/个,根据题意,得: =2×,解得:x=120,经检验:x=120是方程的解,答:A种足球单价为120元/个,B足球单价为200元/个.(2)设再次购买A种足球x个,则B种足球为(18﹣x)个;根据题意,得:W=120x+200(18﹣x)=﹣80x+3600,∵18﹣x≥2x,∴x≤6,∵﹣80<0,∴W随x的增大而减小,∴当x=6时,W最小,此时18﹣x=12,答:本次购买A种足球6个,B种足球12个,才能使购买费用W最少.24.如图1,抛物线l1:y=﹣x2+2x+3与x轴的正半轴和y轴分别交于点A,B,顶点为C,直线BC交x轴于点D.(1)直接写出点A和C的坐标;(2)把抛物线l1沿直线BC方向平移,使平移后的抛物线l2经过点A,点E为其顶点.求抛物线l2的解析式,并在图1中画出其大致图象,标出点E的位置;在x轴上是否存在点P,使△CEP是直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.(注:该步若要用到备用图,则不要求再画出抛物线l2的大致图象)【考点】二次函数综合题.【分析】(1)令y=0可求得点A的坐标,然后依据配方法和顶点坐标公式可求得抛物线的顶点C的坐标;(2)先求得点B的坐标,然后再利用待定系数法求得BC的解析式,直线BC的解析式可设E(a,a+3),则l2的解析式为y=﹣(x﹣a)2+a+3,接下来,将点A的坐标代入抛物线的解析式可求得a的值,从而得到抛物线l2的解析式;将∠P1CE=90°时,先求得CP1的解析式,从而可求得点P1的坐标,同理可求得P2的坐标;如图3所示:以CE为直径作圆G,过点G 作GF⊥x轴,垂足为F.先求得FG与CE的长,然后根据d和r的关系可求得圆G与x轴的位置关系,可判断△CP3E不为直角三角形.【解答】解:(1)∵令y=0得:x2﹣2x﹣3=0,即(x﹣3)(x+1)=0,解得:x1=﹣1,x2=3,∴点A的坐标为(3,0).∵y=﹣x2+2x+3=﹣(x2﹣2x)+3=﹣(x2﹣2x+1﹣1)+3=﹣(x﹣1)2+4,∴点C(1,4).(2)设直线CD的解析式为y=kx+b.∵CD经过点C(1,4)、B(0,3),∴,解得;.∴直线CD解析式为y=x+3.∵抛物线l2由抛物线l1沿直线BC方向平移得到,∴顶点E在直线BC上.设E(a,a+3),则抛物线l2的解析式为y=﹣(x﹣a)2+a+3.∵抛物线l2过点A(3,0),∴﹣(3﹣a)2+a+3=0.解得:a1=6,a2=1(舍去).∴抛物线l2的解析式为y=﹣(x﹣6)2+9=﹣x2+12x﹣27.抛物线l2的大致图象如图1所示.如图2所示:将∠P1CE=90°时,设直线CP1的解析式为y=kx+b.∵CP1⊥BC,∴k=﹣1.∴y=﹣x+b.∵将点C(1,4)代入得:﹣1+b=4.解得b=5,∴直线CP1的解析式为y=﹣x+5.令y=0得;﹣x+5=0,解得x=5,∴点P1的坐标为(5,0).设直线EP2的解析式为y=﹣x+b.∵将点E(6,9)代入得:﹣6+b=9,解得:b=15,∴直线EP2的解析式为y=﹣x+15.∵令y=0得:﹣x+15=0,解得:x=15,∴点P2的坐标为(15,0).如图3所示:以CE为直径作圆G,过点G作GF⊥x轴,垂足为F.∵C(1,4),E(6,9),∴G(3.5,6.5).∴GF=6.5.∵由两点间的距离公式可知CE==5.∴r=.∵d>r,∴圆G与x轴相离.∴∠CP3E<90°,此时不能构成直角三角形.综上所述,点P的坐标为(5,0)或(15,0).25.在四边形ABCD中,M是AB边上的动点,点F在AD的延长线上,且DF=DC,N为MD的中点.连接BN,CN,作NE⊥BN交直线CF于点E.(1)如图1,若四边形ABCD为正方形,当点M与A重合时,求证;NB=NC=NE;(2)如图2,若四边形ABCD为正方形,当点M与A不重合时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)如图3,若四边形ABCD为矩形,当点M与A不重合,点E在FC的延长线上时,请你就线段NB,NC,NE提出一个正确的结论.(不必说理)【考点】四边形综合题.【分析】(1)先证明△MBN≌△DCN,得NB=NC,再证明∠NCE=∠NEC,由等角对等边可知NC=NE,所以NB=NC=NE;(2)结论仍然成立,作辅助线,构建全等三角形,先根据直角三角形斜边上的中线得出AN=DN,证明△ABN≌△DCN,得NB=NC,再根据角的关系求出∠NCE=∠DCN+45°,∠CEN=∠EGD+45°,所以∠NCE=∠CEN,则NC=NE,结论成立;(3)NB=NC=NE,如图3,延长EN交AD于G,连接AN,同理得出NB=NC,再根据∠NEF=∠ECN,得NC=NE,所以NB=NC=NE.【解答】解:(1)如图1,在正方形ABCD 中,∵AB=CD,∠A=∠ADC,MN=DN,∴△MBN≌△DCN,∴NB=NC,∵NE⊥BN∴∠BNE=90°∴∠BNA+∠ENF=90°,∵∠ABN+∠ANB=90°,∴∠ABN=∠ENF,∵∠ABN=∠NCD,∴∠NCD=∠ENF,∵CD=DF,∠CDF=90°,∴∠F=∠DCF=45°,∵∠NCE=∠DCN+∠DCF=∠DCN+45°,∠CEN=∠ENF+∠F=∠ENF+45°,∴∠NCE=∠NEC,∴NC=NE,∴NB=NC=NE;(2)成立,如图2,延长EN交AD于G,连接AN,在Rt△ADM中,∵N是MD的中点,∴AN=DN,∴∠NAD=∠NDA,∴∠BAN=∠MDC,∵AB=CD,∴△ABN≌△DCN,∴NB=NC,∵NE⊥BN,∴∠ABN+∠AGN=180°,∵∠EGD+∠AGN=180°,∴∠ABN=∠EGD,∵∠ABN=∠DCN,∴∠EGD=∠DCN,∵CD=DF,∠CDF=90°,∴∠F=∠DCF=45°∵∠NCE=∠DCN+∠DCF=∠DCN+45°,∠CEN=∠EGD+∠F=∠EGD+45°,∴∠NCE=∠CEN,∴NC=NE,∴NB=NC=NE;(3)NB=NC=NE,理由是:如图3,延长EN交AD于G,连接AN,同理得AN=DN,∴∠NAD=∠NDA,∴∠BAN=∠NDC,∵四边形ABCD为矩形,∴AB=CD,∴△ABN≌△DCN,∴NB=NC,∵NE⊥BN,∴∠ABN+∠AGN=180°,∵∠EGD+∠AGN=180°,∴∠ABN=∠EGD,∵∠ABN=∠DCN,∴∠EGD=∠DCN,∵∠F=∠DCF=45°,在△EGF中,∠NEF=180°﹣∠EGD﹣∠F=135°﹣∠EGD,∠ECN=180°﹣∠DCN﹣∠DCF=135°﹣∠DCN,∴∠NEF=∠ECN,∴NC=NE,∴NB=NC=NE.20236 4F0C 伌35863 8C17 谗#gH34077 851D 蔝; 24339 5F13 弓32291 7E23 縣T25316 62E4 拤36841 8FE9 迩T?。