【初中】初中数学巧添辅助线解证几何题

合集下载

中考数学几何辅助线技巧

中考数学几何辅助线技巧

中考数学几何辅助线技巧中考数学几何辅助线技巧辅助线对于同学们来说都不陌生,解几何题的时候经常用到。

当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。

一条巧妙的辅助线常常使一道难题迎刃而解。

所以我们要学会巧妙的添加辅助线。

一、添辅助线有二种情况:1、按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

八年级上册几何辅助线专题讲解和练习

八年级上册几何辅助线专题讲解和练习

八上数学辅助线的添加浅谈一、添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线;2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”这样可防止乱添线,添辅助线也有规律可循;举例如下:1平行线是个基本图形:当几何中出现平行线时添辅助线的关键,是添与二条平行线都相交的等第三条直线2等腰三角形是个简单的基本图形:出现一点发出的二条相等线段时,往往要连结已知点补完整等腰三角形;3等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点,添底边上的中线;4直角三角形斜边上中线基本图形出现直角三角形斜边上的中点,往往添斜边上的中线;出现线段倍半关系且倍线段是直角三角形的斜边,要添直角三角形斜边上的中线;5全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个相等角关于某一直线成轴对称,就可以添加辅助线构造轴对称形全等三角形;或添对称轴,对应点连线的中垂线即为对称轴;当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加辅助线构造中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线6特殊角直角三角形当出现30,45,60,135,150度特殊角时可添加特殊角直角三角形,利用45角直角三角形三边比为1:1:√2;30度角直角三角形三边比为1:2:√3进行证明二、基本图形的辅助线的画法1.三角形问题添加辅助线方法方法1:倍长中线法;有关三角形中线的题目,常将中线倍长构造全等三角形;方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质定理和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题;方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用角平分线、垂直平分线的性质定理进行转换;方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法进行转换,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段;2.平行四边形中常用辅助线的添法平行四边形包括矩形、正方形、菱形的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:1连对角线或平移对角线:2过顶点作对边的垂线构造直角三角形3连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线4连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;5过顶点作对角线的垂线,构成线段平行或三角形全等.三、作辅助线的方法一:中点、中位线,延线,平行线;如遇条件中有中点,中线、中位线等,那么过中点,延长中线或中位线作辅助线,使延长的某一段等于中线或中位线;另一种辅助线是过中点作已知边或线段的平行线,以达到应用某个定理或造成全等的目的;二:垂线、角平分线,翻转全等连;如遇条件中,有垂线或角的平分线,可以把图形按轴对称的方法,并借助其他条件,而旋转180度,得到全等形,,这时辅助线的做法就会应运而生;其对称轴往往是垂线或角的平分线;三:边边若相等,旋转做实验;如遇条件中有多边形的两边相等或两角相等,有时边角互相配合,然后把图形旋转一定的角度,就可以得到全等形,这时辅助线的做法仍会应运而生;其对称中心,因题而异,有时没有中心;故可分“有心”和“无心”旋转两种;四:面积找底高,多边变三边;如遇求面积,在条件和结论中出现线段的平方、乘积,仍可视为求面积,往往作底或高为辅助线,而两三角形的等底或等高是思考的关键;如遇多边形,想法割补成三角形;反之,亦成立;另外,我国明清数学家用面积证明勾股定理,其辅助线的做法,即“割补”有二百多种,大多数为“面积找底高,多边变三边”;四、三角形中作辅助线的常用方法举例一、在证明三角形中多条线段的不等量关系时,若直接证不出来,可连接两点或延长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:例1:已知如图1-1:D 、E 为△ABC 内两点,求证:AB +AC >BD +DE +CE.证明:法一将DE 两边延长分别交AB 、AC 于M 、N,在△AMN 中,AM +AN > MD +DE +NE;1 在△BDM 中,MB +MD >BD ; 2 在△CEN 中,CN +NE >CE ; 3 由1+2+3得:AM +AN +MB +MD +CN +NE >MD +DE +NE +BD +CE ∴AB +AC >BD +DE +EC法二:如图1-2, 延长BD 交 AC 于F,延长CE 交BF 于G,在△ABF 和△GFC 和△GDE 中有:AB +AF > BD +DG +GF 三角形两边之和大于第三边1 GF +FC >GE +CE 同上………………………………2 DG +GE >DE 同上……………………………………3 由1+2+3得:AB +AF +GF +FC +DG +GE >BD +DG +GF +GE +CE +DE ∴AB +AC >BD +DE +EC;二、在证明三角形中某些角的不等量关系时,如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC >∠BAC;BDC 与∠BAC 不在同一个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E,这时∠BDC 是△EDC 的外角,A BCDEN M 11-图ABCDEF G21-图AD E G∴∠BDC >∠DEC,同理∠DEC >∠BAC,∴∠BDC >∠BAC 证法二:连接AD,并延长交BC 于F ∵∠BDF 是△ABD 的外角∴∠BDF >∠BAD,同理,∠CDF >∠CAD ∴∠BDF +∠CDF >∠BAD +∠CAD 即:∠BDC >∠BAC;注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明;三、有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF;分析:要证BE +CF >EF ,可利用三角形三边关系定理证明,须把BE,CF,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同一个三角形中;证明:在DA 上截取DN =DB,连接NE,NF,则DN =DC, 在△DBE 和△DNE 中:∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法ED ED DB DN ∴△DBE ≌△DNE SAS∴BE =NE 全等三角形对应边相等 同理可得:CF =NF在△EFN 中EN +FN >EF 三角形两边之和大于第三边 ∴BE +CF >EF;注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的性质得到对应元素相等;四、有以线段中点为端点的线段时,常延长加倍此线段,构造全等三角形; 例如:如图4-1:AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE +CF >EF 证明:延长ED 至M,使DM=DE,连接 CM,MF;在△BDE 和△CDM 中,AB CD E FN13-图1234ACE F1234∵⎪⎩⎪⎨⎧=∠=∠=)()(1)(辅助线的作法对顶角相等中点的定义MD ED CDM CD BD ∴△BDE ≌△CDM SAS又∵∠1=∠2,∠3=∠4 已知 ∠1+∠2+∠3+∠4=180°平角的定义 ∴∠3+∠2=90°,即:∠EDF =90° ∴∠FDM =∠EDF =90° 在△EDF 和△MDF 中∵⎪⎩⎪⎨⎧=∠=∠=)()()(公共边已证辅助线的作法DF DF FDM EDF MD ED∴△EDF ≌△MDF SAS∴EF =MF 全等三角形对应边相等∵在△CMF 中,CF +CM >MF 三角形两边之和大于第三边 ∴BE +CF >EF注:上题也可加倍FD,证法同上;注意:当涉及到有以线段中点为端点的线段时,可通过延长加倍此线段,构造全等三角形,使题中分散的条件集中;五、有三角形中线时,常延长加倍中线,构造全等三角形; 例如:如图5-1:AD 为 △ABC 的中线,求证:AB +AC >2AD;分析:要证AB +AC >2AD,由图想到: AB +BD >AD,AC +CD >AD,所以有AB +AC + BD +CD >AD +AD =2AD,左边比要证结论多BD +CD,故不能直接证出此题,而由2AD 想到要构造2AD,即加倍中线,把所要证的线段转移到同一个三角形中去;证明:延长AD 至E,使DE=AD,连接BE,则AE =2AD ∵AD 为△ABC 的中线 已知 ∴BD =CD 中线定义 在△ACD 和△EBD 中⎪⎩⎪⎨⎧=∠=∠=)()()(辅助线的作法对顶角相等已证ED AD EDB ADC CD BD∴△ACD ≌△EBD SAS∴BE =CA 全等三角形对应边相等∵在△ABE 中有:AB +BE >AE 三角形两边之和大于第三边ABCDE15-图AEF∴AB +AC >2AD;练习:已知△ABC,AD 是BC 边上的中线,分别以AB 边、AC 边为直角边各向形外作等腰直角三角形,如图5-2, 求证EF =2AD;六、截长补短法作辅助线;例如:已知如图6-1:在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任一点;求证:AB -AC >PB -PC;分析:要证:AB -AC >PB -PC,想到利用三角形三边关系定理证之,因为欲证的是线段之差,故用两边之差小于第三边,从而想到构造第三边AB -AC,故可在AB 上截取AN 等于AC,得AB -AC =BN, 再连接PN,则PC =PN,又在△PNB 中,PB -PN <BN,即:AB -AC >PB -PC;证明:截长法在AB 上截取AN =AC 连接PN , 在△APN 和△APC 中∵⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AC AN ∴△APN ≌△APC SAS∴PC =PN 全等三角形对应边相等∵在△BPN 中,有 PB -PN <BN 三角形两边之差小于第三边 ∴BP -PC <AB -AC证明:补短法 延长AC 至M,使AM =AB,连接PM, 在△ABP 和△AMP 中∵ ⎪⎩⎪⎨⎧=∠=∠=)()(21)(公共边已知辅助线的作法AP AP AM AB∴△ABP ≌△AMP SAS∴PB =PM 全等三角形对应边相等又∵在△PCM 中有:CM >PM -PC 三角形两边之差小于第三边 ∴AB -AC >PB -PC;七、延长已知边构造三角形:例如:如图7-1:已知AC =BD,AD ⊥AC 于A ,BC ⊥BD 于B, 求证:AD =BCA BCDNMP 16-图12分析:欲证 AD =BC,先证分别含有AD,BC 的三角形全等,有几种方案:△ADC 与△BCD,△AOD 与△BOC,△ABD 与△BAC,但根据现有条件,均无法证全等,差角的相等,因此可设法作出新的角,且让此角作为两个三角形的公共角;证明:分别延长DA,CB,它们的延长交于E 点, ∵AD ⊥AC BC ⊥BD 已知 ∴∠CAE =∠DBE =90° 垂直的定义 在△DBE 与△CAE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠)()()(已知已证公共角AC BD CAE DBE E E∴△DBE ≌△CAE AAS∴ED =EC EB =EA 全等三角形对应边相等 ∴ED -EA =EC -EB 即:AD =BC;当条件不足时,可通过添加辅助线得出新的条件,为证题创造条件;八 、连接四边形的对角线,把四边形的问题转化成为三角形来解决; 例如:如图8-1:AB ∥CD,AD ∥BC 求证:AB=CD;分析:图为四边形,我们只学了三角形的有关知识,必须把它转化为三角形来解决; 证明:连接AC 或BD∵AB ∥CD AD ∥BC 已知∴∠1=∠2,∠3=∠4 两直线平行,内错角相等 在△ABC 与△CDA 中∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)(43)()(21已证公共边已证CA AC∴△ABC ≌△CDA ASA∴AB =CD 全等三角形对应边相等九、有和角平分线垂直的线段时,通常把这条线段延长;例如:如图9-1:在Rt △ABC 中,AB =AC,∠BAC =90°,∠1=∠2,CE ⊥BD 的延长于E ;求证:BD =2CE分析:要证BD =2CE,想到要构造线段2CE,同时CE 与∠ABC 的平分线垂直,想到要将其延长;证明:分别延长BA,CE 交于点F; ∵BE ⊥CF 已知DAEFA BCD 18-图1234ABCDE17-图O∴∠BEF =∠BEC =90° 垂直的定义 在△BEF 与△BEC 中,∵ ⎪⎩⎪⎨⎧∠=∠=∠=∠)()()(21已证公共边已知BEC BEF BE BE ∴△BEF ≌△BECASA ∴CE=FE=21CF 全等三角形对应边相等 ∵∠BAC=90° BE ⊥CF 已知∴∠BAC =∠CAF =90° ∠1+∠BDA =90°∠1+∠BFC =90° ∴∠BDA =∠BFC 在△ABD 与△ACF 中⎪⎩⎪⎨⎧∠=∠∠=∠)()()(已知=已证已证AC AB BFC BDA CAF BAC∴△ABD ≌△ACF AAS ∴BD =CF 全等三角形对应边相等 ∴BD =2CE十、连接已知点,构造全等三角形;例如:已知:如图10-1;AC 、BD 相交于O 点,且AB =DC,AC =BD,求证:∠A =∠D; 分析:要证∠A =∠D,可证它们所在的三角形△ABO 和△DCO 全等,而只有AB =DC 和对顶角两个条件,差一个条件,,难以证其全等,只有另寻其它的三角形全等,由AB =DC,AC =BD,若连接BC,则△ABC 和△DCB 全等,所以,证得∠A =∠D;证明:连接BC,在△ABC 和△DCB 中 ∵ ⎪⎩⎪⎨⎧===)()()(公共边已知已知CB BC DB AC DC AB∴△ABC ≌△DCB SSS∴∠A =∠D 全等三角形对应边相等十一、取线段中点构造全等三有形;例如:如图11-1:AB =DC,∠A =∠D 求证:∠ABC =∠DCB;分析:由AB =DC,∠A =∠D,想到如取AD 的中点N,连接NB,NC,再由SAS 公理有△ABN ≌△DCN,故BN =CN,∠ABN =∠DCN;下面只需证∠NBC =∠NCB,再取BC 的中点M,连接MN,则由SSS 公理有△NBM ≌△NCM,所以∠NBC =∠NCB;问题得证;证明:取AD,BC 的中点N 、M,连接NB,NM,NC;则AN=DN,BM=CM,在△ABN 和△DCN 中DCBA110-图ODAN∵ ⎪⎩⎪⎨⎧=∠=∠=)()()(已知已知辅助线的作法DC AB D A DN AN ∴△ABN ≌△DCN SAS∴∠ABN =∠DCN NB =NC 全等三角形对应边、角相等 在△NBM 与△NCM 中∵⎪⎩⎪⎨⎧)()()(公共边=辅助线的作法=已证=NM NM CM BM NC NB∴△NMB ≌△NCM,SSS ∴∠NBC =∠NCB 全等三角形对应角相等∴∠NBC +∠ABN =∠NCB +∠DCN 即∠ABC =∠DCB;五、巧求三角形中线段的比值例1. 如图1,在△ABC中,BD:DC=1:3,AE:ED=2:3,求AF:FC;解:过点D作DG如图2,BC=CD,AF=FC,求EF:FD解:过点C作CG如图3,BD:DC=1:3,AE:EB=2:3,求AF:FD;解:过点B作BG如图4,BD:DC=1:3,AF=FD,求EF:FC;解:过点D作DG如图5,BD=DC,AE:ED=1:5,求AF:FB;2. 如图6,AD:DB=1:3,AE:EC=3:1,求BF:FC;答案:1、1:10; 2. 9:1六、辅助线总结一、 由角平分线想到的辅助线 口诀:图中有角平分线,可向两边作垂线;也可将图对折看,对称以后关系现;角平分线平行线,等腰三角形来添;角平分线加垂线,三线合一试试看;角平分线具有两条性质:a 、对称性;b 、角平分线上的点到角两边的距离相等;对于有角平分线的辅助线的作法,一般有两种;①从角平分线上一点向两边作垂线;②利用角平分线,构造对称图形如作法是在一侧的长边上截取短边; 通常情况下,出现了直角或是垂直等条件时,一般考虑作垂线;其它情况下考虑构造对称图形;至于选取哪种方法,要结合题目图形和已知条件;与角有关的辅助线一、截取构全等几何的证明在于猜想与尝试,但这种尝试与猜想是在一定的规律基本之上的,希望同学们能掌握相关的几何规律,在解决几何问题中大胆地去猜想,按一定的规律去尝试;下面就几何中常见的定理所涉及到的辅助线作以介绍;如图1-1,∠AOC=∠BOC,如取OE=OF,并连接DE 、DF,则有△OED ≌△OFD,从而为我们证明线段、角相等创造了条件;如图1-2,ABAC;3.已知:如图2-5, ∠BAC=∠CAD,AB>AD,CE ⊥AB,AE=21AB+AD.求证:∠D+∠B=180 ;4.已知:如图2-6,在正方形ABCD 中,E 为CD 的中点,F 为BC上的点,∠FAE=∠DAE;求证:AF=AD+CF;图1-1BDBC已知:如图2-7,在Rt △ABC 中,∠ACB=90 ,CD ⊥AB,垂足为D,AE 平分∠CAB 交CD 于F,过F 作FH 21证:BD=2CE;分析:给出了角平分线给出了边上的一点作角平分线的垂线,可延长此垂线与另外一边相交,近而构造出等腰三角形;例3.已知:如图3-3在△ABC 中,AD 、AE 分别∠BAC 的内、外角平分线,过顶点B 作BFAD,交AD 的延长线于F,于M;求证:AM=ME;分析:由AD 、AE 是∠BAC AF,从而BF2121图4-2图4-1ABBG已知,如图,∠C=2∠A,AC=2BC;求证:△ABC 是直角三角形;2.已知:如图,AB=2AC,∠1=∠2,DA=DB,求证:DC ⊥ACCABA 图2-6ECD图3-2CE3.已知CE 、AD 是△ABC 的角平分线,∠B=60°,求证:AC=AE+CD 4.已知:如图在△ABC 中,∠A=90°,AB=AC,BD 是∠ABC 的平分线,求证:BC=AB+AD二、由线段和差想到的辅助线 口诀:线段和差及倍半,延长缩短可试验;线段和差不等式,移到同一三角去; 遇到求证一条线段等于另两条线段之和时,一般方法是截长补短法: 1、截长:在长线段中截取一段等于另两条中的一条,然后证明剩下部分等于另一条;2、补短:将一条短线段延长,延长部分等于另一条短线段,然后证明新线段等于长线段;对于证明有关线段和差的不等式,通常会联系到三角形中两线段之和大于第三边、之差小于第三边,故可想办法放在一个三角形中证明;在利用三角形三边关系证明线段不等关系时,如直接证不出来,可连接两点或廷长某边构成三角形,使结论中出现的线段在一个或几个三角形中,再运用三角形三边的不等关系证明,如:已知如图1-1:D 、E 为△ABC 内两点,求证:AB+AC>BD+DE+CE. 证明:法一将DE 两边延长分别交AB 、AC 于M 、N, 在△AMN 中,AM+AN>MD+DE+NE;1 在△BDM 中,MB+MD>BD ;2 在△CEN 中,CN+NE>CE ;3 由1+2+3得:AM+AN+MB+MD+CN+NE>MD+DE+NE+BD+CE ∴AB+AC>BD+DE+ECA BC D AEB D CABCD EN M 11-图AF法二:图1-2延长BD 交AC 于F,廷长CE 交BF 于G,在△ABF 和△GFC 和△GDE 中有: AB+AF>BD+DG+GF 三角形两边之和大于第三边…1 GF+FC>GE+CE 同上2 DG+GE>DE 同上3 由1+2+3得:AB+AF+GF+FC+DG+GE>BD+DG+GF+GE+CE+DE ∴AB+AC>BD+DE+EC;在利用三角形的外角大于任何和它不相邻的内角时如直接证不出来时,可连接两点或延长某边,构造三角形,使求证的大角在某个三角形的外角的位置上,小角处于这个三角形的内角位置上,再利用外角定理:例如:如图2-1:已知D 为△ABC 内的任一点,求证:∠BDC>∠BAC;BDC 与∠BAC 不在同个三角形中,没有直接的联系,可适当添加辅助线构造新的三角形,使∠BDC 处于在外角的位置,∠BAC 处于在内角的位置;证法一:延长BD 交AC 于点E,这时∠BDC 是△EDC 的外角, ∴∠BDC>∠DEC,同理∠DEC>∠BAC,∴∠BDC>∠BAC 证法二:连接AD,并廷长交BC 于F,这时∠BDF 是△ABD 的 外角,∴∠BDF>∠BAD,同理,∠CDF>∠CAD,∴∠BDF+ ∠CDF>∠BAD+∠CAD,即:∠BDC>∠BAC;注意:利用三角形外角定理证明不等关系时,通常将大角放在某三角形的外角位置上,小角放在这个三角形的内角位置上,再利用不等式性质证明;有角平分线时,通常在角的两边截取相等的线段,构造全等三角形,如:例如:如图3-1:已知AD 为△ABC 的中线,且∠1=∠2,∠3=∠4,求证:BE+CF>EF;BE+CF>EF,可利用三角形三边关系定理证明,须把BE,CF,EF 移到同一个三角形中,而由已知∠1=∠2,∠3=∠4,可在角的两边截取相等的线段,利用三角形全等对应边相等,把EN,FN,EF 移到同个三角形中;证明:在DN 上截取DN=DB,连接NE,NF,则DN=DC, 在△DBE 和△NDE 中: DN=DB 辅助线作法 ∠1=∠2已知 ED=ED 公共边AB CD E F G12-图ABCD E FN13-图1234∴△DBE ≌△NDESAS∴BE=NE 全等三角形对应边相等 同理可得:CF=NF在△EFN 中EN+FN>EF 三角形两边之和大于第三边 ∴BE+CF>EF;注意:当证题有角平分线时,常可考虑在角的两边截取相等的线段,构造全等三角形,然后用全等三角形的对应性质得到相等元素;截长补短法作辅助线;例如:已知如图6-1:在△ABC 中,AB>AC,∠1=∠2,P 为AD 上任一点求证:AB-AC>PB-PC;要证:AB-AC>PB-PC,想到利用三角形三边关系,定理证之,因为欲证的线段之差,故用两边之差小于第三边,从而想到构造第三边AB-AC,故可在AB 上截取AN 等于AC,得AB-AC=BN,再连接PN,则PC=PN,又在△PNB 中,PB-PN<BN,即:AB-AC>PB-PC;证明:截长法在AB 上截取AN=AC 连接PN,在△APN 和△APC 中 AN=AC 辅助线作法 ∠1=∠2已知 AP=AP 公共边∴△APN ≌△APCSAS,∴PC=PN 全等三角形对应边相等 ∵在△BPN 中,有PB-PN<BN 三角形两边之差小于第三边∴BP-PC<AB-AC 证明:补短法延长AC 至M,使AM=AB,连接PM,在△ABP 和△AMP 中ABCDNMP 16 图12AB=AM 辅助线作法 ∠1=∠2已知 AP=AP 公共边 ∴△ABP ≌△AMPSAS∴PB=PM 全等三角形对应边相等又∵在△PCM 中有:CM>PM-PC 三角形两边之差小于第三边 ∴AB-AC>PB-PC;例1.如图,AC 平分∠BAD,CE ⊥AB,且∠B+∠D=180°,求证:AE=AD+BE;例2如图,在四边形ABCD 中,AC 平分∠BAD,CE ⊥AB 于E,AD+AB=2AE,求证:∠ADC+∠B=180º例3已知:如图,等腰三角形ABC 中,AB=AC,∠A=108°,BD 平分∠ABC;求证:BC=AB+DC;例4如图,已知Rt △ABC 中,∠ACB=90°,AD 是∠CAB 的平分线,DM ⊥AB 于M,且AM=MB;求证:CD=21DB;1.如图,AB ∥CD,AE 、DE 分别平分∠BAD 各∠ADE,求证:AD=AB+CD;DECB AE BCDCM BDCA2.如图,△ABC 中,∠BAC=90°,AB=AC,AE 是过A 的一条直线,且B,C 在AE 的异侧,BD ⊥AE 于D,CE ⊥AE 于E;求证:BD=DE+CE三、由中点想到的辅助线 口诀:三角形中两中点,连接则成中位线;三角形中有中线,延长中线等中线;在三角形中,如果已知一点是三角形某一边上的中点,那么首先应该联想到三角形的中线、中位线、加倍延长中线及其相关性质直角三角形斜边中线性质、等腰三角形底边中线性质,然后通过探索,找到解决问题的方法;一中线把原三角形分成两个面积相等的小三角形即如图1,AD 是ΔABC 的中线,则S ΔABD =S ΔACD =S ΔABC 因为ΔABD 与ΔACD 是等底同高的;例1.如图2,ΔABC 中,AD 是中线,延长AD 到E,使DE=AD,DF 是ΔDCE 的中线;已知ΔABC 的面积为2,求:ΔCDF 的面积;解:因为AD 是ΔABC 的中线,所以S ΔACD =S ΔABC =×2=1,又因CD 是ΔACE 的中线,故S ΔCDE =S ΔACD =1,因DF 是ΔCDE 的中线,所以S ΔCDF =S ΔCDE =×1=;∴ΔCDF 的面积为;二由中点应想到利用三角形的中位线ED CB A例2.如图3,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,BA、CD的延长线分别交EF的延长线G、H;求证:∠BGE=∠CHE;证明:连结BD,并取BD的中点为M,连结ME、MF,∵ME是ΔBCD的中位线,∴ME CD,∴∠MEF=∠CHE,∵MF是ΔABD的中位线,∴MF AB,∴∠MFE=∠BGE,∵AB=CD,∴ME=MF,∴∠MEF=∠MFE,从而∠BGE=∠CHE;三由中线应想到延长中线例3.图4,已知ΔABC中,AB=5,AC=3,连BC上的中线AD=2,求BC的长;解:延长AD到E,使DE=AD,则AE=2AD=2×2=4;在ΔACD和ΔEBD中,∵AD=ED,∠ADC=∠EDB,CD=BD,∴ΔACD≌ΔEBD,∴AC=BE,从而BE=AC=3;在ΔABE中,因AE2+BE2=42+32=25=AB2,故∠E=90°,∴BD===,故BC=2BD=2;例4.如图5,已知ΔABC中,AD是∠BAC的平分线,AD又是BC边上的中线;求证:ΔABC是等腰三角形;证明:延长AD到E,使DE=AD;仿例3可证:ΔBED≌ΔCAD,故EB=AC,∠E=∠2,又∠1=∠2,∴∠1=∠E,∴AB=EB,从而AB=AC,即ΔABC是等腰三角形;D CB A EDF CBA四直角三角形斜边中线的性质例5.如图6,已知梯形ABCD 中,AB2:如图,△ABC 中,E 、F 分别在AB 、AC 上,DE ⊥DF,D 是中点,试比较BE+CF 与EF 的大小.3:如图,△ABC 中,BD=DC=AC,E 是DC 的中点,求证:AD 平分∠BAE.EDCB A中考应用09崇文二模以ABC ∆的两边AB 、AC 为腰分别向外作等腰Rt ABD ∆和等腰Rt ACE ∆,90,BAD CAE ∠=∠=︒连接DE,M 、N 分别是BC 、DE 的中点.探究:AM 与DE 的位置关系及数量关系.1如图① 当ABC ∆为直角三角形时,AM 与DE 的位置关系是 ,线段AM 与DE 的数量关系是 ;2将图①中的等腰Rt ABD ∆绕点A 沿逆时针方向旋转︒θ0<θ<90后,如图②所示,1问中得到的两个结论是否发生改变 并说明理由.14-图A B CD EFM1234A BCDE 15-图DMCE AB BA D C86B E CDA ABCD EF25-图 AB DC EFDAEDCBAP QCBA二、截长补短1.如图,ABC ∆中,AB=2AC,AD 平分BAC ∠,且AD=BD,求证:CD ⊥AC2:如图,AC ∥BD,EA,EB 分别平分∠CAB,∠DBA,CD 过点E,求证;AB =AC+BD3:如图,已知在ABC内,060BAC ∠=,040C ∠=,P,Q 分别在BC,CA 上,并且AP,BQ 分别是BAC ∠,ABC ∠的角平分线;求证:BQ+AQ=AB+BP4:如图,在四边形ABCD 中,BC >BA,AD =CD,BD 平分ABC ∠,求证:0180=∠+∠C ACDBAP 21DCBA5:如图在△ABC 中,AB >AC,∠1=∠2,P 为AD 上任意一点,求证;AB-AC >PB-PC中考应用 08海淀一模三、平移变换为△ABC 的角平分线,直线MN ⊥AD 于为MN 上一点,△ABC 周长记为AP ,△EBC 周长记为BP .求证BP >AP .2:如图,在△ABC 的边上取两点D 、E,且BD=CE,求证:AB+AC>AD+AE.ED CB A四、借助角平分线造全等CBAFED CBA 1:如图,已知在△ABC 中,∠B=60°,△ABC 的角平分线AD,CE 相交于点O,求证:OE=OD2:06郑州市中考题如图,△ABC 中,AD ∠BAC,DG ⊥BC 且平分BC,DE ⊥AB 于E,DF ⊥AC 于明BE=CF 的理由;2如果AB=a ,AC=b ,求AE 、BE 的长.中考应用06北京中考如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形;请你参考这个作全等三角形的方法,解答下列问题:1如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F ;请你判断并写出FE 与FD 之间的数量关系;2如图③,在△ABC 中,如果∠ACB 不是直角,而1中的其它条件不变,请问,你在1中所得结论是否仍然成立 若成立,请证明;若不成立,请说明理由;五、旋转1:正方形ABCD 中,E 为BC 上的一点,F 为CD 上的一点,BE+DF=EF,求∠EAF 的度数.2:D 为等腰Rt ABC ∆斜边AB 的中点,DM ⊥DN,DM,DN 分别交BC,CA 于点E,F;当MDN ∠绕点D 转动时,求证DE=DF; 若AB=2,求四边形DECF 的面积;EDGFCBA第23题OPAMN EB CD FACEFBD图图图3.如图,ABC ∆是边长为3的等边三角形,BDC ∆是等腰三角形,且0120BDC ∠=,以D 为顶点做一个060角,使其两边分别交AB 于点M,交AC 于点N,连接MN,则AMN ∆的周长为 ;BCNM中考应用 07佳木斯已知四边形ABCD中,AB AD ⊥,BC CD ⊥,AB BC =,120ABC =∠,60MBN =∠,MBN ∠绕B 点旋转,它的两边分别交AD DC ,或它们的延长线于E F ,.当MBN ∠绕B 点旋转到AE CF =时如图1,易证AE CF EF +=.当MBN ∠绕B 点旋转到AE CF ≠时,在图2和图3这两种情况下,上述结论是否成立 若成立,请给予证明;若不成立,线段AE CF ,,EF 又有怎样的数量关系 请写出你的猜想,不需证明.西城09年一模已知2,PB=4,以AB 为一边作正方形ABCD,使P 、D 两点落在直线AB 的两侧.1如图,当∠APB=45°时,求AB 及PD 的长;2当∠APB 变化,且其它条件不变时,求PD 的最大值,及相应∠APB 的大小.图1A BC D E FMN 图2 A BC D E FMN 图3ABC D EF M N。

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题

DCB A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接那么成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一〞法:遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法〞或“补短法〞: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一〞的性质解题,思维模式是全等变换中的“对折〞法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转〞 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,〔1〕可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折〞,所考知识点常常是角平分线的性质定理或逆定理.〔2〕可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

初中几何添辅助线方法

初中几何添辅助线方法

初中几何添辅助线方法初中几何学中,添辅助线是解题的常用方法之一。

通过巧妙地引入辅助线,可以简化问题,帮助我们更好地理解和解决几何问题。

本文将介绍几种常见的初中几何添辅助线方法。

一、三角形的辅助线方法1. 垂心和垂足当我们遇到一个三角形,需要证明某条线段平行于另一条线段时,可以考虑引入垂心和垂足。

通过引入垂心和垂足,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

2. 中位线中位线是连接三角形两个顶点和中点的线段。

在解决三角形问题时,可以考虑引入中位线。

中位线将三角形分成两个全等的三角形,从而简化问题。

3. 角平分线角平分线将一个角分成两个相等的角。

在解决三角形问题时,可以考虑引入角平分线。

通过引入角平分线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

二、四边形的辅助线方法1. 对角线对角线是四边形两个非相邻顶点之间的线段。

在解决四边形问题时,可以考虑引入对角线。

通过引入对角线,我们可以将四边形分成两个全等的三角形,从而简化问题。

2. 中线中线是连接四边形两个相邻顶点中点的线段。

在解决四边形问题时,可以考虑引入中线。

中线将四边形分成两个全等的三角形,从而简化问题。

三、圆的辅助线方法1. 半径和切线在解决圆的问题时,可以考虑引入半径和切线。

通过引入半径和切线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

2. 弦和切线在解决圆的问题时,可以考虑引入弦和切线。

通过引入弦和切线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

四、其他几何图形的辅助线方法1. 高和底边在解决梯形或三角形问题时,可以考虑引入高和底边。

通过引入高和底边,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。

2. 中线在解决平行四边形问题时,可以考虑引入中线。

中线将平行四边形分成两个全等的三角形,从而简化问题。

初中几何学中的添辅助线方法是解题的重要手段之一。

通过巧妙地引入辅助线,我们可以简化问题,帮助我们更好地理解和解决几何问题。

巧添辅助线解证几何题

巧添辅助线解证几何题

龙源期刊网
巧添辅助线解证几何题
作者:倪小芳
来源:《数理化学习·初中版》2013年第06期
在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的问题加以解决.值得注意的是辅助线的添加目的与已知条件和所求结论有关.下面我们分别举例加以说明.
一、倍角问题
二、中点问题
三、线段的和差问题
四、垂线段问题
五、梯形问题
[江苏省金坛市第五中学(213200)]。

初中数学《全等三角形中辅助线的添法》压轴题及答案

初中数学《全等三角形中辅助线的添法》压轴题及答案

全等三角形中辅助线的添法(三大模型)【模型一:倍长中线模型】1.(23-24八年级上·江苏·期末)如图,在△ABC中.AD是BC边上的中线,交BC于点D.(1)如下图,延长AD到点E,使DE=AD,连接BE.求证:△ACD≌△EBD.(2)如下图,若∠BAC=90°,试探究AD与BC有何数量关系,并说明理由.(3)如下图,若CE是边AB上的中线,且CE交AD于点O.请你猜想线段AO与OD之间的数量关系,并说明理由.2.(23-24八年级上·广西北海·期末)八年级数学课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=9,AC=5,求BC边上的中线AD的取值范围.小红在组内经过合作交流,得到了如下的解决方法:延长AD到点E,使DE=AD,请根据小红的方法思考作答:(1)由已知和作图能得到△ADC≌△EDB的理由是;A.SSSB.SASC.AASD.HL(2)求得AD的取值范围是;A.5<AD<9B.5≤AD≤9C.2<AD<7D.2≤AD≤7(3)归纳总结:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小红善于探究,她又提出了如下的问题,请你解答.如图2,在△ABC中,点E在BC上,且DE=DC,过E作EF∥AB,且EF=AC.求证:AD平分∠BAC.3.(23-24八年级上·安徽安庆·期末)(1)如图①,在△ABC中,若AB=6,AC=4,AD为BC边上的中线,求AD的取值范围;(2)如图②,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.4.(23-24八年级上·江苏南通·期中)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=6,AC=4,求BC边上的中线AD的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图1所示,延长AD到点E,使DE=AD,连接BE.请根据小明的思路继续思考:(1)由已知和作图能证得△ADC≌△EDB,得到BE=AC,在△ABE中求得2AD的取值范围,从而求得AD的取值范围是.方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系;(2)如图2,AD是△ABC的中线,AB=AE,AC=AF,∠BAE+∠CAF=180°,试判断线段AD与EF的数量关系,并加以证明;(3)如图3,在△ABC中,D,E是BC的三等分点.求证:AB+AC>AD+AE.5.(23-24七年级下·广东佛山·期中)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC中,AB=8,AC=6,求BC边上的中线AD的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD到点E,使DE=AD请根据小明的方法思考:(1)求得AD的取值范围是;【问题解决】请利用上述方法(倍长中线)解决下列三个问题如图,已知∠BAC+∠CDE=180°,AB=AC,DC=DE,P为BE的中点.(2)如图1,若A,C,D共线,求证:AP平分∠BAC;(3)如图2,若A,C,D不共线,求证:AP⊥DP;(4)如图3,若点C在BE上,记锐角∠BAC=x,且AB=AC=CD=DE,则∠PDC的度数是(用含x的代数式表示).【模型二:旋转模型(截长补短)】6.(23-24八年级上·湖北武汉·期末)如图,在五边形ABCDE中,∠B=∠E=90°,∠CAD=1∠BAE,2AB=AE,且CD=3,AE=4,则五边形ABCDE的面积为()A.6B.8C.10D.127.(23-24八年级上·上海·期中)如图所示,已知AC 平分∠BAD ,∠B +∠D =180°,CE ⊥AB 于点E ,判断AB 、AD 与BE 之间有怎样的等量关系,并证明.8.(23-24八年级上·山东临沂·期中)【基本模型】(1)如图1,ABCD 是正方形,∠EAF =45°,当E 在BC 边上,F 在CD 边上时,请你探究BE 、DF 与EF 之间的数量关系,并证明你的结论.【模型运用】(2)如图2,ABCD 是正方形,∠EAF =45°,当E 在BC 的延长线上,F 在CD 的延长线上时,请你探究BE 、DF 与EF 之间的数量关系,并证明你的结论.9.(23-24八年级上·湖北武汉·周测)(1)如图,在四边形ABCD 中,AB =AD ,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ;(2)如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD .(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.10.(23-24八年级上·贵州黔东南·期末)【初步探索】(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠ADC =90°,∠BAD =120°,E 、F 分别是BC 、CD 上的点,且∠EAF =60°,探究图中BE 、EF 、FD 之间的数量关系.小芮同学探究此问题的方法是:延长FD 到点G ,使DG =BE ,连接AG ,先证明:△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD 中,AB =AD ,∠B +∠D =∠180°,∠BAD =120°,E 、F 分别是BC 、CD 上的点,且∠EAF =60°,(1)中的结论是否仍然成立,说明理由.【拓展延伸】(3)如图3,在四边形ABCD 中,∠ABC +∠ADC =180°,AB =AD ,若点E 在CB 的延长线上,点F 在CD 的延长线上,满足EF =BE +FD ,请判断∠EAF 与∠DAB 的数量关系.并证明你的结论.【模型三:“K子”型(一线三垂直)】11.(23-24八年级上·广东江门·阶段练习)已知,△ABC中,∠BAC=90°,AB=AC,直线m过点A,且BD⊥m于D,CE⊥m于E,当直线m绕点A旋转至图1位置时,我们可以发现DE=BD+CE.(1)当直线m绕点A旋转至图2位置时,问:BD与DE、CE的关系如何?请予证明;(2)直线m在绕点A旋转一周的过程中,BD、DE、CE存在哪几种不同的数量关系?(直接写出,不必证明)12.(23-24八年级上·贵州铜仁·阶段练习)(1)如图1,已知△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D,E.求证:DE=BD+CE.(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC.请写出DE,BD,CE三条线段的数量关系,并说明理由.13.(23-24八年级上·山西大同·阶段练习)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.(1)如图1.已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D、E.证明:DE=BD+CE.(2)组员小明对图2进行了探究,若∠BAC=90°,AB=AC,直线l经过点A.BD⊥直线l,CE⊥直线l,垂足分别为点D、E.他发现线段DE、BD、CE之间也存在着一定的数量关系,请你直接写出段DE、BD、CE之间的数量关系,(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB、AC向外作正方形ABDE和正方形ACFG(正方形的4条边都相等,4个角都是直角),AH是BC边上的高,延长HA交EG于点I,若BH=3,CH=7,求AI的长.14.(23-24八年级上·河北石家庄·阶段练习)通过对如图数学模型的研究学习,解决下列问题:(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(3)如图3,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,S1+S2=10.求出S1的值.15.(23-24七年级下·广东深圳·期末)【材料阅读】小明在学习完全等三角形后,为了进一步探究,他尝试用三种不同方式摆放一副三角板(在△ABC中,∠ABC=90°,AB=CB;△DEF中,∠DEF=90°,∠EDF =30°),并提出了相应的问题.【发现】(1)如图1,将两个三角板互不重叠地摆放在一起,当顶点B摆放在线段DF上时,过点A作AM ⊥DF,垂足为点M,过点C作CN⊥DF,垂足为点N,①请在图1找出一对全等三角形,在横线上填出推理所得结论;∵∠ABC=90°,∴∠ABM+∠CBN=90°,∵AM⊥DF,CN⊥DF,∴∠AMB=90°,∠CNB=90°,∴∠ABM+∠BAM=90°,∴∠BAM=∠CBN,∵∠BAM=∠CBN∠AMB=∠CNB=90°AB=BC,;②AM=2,CN=7,则MN=;【类比】(2)如图2,将两个三角板叠放在一起,当顶点B在线段DE上且顶点A在线段EF上时,过点C 作CP⊥DE,垂足为点P,猜想AE,PE,CP的数量关系,并说明理由;【拓展】(3)如图3,将两个三角板叠放在一起,当顶点A在线段DE上且顶点B在线段EF上时,若AE= 5,BE=1,连接CE,则△ACE的面积为.全等三角形中辅助线的添法(三大模型)【模型一:倍长中线模型】1.(23-24八年级上·江苏·期末)如图,在△ABC 中.AD 是BC 边上的中线,交BC 于点D.(1)如下图,延长AD 到点E ,使DE =AD ,连接BE .求证:△ACD ≌△EBD.(2)如下图,若∠BAC =90°,试探究AD 与BC 有何数量关系,并说明理由.(3)如下图,若CE 是边AB 上的中线,且CE 交AD 于点O .请你猜想线段AO 与OD 之间的数量关系,并说明理由.【思路点拨】(1)利用SAS 可得△ACD ≌△EBD ;(2)延长AD 到点E ,使DE =AD ,连接BE ,先根据△ACD ≌△EBD 证得∠C =∠CBE ,AC =BE ,进而得到AC ∥EB ,AD =12AE ;再证得△ABC ≌△BAE SAS 利用全等三角形全等的性质即可;(3)延长OE 到点M ,使EM =OE ,连接AM .延长OD 到点N ,使DN =OD ,连接BM ,BN ,BO ,证得△MOB ≌△NBO ASA 可得MB =NO ,进而得到AO =2OD ,本题考查了全等三角形的判定与性质,三角形的中线,熟练掌握全等三角形的判定方法是解题的关键.【解题过程】(1)证明:在△ACD 和△EBD 中,DA =DE∠ADC =∠EDBDC =DB∴△ACD ≌△EBD SAS ;(2)解:AD =12BC ,理由如下:延长AD 到点E ,使DE =AD ,连接BE ,如图由(1)得△ACD ≌△EBD ,∴∠C =∠CBE ,AC =BE∴AC ∥EB ,AD =12AE ∴∠BAC +∠ABE =180°,∵∠BAC =90°,∴∠ABE =90°,∴∠BAC =∠ABE在△ABC 和△BAE 中AC =BE∠BAC =∠ABEAB =AB∴△ABC ≌△BAE SAS ∴BC =AE ,∴AD =12BC ;(3)AO =2OD ,理由如下:延长OE 到点M ,使EM =OE ,连接AM .延长OD 到点N ,使DN =OD ,连接BM ,BN ,BO ,如图,由(1)得△AOE ≌△BME ,△ODC ≌△NDB ,∴∠AOE =∠BME ,∠OCD =∠NBD ,AO =BM ,∴AO ∥BM ,OC ∥NB ,∴∠MBO =∠BON ,∠MOB =∠NBO在△MOB 和△NBO 中,∠MBO =∠BONOB =OB ∠MOB =∠NBO,∴△MOB ≌△NBO ASA ∴MB =NO ,∴AO =2OD .2.(23-24八年级上·广西北海·期末)八年级数学课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =9,AC =5,求BC 边上的中线AD 的取值范围.小红在组内经过合作交流,得到了如下的解决方法:延长AD 到点E ,使DE =AD ,请根据小红的方法思考作答:(1)由已知和作图能得到△ADC ≌△EDB 的理由是;A.SSS B.SAS C.AASD.HL(2)求得AD的取值范围是;A.5<AD<9B.5≤AD≤9C.2<AD<7D.2≤AD≤7(3)归纳总结:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.完成上题之后,小红善于探究,她又提出了如下的问题,请你解答.如图2,在△ABC中,点E在BC上,且DE=DC,过E作EF∥AB,且EF=AC.求证:AD平分∠BAC.【思路点拨】本题是三角形综合题,考查了倍长中线法解题,全等三角形的判定和性质,等腰三角形的判定和性质,熟练掌握倍长中线法,灵活进行三角形全等的证明,是解题的关键.(1)根据三角形全等的判定定理去选择即可;(2)根据三角形全等的性质和三角形三边关系定理计算即可;(3)由“SAS”可证△EFD≌△CMD,可得EF=DM,∠EFD=∠M,由平行线的性质和等腰三角形的性质可证∠M=∠BAD=∠CAM,可得AD平分∠BAC.【解题过程】(1)解:延长AD到点E,使DE=AD,∵BD=CD,在△ADC和△EDB中,CD=BD∠ADC=∠BDEAD=DE,∴△ADC≌△EDB(SAS),故选:B.(2)解:∵△ADC≌△EDB,∴AC=EB,∵AB=9,AC=5,AB-BE<AE<AB+BE,∴4<2AD<14,∴2<AD<7,故选:C;(3)证明:如图,延长AD至M,使DM=DF,连接CM,∵DE=DC,∠EDF=∠CDM,DF=DM,∴△EFD≌△CMD(SAS),∴EF=DM,∠EFD=∠M,∴EF∥CM,∵EF∥AB,∴CM∥AB,∴∠BAD=∠M,∵EF=AC,∴EF=DM=AC,∴∠CAM=∠M,∴∠BAD=∠CAM,∴AD平分∠BAC.3.(23-24八年级上·安徽安庆·期末)(1)如图①,在△ABC中,若AB=6,AC=4,AD为BC边上的中线,求AD的取值范围;(2)如图②,在△ABC中,点D是BC的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,判断BE+CF与EF的大小关系并证明;(3)如图③,在四边形ABCD中,AB∥CD,AF与DC的延长线交于点F,点E是BC的中点,若AE是∠BAF的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.【思路点拨】(1)由已知得出AB-BE<AE<AB+BE,即6-4<AE<6+4,AD为AE的一半,即可得出答案;(2)延长FD至点M,使DM=DF,连接BM,EM,可得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AE,DF交于点G,根据平行和角平分线可证AF=FG,也可证得△ABE≌△GCE,从而可得AB= CG,即可得到结论.【解题过程】解:(1)如图①,延长AD到点E,使DE=AD,连接BE,∵D是BC的中点,∴BD=CD,∵∠ADC=∠BDE,∴△ACD≌△EBD SAS,∴BE=AC=4,在△ABE中,AB-BE<AE<AB+BE,∴6-4<AE<6+4,,∴2<AE<10,∴1<AD<5,故答案为:1<AD<5;(2)BE+CF>EF,理由如下:延长FD至点M,使DM=DF,连接BM、EM,如图②所示.同(1)得:△BMD≌△CFD SAS,∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)AF +CF =AB ,理由如下:如图③,延长AE ,DF 交于点G ,∵AB ∥CD ,∴∠BAG =∠G ,在△ABE 和△GCE 中,CE =BE ,∠BAG =∠G ,∠AEB =∠GEC,∴△ABE ≌△GEC AAS ,∴CG =AB ,∵AE 是∠BAF 的平分线,∴∠BAG =∠GAF ,∴∠FAG =∠G ,∴AF =GF ,∵FG +CF =CG ,∴AF +CF =AB .4.(23-24八年级上·江苏南通·期中)课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC 中,若AB =6,AC =4,求BC 边上的中线AD 的取值范围.小明在组内经过合作交流,得到了如下的解决方法:如图1所示,延长AD 到点E ,使DE =AD ,连接BE.请根据小明的思路继续思考:(1)由已知和作图能证得△ADC ≌△EDB ,得到BE =AC ,在△ABE 中求得2AD 的取值范围,从而求得AD 的取值范围是.方法总结:上述方法我们称为“倍长中线法”.“倍长中线法”多用于构造全等三角形和证明边之间的关系;(2)如图2,AD 是△ABC 的中线,AB =AE ,AC =AF ,∠BAE +∠CAF =180°,试判断线段AD 与EF 的数量关系,并加以证明;(3)如图3,在△ABC 中,D ,E 是BC 的三等分点.求证:AB +AC >AD +AE .【思路点拨】本题考查了三角形三边关系,三角形全等的性质与判定,利用倍长中线辅助线方法是解题的关键.(1)延长AD 到点E ,使DE =AD ,连接BE ,根据题意证明△MDB ≌△ADC ,可知BM =AC ,在△ABM 中,根据AB -BM <AM <AB +BM ,即可;(2)延长AD 到M ,使得DM =AD ,连接BM ,由(1)的结论以及已知条件证明△ABM ≌△EAF ,进而可得AM =2AD ,由AM =EF ,即可求得AD 与EF 的数量关系;(3),取DE 中点H ,连接AH 并延长至Q 点,使得AH =QH ,连接QE 和QC ,通过“倍长中线”思想全等证明,进而得到AB =CQ ,AD =EQ ,然后结合三角形的三边关系建立不等式证明即可得出结论.【解题过程】(1)解:如图1所示,延长AD到点E,使DE=AD,连接BE.∵AD是△ABC的中线,∴BD=CD,在△MDB和△ADC中,BD=CD∠BDM=∠CDA DM=AD,∴△MDB≌△ADC(SAS),∴BM=AC=4,在△ABM中,AB-BM<AM<AB+BM,∴6-4<AM<6+4,即2<AM<10,∴1<AD<5,故答案为:1<AD<5.(2)EF=2AD,理由:如图2,延长AD到M,使得DM=AD,连接BM,由(1)知,△BDM≌△CDA(SAS),∴BM=AC,∠M=∠MAC∵AC=AF,∴BM=AF,∵∠MBA+∠M+∠BAM=180°,即∠MBA+∠BAC=180°,又∵∠BAE+∠CAF=180°,∴∠EAF+∠BAC=180°,∴∠EAF=∠MBA,又∵AB=EA,∴△ABM≌△EAF(SAS),∴AM=EF,∵AD=DM,∴AM=2AD,∵AM=EF,∴EF=2AD.(3)证明:如图所示,取DE中点H,连接AH并延长至Q点,使得AH=QH,连接QE和QC,∵H为DE中点,D、E为BC三等分点,∴DH=EH,BD=DE=CE,∴DH=CH,在△ABH和△QCH中,BH=CH∠BHA=∠CHQ AH=OH,∴△ABH≌△QCH(SAS),同理可得:△ADH≌△QEH,∴AB=CQ,AD=EQ,此时,延长AE交CQ于K点,∵AC+CQ=AC+CK+QK,AC+CK>AK,∴AC+CQ>AK+QK,∵AK+QK=AE+EK+QK>QE,EK+QK>QE,∴AK+QK>AE+QE,∴AC +CQ >AK +QK >AE +QE ,∵AB =CQ ,AD =EQ ,∴AB +AC >AD +AE .5.(23-24七年级下·广东佛山·期中)【阅读理解】课外兴趣小组活动时,老师提出了如下问题:如图,△ABC 中,AB =8,AC =6,求BC 边上的中线AD 的取值范围,经过组内合作交流.小明得到了如下的解决方法:延长AD 到点E ,使DE =AD请根据小明的方法思考:(1)求得AD 的取值范围是;【问题解决】请利用上述方法(倍长中线)解决下列三个问题如图,已知∠BAC +∠CDE =180°,AB =AC ,DC =DE ,P 为BE 的中点.(2)如图1,若A ,C ,D 共线,求证:AP 平分∠BAC ;(3)如图2,若A ,C ,D 不共线,求证:AP ⊥DP ;(4)如图3,若点C 在BE 上,记锐角∠BAC =x ,且AB =AC =CD =DE ,则∠PDC 的度数是(用含x 的代数式表示).【思路点拨】(1)根据三角形三边之间的关系:两边之和大于第三边,两边之差小于第三边,即可进行解答;(2)延长DP 交AB 延长线于点F ,证△APF ≌△APD 即可;(3)延长DP 至点F ,使得PF =PD ,连接BF 、AF 、AD ,证△APF ≌△APD 即可;(4)过点C 作CM ⊥BC 交AP 于点M ,由(3)可得∠APD =90°,证△ACM ≌△DCP ,用含x 的代数式表示出∠PDC 即可.【解题过程】(1)∵AD 为BC 边上的中线,∴BD =CD ,在△ADC 和△EDB 中,BD =CD∠ADC =∠EDBAD =ED∴△ADC ≌△EDB SAS ,∴BE =AC =6,∵AB =8,∴8-6<AE <8+6,即2<AE <14,∵DE =AD ,∴AD =12AE ,∴1<AD <7,故答案为:1<AD <7(2)如下图,DP 交AB 延长线于点F∠BAC +∠CDE =180°,∴AF ∥DE (同旁内角互补,两直线平行),∴∠PFB =∠PDE ,∠PBF =∠PED ,∵P 为BE 的中点∴BP =PE ,∴△BPF ≌△EPD AAS ,∴BF =DE =DC ,PD =PF ,又∵AB =AC ,∴AB +BF =AC +DC ,即AF =AD ,在△APF 和△APD 中PF =PDAP =APAF =AD∴△APF ≌△APD (SSS ),∴∠P AF =∠P AD (全等三角形的对应角相等),即AP 平分∠BAC(3)延长DP 至点F ,使得PF =PD ,连接BF 、AF 、AD由(1)同理易知△DPE ≌△FBP (SAS ),∴BF =DE =CD ,∠E =∠FBP ,∵∠BAC +∠CDE =180°,且∠BAC +∠CAD +∠ADC +∠CDE +∠E =360°,∠CAD +∠C +∠ADC =180°,∴∠ABF =∠ACD ,AB =AC ,∴△ABF ≌△ACD (SAS ),∴AF =AD ,∴△APF ≌△APD (SSS ),∴∠APD =∠APF =180°÷2=90°,∴AP ⊥DP(4)过点C 作CM ⊥BC 交AP 于点M ,由(3)可得∠APD =90°,∠BAC =x ,∠BAC+∠CDE =180°,AB =AC =CD =DE ,∴∠ACB =180°-x 2=90°-x 2,∴∠DCE =90°-∠CDE 2=90°-180°-x 2=x 2,∴∠ACB和∠DCE 互余,∠ACD =∠MCP =∠APD =90°,∴∠ACM =∠DCP =x 2,∠CAM =∠CDP ∴△ACM ≌△DCP (ASA ),∴MC =PC ,∴∠BP A =45°,又∵∠ACB =90°-x 2,∴∠PDC =∠P AC =∠ACB -∠APB =45°-x 2,故答案为:45°-x 2【模型二:旋转模型(截长补短)】6.(23-24八年级上·湖北武汉·期末)如图,在五边形ABCDE 中,∠B =∠E =90°,∠CAD =12∠BAE ,AB =AE ,且CD =3,AE =4,则五边形ABCDE 的面积为()A.6 B.8 C.10 D.12【思路点拨】本题考查了旋转的性质、全等三角形的判定与性质、三点共线,解题的关键是利用全等的性质将面积进行转化.将△ABC 绕点A 逆时针旋转至△AEF ,首先证明点D ,E ,F 三点共线,证明△ACD ≌△AFD (SAS ),得到CD =DF =3,S △ACD =S △AFD ,再将所求面积转化为2S △AFD 进行计算即可.【解题过程】解:如图,将△ABC 绕点A 逆时针旋转至△AEF ,∵AB =AE ,∠B =∠E =90°,则AF =AC ,∠B =∠AED =∠AEF =90°,∴∠DEF =180°,即点D ,E ,F 三点共线,∵∠CAD =12∠BAE ,∠BAC +∠DAE =∠DAE +∠EAF =∠CAD ,即∠FAD =∠CAD ,在△ACD 和△AFD 中,AC =AF∠CAD =∠FAD AD =AD,∴CD =DF ,S △ACD =S △AFD∵CD =3,∴DF =3,五边形ABCDE 的面积为:S 四边形ACDE +S △ABC =S 四边形ACDE +S △AEF=S △ACD +S △AFD =2S △AFD ,=2×12×DF ×AE ,=2×12×3×4=12.故选:D .7.(23-24八年级上·上海·期中)如图所示,已知AC 平分∠BAD ,∠B +∠D =180°,CE ⊥AB 于点E ,判断AB 、AD 与BE 之间有怎样的等量关系,并证明.【思路点拨】在AB 上截取EF ,使EF =BE ,联结CF .证明△BCE ≌△ECF (SAS ),得到∠B =∠BFC ,又证明△AFC ≌△ADC ,得到AF =AD ,最后结论可证了.【解题过程】证明:在AB 上截取EF ,使EF =BE ,联结CF .∵CE ⊥AB∴∠BEC =∠FEC =90°在△BCE 和△ECF{BE =EF∠BEC =∠FECCE =CE∴△BCE ≌△ECF (SAS )∴∠B =∠BFC∵∠B +∠D =180°又∵∠BFC +∠AFC =180°∴∠D =∠AFC∵AC 平分∠BAD∴∠FAC =∠DAC在△AFC 和△ADC 中{∠AFC =∠D∠FAC =∠DACAC =AC∴AF=AD∵AB=AF+BE+EF∴AB=AD+2BE8.(23-24八年级上·山东临沂·期中)【基本模型】(1)如图1,ABCD是正方形,∠EAF=45°,当E在BC边上,F在CD边上时,请你探究BE、DF与EF之间的数量关系,并证明你的结论.【模型运用】(2)如图2,ABCD是正方形,∠EAF=45°,当E在BC的延长线上,F在CD的延长线上时,请你探究BE、DF与EF之间的数量关系,并证明你的结论.【思路点拨】本题主要考查全等三角形的判定和性质.本题蕴含半角模型,遇到半角经常要通过旋转构造全等三角形.(1)结论:EF=BE+DF.将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF ,然后求出∠EAF =∠EAF=45°,利用“边角边”证明△AEF和△AEF 全等,根据全等三角形对应边相等可得EF=EF ,从而得解;(2)结论:EF=BE-DF,证明方法同法(1).【解题过程】解:(1)结论:EF=BE+DF.理由:如图1,将△ADF绕点A顺时针旋转,使AD与AB重合,得到△ABF ,则:∠F AB=∠DAF,∠ABF =∠D=90°,AF=AF ,BF =DF,∴∠ABF +∠ABC=180°,即:F ,B,E三点共线,∵∠EAF=45°,∴∠DAF+∠BAE=90°-∠EAF=45°,∴∠BAF +∠BAE=45°,∴∠EAF =∠EAF=45°,在△AEF 和△AEF 中,AF =AF∠EAF =∠EAF AE =AE,∴△AEF ≌△EAF (SAS ),∴EF =EF ,又EF =BE +BF ,∴EF =BE +DF .(2)结论:EF =BE -DF .理由:如图2,将△ADF 绕点A 顺时针旋转,使AD 与AB 重合,得到△ABF ,则:BF =DF ,AF =AF ,同法(1)可得:△AEF ≌△AEF (SAS ),∴EF =EF ,又EF =BE -BF =BE -DF ,∴EF =BE -DF .9.(23-24八年级上·湖北武汉·周测)(1)如图,在四边形ABCD 中,AB =AD,∠B +∠D =180°,E 、F 分别是边BC 、CD 上的点,且∠EAF =12∠BAD .求证:EF =BE +FD ;(2)如图,在四边形ABCD 中,AB =AD ,∠B +∠ADC =180°,E 、F 分别是边BC 、CD 延长线上的点,且∠EAF =12∠BAD .(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【思路点拨】(1)延长CB 至M ,使BM =DF ,连接AM .先证明△ABM ≌△ADF ,得到AF =AM ,∠2=∠3,再证明△AME ≌△AFE ,得到EF =ME ,进行线段代换,问题得证;(2)在BE 上截取BG ,使BG =DF ,连接AG .先证明△ABG ≌△ADF ,得到AG =AF ,再证明△AEG ≌△AEF ,得到EG =EF ,进行线段代换即可证明EF =BE -FD .【解题过程】解:(1)证明:如图,延长CB 至M ,使BM =DF ,连接AM .∵∠ABC +∠D =180°,∠1+∠ABC =180°,∴∠1=∠D ,在△ABM 与△ADF 中,AB =AD∠1=∠D BM =DF,∴△ABM ≌△ADF (SAS ).∴AF =AM ,∠2=∠3.∵∠EAF =12∠BAD ,∴∠2+∠4=12∠BAD =∠EAF .∴∠3+∠4=∠EAF ,即∠MAE =∠EAF .在△AME 与△AFE 中,AM =AF∠MAE =∠EAF AE =AE,∴△AME ≌△AFE (SAS ).∴EF =ME ,即EF =BE +BM ,∴EF =BE +DF ;(2)结论EF =BE +FD 不成立,应当是EF =BE -FD .证明:如图,在BE 上截取BG ,使BG =DF ,连接AG .∵∠B +∠ADC =180°,∠ADF +∠ADC =180°,∴∠B =∠ADF .∵在△ABG 与△ADF 中,AB =AD∠ABG =∠ADF BG =DF,∴△ABG ≌△ADF (SAS ),∴∠BAG =∠DAF ,AG =AF ,∴∠BAG +∠EAD =∠DAF +∠EAD =∠EAF =12∠BAD ,∴∠GAE =∠EAF .在△AGE 与△AFE 中,AG =AF∠GAE =∠EAF AE =AE,∴△AEG ≌△AEF ,∴EG =EF ,∵EG =BE -BG ,∴EF =BE -FD .10.(23-24八年级上·贵州黔东南·期末)【初步探索】(1)如图1,在四边形ABCD 中,AB =AD ,∠B =∠ADC =90°,∠BAD =120°,E 、F 分别是BC 、CD 上的点,且∠EAF =60°,探究图中BE 、EF、FD 之间的数量关系.小芮同学探究此问题的方法是:延长FD 到点G ,使DG =BE ,连接AG ,先证明:△ABE ≌△ADG ,再证明△AEF ≌△AGF ,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=∠180°,∠BAD=120°,E、F分别是BC、CD上的点,且∠EAF=60°,(1)中的结论是否仍然成立,说明理由.【拓展延伸】(3)如图3,在四边形ABCD中,∠ABC+∠ADC=180°,AB=AD,若点E在CB的延长线上,点F在CD的延长线上,满足EF=BE+FD,请判断∠EAF与∠DAB的数量关系.并证明你的结论.【思路点拨】本题属于四边形综合题,主要考查了全等三角形的判定以及全等三角形的性质的综合应用,解决问题的关键是作辅助线构造全等三角形,根据全等三角形的对应角相等进行推导变形.解题时注意:同角的补角相等.(1)根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SAS判定△AEF≌△AGF,可得出EF=GF=DG+DF=BE+DF,据此得出结论;(2)延长FD到点G,使DG=BE,连接AG,先根据SAS判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SAS判定△AEF≌△AGF,可得出EF=GF=DG+DF=BE+DF;(3)在DC延长线上取一点G,使得DG=BE,连接AG,先根据SAS判定△ADG≌△ABE,再根据SAS判定△AEF≌△AGF,得出∠FAE=∠FAG,最后根据∠FAE+∠FAG+∠GAE=360°,推导得到2∠FAE+∠DAB=360°,即可得出结论.【解题过程】解:(1)BE+FD=EF.理由如下:如图1,延长FD到点G,使DG=BE,连接AG,∵∠ADC=90°,∴∠ADG=180°-∠ADC=90°,又∵∠B=90°,∴∠B=∠ADG,在△ABE与△ADG中,AB=AD∠B=∠ADG BE=DG,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵∠BAD=120°,∠EAF=60°,∴∠BAE+∠DAF=∠BAD-∠EAF=60°,∴∠DAG+∠DAF=60°,即∠GAF=60°,∴∠GAF=∠EAF;在△AEF与△AGF中,AE=AG∠EAF=∠GAF AF=AF,∴△AEF≌△AGF(SAS),∴EF=GF,∵GF=DG+DF,∴EF=BE+DF,故答案为:BE+FD=EF;(2)(1)中的结论仍成立,理由如下:如图2,延长FD到点G,使DG=BE,连接AG,∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵∠BAD=120°120°,∠EAF=60°,∴∠BAE+∠DAF=60°,∴∠DAG+∠DAF=60°,∴∠GAF=∠EAF=60°,又∵AF=AF,∴△AEF≌△AGF(SAS),∴EF=FG=DG+DF=BE+DF;(3)∠EAF=180°-12∠DAB.证明:如图3,延长DC到点G,使DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,在△ABE与△ADG中,AB=AD∠B=∠ADG BE=DG,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD,∴EF=DG+FD,∴EF=GF,在△AEF与△AGF中,AE=AG EF=GF AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°-12∠DAB.【模型三:“K子”型(一线三垂直)】11.(23-24八年级上·广东江门·阶段练习)已知,△ABC中,∠BAC=90°,AB=AC,直线m过点A,且BD⊥m于D,CE⊥m于E,当直线m绕点A旋转至图1位置时,我们可以发现DE=BD+CE.(1)当直线m绕点A旋转至图2位置时,问:BD与DE、CE的关系如何?请予证明;(2)直线m在绕点A旋转一周的过程中,BD、DE、CE存在哪几种不同的数量关系?(直接写出,不必证明)【思路点拨】(1)利用条件证明△ABD≌△CAE,再结合线段的和差可得出结论;(2)根据图,可得BD、DE、CE存在3种不同的数量关系;【解题过程】(1)证明:如图2,∵BD⊥m,CE⊥m,∴∠BDA=∠CEA=90°,∴∠ABD+∠DAB=90°.∵∠BAC=90°,∴∠DAB+∠CAE=90°,∴∠ABD=∠CAE.在△ABD和△CAE中,∠BDA=∠CBA ∠ABD=∠CAB AB=CA,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE∵DE=AE-AD,(2)直线m 在绕点A 旋转一周的过程中,BD 、DE 、CE 存在3种不同的数量关系:DE =BD +CE ,DE =BD -CE ,DE =CE -BD.如图1时,DE =BD +CE ,如图2时,DE =BD -CE ,如图3时,DE =CE -BD ,(证明同理)12.(23-24八年级上·贵州铜仁·阶段练习)(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D ,E .求证:DE =BD +CE .(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D ,A ,E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE ,BD ,CE 三条线段的数量关系,并说明理由.【思路点拨】(1)利用已知得出∠CAE =∠ABD ,进而利用AAS 得出则△ABD ≌△CAE ,即可得出DE =BD +CE ;(2)根据∠BDA =∠AEC =∠BAC ,得出∠CAE =∠ABD ,在△ADB 和△CEA 中,根据AAS 证出△ADB ≌△CEA ,从而得出AE =BD ,AD =CE ,即可证出DE =BD +CE ;【解题过程】(1)DE =BD +CE .理由如下:∵BD ⊥m ,CE ⊥m ,∴∠BDA =∠AEC =90°又∵∠BAC =90°,∴∠BAD +∠CAE =90°,∠BAD +∠ABD =90°,∴∠CAE =∠ABD在△ABD 和△CAE 中,∠ABD =∠CAE∠ADB =∠CEA =90°AB =AC,∴△ABD ≌△CAE (AAS )∴BD =AE ,AD =CE ,∵DE =AD +AE ,(2)DE =BD +CE ,理由如下:∵∠BDA =∠AEC =∠BAC ,∴∠DBA +∠BAD =∠BAD +∠CAE ,∴∠CAE =∠ABD ,在△ADB 和△CEA 中,∠ABD =∠CAE∠ADB =∠CEA AB =AC,∴△ADB ≌△CEA (AAS ),∴AE =BD ,AD =CE ,∴BD +CE =AE +AD =DE .13.(23-24八年级上·山西大同·阶段练习)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.(1)如图1.已知:在△ABC 中,∠BAC =90°,AB =AC ,直线l 经过点A ,BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .证明:DE =BD +CE .(2)组员小明对图2进行了探究,若∠BAC =90°,AB =AC ,直线l 经过点A .BD ⊥直线l ,CE ⊥直线l ,垂足分别为点D 、E .他发现线段DE 、BD 、CE 之间也存在着一定的数量关系,请你直接写出段DE 、BD 、CE 之间的数量关系,(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC 的边AB 、AC 向外作正方形ABDE 和正方形ACFG (正方形的4条边都相等,4个角都是直角),AH 是BC 边上的高,延长HA 交EG 于点I ,若BH =3,CH =7,求AI 的长.【思路点拨】(1)根据BD ⊥直线l ,CE ⊥直线l ,∠BAC =90°,可得∠CAE =∠ABD ,利用AAS 可证明△ADB ≌△CEA ,根据DE =AE +AD 即可得到DE =BD +CE ;(2)同(1)利用AAS 可证明△ADB ≌△CEA ,根据DE =AE -AD 即可得到DE =BD -CE ;(3)过E 作EM ⊥HI 于M ,GN ⊥HI 的延长线于N ,可构造两组一线三直角全等模型,即:△ABH ≌△EAM ,△AHC ≌△GNA ,从而可以得到EM =GN ,MN =4,再根据△EMI ≌△CNI 可得MI =NI =2,即可确定AI 的长度;【解题过程】(1)证明:∵BD ⊥直线l ,CE ⊥直线l ,∴∠BDA =∠CEA =90°,∵∠BAC =90°,∴∠BAD +∠CAE =90°,∵∠BAD +∠ABD =90°,在△ADB和△CEA中,∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA AAS∴BD=AE,AD=CE,∴DE=AE+AD=BD+CE;(2)∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∠ABD=∠CAE ∠BDA=∠CEA AB=AC,∴△ADB≌△CEA AAS∴BD=AE,AD=CE,∴DE=AE-AD=BD-CE;(3)如图,过E作EM⊥HI于M,GN⊥HI的延长线于N,∴∠EMI=∠GNI=90°∵∠BAH+∠EAM=90°,∠BAH+∠ABH=90°,∴∠EAM=∠ABH在△ABH和△EAM中,∠AHB=∠EMA ∠ABH=∠EAM AB=AE,∴△ABH≌△EAM(AAS)∴BH=AM=3,AH=EM,同理可得:△AHC≌△GNA∴CH=AN=7,AH=GN,即:EM=GN,MN=AN-AM=7-3=4,在△EMI和△CNI中,∠EMI=∠CNI∠EIM=∠CINEM=CN,∴△EMI≌△CNI(AAS),∴MI=NI=12MN=2,∴AI=AM+MI=3+2=5.14.(23-24八年级上·河北石家庄·阶段练习)通过对如图数学模型的研究学习,解决下列问题:(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=,BC=AE.我们把这个数学模型称为“K字”模型或“一线三等角”模型;(2)如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AF于点F,DE与直线AF交于点G.求证:点G是DE的中点;(3)如图3,已知四边形ABCD和DEGF为正方形,△AFD的面积为S1,△DCE的面积为S2,S1+S2= 10.求出S1的值.【思路点拨】(1)由△ABC≌△DAE即可求解;(2)作DM⊥AF,EN⊥AF,利用“K字模型”的结论可得△ABF≌△DAM,△ACF≌△EAN,故可推出DM =EN,再证△DMG≌△ENG即可;(3)作PQ⊥CE,AM⊥PQ,FN⊥PQ,利用“K字模型”的结论可得△ADM≌△DCP,△DFN≌△EDP,进一步可证△AMQ≌△FNQ,即可求解.【解题过程】(1)解:∵△ABC≌△DAE∴AC=DE故答案为:DE;(2)证明:作DM⊥AF,EN⊥AF由“K字模型”可得:△ABF≌△DAM,△ACF≌△EAN∴AF=DM,AF=EN∴DM=EN∵∠DMG=∠ENG=90°,∠DGM=∠BGN∴△DMG≌△ENG∴GM=GN即:点G是DE的中点(3)解:作PQ⊥CE,AM⊥PQ,FN⊥PQ,如图:。

初中几何做辅助线的方法及试题

初中几何做辅助线的方法及试题

常见辅助线的方法:(最常见的就是连接特殊两点,作垂线和平行线(中位线)等)1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”。

2)遇到三角形的中点或中线,可作中位线或倍长中线,构造全等三角形,利用的思维模式是全等变换中的“旋转”。

必要时也可直接旋转。

3)遇到角平分线,可以在角平分线上一点像角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理。

4)截长补短法,具体做法是在某条线段上截取一条线段与特定的线段相等,或是将某条线段延长,使之与特定线段相等,再利用三角形全等的相关性质加以说明。

这种方法适合于证明线段的和,差,倍,分等类的题目。

5)等面积法:利用三角形(或其他图形)面积不同求法来解决线段之间的问题。

6)遇到线段的垂直平分线,连接线段的垂直平分线上的点到线段两端的距离相等。

7)遇到直角三角形,作直角三角形斜边上的中线。

8)在有特殊角的情况下,考虑作等边三角形。

一.倍长中线造全等1.(“希望杯”试题)已知,如图ΔABC中,AB=5,AC=3,则中线AD的取值范围是___________。

2.如图,ΔABC中,E,F分别在AB,AC上,DE⊥DF,D是中点,试比较BE+CF与EF的大小。

3.如图,在ΔABC中,BD=DC=AC,E是DC的中点,求证:AD平分∠BAE。

4.(09崇文二模)以ΔABC的两边AB,AC为腰分别向外作等腰RtΔABD和等腰RtΔACE,∠BAD=∠CAE=90°,连接DE,M和N分别是BC和DE的中点,探究:AM与DE的位置关系与数量关系。

(1).如图1,当ΔABC为直角三角形时,AM与DE的位置关系是___________,线段AM与DE的数量关系是___________。

(2).将图1中的等腰RtΔABD绕点A沿逆时针方向旋转θ°(0<θ<90)后,如图2所示,(1)问中的两个结论是否发生改变?说明理由。

(完整)八年级数学上册几何添辅助线专题

(完整)八年级数学上册几何添辅助线专题

DCB A全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”: 遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1) 遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2) 遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3) 遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

初中数学|几何题中做辅助线技巧全攻略

初中数学|几何题中做辅助线技巧全攻略

初中数学|几何题中做辅助线技巧全攻略几何可以说是初中数学的半壁江山,囊括了无数的重点知识、难点知识、无数的中考考点……学好几何,初中数学自然不会低!!在几何问题中,添加辅助线可以说是解题的关键!辅助线画得好,解题轻松又快速!辅助线画不对,可能就是解题绕弯又出错!如何快速、添加利于解题的辅助线?诀窍都在下面了!几何常见辅助线口诀:三角形图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

线段和差及倍半,延长缩短可试验。

线段和差不等式,移到同一三角去。

三角形中两中点,连接则成中位线。

三角形中有中线,倍长中线得全等。

四边形平行四边形出现,对称中心等分点。

梯形问题巧转换,变为三角或平四。

平移腰,移对角,两腰延长作出高。

如果出现腰中点,细心连上中位线。

上述方法不奏效,过腰中点全等造。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

圆形半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径联。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

要想作个外接圆,各边作出中垂线。

还要作个内接圆,内角平分线梦圆。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

要作等角添个圆,证明题目少困难。

由角平分线想到的辅助线一、截取构全等如图,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB CD。

分析:在此题中可在长线段BC上截取BF=AB,再证明CF=CD,从而达到证明的目的。

这里面用到了角平分线来构造全等三角形。

中考数学点对点-几何问题辅助线添加技巧(解析版)

中考数学点对点-几何问题辅助线添加技巧(解析版)

专题29 几何问题辅助线添加技巧专题知识点概述全国各地每年的中考试卷里都会出现考查几何的证明和计算问题,在解答试题过程中,我们发现当题设条件不够,必须添加辅助线,把分散条件集中,建立已知和未知的桥梁,结合学过的知识,采用一定的数学方法,把问题转化为自己能解决的问题。

学会添加辅助线技巧,是培养学生科学思维、科学探究的重要途径。

所以希望大家学深学透添加辅助线的技巧和方法。

一、以基本图形为切入点研究添加辅助线的技巧策略1.三角形问题方法1:有关三角形中线的题目,常将中线加倍。

含有中点的题目,常常利用三角形的中位线,通过这种方法,把要证的结论恰当的转移,很容易地解决了问题。

方法2:含有平分线的题目,常以角平分线为对称轴,利用角平分线的性质和题中的条件,构造出全等三角形,从而利用全等三角形的知识解决问题。

方法3:结论是两线段相等的题目常画辅助线构成全等三角形,或利用关于平分线段的一些定理。

方法4:结论是一条线段与另一条线段之和等于第三条线段这类题目,常采用截长法或补短法,所谓截长法就是把第三条线段分成两部分,证其中的一部分等于第一条线段,而另一部分等于第二条线段。

2.平行四边形问题平行四边形(包括矩形、正方形、菱形)的两组对边、对角和对角线都具有某些相同性质,所以在添辅助线方法上也有共同之处,目的都是造就线段的平行、垂直,构成三角形的全等、相似,把平行四边形问题转化成常见的三角形、正方形等问题处理,其常用方法有下列几种,举例简解如下:(1)连对角线或平移对角线:(2)过顶点作对边的垂线构造直角三角形;(3)连接对角线交点与一边中点,或过对角线交点作一边的平行线,构造线段平行或中位线;(4)连接顶点与对边上一点的线段或延长这条线段,构造三角形相似或等积三角形;(5)过顶点作对角线的垂线,构成线段平行或三角形全等。

3.梯形问题梯形是一种特殊的四边形。

它是平行四边形、三角形知识的综合,通过添加适当的辅助线将梯形问题化归为平行四边形问题或三角形问题来解决。

【初中数学】几何题,辅助线的添加方法和典型例题

【初中数学】几何题,辅助线的添加方法和典型例题

初中数学几何题型,辅助线的画法和典型例题(1).倍长中线法1、已知,如图,△ABC 中,D 是BC 中点,DE ⊥DF,试判断BE +CF 与EF 的大小关系,并证明你的结论.FED C B A【思路点拨】因为D 是BC 的中点,按倍长中线法,倍长过中点的线段DF ,使DG =DF,证明△EDG ≌△EDF ,△FDC ≌△GDB ,这样就把BE 、CF 与EF 线段转化到了△BEG 中,利用两边之和大于第三边可证.【答案与解析】BE +CF >EF ;证明:延长FD 到G ,使DG =DF,连接BG 、EG∵D 是BC 中点∴BD =CD又∵DE ⊥DF在△EDG 和△EDF 中ED ED EDG EDF DG DF =⎧⎪∠=∠⎨⎪=⎩∴△EDG ≌△EDF (SAS )∴EG =EF在△FDC 与△GDB 中⎪⎩⎪⎨⎧=∠=∠=DG DF BD CD 21∴△FDC ≌△GDB(SAS)∴CF =BG∵BG +BE >EG∴BE +CF >EF【总结升华】有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段).举一反三:【变式】已知:如图所示,CE 、CB 分别是△ABC 与△ADC 的中线,且∠ACB =∠ABC .求证:CD =2CE .【答案】证明:延长CE至F使EF=CE,连接BF.∵ EC为中线,∴ AE=BE.在△AEC与△BEF中,,,,AE BEAEC BEF CE EF=⎧⎪∠=∠⎨⎪=⎩∴△AEC≌△BEF(SAS).∴ AC=BF,∠A=∠FBE.(全等三角形对应边、角相等)又∵∠ACB=∠ABC,∠DBC=∠ACB+∠A,∠FBC=∠ABC+∠A.∴ AC=AB,∠DBC=∠FBC.∴ AB=BF.又∵ BC为△ADC的中线,∴ AB=BD.即BF=BD.在△FCB与△DCB中,,,,BF BDFBC DBC BC BC=⎧⎪∠=∠⎨⎪=⎩∴△FCB≌△DCB(SAS).∴ CF=CD.即CD=2CE.(2).作以角平分线为对称轴的翻折变换构造全等三角形2、已知:如图所示,在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.【答案与解析】证明:在AB上截取AE=AC.在△AED与△ACD中,()12()() AE ACAD AD=⎧⎪∠=∠⎨⎪=⎩已作,已知,公用边,∴△AED≌△ACD(SAS).∴ ED=CD.∴∠AED=∠C(全等三角形对应边、角相等).又∵∠C=2∠B ∴∠AED=2∠B.由图可知:∠AED=∠B+∠EDB,∴ 2∠B=∠B+∠EDB.∴∠B=∠EDB.∴ BE=ED.即BE=CD.∴ AB=AE+BE=AC+CD(等量代换).【总结升华】本题图形简单,结论复杂,看似无从下手,结合图形发现AB>AC.故用截长补短法.在AB 上截取AE=AC.这样AB就变成了AE+BE,而AE=AC.只需证BE=CD即可.从而把AB=AC+CD转化为证两线段相等的问题.举一反三:【变式】如图,AD是ABC∆的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.【答案】证明:(1)在AB上取一点M, 使得AM=AH, 连接DM.∵∠CAD=∠BAD, AD=AD,∴△AHD≌△AMD.∴ HD=MD, ∠AHD=∠AMD.∵ HD=DB,∴ DB= MD.∴∠DMB=∠B.∵∠AMD+∠DMB =180︒,∴∠AHD+∠B=180︒.即∠B与∠AHD互补.(2)由(1)∠AHD=∠AMD, HD=MD, ∠AHD+∠B=180︒.∵∠B+2∠DGA =180︒,∴∠AHD=2∠DGA.∴∠AMD=2∠DGM.∵∠AMD=∠DGM+∠GDM.∴ 2∠DGM=∠DGM+∠GDM.∴∠DGM=∠GDM.∴ MD=MG.∴ HD= MG.∵ AG= AM+MG,∴ AG= AH+HD.(3).利用截长(或补短)法作构造全等三角形3、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.M GHDCBA【思路点拨】因为AB >AC ,所以可在AB 上截取线段AE =AC ,这时BE =AB -AC ,如果连接EM ,在△BME 中,显然有MB -ME <BE .这表明只要证明ME =MC ,则结论成立.【答案与解析】证明:因为AB >AC ,则在AB 上截取AE =AC ,连接ME .在△MBE 中,MB -ME <BE (三角形两边之差小于第三边).在△AMC 和△AME 中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.举一反三:【变式】如图,AD 是△ABC 的角平分线,AB >AC,求证:AB -AC >BD -DC【答案】证明:在AB 上截取AE =AC,连结DE∵AD 是△ABC 的角平分线,∴∠BAD =∠CAD在△AED 与△ACD 中 ⎪⎩⎪⎨⎧=∠=∠=AD AD CAD BAD AC AE ∴△AED ≌△ADC (SAS )∴DE =DC在△BED 中,BE >BD -DC即AB -AE >BD -DC∴AB -AC >BD -DC E D CB A(4).在角的平分线上取一点向角的两边作垂线段4、如图所示,已知E 为正方形ABCD 的边CD 的中点,点F 在BC 上,且∠DAE =∠FAE .求证:AF =AD +CF .【思路点拨】四边形ABCD 为正方形,则∠D =90°.而∠DAE =∠FAE 说明AE 为∠FAD 的平分线,按常规过角平分线上的点作出到角两边的距离,而E 到AD 的距离已有,只需作E 到AF 的距离EM 即可,由角平分线性质可知ME =DE .AE =AE .Rt △AME 与Rt △ADE 全等有AD =AM .而题中要证AF =AD +CF .根据图知AF =AM +MF .故只需证MF =FC 即可.从而把证AF =AD +CF 转化为证两条线段相等的问题.【答案与解析】证明: 作ME ⊥AF 于M ,连接EF .∵ 四边形ABCD 为正方形,∴ ∠C =∠D =∠EMA =90°.又∵ ∠DAE =∠FAE ,∴ AE 为∠FAD 的平分线,∴ ME =DE .在Rt △AME 与Rt △ADE 中,()()AE AE DE ME =⎧⎨=⎩公用边,已证,∴ Rt △AME ≌Rt △ADE(HL).∴ AD =AM(全等三角形对应边相等).又∵ E 为CD 中点,∴ DE =EC .∴ ME =EC .在Rt △EMF 与Rt △ECF 中,()(ME CE EF EF =⎧⎨=⎩已证,公用边),∴ Rt △EMF ≌Rt △ECF(HL).∴ MF =FC(全等三角形对应边相等).由图可知:AF =AM +MF ,∴ AF =AD +FC(等量代换).【总结升华】与角平分线有关的辅助线: 在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.5、如图所示,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,且AE 垂直BD 的延长线于E , 12AE BD =,求证:BD 是∠ABC 的平分线.【答案与解析】证明:延长AE和BC,交于点F,∵AC⊥BC,BE⊥AE,∠ADE=∠BDC(对顶角相等),∴∠EAD+∠ADE=∠CBD+∠BDC.即∠EAD=∠CBD.在Rt△ACF和Rt△BCD中.所以Rt△ACF≌Rt△BCD(ASA).则AF=BD(全等三角形对应边相等).∵AE=BD,∴AE=AF,即AE=EF.在Rt△BEA和Rt△BEF中,则Rt△BEA≌Rt△BEF(SAS).所以∠ABE=∠FBE(全等三角形对应角相等),即BD是∠ABC的平分线.【总结升华】如果由题目已知无法直接得到三角形全等,不妨试着添加辅助线构造出三角形全等的条件,使问题得以解决.平时练习中多积累一些辅助线的添加方法.类型二、全等三角形动态型问题6、在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A,B两点分别作l的垂线AE,BF,垂足分别为E,F.(1)如图1当直线l不与底边AB相交时,求证:EF=AE+BF.(2)将直线l绕点C顺时针旋转,使l与底边AB相交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系,①AD>BD;②AD=BD;③AD<BD.【答案与解析】证明:(1)∵AE ⊥l ,BF ⊥l ,∴∠AEC =∠CFB =90°,∠1+∠2=90°∵∠ACB =90°,∴∠2+∠3=90°∴∠1=∠3。

初中数学几何证明题画辅助线的技巧

初中数学几何证明题画辅助线的技巧

.初中数学几何证明题画辅助线的技巧在初中数学几何学习中,如何添加辅助线是许多同学感到头疼的问题,许多同学常因辅助线的添加方法不当,造成解题困难。

以下是常见的辅助线作法编成了一些“顺口溜” 歌诀。

人人都说几何难,难就难在辅助线。

辅助线,如何添?把握定理和概念。

还要刻苦加钻研,找出规律凭经验。

图中有角平分线,可向两边作垂线。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

平行四边形出现,对称中心等分点。

梯形里面作高线,平移一腰试试看。

平行移动对角线,补成三角形常见。

证相似,比线段,添线平行成习惯。

等积式子比例换,寻找线段很关键。

直接证明有困难,等量代换少麻烦。

斜边上面作高线,比例中项一大片。

半径与弦长计算,弦心距来中间站。

圆上若有一切线,切点圆心半径连。

切线长度的计算,勾股定理最方便。

要想证明是切线,半径垂线仔细辨。

是直径,成半圆,想成直角径连弦。

弧有中点圆心连,垂径定理要记全。

圆周角边两条弦,直径和弦端点连。

弦切角边切线弦,同弧对角等找完。

如果遇到相交圆,不要忘作公共弦。

内外相切的两圆,经过切点公切线。

若是添上连心线,切点肯定在上面。

辅助线,是虚线,画图注意勿改变。

基本作图很关键,平时掌握要熟练。

解题还要多心眼,经常总结方法显。

切勿盲目乱添线,方法灵活应多变。

分析综合方法选,困难再多也会减。

虚心勤学加苦练,成绩上升成直线。

如有侵权请联系告知删除,感谢你们的配合!精品。

八年级数学上册几何添辅助线专题

八年级数学上册几何添辅助线专题

全等三角形问题中常见的辅助线的作法(有答案)总论:全等三角形问题最主要的是构造全等三角形,构造二条边之间的相等,构造二个角之间的相等【三角形辅助线做法】图中有角平分线,可向两边作垂线。

也可将图对折看,对称以后关系现。

角平分线平行线,等腰三角形来添。

角平分线加垂线,三线合一试试看。

线段垂直平分线,常向两端把线连。

要证线段倍与半,延长缩短可试验。

三角形中两中点,连接则成中位线。

三角形中有中线,延长中线等中线。

1.等腰三角形“三线合一”法:遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题2.倍长中线:倍长中线,使延长线段与原中线长相等,构造全等三角形3.角平分线在三种添辅助线4.垂直平分线联结线段两端5.用“截长法”或“补短法”:遇到有二条线段长之和等于第三条线段的长,6.图形补全法:有一个角为60度或120度的把该角添线后构成等边三角形7.角度数为30、60度的作垂线法:遇到三角形中的一个角为30度或60度,可以从角一边上一点向角的另一边作垂线,目的是构成30-60-90的特殊直角三角形,然后计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角。

从而为证明全等三角形创造边、角之间的相等条件。

8.计算数值法:遇到等腰直角三角形,正方形时,或30-60-90的特殊直角三角形,或40-60-80的特殊直角三角形,常计算边的长度与角的度数,这样可以得到在数值上相等的二条边或二个角,从而为证明DCBA全等三角形创造边、角之间的相等条件。

常见辅助线的作法有以下几种:最主要的是构造全等三角形,构造二条边之间的相等,二个角之间的相等。

1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”法构造全等三角形.2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转” 法构造全等三角形.3)遇到角平分线在三种添辅助线的方法,(1)可以自角平分线上的某一点向角的两边作垂线,利用的思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理.(2)可以在角平分线上的一点作该角平分线的垂线与角的两边相交,形成一对全等三角形。

初中数学_巧添辅助线__解证几何题

初中数学_巧添辅助线__解证几何题

巧添辅助线解证几何题[引出问题] 在几何证明或计算问题中.经常需要添加必要的辅助线.它的目的可以归纳为以下三点:一是通过添加辅助线.使图形的性质由隐蔽得以显现.从而利用有关性质去解题;二是通过添加辅助线.使分散的条件得以集中.从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。

值得注意的是辅助线的添加目的与已知条件和所求结论有关。

一、倍角问题研究∠α=2∠β或∠β=12∠α问题通称为倍角问题。

倍角问题分两种情形:1、∠α与∠β在两个三角形中.常作∠α的平分线.得∠1=12∠α.然后证明∠1=∠β;或把∠β翻折.得∠2=2∠β.然后证明∠2=∠α(如图一)2、∠α与∠β在同一个三角形中.这样的三角形常称为倍角三角形。

倍角三角形问题常用构造等腰三角形的方法添加辅助线(如图二)[例题解析]例1:如图1.在△ABC中.AB=AC,BD⊥AC于D。

求证:∠DBC=12∠BAC.分析:∠DBC、∠BAC所在的两个三角形有公共角∠C.可利用三角形内角和来沟通∠DBC、∠BAC和∠C的关系。

证法一:∵在△ABC中.AB=AC.∴∠ABC=∠C=12(180°-∠BAC)=90°-12∠BAC。

∵BD⊥AC于D ∴∠BDC=90°∴∠DBC=90°-∠C=90°-(90°-12∠BAC)=12∠BAC即∠DBC= 12∠BAC分析二:∠DBC、∠BAC分别在直角三角形和等腰三角形中.由所证的结论“∠DBC= ½∠BAC”中含有角的倍、半关系.因此.可以做∠A的平分线.利用等腰三角形三线合一的性质.把½∠A 放在直角三角形中求解;也可以把∠DBC沿BD翻折构造2∠DBC求解。

证法二:如图2.作AE⊥BC于E.则∠EAC+∠C=90°∵AB=AC ∴∠EAG=12∠BAC∵BD⊥AC于D∴∠DBC+∠C=90°∴∠EAC=∠DBC(同角的余角相等)即∠DBC=12∠BAC。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【关键字】初中巧添辅助线解证几何题[引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。

值得注意的是辅助线的添加目的与已知条件和所求结论有关。

下面我们分别举例加以说明。

[例题解析]一、倍角问题例1:如图1,在△ABC中,AB=AC,BD⊥AC于D。

求证:∠DBC=∠BAC.分析:∠DBC、∠BAC所在的两个三角形有公共角∠C,可利用三角形内角和来沟通∠DBC、∠BAC和∠C的关系。

证法一:∵在△ABC中,AB=AC,∴∠ABC=∠C=(180°-∠BAC)=90°-∠BAC。

∵BD⊥AC于D ∴∠BDC=90°∴∠DBC=90°-∠C=90°-(90°-∠BAC)= ∠BAC即∠DBC= ∠BAC分析二:∠DBC、∠BAC分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ½∠BAC”中含有角的倍、半关系,因此,可以做∠A的平分线,利用等腰三角形三线合一的性质,把½∠A放在直角三角形中求解;也可以把∠DBC沿BD翻折构造2∠DBC求解。

证法二:如图2,作AE⊥BC于E,则∠EAC+∠C=90°∵AB=AC ∴∠EAG=∠BAC∵BD⊥AC于D∴∠DBC+∠C=90°∴∠EAC=∠DBC(同角的余角相等)即∠DBC=∠BAC。

证法三:如图3,在AD上取一点E,使DE=CD连接BE∵BD⊥AC∴BD是线段CE的垂直平分线∴BC=BE ∴∠BEC=∠C∴∠EBC=2∠DBC=180°-2∠C∵AB=AC∴∠ABC=∠C∴∠BAC=180°-2∠C∴∠EBC=∠BAC∴∠DBC= ∠BAC说明:例1也可以取BC中点为E,连接DE,利用直角三角形斜边的中线等于斜边的一半和等腰三角形的性质求解。

同学们不妨试一试。

例2、如图4,在△ABC中,∠A=2∠B求证:BC2=AC2+AC•AB分析:由BC2=AC2+AC•AB= AC(AC+AB),启发我们建立两个相似的三角形,且含有边BC、AC、AC+AB.又由已知∠A=2∠B知,建立以AB为腰的等腰三角形。

证明:延长CA到D,使AD=AB,则∠D=∠DBA∵∠BAC 是△ABD 的一个外角 ∴∠BAC=∠DBA+∠D=2∠D ∵∠BAC=2∠ABC ∴∠D=∠ABC又∵∠C=∠C ∴△ABC ∽△BDC ∴∴BC2=AC•CD AD=AB∴BC2= AC (AC+AB )=AC2+AC•AB二、 中点问题例3.已知:如图,△ABC 中,AB=AC,在AB 上取一点D ,在AC 的延长线上取一点E,连接DE 交BC 于点F,若F 是DE 的中点。

求证:BD=CE分析:由于BD 、CE 的形成与D 、E 两点有关, 但它们所在的三角形之间因为不是同类三角形,所以 关系不明显,由于条件F 是DE 的中点,如何利用这个中点条件,把不同类三角形转化为同类三角形式问题的关键。

由已知AB=AC,联系到当过D 点或E 点作平行线,就可以形成新 的图形关系——构成等腰三角形,也就是相当于先把BD 或CE 移动一下位置,从而使问题得解。

证明:证法一:过点D 作DG ∥AC,交BC 于点G (如上图) ∴∠DGB=∠ACB, ∠DGF=∠FCE ∵AB=AC ∴∠B=∠ACB ∴∠B=∠DGB ∴BD=DG ∵F 是DE 的中点 ∴DF=EF在△DF G 和△DEFC 中, ∴△DF G ≌EFC∴DG=CE ∴BD=CE证法二:如图,在AC 上取一点H,使CH=CE,连接DH ∵F 是DE 的中点∴CF 是△EDH 的中位线 ∴DH ∥BC∴∠ADH=∠B, ∠AHD=∠BCA ∵AB=AC ∴∠B=∠BCA∴∠ADH=∠AHD ∴AD=AH ∴AB-AD=AC-AH ∴BD=HC∴BD=CE说明:本题信息特征是“线段中点”。

也可以过E 作EM ∥BC,交AB 延长线于点G ,仿照证法二求解。

例4.如图,已知AB ∥CD ,AE 平分∠BAD ,且E 是BC 的中点 求证:AD=AB+CD证法一:延长AE 交DC 延长线于F ∵AB ∥CD ∴∠BAE=∠F, ∠B=∠ECF ∵E 是BC 的中点 ∴BE=CE 在△ABE 和△CEF 中 ∴△ABE ≌△CEF∴AB=CF∵AE 平分∠ABD ∴∠BAE=∠DAEAB CD HEF A B CEF∵DF=DC+CF CF=AB ∴AD=AB+DC证法二:取AD 中点F ,连接EF ∵AB ∥CD ,E 是BC 的中点 ∴EF 是梯形ABCD 的中位线∴EF ∥AB , EF=12(AB+CD )∴∠BAE=∠AEF ∵AE 平分∠BAD ∴∠BAE=∠FAE ∴∠AEF=∠FAE ∴AF=EF ∵AF=DF∴EF=AF=FD=12AD ∴12 (AB+CD)= 12AD∴AD=AB+CD三.角平分线问题 例5.如图(1),OP 是∠MON 的平分线,请你利用图形画一对以OP 所在直线为对称轴的全等三角形。

请你参考这个全等三角形的方法,解答下列问题。

(1) 如图(2),在△ABC 中,∠ACB 是直角,∠B=60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F,请你判断并写出EF 与FD 之间的数量关系。

(2) 如图(3),在△ABC 中,如果∠ACB 不是直角,而(1)中的其他条件不变,请问,你在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由。

∴∠GFC=60°在△CFG 和△CFD 中 ∴△CFG ≌△CFD ∴FG=FDDA BCEF说明:学习性问题是新课程下的新型题,意在考查学生现场学习能力和自学能力。

抛开本题要求从角平分线的角度想,本题也可以利用角平分线的性质“角平分线上的点到角的两边的距离相等”达到求解的目的。

解法二:(2)答(1)中的结论EF=FD 仍然成立。

理由:作FG ⊥AB 于G,FH ⊥AC 于H,FM ⊥BC 于M ∵∠EAD=∠DAC ∴FG=FH∵∠ACE=∠BCE ∴FH=FG∵∠B=60° ∴∠DAC+∠ACE=60° ∴∠EFD=∠AFC=180°- 60°=120°在四边形BEFD 中∠BEF+∠BDF=180°∵∠BDF+∠FDC=180° ∴∠FDC =∠BEF 在△EFG 和△DFM 中∴EFG ≌△DFM∴EF=DF四、线段的和差问题例6 如图,在△ABC 中,AB=AC,点P 是边BC 上一点,PD ⊥AB 于D,PE ⊥AC 于E,CM ⊥AB 于M,试探究线段PD 、PE 、CM 的数量关系,并说明理由。

分析:判断三条线断的关系,一般是指两较短线段的和与较长线段的大小关系,通过测量猜想PD+PE=CM.分析:在CM 上截取MQ=PD ,得□PQMD,再证明CQ=PE 答:PD+PE=CM证法一:在CM 上截取MQ=PD ,连接PQ. ∵CM ⊥AB 于M, PD ⊥AB 于D∴∠CMB=∠PDB=90°∴CM ∥DP∴四边形PQMD 为平行四边形∴PQ ∥AB∴∠CQP=∠CMB=90°∠QPC=∠B∵AB=AC ∴∠B=∠ECP ∴∠QPC=∠ECP ∵PE ⊥AC 于E ∴∠PEC=90°在△PQC 和△PEC 中 ∴△PQC ≌△PEC ∴QC=PE ∵MQ=PD ∴MQ+QC=PD+PE ∴PD+PE=CM分析2:延长DF 到N 使DN=CM,连接CN,得平行四边形DNCM,再证明PN=PE证法2:延长DF 到N ,使DN=CM ,连接CN同证法一得平行四边形DNCM ,及△PNC ≌△PEC∴PN=PE∴PD+PE=CM分析3:本题中含有AB=AC 及三条垂线段PD 、DE 、CM , 且PAB PACABCSSS+=,所以可以用面积法求解。

证法三:连接AP,∵PD ⊥AB 于D,PE ⊥AC 于E,CM ⊥AB 于M ∠PQC=∠PEC ∠QPC=∠ECP PC=PC ∴121212ABPACPABCS AB PD S AC PE SAB CM =•=•=• ∵AB=AC 且PABPACABCSSS+=∴1112220AB PD AB PE AB CM AB PD PE CM•+•=•≠∴+= 说明:当题目中含有两条以上垂线段时,可以考虑面积法求解。

五、垂线段问题例7 在平行四边形ABCD 中,P 是对角线BD 上一点,且,,PE AB PF BC ⊥⊥垂足分别是E 、F求证:AB PF BC PE=分析:将比例式AB PF BC PE=转化为等积式AB PE BC PF •=•,联想到AB PE BC PF•=•1122, 即△PAB 与△PBC 的面积相等,从而用面积法达到证明的目的。

证明:连接AC 与BD 交于点O,连接PA 、PC 在平行四边形ABCD 中,AO=CO同理,AOPCOP AOBAOPBOCCOPPAB PBCS S SS SSSS=∴-=-=∵,,PE AB PF BC ⊥⊥例8求证:三角形三条边上的中线相交于一点。

分析:这是一个文字叙述的命题。

要证明文字命题,需要根据题意画出图形,再根据题意、结合图形写出已知、求证。

已知:△ABC 中,AF 、BD 、CE 是其中线。

MED PCBAF ED CBA P求证:AF 、BD 、CG 相交于一点。

分析:要证三线交于一点,只要证明第三条线经过另两条线的交点即可。

证明:设BD 、CE 相交于点G ,连接AG ,并延长交BC 于点F ,.作BM ⊥AF ,于M,CN ⊥AF ,于N 则,11221122AGB AGC SAG BM S AG CN AG BM AG CN BM CN=•=•∴•=•∴= 在△BMF ,和△CNF ,中 ∴△BMF ≌△CNF ∴''BF CF =∴AF ,是BC 边上的中线 又∵AF 时BC 边上的中线∴AF 与AF ,重合 即AF 经过点D∴AF 、BD 、CE 三线相交于点G因此三角形三边上的中线相交于一点。

六、梯形问题例9.以线段a=16,b=13为梯形的两底,以c=10为一腰,则另一腰长d 的取值范围是_分析:如图,梯形ABCD 中,上底b=13,下底a=16,腰AD= c=10,过B 作BE ∥AD,形ABED ,从而得AD=BE=10,AB=DE=13 所以EC=DC-DE=16-13=3. 所以另一腰d 的取值范围是 10-3<d <10+3 答案:7<d <13例10.如图,已知梯形ABCD 中,AB ∥DC,高AE=12,BD=15,AC=20,求梯形ABCD 的面积。

相关文档
最新文档