初等数论试卷
初等数论试卷模拟试题和答案
![初等数论试卷模拟试题和答案](https://img.taocdn.com/s3/m/4968270aeff9aef8941e066e.png)
初等数论试卷一一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( )A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解.9、设f(x)=10nn a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,nn i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________; 24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。
初等数论试卷
![初等数论试卷](https://img.taocdn.com/s3/m/434f863558eef8c75fbfc77da26925c52cc59107.png)
初等数论试卷初等数论试卷一、单项选择题:(1分/题×20题=20分)1.设x 为实数,[]x 为x 的整数部分,则( A )A.[][]1x x x ≤<+;B.[][]1x x x <≤+;C.[][]1x x x ≤≤+;D.[][]1x x x <<+.2.下列命题中不正确的是( B )A.整数12,,,n a a a 的公因数中最大的称为最大公因数;B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( C ) A.00,,0,1,2,;a b x x t y y t t d d=-=+=±± B.00,,0,1,2,;a b x x t y y t t d d=+=-=±± C.00,,0,1,2,;b a x x t y y t t d d=+=-=±± D.00,,0,1,2,;b a x x t y y t t d d =-=-=±±4.下列各组数中不构成勾股数的是( D )A.5,12,13;B.7,24,25;C.3,4,5;D.8,16,175.下列推导中不正确的是( D )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡?+≡+B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡?≡C.()()111212mod mod ;a b m a a b a m ≡?≡D.()()112211mod mod .a b m a b m ≡?≡6.模10的一个简化剩余系是( D )A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9.7.()mod a b m ≡的充分必要条件是( E ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( C )A.1x =或1;- B.1x =或4;C.1x ≡或()1mod5;- D.无解.9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( C )A .()()mod ()0mod ,1p f x p χχ?≡≡?>一定为的一个解B .()()0mod ,1,()0mod p f x p χχ??≡?>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( B ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( D )A .3B .11C .13D .2313.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( A )A . 4B . 3C . 2D . 114.模12的所有可能的指数为;( A )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定15.若模m 的单根存在,下列数中,m 可能等于: ( D )A . 2B . 3C . 4D . 1218.若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( B )A .aB .bC .abD .无法确定19.()f a ,()g a 均为可乘函数,则( A )A .()()f a g a 为可乘函数;B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数20.设()a μ为茂陛乌斯函数,则有( B )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ=二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________;22.多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数a b,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24.设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;27.若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件);28.在模m 的简化剩余系中,原根的个数是_______________________;29.设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________;30. ()48?=_________________________________。
初等数论期末试题及答案
![初等数论期末试题及答案](https://img.taocdn.com/s3/m/629c8e7d0812a21614791711cc7931b764ce7b6d.png)
初等数论期末试题及答案1. 选择题1.1 以下哪个数是质数?A. 10B. 17C. 26D. 35答案:B. 171.2 下列哪个数不是完全平方数?A. 16B. 25C. 36D. 49答案:C. 361.3 对于任意正整数n,下列哪个数一定是n的倍数?A. n^2B. n^3C. n+1D. n-1答案:A. n^22. 填空题2.1 求下列数的最大公约数:a) 24和36b) 45和75答案:a) 12b) 152.2 求下列数的最小公倍数:a) 6和9b) 12和18答案:a) 18b) 363. 计算题3.1 求1到100之间所有奇数的和。
解答:观察可知,1到100之间的奇数是等差数列,公差为2。
根据等差数列的求和公式,我们可以得到:(100 - 1) / 2 + 1 = 50 个奇数所以,奇数的和为:50 * (1 + 99) / 2 = 25003.2 求1到100之间所有能被3整除的数的和。
解答:观察可知,1到100之间能被3整除的数是等差数列,首项为3,公差为3。
根据等差数列的求和公式,我们可以得到:(99 - 3) / 3 + 1 = 33 个数所以,能被3整除的数的和为:33 * (3 + 99) / 2 = 16834. 证明题4.1 证明:如果一个数是平方数,那么它一定有奇数个正因数。
证明:设n是一个平方数,即n = m^2,其中m是一个正整数。
我们知道,一个数的因数总是成对出现的,即如果a是n的因数,那么n/a也是n的因数。
对于一个平方数n来说,它的因数可以分成两类:1) 当因数a小于等于m时,对应的商n/a必然大于等于m,因此这样的因数对有m对;2) 当因数a大于m时,对应的商n/a必然小于等于m,因此这样的因数对有(m - 1)对。
所以,在m > 1的情况下,平方数n有2m - 1个正因数,由于m是正整数,因此2m - 1一定是奇数。
而当m = 1时,平方数1只有一个因数,也满足奇数个正因数的条件。
三套大学初等数论期末考试试卷
![三套大学初等数论期末考试试卷](https://img.taocdn.com/s3/m/386eba81ba4cf7ec4afe04a1b0717fd5360cb2f2.png)
期末考试卷(A)一、填空题(每空3分,共45分)1. 若a ︱b ,b <a ,则b= ;a ︱b ,b ︱a ,则a= 。
2. (36,108,204)= ;[30,45,84]= 。
3. 300 000的质因数标准分解为 ,它的所有正约数的个数是 ,所有正约数的和是 。
4. 。
5. 四位数b a 27能同时被2,3,5整除,则a= ;b= 。
6. 用m ϕ()表示数0,1,2,1m -中与数m 互质的数的个数,则ϕ(20)= ,ϕ(120)= 。
7. 循环小数0.01001001000100010001……的循环节的长度h= 。
8. 已知费马(Fermat )数为2F 21nn =+,n N ∈,则前四个费马质数是 。
9. 设今天是星期一,则102天后是星期 。
二、从0、3、5、7四个数中任意选三个,排成能同时被2、3、5 整除的三位数,求这样的三位数,且确定有多少个这样的三位数。
(7分)三、(16分)1、求4063的个位数。
2、 求1001006!约分后的分母。
四.解方程(16分)。
=0 ;2. 525x +231y=42。
五.证明题、(16分) 1. 求证:77733337|(333777) 。
2.设p为质数,a为整数,且a2≡b2(mod p),证明:a≡b(mod p)或a≡-b(mod p)。
中央广播电视大学2006—2007学年度第二学期“开放本科”期末考讧数学专业初等数论试题2007年7月一、单项选择题(每题4分,共24分)1.如果b,d,e,b,则( ).A.a=b B.a=-bC.a≥b D.a=±b2.如果2|n, 15|n,则30( )n.A. 整除B.不整除c. 等于D.不一定3.大于10且小于30的素数有( ).A.4个B.5个C 6个D.7个4.模5的最小非负完全剩余系是( ).A.一2,一1,O,1,2 B.一5,一4,一3,一2,一1C.1,2,3,4,5 D.0,1,2,3,45.如果( ),则不定方程ax+by=c 有解.A.(a,b)|c B.c|(a,b)C.a|c D.(a,b)|a6.整数637693能被( )整除.A.3 B.5C.7 D.9二、填空题(每题4分,共24分)1.x=[x]+ ·2.同余式111x≡75(mod321)有解,而且解的个数.3.在176与545之间有是17的倍数.4.如果ab>o,则[a,b](a,b)= ·5. a,b的最小公倍数是它们公倍数的·S.如果(a,b)=1,那么(ab,a+b)= .三、计算题(共32分)1.求(336,221,391)=?2.求解不定方程4x+12y=8.3.解同余式12x+4≡0(mod 7).4.解同余式x2≡2(mod 23)四、证明题(第1小题10分,第2小题10分,共20分)1.如果(a,b)=1,则(a十b,a-b)=l或2.2.证明相邻两个偶数的乘积是8的倍数.试卷代号:1077中央广播电视大学2006—2007学年度第二学期“开放本科”期末考试2007年7月一、单项选择题(每题4分,共24分)1.B 2.D 3.B4.A 5.D 6.A二、填空题(每题4分,共24分)1.{x}2.33.124.ab5.因数6.1三、计算题(每题8分,共32分)1.求(336,221,391)=?解:(336,221,391)=(336,(22l,391))…………………………—…………………(4分)=(336,17)=l ,.,..,,,.,.....,...·(4分)2.求解不定方程4x+12y=8.解:因为(4,12)=4 | 8,所以有解……………………………………………………(2分)化简x+3y=2,则有x=-1,y=l ……………………………………………(4分)通解为x=-1十3t,y=1一t ……………………………………………………(2分)3.解同余式12x十4≡O(mod7).解:因为(12,7)=1|4,所以有解,而且解的个数为1 …………………………(2分)变形12x一7y=一4………………………………………………………………(2分)简单计算x≡2(mod7).…………………………………………………………(4分)4.解同余式x2≡2(mod23)解:因为,所以有解,而且解的个数为2……………………(4分)解分别为x≡5,18(mod23)………………………………………………………(4分)四、证明题(第14、题lo分,第2小题lo分,共20分)1.如果(a,b)=1,则(a+b,a-b)=1或2.证明设(a十b,a一b)=d,则d|(a十b),d|(a一b)…………………………………(3分)所以d|(a十b)十(a一b),d|2a.同理d|2b…………………………………………(4分)再(a,b)=1,所以d|2.即d=1或2……………………………………—………(3分)2.证明相邻两个偶数的乘积是8的倍数.(10分)证明设相邻两个偶数分别为2n,(2n+2)…………………………………………(2分)所以2n(2n十2)=4n(n十1) …………………………………………………………<3分)而且两个连续整数的乘积是2的倍数………………………………………………(2分)即4n(n+1)是8的倍数.…………………………………………—……………(3分)初等数论一、判断题1、任意给出5个整数必有三个数之和能被整数3整除。
初等数论模拟试题及答案
![初等数论模拟试题及答案](https://img.taocdn.com/s3/m/d7844b990d22590102020740be1e650e52eacf8e.png)
初等数论模拟试题及答案一、选择题(每题2分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 13D. 162. 一个数的最小素因子是它本身,这个数是什么?A. 0B. 1C. 质数D. 合数3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数。
若n=12,φ(12)的值是多少?A. 4B. 6C. 8D. 124. 一个数如果只有1和它本身两个因数,这个数是什么?A. 0B. 1C. 质数D. 合数5. 以下哪个数是完全数?A. 6B. 12C. 28D. 4966. 一个数的约数个数是奇数,这个数是什么?A. 质数B. 合数C. 完全数D. 素数7. 模n的逆元是指一个整数a,使得a×x ≡ 1 (mod n),以下哪个数在模5下没有逆元?A. 1B. 2C. 3D. 48. 费马小定理指出,如果p是一个质数,那么对于任意整数a,a^(p-1) ≡ 1 (mod p)。
以下哪个选项是错误的?A. a^4 ≡ 1 (mod 5)B. a^3 ≡ 1 (mod 7)C. a^2 ≡ 1 (mod 4)D. a^2 ≡ 1 (mod 3)9. 哥德巴赫猜想是指每一个大于2的偶数都可以表示为两个质数之和。
以下哪个数不能被表示为两个质数之和?A. 4B. 6C. 8D. 1010. 以下哪个数是梅森素数?A. 3B. 7C. 2^7 - 1D. 2^3 - 1二、填空题(每题2分,共20分)11. 素数是指只有________和它本身两个因数的自然数。
12. 如果a和b互质,那么它们的最大公约数是________。
13. 一个数的约数个数是偶数,这个数至少有________个约数。
14. 欧拉函数φ(1)的值是________。
15. 模n的剩余类集合记为Z/nZ,它包含________个元素。
16. 费马小定理中,如果a和p互质,那么a^(p-1) ≡ ________ (mod p)。
初等数论期末考试模拟试卷(含答案)
![初等数论期末考试模拟试卷(含答案)](https://img.taocdn.com/s3/m/50c8c069bb1aa8114431b90d6c85ec3a87c28bd2.png)
初等数论期末考试模拟试卷(含答案)一、填空题(每题5分,共25分)1. 若两个正整数a和b的最大公约数为1,则称a和b互质。
若a和b互质,则a+b与a-b也互质。
()2. 设m和n是正整数,且m、n互质。
若存在正整数k,使得km+1与kn+1互质,则k的最小值为()。
答案:13. 已知p和q是不同的质数,且p+q=17,则p^2+q^2的最小值为()。
答案:974. 设F(n)表示斐波那契数列的第n项,且F(n+1)=F(n)+F(n-1),F(1)=1,F(2)=1。
若F(n)能被3整除,则n的最小值为()。
答案:85. 已知正整数a、b、c满足a^2+b^2=c^2,则称a、b、c 为勾股数。
勾股数中,a、b、c都是奇数的三元组称为奇素勾股数。
已知最小的奇素勾股数是(3,4,5),则第二小的奇素勾股数是()。
答案:(15,8,17)二、选择题(每题5分,共25分)6. 以下关于最大公约数和最小公倍数的说法,错误的是()。
A. 两个正整数的最大公约数是它们的公共因子中最大的一个B. 两个正整数的最大公约数等于它们的乘积除以最小公倍数C. 两个正整数的最大公约数和最小公倍数的乘积等于这两个数的乘积D. 两个正整数的最大公约数和最小公倍数一定互质答案:D7. 设p是质数,且p>2,则以下说法正确的是()。
A. p的平方能被3整除B. p的立方能被3整除C. p的平方加1能被3整除D. p的平方减1能被3整除答案:D8. 以下关于斐波那契数列的说法,错误的是()。
A. 斐波那契数列中的任意两个相邻项互质B. 斐波那契数列中的任意两个非相邻项互质C. 斐波那契数列中的任意三个连续项构成勾股数D. 斐波那契数列中的任意两个相邻项之比越来越接近黄金比例答案:C9. 设a、b、c是勾股数,且a是最小的质数。
以下说法正确的是()。
A. b和c一定互质B. b和c一定不互质C. b和c中至少有一个是质数D. b和c中至少有一个不是质数答案:D10. 以下关于同余的说法,错误的是()。
自考初等数论试题及答案
![自考初等数论试题及答案](https://img.taocdn.com/s3/m/9b2d61353d1ec5da50e2524de518964bcf84d2db.png)
自考初等数论试题及答案一、选择题(每题2分,共10分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 一个数的最小素因子是3,那么这个数的最小公倍数是:A. 3B. 6C. 9D. 12答案:C3. 计算 \((2^3) \div 2^2\) 的结果是:A. 2B. 4C. 8D. 16答案:A4. 一个数的质因数分解是 \(2^2 \times 3^3\),那么这个数的约数个数是:A. 5B. 6C. 7D. 8答案:D5. 如果 \(p\) 是一个素数,那么 \(p^2 - 1\) 可以分解为:A. \((p-1)(p+1)\)B. \(p(p-1)\)C. \((p+1)(p-1)\)D. \(p^2 - 1\)答案:C二、填空题(每题3分,共15分)1. 如果一个数 \(n\) 能被3整除,那么 \(n\) 的各位数字之和也能被____整除。
答案:32. 一个数 \(a\) 与 \(b\) 的最大公约数(GCD)是 \(d\),那么\(a \times b\) 的最大公约数是______。
答案:d3. 一个数 \(n\) 能被9整除,那么 \(n\) 的各位数字之和也能被______整除。
答案:94. 一个数 \(n\) 能被11整除,那么 \(n\) 的奇数位数字之和与偶数位数字之和的差是______的倍数。
答案:115. 一个数 \(n\) 能被7整除,那么 \(2n + 4\) 能被______整除。
答案:7三、解答题(每题10分,共20分)1. 求 \(2^{16} - 1\) 的所有素因子。
答案:\(2^{16} - 1 = (2^8 + 1)(2^8 - 1) = (2^4 + 1)(2^4 -1)(2^8 + 1) = (2^2 + 1)(2^2 - 1)(2^4 + 1)(2^4 - 1)(2^8 + 1) = 3 \times 15 \times 17 \times 15 \times 255\),所以素因子为3, 5, 17, 255。
初等数论试卷,最全面的答案,包括截图
![初等数论试卷,最全面的答案,包括截图](https://img.taocdn.com/s3/m/9b1cc308a9114431b90d6c85ec3a87c240288a72.png)
初等数论试卷,最全⾯的答案,包括截图初等数论考试试卷⼀、单项选择题:(1分/题X 20题=20分)1 ?设x为实数,lx ]为x的整数部分,则(A )A.[xl X ::: lx ; E. [x I ::: x Ixl ? 1 ;C. lx I x lx A:;1 ;D. lx I ::: X ::: Ix.l ? 1 .2.下列命题中不正确的是(B )A.整数a i,a2,||(,a n的公因数中最⼤的称为最⼤公因数;C.整数a与它的绝对值有相同的倍数D.整数a与它的绝对值有相同的约数3 .设⼆元⼀次不定⽅程ax?by=c (其中a,b,c是整数,且a,b不全为零)有⼀整数解x o,y°,d⼆a,b,则此⽅程的⼀切解可表为(C )a bA.x =x°t, y ⼆y°t,t =0, _1,_2」H;d da bB.x = X o t, y ⼆y o t,t = 0, —1, _2」H;d db ac. x =X o t, y =y°t,t =0, _1,_2,川;d db aD. x =x°t, y ⼆y o t,t =0, ⼀1,_2,|";d d4. 下列各组数中不构成勾股数的是(D )A. 5, 12, 13;B. 7, 24, 25;C.3, 4, 5;D. 8, 16, 175. 下列推导中不正确的是(D )A.? 三b modm ,a2 三d modm = y a?三b b2modm ;B.Q= b mod m ,a2 = b2 modm = Qa? = bb 2mod m ;c. Q= b mod m = 时2 = ba 2modm ;2 2C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.a1= b1 modm = Q=b modm .6 .模10的⼀个简化剩余系是(D )A. 0,1,2,川,9;B. 1,2,3川1,10;7. a三b modm的充分必要条件是(A )A. ma —b;B. a —b m;C.m a +b;D. a +b m.&设f x =x42x38x 9,同余式f x三0 mod5的所有解为(C )A. x =1 或-1;B. x =1 或4;C. x 三1 或-1 mod5 ;D.⽆解.9、设f(x)= a n X n JlUII a1x ? a°其中a i是奇数,若x = x0mod p 为f(x) = 0 mod p 的⼀个解, 则:(?)A. 了.三/.: mod p ⼚定为f (x)三0(mod p勺,1的⼀个解B. '三I mod p「,::1,⼀定为f (x)三0 mod p :的⼀个解D. 若x三x° mod p -为f (x)三0 mod p -的⼀个解,则有x :三x° mod p10.设f (x)⼆a n x n|川|) ax a0,其中a i为奇数,a n丞Omodp,n p,则同余式f (x) =0 mod p 的解数:( )A.有时⼤于p但不⼤于n; B .不超过pC.等于p D .等于n11.若2为模p的平⽅剩余,则p只能为下列质数中的:( D )A. 3 B . 11 C . 13 D . 2312.若雅可⽐符号->1,则(C )Im⼃2A. 同余式x三a modm ⼀定有解,B. 当a,m =1时,同余式x2=a mod p有解;C. 当m = p(奇数)时,同余式x2三a mod p有解;D. 当a⼆p(奇数)时,同余式x2三a mod p有解.13.若同余式x2三a mod2‘,〉-3, 2, a =1有解,则解数等于(A )C. ⼀5, -4, _3,-2,_1,0,1,2,3,4;D. 1,3,7,9.D.18. 若x 对模m 的指数是ab , a >0, ab >0,则a 对模m 的指数是(B )A. a B . b C . ab D.⽆法确定19. f a , g a 均为可乘函数,则(A ) A. f a g a 为可乘函数; B . f ag (a )C. f a g a 为可乘函数; D . f a - g a 为可乘函数20. 设丄[a 为茂陛乌斯函数,则有(B )不成⽴A ⼆ J 1 =1B .空-1 =1C .⼆■-2 = -1D .⼆=9 =0⼆. 填空题:(每⼩题1分,共10分)21.3在45!中的最⾼次n = ________ 21 ___ ; 22. 多元⼀次不定⽅程:a 1x 1 a 2x 2 ?⼁II a n x^ N ,其中a 1 , a 2,…,a n , N 均为整数,n _ 2 ,有整数解的充分必要条件是 _ ( a 1 , a 2 ,…,a n ,) I N_a23.有理数⼀,0cavb , (a,b )=1,能表成纯循环⼩数的充分必要条件是_ (10, b ) =1__; b- _ 24. 设x 三冷 mod m 为⼀次同余式ax 三b modm , a = 0 mod m 的⼀个解,则它的所有解 A . 414. A . 15. A . B . 3 C 模12的所有可能的指数为:( 1, 2, 4 B . 1, 2, 4, 6, 若模m 的原根存在,下列数中,2 B .3 C 16. 对于模5,下列式⼦成⽴的是.2 A )12 C . 1, 2, m不可能等于:( D . 12 B ) 3, D 4, 6,12 D ?⽆法确定 )A. in d 32 =2ind 3^=3 C. in d 35 =0ind 310 ⼆ ind 32 ind 35 17. A. 下列函数中不是可乘函数的是:茂陛鸟斯(mobius )函数w(a ); B. 欧拉函数■- a ;C. 不超过x 的质数的个数⼆x ;25. ____________________________ 威尔⽣(wilson )定理: _______________ (P —1)! +1 三0(modp ), p 为素数 _____________ ;26. 勒让德符号'^03 |= 1 ;訂013⼃27. 若a, p [=1,则a 是模p 的平⽅剩余的充分必要条件是 a 2三1 mod p (欧拉判别条件; 28.在模m 的简化剩余系中,原根的个数是 _讥営m __; 29.设。
初等数论测试(带答案)
![初等数论测试(带答案)](https://img.taocdn.com/s3/m/4a344a78f4335a8102d276a20029bd64783e6268.png)
,其中
563
是素数.
(8 分)
四、证明题(第 1 小题 10 分,第 2 小题 11 分,第 3 小题 11 分,共 32 分)
n n2 n3 17、证明对于任意整数 n ,数 3 2 6 是整数.
18、证明相邻两个整数的立方之差不能被 5 整除. 19、证明形如 4n 1 的整数不能写成两个平方数的和.
A ac bc(mod m) B a b C ac T bc(mod m) D a b
5、如果( ),则不定方程 ax by c 有解.
A (a, b) c B c (a, b) C a c D (a, b) a
6、整数 5874192 能被( )整除. A 3 B 3与9 C 9 D 3或9
证明 设 n 是正数,并且 n 1(mod 4) ,
----------(3 分)
如果
n x2 y2 , 则因为对于模 4, x, y 只与 0,1,2,-1 等同余, 所以 x2 , y 2 只能与 0,1 同余,
所以
x2 y 2 0,1,2(mod 4) ,
而这与 n 1(mod 4) 的假设不符,
C 7 不整除(12,15) D 7 不整除[12,15]
12、同余式
( ).
A 有解 B 无解 C 无法确定 D 有无限个解
二、填空题 1、有理数 ,
,能写成循环小数的条件是( ).
2、同余式
有解,而且解的个数为( ).
3、不大于 545 而为 13 的倍数的正整数的个数为( ).
4、设 是一正整数,Euler 函数
429 67
27 67
(1)
27 1. 67 1 22
67 27
67 27
初等数论试卷和答案解析
![初等数论试卷和答案解析](https://img.taocdn.com/s3/m/d32c7dac76c66137ef061987.png)
初等数论考试试卷1一、单项选择题(每题3分,共18分) 1、如果a b ,b a ,则( ). Ab a = B b a -= C b a ≤ D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定 3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定 4、如果)(mod m b a ≡,c 是任意整数,则 A)(mod m bc ac ≡ B b a = C ac T )(mod m bc D b a ≠5、如果( ),则不定方程c by ax =+有解. Acb a ),( B),(b a c Cca Dab a ),(6、整数5874192能被( )整除. A 3 B 3与9 C 9 D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分) 1、求[136,221,391]=? 2、求解不定方程144219=+y x . 3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分) 1、D. 2、A 3、C 4、A 5、A 6、B 二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为(][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r ≤0.三、计算题(每题8分,共32分) 1、求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391]=[391,17221136⨯]=[1768,391]------------(4分)= 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分) 解:因为(9,21)=3,1443,所以有解;----------------------------(2分) 化简得4873=+y x ;-------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分) 所以原方程的特解为48,96=-=y x ,-------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
初等数论期末考试试卷张
![初等数论期末考试试卷张](https://img.taocdn.com/s3/m/f2ad7aa3dd3383c4bb4cd2d8.png)
初等数论试卷(B)一,选择题(满分15分,每题3分)1,下列不正确的是( )A 设m ∈+N ,a ,b ∈Z ,若)(mod m b a ≡ ,则)(mod m a b ≡。
B 设m ∈+N ,a ,b ,c ∈Z ,若)(mod m c b a ≡+,则)(mod m b c a -≡.C 设m ∈+N ,,,11b a 22,b a ∈Z ,,若)(m od 11m b a ≡,)(m od 22m b a ≡,则)(m od 2121m b b a a ≡。
D 设m ∈+N ,a ,b ∈Z ,若)(m od 22m b a ≡ ,则)(mod m b a ≡。
2,下列哪一个为模12互质的剩余类( )A [2],B [5],C [6],D [3]。
3,下列哪一个有理数不可以化为有限小数( )A 203,B 607,C 51,D 10019。
4,同余方程)5(m od 022≡+x 的解为( )A )5(mod 0≡x ,B )5(mod 4≡x ,C )5(mod 2≡x ,D 此方程无解。
5,下列哪一个同余方程组无解( )A ⎪⎩⎪⎨⎧≡≡)10(mod 7)25(mod 9x x ,B ⎪⎩⎪⎨⎧≡≡)6(mod 1)9(mod 4x xC ⎪⎩⎪⎨⎧≡≡)45(mod 2)25(mod 17x x ,D ⎪⎩⎪⎨⎧≡≡)7(mod 26)14(mod 19x x 。
二,填空题(满分10分,每题2分)1,当m = 时,)(mod 1132m ≡和)(mod 1117m ≡同时成立。
2,设m ∈+N ,则 为模m 的非负最小完全剩余系。
3,=)16(ϕ 。
4,写出模8的一个简化剩余系: 。
5,余式)5(mod a x ≡等价于等式: 。
三,判断题(满分10分,每题2分 )1,)(m ϕ为欧拉函数,则1)(1-≤≤m m ϕ。
( )2, 设m ∈+N ,a ∈Z ,(a,m )=1,若整数集合{})(21,......,,m a a a ϕ为模m 的一个简化剩余系,则{})(21,......,,m aa aa aa ϕ也为模m 的一个简化剩余系。
初等数论试卷
![初等数论试卷](https://img.taocdn.com/s3/m/0dcba128700abb68a882fb9b.png)
初等数论试卷一、 单项选择题:(1分/题×20题=20分)1.设x 为实数,[]x 为x 的整数部分,则( )A.[][]1x x x ≤<+; B.[][]1x x x <≤+;C.[][]1x x x ≤≤+; D.[][]1x x x <<+.2.下列命题中不正确的是( )A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( ) A.00,,0,1,2,;a b x x t y y t t d d=-=+=±± B.00,,0,1,2,;a b x x t y y t t d d=+=-=±± C.00,,0,1,2,;b a x x t y y t t d d=+=-=±± D.00,,0,1,2,;b a x x t y y t t d d =-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25;C.3,4,5; D.8,16,175.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡C.()()111212mod mod ;a b m a a b a m ≡⇒≡D.()()112211mod mod .a b m a b m ≡⇒≡6.模10的一个简化剩余系是( )A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9.7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( )A.1x =或1;- B.1x =或4;C.1x ≡或()1mod5;- D.无解.9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .2312.若雅可比符号1a m ⎛⎫= ⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 114. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定15. 若模m 的单根存在,下列数中,m 可能等于: ( )A . 2B . 3C . 4D . 1216.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+17.下列函数中不是可乘函数的是: ( )A .茂陛鸟斯(mobius)函数w(a) ;B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( )A .aB .bC .abD .无法确定19.()f a ,()g a 均为可乘函数,则( )A .()()f a g a 为可乘函数;B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ=二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________;22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数a b,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________;26. 勒让德符号5031013⎛⎫ ⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件);28. 在模m 的简化剩余系中,原根的个数是_______________________;29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________;30. ()48ϕ=_________________________________。
初等数论试卷
![初等数论试卷](https://img.taocdn.com/s3/m/eb5154fc4693daef5ff73d0f.png)
一.填空题:1、(1859-, 1573)=1432、对于任意的正整数,a b ,有[,].(,)ab a b a b = 3、[]{}.x x x =+ 4、22345680的标准分解式是422345680235747283=⋅⋅⋅⋅⋅.5、整数集合A 中含有m 个整数,且A 中任意两个整数对于m 是不同余的,则整数集合A 是模m 的完全剩余系.6、设a 、b 是任意两个正整数,则不大于a 而为b 的倍数的正整数个数为a b⎡⎤⎢⎥⎣⎦. 7、素数写成两个平方数和的方法是唯一的. 8、不同剩余类中的任何两个不同整数对模m 是不同余的.9、n 元一次不定方程1122.n n a x a x a x c +++=……有解的充分必要条件是12().n a a a c +……10、初等数论按研究方法分为:初等数论、解析数论、代数数论、几何数论.11、数集合A 是模m 的简化剩余系的充要条件(1)A 中含有()f m 个整数;(2)任意两个整数对模m 不同余;(3)A 中每个整数都与m 互素;12、 设n 是正整数1321222,,.........,n n n n c c c -的最大公约数为12k + 13、若(,)1a b =,则(,)(,)a bc a c =.14、81234被13除的余数是12. 15、模7的最小非负完全剩余系是0、1、2、3、4、5、6.二、判断题:1、若n 为奇数,则8|21n -。
( √ )2、设n 、k 是正整数k n 与4k n +的个位数字不一定相同。
( × )3、任何大于1的整数a 都至少有一个素因数. ( √ )4、任何一个大于1的合数与a . ( √ )5、任意给出的五个整数中必有三个数之和能被整数3整除. ( √ )6、最大公约数等于1是两两互素的必要而不充分条件. ( √ )7、设p 是素数,a 是整数,则p a 或(,) 1.p a = ( √ )8、如果12,n a a a ……是互素的,则12,n a a a ……一定两两互素 ( ×)9、设p 是素数,若p ab ,则p a 且.p b ( × )10、(刘维尔定理)设p 是素数,则(1)p -!1(mod )p ≡- ( √ )11、m 是正整数(,)1a m =,则()1(mod ).m a m ϕ≡( √ )12、由于每个非零整数的约数个数是有限的,所以最大的公约数存在,且正整数。
《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)
![《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)](https://img.taocdn.com/s3/m/0cfac406aaea998fcc220e4f.png)
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;abx x t y y t t d d =-=+=±± B.00,,0,1,2,;abx x t y y t t d d =+=-=±± C.00,,0,1,2,;bax x t y y t t d d =+=-=±± D.00,,0,1,2,;bax x t y y t t dd =-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B .3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B .3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B .323ind =C .350ind =D .3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30.()48ϕ=_________________________________。
初等数论试卷和答案
![初等数论试卷和答案](https://img.taocdn.com/s3/m/e741c37ced630b1c59eeb5f9.png)
初等数论考试试卷1一、单项选择题(每题3分,共18分)1、如果a b ,b a ,则( ).A b a =B b a -=C b a ≤D b a ±=2、如果n 3,n 5,则15( )n .A 整除B 不整除C 等于D 不一定3、在整数中正素数的个数( ).A 有1个B 有限多C 无限多D 不一定4、如果)(mod m b a ≡,c 是任意整数,则A )(mod m bc ac ≡B b a =C ac T )(mod m bcD b a ≠5、如果( ),则不定方程c by ax =+有解. A c b a ),( B ),(b a c C c a D a b a ),(6、整数5874192能被( )整除.A 3B 3与9C 9D 3或9二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是( ).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是( ).3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( ).5、b a ,的公倍数是它们最小公倍数的( ).6、如果b a ,是两个正整数,则存在( )整数r q ,,使r bq a +=,b r π≤0.三、计算题(每题8分,共32分)1、求[136,221,391]=?2、求解不定方程144219=+y x .3、解同余式)45(mod 01512≡+x .4、求⎪⎭⎫ ⎝⎛563429,其中563是素数. (8分)四、证明题(第1小题10分,第2小题11分,第3小题11分,共32分)1、证明对于任意整数n ,数62332n n n ++是整数.2、证明相邻两个整数的立方之差不能被5整除.3、证明形如14-n 的整数不能写成两个平方数的和.试卷1答案一、单项选择题(每题3分,共18分)1、D.2、A3、C4、A5、A6、B二、填空题(每题3分,共18分)1、素数写成两个平方数和的方法是(唯一的).2、同余式)(mod 0m b ax ≡+有解的充分必要条件是(b m a ),().3、如果b a ,是两个正整数,则不大于a 而为b 的倍数的正整数的个数为( ][b a ).4、如果p 是素数,a 是任意一个整数,则a 被p 整除或者( 与p 互素 ).5、b a ,的公倍数是它们最小公倍数的( 倍数 ).6、如果b a ,是两个正整数,则存在( 唯一 )整数r q ,,使r bq a +=,b r π≤0.三、计算题(每题8分,共32分)1、 求[136,221,391]=?(8分)解 [136,221,391]=[[136,221],391] =[391,17221136⨯]=[1768,391]------------(4分) = 173911768⨯=104⨯391=40664. ------------(4分)2、求解不定方程144219=+y x .(8分)解:因为(9,21)=3,1443,所以有解; ----------------------------(2分)化简得4873=+y x ; -------------------(1分)考虑173=+y x ,有1,2=-=y x , -------------------(2分)所以原方程的特解为48,96=-=y x , -------------------(1分)因此,所求的解是Z t t y t x ∈-=+-=,348,796。
《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)
![《初等数论》试卷及参考答案(与闵嗣鹤第三版配套)](https://img.taocdn.com/s3/m/cac59e3025c52cc58ad6be14.png)
《初等数论》试卷一、 单项选择题:(1分/题×20题=20分) 1.设x 为实数,[]x 为x 的整数部分,则( ) A.[][]1x x x ≤<+; B.[][]1x x x <≤+; C.[][]1x x x ≤≤+; D.[][]1x x x <<+. 2.下列命题中不正确的是( ) A.整数12,,,n a a a 的公因数中最大的称为最大公因数; B.整数12,,,n a a a 的公倍数中最小的称为最小公倍数C.整数a 与它的绝对值有相同的倍数 D.整数a 与它的绝对值有相同的约数3.设二元一次不定方程ax by c +=(其中,,a b c 是整数,且,a b 不全为零)有一整数解()00,,,x y d a b =,则此方程的一切解可表为( )A.00,,0,1,2,;a bx x t y y t t d d =-=+=±± B.00,,0,1,2,;a bx x t y y t t d d =+=-=±± C.00,,0,1,2,;b ax x t y y t t d d =+=-=±± D.00,,0,1,2,;b ax x t y y t t d d=-=-=±±4.下列各组数中不构成勾股数的是( )A.5,12,13; B.7,24,25; C.3,4,5; D.8,16,17 5.下列推导中不正确的是( )A.()()()11221212mod ,mod mod ;a b m a b m a a b b m ≡≡⇒+≡+ B.()()()11221212mod ,mod mod ;a b m a b m a a bb m ≡≡⇒≡ C.()()111212mod mod ;a b m a a b a m ≡⇒≡ D.()()112211mod mod .a b m a b m ≡⇒≡ 6.模10的一个简化剩余系是( ) A.0,1,2,,9; B.1,2,3,,10;C.5,4,3,2,1,0,1,2,3,4;----- D.1,3,7,9. 7.()mod a b m ≡的充分必要条件是( ) A.;m a b - B.;a b m - C.;m a b + D..a b m +8.设()43289f x x x x =+++,同余式()()0mod5f x ≡的所有解为( ) A.1x =或1;- B.1x =或4; C.1x ≡或()1mod5;- D.无解. 9、设f(x)=10n n a x a x a +++其中()0,mod i a x x p ≡是奇数若为f(x)()0mod p ≡的一个解,则:( )A .()()mod ()0mod ,1p f x p χχ∂≡≡∂>一定为的一个解 B .()()0mod ,1,()0mod p f x p χχ∂∂≡∂>≡一定为的一个解C .()()()00(),()0mod mod ,mod p f x f x p x x p x x p ααα≡≡≡当不整除时一定有解其中 D .()()()00mod ()0mod ,mod x x p f x p x x p ααα≡≡≡若为的一个解则有 10.()10(),,0mod ,,n n i n f x a x a x a a a p n p =+++≡>/设其中为奇数则同余式()()0mod f x p ≡的解数:( ) A .有时大于p 但不大于n; B .可超过pC .等于pD .等于n11.若2为模p 的平方剩余,则p 只能为下列质数中的 :( )A .3B .11C .13D .23 12.若雅可比符号1a m ⎛⎫=⎪⎝⎭,则 ( ) A .()2mod ,x a m ≡同余式一定有解B .()()2,1,mod a m x a p =≡当时同余式有解;C .()2(,mod m p x a p =≡当奇数)时同余式有解;D .()2(),mod a p x a p =≡当奇数时同余式有解.13.()()2mod 2,3,2,1,x a a αα≡≥=若同余式有解则解数等于( )A . 4B . 3C . 2D . 1 14. 模12的所有可能的指数为;( )A .1,2,4B .1,2,4,6,12C .1,2,3,4,6,12D .无法确定 15. 若模m 的单根存在,下列数中,m 可能等于: ( ) A . 2 B . 3 C . 4 D . 12 16.对于模5,下列式子成立的是: ( )A .322ind =B . 323ind =C . 350ind =D . 3331025ind ind ind =+ 17.下列函数中不是可乘函数的是: ( ) A .茂陛鸟斯(mobius)函数w(a) ; B . 欧拉函数()a φ;C .不超过x 的质数的个数()x π;D .除数函数()a τ;18. 若x 对模m 的指数是ab ,a >0,ab >0,则x α对模m 的指数是( ) A .a B .b C .ab D .无法确定 19.()f a ,()g a 均为可乘函数,则( ) A .()()f a g a 为可乘函数; B .()()f ag a 为可乘函数 C .()()f a g a +为可乘函数; D .()()f a g a -为可乘函数 20.设()a μ为茂陛乌斯函数,则有( )不成立A .()11μ=B .()11μ-=C .()21μ=-D .()90μ= 二.填空题:(每小题1分,共10分)21. 3在45!中的最高次n = ____________________; 22. 多元一次不定方程:1122n n a x a x a x N +++=,其中1a ,2a ,…,n a ,N 均为整数,2n ≥,有整数解的充分必要条件是___________________;23.有理数ab,0a b <<,)(,1a b =,能表成纯循环小数的充分必要条件是_______________________;24. 设()0mod x x m ≡为一次同余式()mod ax b m ≡,a ≡()0mod m 的一个解,则它的所有解为_________________________;25. 威尔生(wilson )定理:________________________________________; 26. 勒让德符号5031013⎛⎫⎪⎝⎭=________________________________________; 27. 若)(,1a p =,则a 是模p 的平方剩余的充分必要条件是_____________(欧拉判别条件); 28. 在模m 的简化剩余系中,原根的个数是_______________________; 29. 设1α≥,g 为模p α的一个原根,则模2p α的一个原根为_____________; 30. ()48ϕ=_________________________________。
初等数论试题及答案大学
![初等数论试题及答案大学](https://img.taocdn.com/s3/m/9d3028d1a1116c175f0e7cd184254b35effd1a17.png)
初等数论试题及答案大学一、选择题(每题5分,共20分)1. 以下哪个数是素数?A. 4B. 9C. 11D. 15答案:C2. 100以内最大的素数是:A. 97B. 98C. 99D. 100答案:A3. 一个数的最小素因子是3,那么这个数至少是:A. 3B. 6C. 9D. 12答案:B4. 以下哪个数是完全数?A. 6B. 28C. 496D. 8128答案:A二、填空题(每题5分,共20分)1. 一个数的因数个数是______,那么这个数一定是合数。
答案:32. 如果一个数的各位数字之和是3的倍数,那么这个数本身也是3的倍数,这个性质称为______。
答案:3的倍数规则3. 欧拉函数φ(n)表示小于或等于n的正整数中与n互质的数的个数,那么φ(10)等于______。
答案:44. 哥德巴赫猜想是指任何一个大于2的偶数都可以表示为两个______之和。
答案:素数三、解答题(每题15分,共30分)1. 证明:如果p是一个素数,那么2^(p-1) - 1是p的倍数。
证明:设p是一个素数,根据费马小定理,对于任意整数a,若p不能整除a,则有a^(p-1) ≡ 1 (mod p)。
特别地,当a=2时,有2^(p-1) ≡ 1 (mod p)。
这意味着2^(p-1) - 1是p的倍数。
2. 计算:求1到100之间所有素数的和。
答案:2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + 29 + 31 + 37 + 41 + 43 + 47 + 53 + 59 + 61 + 67 + 71 + 73 + 79 + 83 + 89 +97 = 1060四、综合题(每题10分,共20分)1. 已知a和b是两个不同的素数,证明:a + b至少有4个不同的素因子。
证明:设a和b是两个不同的素数,那么a和b至少有2个不同的素因子。
如果a + b是素数,那么a + b至少有3个不同的素因子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、填空题(本大题共10小题,每小题4分,共40分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1.μ(2002)=_________; d(2002)=_________.
2.自然数225,226,…,240中的素数是_________.
3.n+2,2n+3,3n+1中必定互素的一组数是_________.
4.模7的绝对值最小简化剩余系是_________.
5.同余方程16x ≡6(mod 46)的解是_________.
6.不定方程3x+4y=5的通解是_________.
7.17|(2002n -1),则正整数n 的最小值是_________.
8.满足ϕ(n) =20的n 有多个,其中两个是_________.
9.弗罗贝纽斯(Frobenius)问题可表述为_________. 10.⎪⎭
⎫ ⎝⎛17954 =_________. 二、计算题(本大题共3小题,第1,2小题各7分,第3小题9分,共23分)
1.判断下面同余方程组是否有解,如有解则求出其解:
⎪⎩
⎪⎨⎧≡≡≡9).5(mod x 20),7(mod x 15),2(mod x
2.试求不定方程y 2+x=x 2
+y-22的所有正整数解.
3.判断同余方程x 2≡62(mod 113)是否有解,如有解,则使用高斯(Gauss)逐步淘汰法求其解.
三、论证题(本大题共4小题,第1,2小题各8分,第3小题10分,第4题11分,共37
分)
1.试证一个正整数的平方,必与该正整数的各位数码字的和的平方,关于模9同余。
2.设(a,m)=1,x 通过模m 的一个简化剩余系,试证ax 也通过模m 的简化剩余系.
3.设F n =n 22+1,试证(F n ,F n+1)=1.
4.试证在两继自然数的平方之间,不存在四个自然数a<b<c<d ,使得ad=bc.
一、单项选择题(本大题共5小题,每小题3分,共15分)
1.对于不同的整数n,最大公因数(4n-2,3n+1)将有不同的值,其可能得到的值共有( )
A.1个
B.2个
C.3个
D.4个
2.以下各组数中,恰有一个素数和一个合数的数组是( )
A.101,103
B.117,119
C.131,133
D.141,143
3.设a 是整数,下面同余式必不成立的是( )
A.a 2≡-1(mod 4)
B.a 2≡2(mod 7)
C.a 2≡3(mod 11)
D.a 2≡-1(mod 13)
4.以下同余方程或同余方程组中,无解的是( )
A.6x ≡10(mod 22)
B.6x ≡10(mod 18)
C.⎩⎨⎧≡≡20) 11(mod x 8) 3(mod x
D. ⎩
⎨⎧≡≡9) 7(mod x 12) 1(mod x 5.在数201,202,203,204中不能表为两整数平方和的数共有( )
A.0个
B.1个
C.2个
D.3个
二、填空题(本大题共8小题,每小题4分,共32分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
1.d(2000)=____;π(200)-π(180)=____.
2.为了编制1至2000之间的素数表,只需从中删去素数2,3,…,p 的倍数,留下的数(包括2,3,…,p 自身)就全是素数.为此,最小的p 是____.
3.设n 是合数,且ϕ(n)=6,则其中一个n 是____.
4.同余方程12x ≡8(mod 44)的解是____.
5.不定方程7x+5y=22的通解是____.
6.22004被31除所得余数是____.
7.华林(Waring)问题是指____.
8.依据勒让德 (Legendre)符号的值,同余方程x 2≡69(mod 199)的解的个数是____.(注:661是素数)
三、计算题(本大题共3小题,每小题8分,共24分)
1.解同余方程组⎪⎩
⎪⎨⎧≡≡≡11) (mod 34x 7) (mod 13x 9) (mod 6x
2.试用高斯(Gauss)逐步淘汰法解同余方程x 2≡33 (mod 97).
3.试求方程41-3x -⎥⎦
⎤⎢⎣⎡+734x =0的实数解.
四、证明题(本大题共3小题,第1小题8分,第2小题10分,第3小题11分,共29分)
1.试证x 6+5=y 2无整数解.
2.试证形如4m-1的素数有无限多个.
3.设(a,m)=1,正整数n 使a n ≡1 (mod m)成立.这样的n 有多个,其中最小的记为δ.试论δ|n.
一、填空题(本大题共10小题,每小题3分,共30分)
1.ϕ(5600)=_____.
2.同余方程20x ≡14(mod 72)关于模72的解是_____.
3.不定方程7x+19y=213的整数解是_____.
4.模19的平方非剩余是_____.
5.同余方程x 2≡74(mod 101)有_____个解.
6.199!末尾连续地有_____个零.
7.547是_____.(填“素数”或“合数”).
8.写出模10的一个最小的非负完全剩余系,并要求每项都是3的倍数,则此完全剩余系为_____.
9.最大公因数(n+1,3n+2)=_____.
10.欧拉定理表述为_____.
二、计算题(本大题共4小题,每小题10分,共40分)
1.求10
1010被7除所得的余数.
2.解同余方程组⎪⎩⎪⎨⎧≡≡≡15) 11(mod x 9). 5(mod x 7) 2(mod x
3.甲物每千克5元,乙物每千克3元,丙物每3千克1元,现在用100元买这三样东西共100千克,问各买几千克?
4.用高斯逐步淘汰法解同余方程x 2≡73(mod 137).
三、证明题(本大题共3小题,每小题10分,共30分)
1.若n=9k+t,t=3,4,5或6,k ∈Z ,证明方程x 3+y 3=n 无整数解.
2.设3|(a 2+b 2),证明3|a 且3|b.
3.若(a,m)=1,x 通过模m 的简化剩余系,则ax 也通过模m 的简化剩余系.
4.
一、单项选择题(本大题共5小题,每小题2分,共10分)
在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.-30被-9除的余数是( )
A.-3
B.-6
C.3
D.6
2.下列给出的数中是合数的是( )
A.1063
B.1073
C.1093
D.1103
3.⎪⎪⎭
⎫ ⎝⎛4001000中5的幂指数是( )
A.1
B.2
C.3
D.4
4.不能表示为5x +7y (x , y 是非负整数)的最大整数是( )
A.23
B.24
C.25
D.26
5.下列给出的素数模数中,3是平方非剩余的是( )
A.37
B.47
C.53
D.59
二、填空题(本大题共10小题,每小题3分,共30分)
请在每小题的空格中填上正确答案。
错填、不填均无分。
1.60480的标准分解式为______.
2.μ(50400)=______.
3.π(55.5)=______.
4.对任意的正整数n ,最大公因数(12n +1,30n +3)=______.
5.若ϕ(n )=4,则n=______.
6.同余方程6x ≡7(mod 23)的解是______.
7.不定方程6x +9y =30的通解是______.
8.写出模10的一个最小的非负简化剩余系,并要求每项都是7的倍数,则此简化剩余系为______.
9.326被50除的余数是______.
10.梅森数M 23是______(填素数或合数).
三、计算题(本大题共4小题,每小题10分,共40分)
1.已知两正整数中,每一个除以它们的最大公约数所得的商之和等于18,它们的最小公倍数等于975,求这两个数。
2.有一队士兵,若三人一组,则余1人;若五人一组,则缺2人;若十一人一组,则余3人。
已知这队士兵不超过170人,问这队士兵有几人?
3.求正整数x ,使x 2-1216是完全平方数。
4.已知563是素数,判断不定方程x2+563y=429是否有整数解。
四、证明题(本大题共2小题,每小题10分,共20分)
1.证明当n为整数时,504|n9-n3。
2.设(a, m)=1,若x通过模m的完全剩余系,则ax + b也通过模m的完全剩余系.。