大学文科数学课后习题答案详解!考试专用

合集下载

大学文科高数试题及答案

大学文科高数试题及答案

大学文科高数试题及答案一、选择题(每题4分,共40分)1. 假设函数f(x)在点x=a处可导,那么下列说法正确的是:A. f(x)在x=a处连续B. f(x)在x=a处不可导C. f(x)在x=a处可能不连续D. f(x)在x=a处的导数为0答案:A2. 极限lim(x→0)(sinx/x)的值是:A. 1B. 0C. 2D. 不存在答案:A3. 以下哪个选项是微分方程的解:A. y = e^x + CB. y = e^(-x) + CC. y = x^2 + CD. y = sin(x) + C答案:A4. 函数f(x)=x^2在区间[0,2]上的最大值是:A. 0B. 1C. 4D. 2答案:C5. 积分∫(0到1) x dx的值是:A. 0B. 1/2C. 1D. 2答案:B6. 以下哪个函数是偶函数:A. f(x) = x^3B. f(x) = x^2C. f(x) = sin(x)D. f(x) = |x|答案:B7. 以下哪个选项是函数f(x)=x^2的原函数:A. x^3B. 2xC. x^3/3D. x^2/2答案:C8. 如果函数f(x)在区间(a,b)上单调递增,则:A. f(x)在区间(a,b)上一定连续B. f(x)在区间(a,b)上可能不连续C. f(x)在区间(a,b)上一定存在最大值D. f(x)在区间(a,b)上一定存在最小值答案:B9. 以下哪个选项是函数f(x)=ln(x)的导数:A. 1/xB. xC. ln(x)D. 1答案:A10. 以下哪个选项是函数f(x)=e^x的不定积分:A. e^x + CB. e^(-x) + CC. e^x/x + CD. e^x * x + C答案:A二、填空题(每题4分,共20分)1. 函数f(x)=x^3在x=1处的导数是________。

答案:32. 极限lim(x→∞)(1/x)的值是________。

答案:03. 函数f(x)=x^2+2x+1的最小值是________。

近五年高考文科数学答案详细解析(3卷)(共5套)(2016-2020)

近五年高考文科数学答案详细解析(3卷)(共5套)(2016-2020)
近四年高考文科数学试卷及答案解析
(全国 3 卷) (2016 年—2020 年)
说明:含有 2016 年—2020 年的全国 3 卷高考文科数学试题 以及答案详细解析(客观题也有答案详解)
目录
2020 年普通高等学校招生全国统一考试........................................................................................... 3 文科数学(3 卷)答案详解................................................................................................................. 3 2020 年普通高等学校招生全国统一考试......................................................................................... 16 文科数学(3 卷)试题....................................................................................................................... 16 2019 年普通高等学校招生全国统一考试......................................................................................... 25 文科数学 3 卷 试题........................................................................................................................... 25 2019 年普通高等学校招生全国统一考试......................................................................................... 35 文科数学 3 卷 答案详解................................................................................................................... 35 2018 年普通高等学校招生全国统一考试......................................................................................... 48 文科数学 3 卷 试题............................................................................................................................ 48 2018 年普通高等学校招生全国统一考试......................................................................................... 58 文科数学 3 卷 答案详解................................................................................................................... 58 2017 年普通高等学校招生全国统一考试......................................................................................... 71 文科数学 3 卷 试题........................................................................................................................... 71 2017 年普通高等学校招生全国统一考试......................................................................................... 81 文科数学 3 卷 答案详解.................................................................................................................. 81 2016 年普通高等学校招生全国统一考试......................................................................................... 92 文科数学 3 卷 试题........................................................................................................................... 92 2016 年普通高等学校招生全国统一考试....................................................................................... 103 文科数学 3 卷 答案详解................................................................................................................ 103 文档复制密码、学习资料库............................................................................................................ 114

2022年普通高等学校招生全国统一考试(甲卷)数学(文科)含答案解析(原卷版)

2022年普通高等学校招生全国统一考试(甲卷)数学(文科)含答案解析(原卷版)

……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………绝密★启用前2022年普通高等学校招生全国统一考试(甲卷)数学(文科)副标题学校:___________姓名:___________班级:___________考号:___________题号 一 二 三 总分 得分注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上,写在试卷上无效。

3.考试结束后,本试卷和答题卡一并交回。

第I 卷(选择题)一、单选题(本大题共12小题,共60.0分。

在每小题列出的选项中,选出符合题目的一项)1. 设集合A ={−2,−1,0,1,2},B ={x|0≤x <52},则A ∩B =( ) A. {0,1,2}B. {−2,−1,0}C. {0,1}D. {1,2}2. 某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则( )A. 讲座前问卷答题的正确率的中位数小于70%B. 讲座后问卷答题的正确率的平均数大于85%……○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※……○…………内…………○…………装…………○…………订…………○…………线…………○…………C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差 3. 若z =1+i ,则|iz +3z|=( ) A. 4√5B. 4√2C. 2√5D. 2√24. 如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为( )A. 8B. 12C. 16D. 205. 将函数f(x)=sin(ωx +π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C ,若C 关于y 轴对称,则ω的最小值是( )A. 16B. 14C. 13D. 126. 从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )A. 15B. 13C. 25D. 237. 函数y =(3x −3−x )cosx 在区间[−π2,π2]的图象大致为( )A.B.……○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:___________班级:___________考号:___________……○…………内…………○…………装…………○…………订…………○…………线…………○…………C.D.8. 当x =1时,函数f(x)=alnx +bx 取得最大值−2,则f′(2)=( ) A. −1B. −12C. 12D. 19. 在长方体ABCD −A 1B 1C 1D 1中,已知B 1D 与平面ABCD 和平面AA 1B 1B 所成的角均为30∘,则( )A. AB =2ADB. AB 与平面AB 1C 1D 所成的角为30∘C. AC =CB 1D. B 1D 与平面BB 1C 1C 所成的角为45∘10. 甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S甲S 乙=2,则V甲V 乙=( ) A. √5B. 2√2C. √10D. 5√10411. 已知椭圆C:x 2a 2+y 2b2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ·BA 2⃗⃗⃗⃗⃗⃗⃗⃗ =−1,则C 的方程为( )A. x 218+y 216=1B. x 29+y 28=1 C. x 23+y 22=1D. x 22+y 2=112. 已知9m =10,a =10m −11,b =8m −9,则( ) A. a >0>bB. a >b >0C. b >a >0D. b >0>a第II 卷(非选择题)二、填空题(本大题共4小题,共20.0分)13. 己知向量a ⃗ =(m,3),b ⃗ =(1,m +1).若a ⃗ ⊥b ⃗ ,则m = .14. 设点M 在直线2x +y −1=0上,点(3,0)和(0,1)均在⊙M 上,则⊙M 的方程为 .15. 记双曲线C:x 2a 2−y 2b2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值 .16. 已知▵ABC 中,点D 在边BC 上,∠ADB =120∘,AD =2,CD =2BD.当ACAB取得最小值时,BD = .三、解答题(本大题共7小题,共80.0分。

2021年高等学校招生高考文科数学全国甲卷含参考答案

2021年高等学校招生高考文科数学全国甲卷含参考答案

2021年普通高等学校招生全国统一考试文科数学(全国甲卷)注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。

用2B铅笔将试卷类型填涂在答题卡相应位置上。

将条形码横贴在答题卡右上角“条形码粘贴处”。

2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡.上对应题目洗面的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保持答题卡的整洁。

考试结束后,将试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,总共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 设集合M={1,3,5,7,9},N={x|2x>7},则M∩N=()A.{7,9}B.{5,7,9}C.{3,5,7,9}D.{1,3,5,7,9}2. 为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:频率本根据此频率分布直方图,下面结论中不正确的是()A.该地农户家庭年收入低于4.5万元的农户比率估计为6%B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%C.估计该地农户家庭年收入的平均值不超过6.5万元D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间3. 己知(1−i)2z=3+2i,则z=()A.−1−32i B.−1+32i C.−32+i D.−32−i4. 下列函数中是增函数的为()5. 点(3,0)到双曲线x 216−y 29=1的一条渐近线的距离为( ) A.95 B.85 C.65 D.456. 青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录法的数据V 满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据约为(√1010≈1.259)( )A.1.5B.1.2C.0.8D.0.67. 在一个正方体中,过顶点A 的三条棱的中点分别为E ,F ,G .该正方体截去三棱锥A −EFG 后,所得多面体的三视图中,正视图如图所示,则相应的侧视图是( )A.B. C. D.8. 在△ABC 中,已知B =120∘,AC =√19,AB =2,则BC =( )A.1B.√2C.√5D.39. 记S n 为等比数列{a n }的前n 项和.若S 2=4,S 4=6,则S 6=( )A.7B.8C.9D.1010. 将3个1和2个0随机排成一行,则2个0不相邻的概率为( )A.0.3B.0.5C.0.6D.0.811. 若α∈(0,π2),tan2α=cosα2−sinα,则tanα=( )A.√1515B.√55C.√53D.√15312. 设f (x )是定义域为R 的奇函数,且f (1+x )=f (−x ),若f (−13)=13,则f (53)=( )二、填空题:本题共4小题,每小题5分,共20分。

大学第四版高等数学教材答案

大学第四版高等数学教材答案

大学第四版高等数学教材答案【前言】在大学学习的过程中,高等数学是一门非常重要的课程。

为了更好地帮助同学们进行学习,提供一个参考,下面是大学第四版高等数学教材的答案。

【第一章微分学】1.1 导数与微分练习题答案:1. 求函数f(x) = 3x^2 - 2x的导数。

答:f'(x) = 6x - 2.2. 计算函数f(x) = x^3 - 2x^2 + 4x - 1在x = 2处的导数。

答:f'(2) = 6.1.2 函数的凹凸性和拐点练习题答案:1. 求函数f(x) = x^3 - 3x^2 + 2x的凹凸性和拐点。

答:f''(x) = 6x - 6,令f''(x) = 0,解得x = 1。

当x小于1时,f''(x)小于0,函数凹;当x大于1时,f''(x)大于0,函数凸。

所以在x = 1处有拐点。

2. 设函数f(x) = x^4 - 8x^2 + 12x,求其在[-2, 4]上的最大值和最小值。

答:首先求f'(x) = 4x^3 - 16x + 12,求解得到导数的零点x = -2, 1, 2。

然后求解f''(x) = 12x^2 - 16,代入得到f''(-2) = 20, f''(1) = -4, f''(2) = 20。

通过计算得知,在x = -2处为极小值,x = 1处为极大值。

所以最小值为f(-2) = 20,最大值为f(1) = 5。

【第二章积分学】2.1 不定积分练习题答案:1. 求函数f(x) = 3x^2 - 2x + 1的不定积分。

答:∫(3x^2 - 2x + 1)dx = x^3 - x^2 + x + C,其中C为常数。

2. 计算不定积分∫(4x^3 - 6x^2 + 2x + 5)dx。

答:∫(4x^3 - 6x^2 + 2x + 5)dx = x^4 - 2x^3 + x^2 + 5x + C,其中C为常数。

2024年高考文科数学全国甲卷+答案详解

2024年高考文科数学全国甲卷+答案详解

2024年高考文科数学全国甲卷+答案详解(试题部分)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =( ) A .{}1,2,3,4B .{}1,2,3C .{}3,4D .{}1,2,92.设z =,则z z ⋅=( ) A .-iB .1C .-1D .23.若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A .5B .12C .2−D .72−4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2−B .73C .1D .295.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .236.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( ) A .4B .3C .2D7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16BC .12D. 8.函数()()2e e sin x xf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A .B .C .D .9.已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A.1 B.1 CD.110.设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( ) A .32BCD二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 . 13.已知1a >,8115log log 42a a −=−,则=a . 14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 . 三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离.17.已知函数()()1ln 1f x a x x =−−+. (1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e xf x −<恒成立.18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴.(1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴. 19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x ty t a =⎧⎨=+⎩(t 为参数),若C 与l 相交于AB 、两点,若2AB =,求a 的值. 20.实数,a b 满足3a b +≥. (1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.2024年高考文科数学全国甲卷+答案详解(答案详解)一、单选题1.集合{}1,2,3,4,5,9A =,{}1B x x A =+∈,则A B =( ) A .{}1,2,3,4 B .{}1,2,3C .{}3,4D .{}1,2,9【答案】A【解析】根据题意得,对于集合B 中的元素x ,满足11,2,3,4,5,9x +=, 则x 可能的取值为0,1,2,3,4,8,即{0,1,2,3,4,8}B =,于是{1,2,3,4}A B ⋂=. 故选A2.设z =,则z z ⋅=( ) A .-i B .1C .-1D .2【答案】D【解析】根据题意得,z =,故22i 2zz =−=. 故选D3.若实数,x y 满足约束条件43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,则5z x y =−的最小值为( )A .5B .12C .2−D .72−【答案】D【解析】实数,x y 满足43302202690x y x y x y −−≥⎧⎪−−≤⎨⎪+−≤⎩,作出可行域如图:由5z x y =−可得1155y x z =−,即z 的几何意义为1155y x z =−的截距的15−, 则该直线截距取最大值时,z 有最小值,此时直线1155y x z =−过点A , 联立43302690x y x y −−=⎧⎨+−=⎩,解得321x y ⎧=⎪⎨⎪=⎩,即3,12A ⎛⎫⎪⎝⎭,则min 375122z =−⨯=−. 故选D.4.等差数列{}n a 的前n 项和为n S ,若91S =,37a a +=( ) A .2− B .73C .1D .29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成1a 和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【解析】方法1:利用等差数列的基本量 由91S =,根据等差数列的求和公式,911989193612S a d a d ⨯=+=⇔+=, 又371111222628(936)99a a a d a d a d a d +=+++=+=+=.故选D方法2:利用等差数列的性质根据等差数列的性质,1937a a a a +=+,由91S =,根据等差数列的求和公式, 193799()9()122a a a a S ++===,故3729a a +=. 故选D方法3:特殊值法不妨取等差数列公差0d =,则9111199S a a ==⇒=,则371229a a a +==. 故选D5.甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【分析】分类讨论甲乙的位置,得到符合条件的情况,然后根据古典概型计算公式进行求解. 【解析】当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选B6.已知双曲线2222:1(0,0)y x C a b a b−=>>的上、下焦点分别为()()120,4,0,4F F −,点()6,4P −在该双曲线上,则该双曲线的离心率为( )A.4 B .3 C .2 D 【答案】C【分析】由焦点坐标可得焦距2c ,结合双曲线定义计算可得2a ,即可得离心率. 【解析】根据题意,()10,4F −、()20,4F 、()6,4P −,则1228F F c ==,110PF =,26PF ,则1221064a PF PF =−=−=,则28224c e a ===. 故选C.7.曲线()631f x x x =+−在()0,1−处的切线与坐标轴围成的面积为( )A .16B C .12D . 【答案】A【分析】先求出切线方程,再求出切线的截距,从而可求面积.【解析】()563f x x ='+,所以()03f '=,故切线方程为3(0)131y x x =−−=−,故切线的横截距为13,纵截距为1−,故切线与坐标轴围成的面积为1111236⨯⨯=故选A.8.函数()()2e e sin x xf x x x −=−+−在区间[ 2.8,2.8]−的大致图像为( )A .B .C .D .【答案】B【分析】利用函数的奇偶性可排除A 、C ,代入1x =可得()10f >,可排除D.【解析】()()()()()22e e sin e e sin x x x xf x x x x x f x −−−=−+−−=−+−=,又函数定义域为[]2.8,2.8−,故该函数为偶函数,AC 错误, 又()11πe 11111e sin11e sin 10e e 622e 42e f ⎛⎫⎛⎫=−+−>−+−=−−>−> ⎪ ⎪⎝⎭⎝⎭, D 错误.故选B.9.已知cos cos sin ααα=−πtan 4α⎛⎫+= ⎪⎝⎭( )A .1B .1CD .1【答案】B 【分析】先将cos cos sin αα−α弦化切求得tan α,再根据两角和的正切公式即可求解.【解析】因为cos cos sin ααα=−11tan =−α,tan 1⇒α=,所以tan 1tan 11tan 4α+π⎛⎫==α+ ⎪−α⎝⎭, 故选B.10.设αβ、是两个平面,m n 、是两条直线,且m αβ=.下列四个命题:①若//m n ,则//n α或//n β ②若m n ⊥,则,n n αβ⊥⊥③若//n α,且//n β,则//m n ④若n 与α和β所成的角相等,则m n ⊥ 其中所有真命题的编号是( )A .①③B .②④C .①②③D .①③④【答案】A【分析】根据线面平行的判定定理即可判断①;举反例即可判断②④;根据线面平行的性质即可判断③. 【解析】①,当n ⊂α,因为//m n ,m β⊂,则//n β,当n β⊂,因为//m n ,m α⊂,则//n α, 当n 既不在α也不在β内,因为//m n ,,m m αβ⊂⊂,则//n α且//n β,①正确; ②,若m n ⊥,则n 与,αβ不一定垂直,②错误;③,过直线n 分别作两平面与,αβ分别相交于直线s 和直线t ,因为//n α,过直线n 的平面与平面α的交线为直线s ,则根据线面平行的性质定理知//n s ,同理可得//n t ,则//s t ,因为s ⊄平面β,t ⊂平面β,则//s 平面β,因为s ⊂平面α,m αβ=,则//s m ,又因为//n s ,则//m n ,③正确;④,若,m n αβ⋂=与α和β所成的角相等,如果//,//αβn n ,则//m n ,④错误; ①③正确, 故选A.11.在ABC 中内角,,A B C 所对边分别为,,a b c ,若π3B =,294b ac =,则sin sin A C +=( )A .32BC.2D【答案】C【分析】利用正弦定理得1sin sin 3A C =,再利用余弦定理有22134a c ac +=,再利用正弦定理得到22sin sin A C +的值,最后代入计算即可. 【解析】因为29,34B b ac π==,则由正弦定理得241sin sin sin 93A CB ==. 根据余弦定理可得:22294b a c ac ac =+−=,即:22134a c ac +=,根据正弦定理得221313sin sin sin sin 412A C A C +==,所以2227(sin sin )sin sin 2sin sin 4A C A C A C +=++=, 因为,A C 为三角形内角,则sin sin 0A C +>,则sin sin A C +. 故选C. 二、填空题12.函数()sin f x x x =在[]0,π上的最大值是 . 【答案】2【分析】结合辅助角公式化简成正弦型函数,再求给定区间最值即可.【解析】()πsin 2sin 3f x x x x ⎛⎫==− ⎪⎝⎭,当[]0,πx ∈时,ππ2π,333x ⎡⎤−∈−⎢⎥⎣⎦,当ππ32x −=时,即5π6x =时,()max 2f x =.答案为:2 13.已知1a >,8115log log 42a a −=−,则=a . 【答案】64【分析】将8log ,log 4a a 利用换底公式转化成2log a 来表示即可求解. 【解析】由题28211315log log log 4log 22a a a a −=−=−,整理得()2225log 60log a a −−=, 2log 1a ⇒=−或2log 6a =,又1a >,所以622log 6log 2a ==,故6264a ==答案为:64.14.曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,则a 的取值范围为 .【答案】()2,1−【分析】将函数转化为方程,令()2331x x x a −=−−+,分离参数a ,构造新函数()3251,g x x x x =+−+结合导数求得()g x 单调区间,画出大致图形数形结合即可求解.【解析】令()2331x x x a −=−−+,即3251a x x x =+−+,令()()32510,g x x x x x =+−+>则()()()2325351g x x x x x =+−=+−',令()()00g x x '=>得1x =,当()0,1x ∈时,()0g x '<,()g x 单调递减,当()1,x ∞∈+时,()0g x '>,()g x 单调递增,()()01,12g g ==−,因为曲线33y x x =−与()21y x a =−−+在()0,∞+上有两个不同的交点,所以等价于y a =与()g x 有两个交点,所以()2,1a ∈−.答案为:()2,1− 三、解答题15.已知等比数列{}n a 的前n 项和为n S ,且1233n n S a +=−. (1)求{}n a 的通项公式; (2)求数列{}n S 的通项公式.【答案】(1)153n n a −⎛⎫= ⎪⎝⎭(2)353232n⎛⎫− ⎪⎝⎭ 【分析】(1)利用退位法可求公比,再求出首项后可求通项; (2)利用等比数列的求和公式可求n S .【解析】(1)因为1233n n S a +=−,故1233n n S a −=−,所以()12332n n n a a a n +=−≥即153n n a a +=故等比数列的公比为53q =,故1211523333533a a a a =−=⨯−=−,故11a =,故153n n a −⎛⎫= ⎪⎝⎭.(2)根据等比数列求和公式得5113353523213n nnS ⎡⎤⎛⎫⨯−⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦==− ⎪⎝⎭−. 16.如图,在以A ,B ,C ,D ,E ,F 为顶点的五面体中,四边形ABCD 与四边形ADEF 均为等腰梯形,//,//BC AD EF AD ,4,2AD AB BC EF ====,ED FB =M 为AD 的中点.(1)证明://BM 平面CDE ; (2)求点M 到ABF 的距离. 【答案】(1)见详解;【分析】(1)结合已知易证四边形BCDM 为平行四边形,可证//BM CD ,进而得证;(2)作FO AD ⊥,连接OB ,易证,,OB OD OF 三垂直,结合等体积法M ABF F ABM V V −−=即可求解. 【解析】(1)因为//,2,4,BC AD BC AD M ==为AD 的中点,所以//,BC MD BC MD =,四边形BCDM 为平行四边形,所以//BM CD ,又因为BM ⊄平面CDE ,CD ⊂平面CDE ,所以//BM 平面CDE ; (2)如图所示,作BO AD ⊥交AD 于O ,连接OF ,因为四边形ABCD 为等腰梯形,//,4,BC AD AD =2AB BC ==,所以2CD =,结合(1)BCDM 为平行四边形,可得2BM CD ==,又2AM =,所以ABM 为等边三角形,O 为AM 中点,所以OB =ADEF 为等腰梯形,M 为AD 中点,所以,//EF MD EF MD =,四边形EFMD 为平行四边形,FM ED AF ==,所以AFM △为等腰三角形,ABM 与AFM △底边上中点O 重合,OF AM ⊥,3OF ==,因为222OB OF BF +=,所以OB OF ⊥,所以,,OB OD OF 互相垂直,等体积法可得M ABF F ABM V V −−=,2112333F ABM ABM V S FO −=⋅=⋅=△,2222222cos2FA AB FBFAB FAB FA AB+−+−∠===∠=⋅11sin 222FAB S FA AB FAB =⋅⋅∠==△,设点M 到FAB 的距离为d ,则1133M FAB F ABM FAB V V S d d −−==⋅⋅==△解得d =M 到ABF17.已知函数()()1ln 1f x a x x =−−+.(1)求()f x 的单调区间;(2)若2a ≤时,证明:当1x >时,()1e x f x −<恒成立.【答案】(1)见解析(2)见解析【分析】(1)求导,含参分类讨论得出导函数的符号,从而得出原函数的单调性; (2)先根据题设条件将问题可转化成证明当1x >时,1e 21ln 0x x x −−++>即可.【解析】(1)()f x 定义域为(0,)+∞,11()ax f x a x x'−=−= 当0a ≤时,1()0ax f x x −'=<,故()f x 在(0,)+∞上单调递减;当0a >时,1,x a ∞⎛⎫∈+ ⎪⎝⎭时,()0f x '>,()f x 单调递增,当10,x a ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减. 综上所述,当0a ≤时,()f x 在(0,)+∞上单调递减;0a >时,()f x 在1,a ∞⎛⎫+ ⎪⎝⎭上单调递增,在10,a ⎛⎫ ⎪⎝⎭上单调递减. (2)2a ≤,且1x >时,111e ()e (1)ln 1e 21ln x x x f x a x x x x −−−−=−−+−≥−++,令1()e 21ln (1)x g x x x x −=−++>,下证()0g x >即可.11()e 2x g x x −'=−+,再令()()h x g x '=,则121()e x h x x−'=−,显然()h x '在(1,)+∞上递增,则0()(1)e 10h x h ''>=−=,即()()g x h x ='在(1,)+∞上递增,故0()(1)e 210g x g ''>=−+=,即()g x 在(1,)+∞上单调递增, 故0()(1)e 21ln10g x g >=−++=,问题得证18.设椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2M ⎛⎫ ⎪⎝⎭在C 上,且MF x ⊥轴. (1)求C 的方程;(2)过点()4,0P 的直线与C 交于,A B 两点,N 为线段FP 的中点,直线NB 交直线MF 于点Q ,证明:AQ y ⊥轴.【答案】(1)22143x y += (2)见解析【分析】(1)设(),0F c ,根据M 的坐标及MF ⊥x 轴可求基本量,故可求椭圆方程. (2)设:(4)AB y k x =−,()11,A x y ,()22,B x y ,联立直线方程和椭圆方程,用,A B 的坐标表示1Q y y −,结合韦达定理化简前者可得10Q y y −=,故可证AQ y ⊥轴.【解析】(1)设(),0F c ,由题设有1c =且232b a =,故2132a a −=,故2a =,故b = 所以椭圆方程为22143x y +=. (2)直线AB 的斜率必定存在,设:(4)AB y k x =−,()11,A x y ,()22,B x y ,由223412(4)x y y k x ⎧+=⎨=−⎩可得()2222343264120k x k x k +−+−=, 故()()422Δ102443464120k k k =−+−>,故1122k −<<,又22121222326412,3434k k x x x x k k −+==++, 而5,02N ⎛⎫ ⎪⎝⎭,故直线225:522y BN y x x ⎛⎫=− ⎪⎝⎭−,故22223325252Q y y y x x −−==−−, 所以()1222112225332525Q y x y y y y y x x ⨯−+−=+=−− ()()()12224253425k x x k x x −⨯−+−=−()222212122264123225825834342525k k x x x x k k k k x x −⨯−⨯+−++++==−− 2222212824160243234025k k k k k x −−+++==−,故1Q y y =,即AQ y ⊥轴.19.在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为cos 1ρρθ=+.(1)写出C 的直角坐标方程;(2)设直线l :x t y t a=⎧⎨=+⎩(t 为参数),若C 与l 相交于A B 、两点,若2AB =,求a 的值. 【答案】(1)221y x =+ (2)34a =【分析】(1)根据cos xρρθ⎧⎪=⎨=⎪⎩C 的直角方程. (2)将直线的新的参数方程代入C 的直角方程,法1:结合参数s 的几何意义可得关于a 的方程,从而可求参数a 的值; 法2:将直线的直角方程与曲线的直角方程联立,结合弦长公式可求a 的值.【解析】(1)由cos 1ρρθ=+,将cos x ρρθ⎧⎪=⎨=⎪⎩cos 1ρρθ=+,1x =+,两边平方后可得曲线的直角坐标方程为221y x =+. (2)对于直线l 的参数方程消去参数t ,得直线的普通方程为y x a =+. 法1:直线l 的斜率为1,故倾斜角为π4,故直线的参数方程可设为x y a ⎧=⎪⎪⎨⎪=+⎪⎩,s ∈R . 将其代入221y x =+中得()221)210s a s a +−+−=设,A B 两点对应的参数分别为12,s s,则)()212121,21s s a s s a +=−−=−,且()()22Δ818116160a a a =−−−=−>,故1a <,12AB s s ∴=−2=,解得34a =. 法2:联立221y x a y x =+⎧⎨=+⎩,得22(22)10x a x a +−+−=,()22Δ(22)41880a a a =−−−=−+>,解得1a <,设()()1122,,,A x y B x y ,2121222,1x x a x x a ∴+=−=−,则AB =2=, 解得34a = 20.实数,a b 满足3a b +≥.(1)证明:2222a b a b +>+;(2)证明:22226a b b a −+−≥.【答案】(1)见解析(2)见解析【分析】(1)直接利用22222()a b a b +≥+即可证明.(2)根据绝对值不等式并结合(1)中结论即可证明.【解析】(1)因为()()2222222022a b a ab b a b b a −+=−−++=≥, 当a b =时等号成立,则22222()a b a b +≥+,因为3a b +≥,所以22222()a b a b a b +≥+>+;(2)222222222222()a b b a a b b a a b a b −+−≥−+−=+−+ 22222()()()()(1)326a b a b a b a b a b a b =+−+≥+−+=++−≥⨯=。

2021年普通高等学校招生全国统一考试(全国新课标Ⅰ卷)数学试题 (文科)解析版

2021年普通高等学校招生全国统一考试(全国新课标Ⅰ卷)数学试题 (文科)解析版

绝密★启封并使用完毕前试题类型:注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1 至3 页,第Ⅱ卷3 至5 页.2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置.3.全部答案在答题卡上完成,答在本试题上无效.4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)设集合A ={1, 3,5, 7}, B ={x 2 x 5},则A B =()(A){1,3} (B){3,5} (C){5,7} (D){1,7}【答案】B考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.(2) 设(1 + 2 i)(a + i)的实部与虚部相等,其中a 为实数,则a=()(A)-3 (B)-2 (C)2 (D)3【答案】A【解析】试题分析:(1 + 2i)(a +i) =a - 2 + (1 + 2a)i ,由已知,得a - 2 = 1 + 2a ,解得a =-3 ,故选A. 考点:复数的概念及复数的乘法运算【名师点睛】复数题也是每年高考必考内容,一般以客观题形式出现,属得分题.高考中复数考查频率较高的内容有:复数相等,复数的几何意义,共轭复数,复数的模及复数的乘除运算,这类5 问题一般难度不大,但容易出现运算错误,特别是i 2= -1中的负号易忽略,所以做复数题要注意运算的准确性.(3)为美化环境,从红、黄、白、紫 4 种颜色的花中任选 2 种花种在一个花坛中,余下的 2 种花种在另一个花坛中,则红色和紫色的花不在同一花坛的概率是( )【答案】C1 (A )31 (B )22(C )35 (D )6考点:古典概型【名师点睛】作为客观题形式出现的古典概型试题,一般难度不大,解答常见错误是在用列举 法计数时出现重复或遗漏,避免此类错误发生的有效方法是按照一定的标准进行列举. (4)△ABC 的内角 A 、B 、C 的对边分别为 a 、b 、c.已知 a =, c = 2, cos A = 2,则b=( )3(A ) 【答案】D 【解析】(B ) (C )2 (D )3试题分析:由余弦定理得5 = b 2+ 4 - 2 ⨯ b ⨯ 2 ⨯ 2 ,解得b = 3( b = - 1舍去),故选 D.33考点:余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于 b 的一元二次方程, 再通过解方程求 b.运算失误是基础题失分的主要原因,请考生切记!(5)直线 l 经过椭圆的一个顶点和一个焦点,若椭圆中心到 l 的距离为其短轴长的1,则该椭4圆的离心率为( )(A )13(B )12(C )23(D )34【答案】B 【解析】试题分析:如图,由题意得在椭圆中, OF = c, OB = b, OD = 1 ⨯ 2b = 1b4 223在Rt∆OFB 中, | OF | ⨯ | OB |=| BF | ⨯ | OD |,且a2 = b2 + c2 ,代入解得a2 = 4c2 ,所以椭圆得离心率得e =1,故选B. 2x考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .(6)若将函数π的图像向右平移1个周期后,所得图像对应的函数为()y=2sin (2x+ )6 4(A)π(B)π(C)π(D)πy=2sin(2x+ )4y=2sin(2x+ )3y=2sin(2x– )4y=2sin(2x– )3【答案】D考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.(7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π,则它的表面积是()3yD BF O(A)17π(B)18π(C)20π(D)28π【答案】A【解析】考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇.由三视图还原出原几何体,是解决此类问题的关键.(8)若a >b > 0 , 0 <c < 1,则()(A)log a c<log b c (B)log c a<log c b (C)a c<b c(D)c a>c b【答案】B【解析】试题分析:由0 <c < 1可知y = logc x 是减函数,又a >b > 0 ,所以logca < logcb .故选B.本题也可以用特殊值代入验证.考点:指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较.(9)函数y = 2x2 -e x 在[-2, 2]的图像大致为()(A)(B)(C)(D)【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.(10)执行右面的程序框图,如果输入的x = 0, y =1, n=1,则输出x, y 的值满足()(A)y = 2x (B)y = 3x (C)y = 4x (D)y = 5x【答案】C【解析】试题分析:第一次循环:x = 0, y = 1, n = 2,第二次循环:x =1, y = 2, n = 3, 2第三次循环:x =3, y = 6, n = 3,此时满足条件x2 +y2 ≥ 36 ,循环结束, x =3, y = 6 ,满足2 2y = 4x .故选C考点:程序框图与算法案例【名师点睛】程序框图基本是高考每年必考知识点,一般以客观题形式出现,难度不大,求解此类问题一般是把人看作计算机,按照程序逐步列出运行结果.(11)平面α过正文体ABCD—A1B1C1D1 的顶点Aα//平面CB1D1 ,α 平面ABCD =m ,α 平面ABB1 A1 =n ,则m,n 所成角的正弦值为()(A)2【答案】A (B)2(C)3(D)13考点:平面的截面问题,面面平行的性质定理,异面直线所成的角.323【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定 角、连线成形,解形求角、得钝求补.(12)若函数 f (x ) = x - 1sin 2x + a sin x 在(-∞, +∞)单调递增,则 a 的取值范围是()3(A ) [-1,1] (B ) ⎡-1, 1 ⎤(C ) ⎡- 1 , 1 ⎤(D ) ⎡-1, -1 ⎤【答案】C⎣⎢ 3 ⎥⎦ ⎣⎢ 3 3⎥⎦ ⎣⎢ 3⎥⎦考点:三角变换及导数的应用【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调 性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值 域或最值有关的问题,要注意弦函数的有界性.第 II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第 (22)题~第(24)题为选考题,考生根据要求作答. 二、填空题:本大题共 3 小题,每小题 5 分 (13)设向量 a =(x ,x +1),b =(1,2),且 a ⊥ b ,则 x = .【答案】 - 23【解析】试题分析:由题意,a ⋅b = 0, x + 2(x +1) = 0,∴ x = - 2. 3考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若a =(x1, y1 ),b =(x2 , y2 ),则a ⋅b =x1 y1+x2y2 .(14)已知θ是第四象限角,且sin(θ+π4【答案】-43 )= 35,则tan(θ–π4)=.【解析】试题分析:由题意sin⎛θ+π⎫= sin ⎡⎛θ-π⎫+π⎤= cos ⎛θ-π⎫=3,4 ⎪⎢ 4 ⎪ 2 ⎥ 4 ⎪5⎝⎭⎣⎝⎭⎦⎝⎭因为2kπ+3π<θ< 2kπ+ 2π(k ∈Z ),所以2kπ+5π<θ-π< 2kπ+7π(k ∈Z ),2从而sin4 4 4.⎭考点:三角变换【名师点睛】三角函数求值,若涉及到开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换.(15)设直线y=x+2a 与圆C:x2+y2-2ay-2=0 相交于A,B 两点,,则圆C 的面积为【答案】4π考点:直线与圆【名师点睛】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r、弦长l、⎛l ⎫2r 2 =d 2 + ⎪圆心到弦的距离d 之间的关系:⎝2 ⎭在求圆的方程时常常用到.⎛θ- π ⎫=- 4,因此tan⎛θ- π ⎫=- 4.故填- 4⎝ 4⎪⎭ 5⎝ 4 ⎪ 3 3⎪x ⎩ ⎪ (16)某高科技企业生产产品 A 和产品 B 需要甲、乙两种新型材料.生产一件产品 A 需要甲材料 1.5kg,乙材料 1kg,用 5 个工时;生产一件产品 B 需要甲材料 0.5kg,乙材料 0.3kg,用 3 个工时,生产一件产品 A 的利润为 2100 元,生产一件产品 B 的利润为 900 元.该企业现有甲材料 150kg,乙材料 90kg,则在不超过 600 个工时的条件下,生产产品 A 、产品 B 的利润之和的最大值为 元. 【答案】 216000 【解析】试题分析:设生产产品 A 、产品 B 分别为 x 、 y 件,利润之和为 z 元,那么⎧1.5x + 0.5 y 150, ⎪x + 0.3y 90, ⎨5x + 3y 600, ①⎪ 0, ⎪⎩ y 0.目标函数 z = 2100x + 900 y .⎧10x + 3 y = 900 取得最大值.解方程组 ⎨5x + 3y = 600,得 M 的坐标(60,100) .所以当 x = 60 , y = 100时, z max = 2100⨯ 60 + 900⨯100 = 216000 .故生产产品 A 、产品 B 的利润之和的最大值为 216000 元. 考点:线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约 束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.三.解答题:解答应写出文字说明,证明过程或演算步骤.(17).(本题满分 12 分)已知{a n }是公差为 3 的等差数列,数列{b n }满足b =1,b = 1,a b + b = nb ,. 1 2 3 n n +1 n +1n(I )求{a n }的通项公式; (II )求{b n }的前 n 项和.【答案】(I ) a = 3n -1(II ) 3 - 1. n2 2⨯ 3n -1(II )由(I )和 a b + b= nb ,得b = b n,因此{b }是首项为1,公比为 1的等比数列. n n +1n +1 nn +1 3 n 3记{b n }的前 n 项和为 S n ,则1-1 n( 3) 3 1S n = 1- 1 3= - 2 2 ⨯ 3 n -1 . 考点:等差数列与等比数列【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程, 利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.(18).(本题满分 12 分)如图,在已知正三棱锥 P -ABC 的侧面是直角三角形,PA =6,顶点 P在平面ABC 内的正投影为点E,连接PE 并延长交AB 于点G.(I)证明G 是AB 的中点;(II)在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F(说明作法及理由),并求四面体PDEF 的体积.4【答案】(I)见解析(II)作图见解析,体积为3试题解析:(I)因为P在平面ABC 内的正投影为D,所以AB ⊥PD.因为D 在平面PAB 内的正投影为E ,所以AB ⊥DE.所以AB ⊥平面PED ,故AB ⊥PG.又由已知可得, PA =PB ,从而G 是AB 的中点.(II)在平面PAB内,过点E作PB的平行线交PA于点F,F即为E在平面PAC 内的正投影.理由如下:由已知可得PB ⊥PA , PB ⊥PC ,又EF / / PB ,所以EF ⊥PC ,因此EF ⊥平面PAC ,即点F 为E 在平面PAC 内的正投影.连接CG ,因为P 在平面ABC 内的正投影为D ,所以D 是正三角形ABC 的中心.由(I )知, G 是 AB 的中点,所以 D 在CG 上,故CD = 2 CG . 3 由题设可得 PC ⊥ 平面 PAB , DE ⊥平面 PAB ,所以 DE / / PC ,因此 PE = 2 PG , DE = 1 PC .3 3由已知,正三棱锥的侧面是直角三角形且 PA = 6 ,可得 DE = 2, PE = 2 2.在等腰直角三角形 EFP 中,可得 EF = PF = 2.1 1 4 所以四面体 PDEF 的体积V = ⨯ ⨯ 2⨯ 2⨯2 = .3 2 3考点:线面位置关系及几何体体积的计算【名师点睛】文科立体几何解答题主要考查线面位置关系的证明及几何体体积的计算,空间中线面位置关系的证明主要包括线线、线面、面面三者的平行与垂直关系,其中推理论证的关键是结合空间想象能力进行推理,要防止步骤不完整或考虑不全致推理片面,该类题目难度 不大,以中档题为主.(19)(本小题满分 12 分)某公司计划购买 1 台机器,该种机器使用三年后即被淘汰.机器有 一易损零件,在购进机器时,可以额外购买这种零件作为备件,每个 200 元.在机器使用期间,如 果备件不足再购买,则每个500 元.现需决策在购买机器时应同时购买几个易损零件,为此搜集 并整理了 100 台这种机器在三年使用期内更换的易损零件数,得下面柱状图:记 x 表示 1 台机器在三年使用期内需更换的易损零件数,y 表示 1 台机器在购买易损零件上所需的费用(单位:元), n 表示购机的同时购买的易损零件数.(I )若 n =19,求 y 与 x 的函数解析式;(II )若要求“需更换的易损零件数不大于 n ”的频率不小于 0.5,求 n 的最小值;(III )假设这 100 台机器在购机的同时每台都购买 19 个易损零件,或每台都购买 20 个易损 零件,分别计算这 100 台机器在购买易损零件上所需费用的平均数,以此作为决策依据,购买 1 台机器的同时应购买 19 个还是 20 个易损零件?OH ON⎧3800, 【答案】(I ) y = ⎨x ≤ 19, (x ∈ N ) (II )19(III )19 ⎩500x - 5700, x > 19,(Ⅱ)由柱状图知,需更换的零件数不大于 18 的概率为 0.46,不大于 19 的概率为 0.7,故 n 的最小值为 19.(Ⅲ)若每台机器在购机同时都购买 19 个易损零件,则这 100 台机器中有 70 台在购买易损 零件上的费用为 3800,20 台的费用为 4300,10 台的费用为 4800,因此这 100 台机器在购买易损零件上所需费用的平均数为 1 100(4000⨯ 90 + 4500⨯10) = 4050. 比较两个平均数可知,购买 1 台机器的同时应购买 19 个易损零件.考点:函数解析式、概率与统计【名师点睛】本题把统计与函数结合在一起进行考查,有综合性但难度不大,求解关键是读懂 题意,所以提醒考生要重视数学中的阅读理解问题.(20)(本小题满分 12 分)在直角坐标系 xOy 中,直线 l :y =t (t ≠0)交 y 轴于点 M ,交抛物线 C : y 2 = 2 px ( p > 0) 于点 P ,M 关于点 P 的对称点为 N ,连结 ON 并延长交 C 于点 H .(I )求 ; (II )除 H 以外,直线 MH 与 C 是否有其它公共点?说明理由.【答案】(I )2(II )没有【解答】试题分析:先确定 N (t p 2t 2 ,t ) , ON 的方程为 y = 2t 2 px ,代入 y 2 t = 2 px 整理得 px 2 | OH | - 2t 2 x = 0 , 解得 x 1 = 0 , x 2 = ,得 H ( p ,2t ) ,由此可得 N 为OH 的中点,即 = 2 .(II ) p | ON | 2把直线 MH 的方程 y - t = p x ,与 y 2 = 2 px 联立得 y 2 - 4ty + 4t 2 = 0,解得 y = y = 2t ,2t1 2 即直线 MH 与C 只有一个公共点,所以除 H 以外直线 MH 与C 没有其它公共点.(Ⅱ)直线 MH 与C 除 H 以外没有其它公共点.理由如下:直线 MH 的方程为 y - t =px ,即 x = 2t ( y - t ) .代入 y 2 = 2 px 得 y 2 - 4ty + 4t 2 = 0 ,解得 2t py 1 = y 2 = 2t ,即直线 MH 与C 只有一个公共点,所以除 H 以外直线 MH 与C 没有其它公共点.考点:直线与抛物线【名师点睛】高考解析几何解答题大多考查直线与圆锥曲线的位置关系,直线与圆锥曲线的位置关系是一个很宽泛的考试内容,主要由求值、求方程、求定值、最值、求参数取值范围等几部分组成;解析几何中的证明问题通常有以下几类:证明点共线或直线过定点;证明垂直;证明定值问题.其中考查较多的圆锥曲线是椭圆与抛物线,解决这类问题要重视方程思想、 函数思想及化归思想的应用.(21)(本小题满分 12 分)已知函数 f ( x ) = ( x - 2)e x + a ( x - 1)2.(I)讨论 f ( x )的单调性;(II)若 f ( x )有两个零点,求 a 的取值范围.【答案】见解析(II) (0, +∞)【解析】试题分析:(I)先求得 f '(x ) = (x -1)(e x + 2a ).再根据 1,0,2a 的大小进行分类确定 f ( x )的 单调性;(II)借助第一问的结论,通过分类讨论函数单调性,确定零点个数,从而可得 a 的取值范围为(0, +∞).2试题解析:(I)f'(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a). (i)设a ≥ 0 ,则当x ∈(-∞,1)时, f '(x)< 0 ;当x ∈(1, +∞)时, f '(x)> 0 .所以在(-∞,1)单调递减, 在(1, +∞)单调递增. (ii)设a < 0 ,由f '(x)= 0 得x=1 或x=ln(-2a).①若a=-e,则f'(x)=(x-1)(e x-e),所以f (x)在(-∞, +∞)单调递增.②若a >-e,则ln(-2a)<1,故当x ∈(-∞, ln (-2a)) (1, +∞)时, f '(x)> 0 ;2当x ∈(ln (-2a),1)时, f '(x)< 0 ,所以f (x)在(-∞, ln (-2a)), (1, +∞)单调递增,在(ln (-2a),1)单调递减.③若a <-e,则ln (-2a)> 1,故当x ∈(-∞,1) (ln (-2a), +∞)时, f '(x)> 0 ,当2x ∈(1, ln (-2a))时, f '(x)< 0 ,所以f (x)在(-∞,1), (ln (-2a), +∞)单调递增,在(1, ln (-2a ))单调递减.考点:函数单调性,导数应用【名师点睛】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解.请考生在 22、23、24 题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号(22)(本小题满分 10 分)选修 4-1:几何证明选讲1 如图,△OAB 是等腰三角形,∠AOB =120°.以 O 为圆心, 2(I)证明:直线 AB 与 O 相切;OA 为半径作圆. (II)点 C ,D 在⊙O 上,且 A ,B ,C ,D 四点共圆,证明:AB ∥CD .【答案】(I)见解析(II)见解析在 Rt ∆AOE 中, OE=1 AO ,即O 到直线 AB 的距离等于圆O 的半径,所以直线 AB 与⊙ O 2相切.(Ⅱ)因为OA = 2OD ,所以O 不是 A , B , C , D 四点所在圆的圆心,设O ' 是 A , B , C , D 四点⎩⎩ 1 2 所在圆的圆心,作直线OO '.由已知得O 在线段 AB 的垂直平分线上,又O ' 在线段 AB 的垂直平分线上,所以OO ' ⊥ AB .同理可证, OO ' ⊥ CD .所以 AB // CD .考点:四点共圆、直线与圆的位置关系及证明【名师点睛】近几年几何证明题多以圆为载体命制,在证明时要抓好“长度关系”与“角度关系 的转化”,熟悉相关定理与性质.该部分内容命题点有:平行线分线段成比例定理;三角形的相 似与性质;四点共圆;圆内接四边形的性质与判定;切割线定理.(23)(本小题满分 10 分)选修 4—4:坐标系与参数方程⎧x = a cos t在直角坐标系 x O y 中,曲线 C 1 的参数方程为 ⎨ y = 1+ a sin t (t 为参数,a >0). 在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线 C 2:ρ= 4 cos θ.(I )说明 C 1 是哪一种曲线,并将 C 1 的方程化为极坐标方程;(II )直线 C 3 的极坐标方程为θ=α0 ,其中α0 满足 tan α0 =2,若曲线C 1 与 C 2 的公共点都在 C 3 上,求 a .【答案】(I )圆, ρ2 - 2ρsin θ+ 1 - a 2 = 0(II )1试题解析:⑴⎧x = a cos t ⎨ y = 1 + a sin t ( t 均为参数),∴ x 2 + ( y - 1)2 = a 2 ① ∴ C 为以(0 ,1)为圆心, a 为半径的圆.方程为 x 2 + y 2 - 2 y +1 - a 2 = 0∵ x 2 + y 2 = ρ2 ,y = ρsin θ,∴ ρ2 - 2ρsin θ+ 1 - a 2 = 0 即为C 的极坐标方程 1⑵ C :ρ= 4cos θ,两边同乘ρ得ρ2 = 4ρcos θ ρ2 = x 2 + y 2 ,ρcos θ= x ∴ x 2 + y 2 = 4x ,即(x - 2)2 + y 2 = 4②C 3 :化为普通方程为 y = 2x ,由题意: C 1 和C 2 的公共方程所在直线即为C 3①—②得: 4x - 2 y + 1 - a 2 = 0 ,即为C 3∴1 - a 2 = 0 ,∴ a = 1考点:参数方程、极坐标方程与直角坐标方程的互化及应用【名师点睛】“互化思想”是解决极坐标方程与参数方程问题的重要思想,解题时应熟记极坐标方程与参数方程的互化公式及应用.(24)(本小题满分10分),选修4—5:不等式选讲已知函数f (x)= x +1 - 2x - 3 .(I)在答题卡第(24)题图中画出y =f (x)的图像;(II)求不等式 f (x)> 1的解集.⎛-∞ 1 ⎫【答案】(I)见解析(II) ,⎪ (1,3) (5,+∞)⎝ 3 ⎭试题解析:⑴如图所示:考点:分段函数的图像,绝对值不等式的解法【名师点睛】不等式证明选讲多以绝对值不等式为载体命制试题,主要涉及图像、解不等式、由不等式恒成立求参数范围等.解决此类问题通常转换为分段函数求解,注意不等式的解集一定要写出集合形式.。

广东高考文科数学试题及答案详细解析选择、填空、解答全解全析

广东高考文科数学试题及答案详细解析选择、填空、解答全解全析

绝密★启用前试卷种类:B2021年一般高等学校招生全国一致考试〔广东卷〕数学〔文科〕分析版V 1Sh,此中S 为锥体的底面积, h为锥体的高.参照公式:锥体体积公式3n(x i x)(y i y)bi1nx )2线性回归方程ybxa中系数计算公式i1(x i ,ay bx ,样本数据x 1,x 2,1[(x 1x )2 (x 2x )2(x n x)2],xn 的标准差,n此中x,y表示样本均值.n 是正整数,那么a nb n (a b)(a n1 a n2b ab n2 b n1).一、选择题:本大题共10小题,每题 5分,总分值 50分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.设复数z 知足iz1,此中i为虚数单位,那么A .i B.iC.1D.1ii【分析】z(i)2.会合A{(x,y)|x,y 为实数,且x 221},B{(x,y)|x,y 为实数,且xy1},那么AB的元素个数为A .4B.3C .2D .1【分析】会合A 表示由圆21表示直线 y x 上全部点的会合,∵直上全部点构成的会合,会合线过园内点〔0,0〕,∴直线与圆有两个交点,故答案为C .3.向量a(1,2),b (1,0),c(3,4).假定为实数,(ab )∥c,那么1A .4B.2C.1D.2【分析】ab (1,2),由(ab )∥c ,得64(1)0,解得1,故答案为B 。

2第1页共14页1l g(1x )f (x)4.函数1x的定义域是A .(,1)B.(1,)C.(1,1)(1,)D.(,)1x0且x1,那么f(x)的定义域是(1,1)(1,),故答案【分析】要使函数存心义,那么xx110为C。

5.不等式2x2x10的解集是(1,1)B.(1,)C.(,1)(2,)(,1)(1,)A.2D.2【分析】2x2x10(x1)(2x1)0x1或x1,那么不等式的解集为(,1)(1,),22故答案为D。

2020年普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)

2020年普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)

2020年普通高等学校招生全国统一考试文科数学(必修+选修) 解析版本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I 卷1至2页。

第Ⅱ卷3 至4页。

考试结束后,将本试卷和答题卡一并交回。

第I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码。

请认真核准条形码上的准考证号、姓名和科目。

2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.........。

3.第I 卷共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

参考公式:如果事件A 、B 互斥,那么 球的表面积公式()()()P A B P A P B +=+ 24S R π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 ()()()P A B P A P B =g g 球的体积公式 如果事件A 在一次试验中发生的概率是p ,那么 334V R π=n 次独立重复试验中事件A 恰好发生k 次的概率 其中R 表示球的半径()(1)(0,1,2,)k kn k n n P k C p p k n -=-=…一、选择题 (1)cos300︒=(A)32-(B)-12 (C)12(D) 32 1.C 【命题意图】本小题主要考查诱导公式、特殊三角函数值等三角函数知识 【解析】()1cos300cos 36060cos602︒=︒-︒=︒=(2)设全集{}1,2,3,4,5U =,集合{}1,4M =,{}1,3,5N =,则()U N M ⋂=ð A.{}1,3 B. {}1,5 C. {}3,5 D. {}4,52.C 【命题意图】本小题主要考查集合的概念、集合运算等集合有关知识【解析】{}2,3,5U M =ð,{}1,3,5N =,则()U N M ⋂=ð{}1,3,5{}2,3,5⋂={}3,5(3)若变量,x y 满足约束条件1,0,20,y x y x y ≤⎧⎪+≥⎨⎪--≤⎩则2z x y =-的最大值为(A)4 (B)3 (C)2 (D)1(4)已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a =(A) 52 (B) 7 (C) 6 (D) 424.A 【命题意图】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想.【解析】由等比数列的性质知31231322()5a a a a a a a ===g ,37897988()a a a a a a a ===g 10,所以132850a a =, 所以13336456465528()()(50)52a a a a a a a a a =====g(5)43(1)(1)x x --的展开式 2x 的系数是(A)-6 (B)-3 (C)0 (D)35.A. 【命题意图】本小题主要考查了考生对二项式定理的掌握情况,尤其是展开式的通项公式的灵活应用,以及能否区分展开式中项的系数与其二项式系数,同时也考查了考生的一些基本运算能力.【解析】()134323422(1)(1)1464133x x x x x x x x x ⎛⎫-=-+---+- ⎪⎝⎭2x 的系数是 -12+6=-6(6)直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于(A)30° (B)45°(C)60° (D)90°(8)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点P 在C 上,∠1F P 2F =060,则12||||PF PF =g(A)2 (B)4 (C) 6 (D) 88.B 【命题意图】本小题主要考查双曲线定义、几何性质、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力. 【解析1】.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PFPF +-()()2222121212121212222221cos60222PF PF PF PF PF PF F F PF PF PF PF +--+-⇒=⇒=12||||PF PF =g 4【解析2】由焦点三角形面积公式得:120220121260113cot 1cot 3sin 6022222F PF S b PF PF PF PF θ∆=====12||||PF PF =g 4(9)正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦值为(A )23 (B )33 (C )23(D )63【解析2】设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC 1D 所成角,111136cos 1/2O O O OD OD ∠===(10)设123log 2,ln 2,5a b c -===则(A )a b c <<(B )b c a << (C) c a b << (D) c b a <<11.D 【命题意图】本小题主要考查向量的数量积运算与圆的切线长定理,着重考查最值的求法——判别式法,同时也考查了考生综合运用数学知识解题的能力及运算能力. 【解析1】如图所示:设PA=PB=x (0)x >,∠APO=α,则∠APB=2α,21x +,2sin 1xα=+||||cos 2PA PB PA PB α•=⋅u u u v u u u v u u u v u u u v=22(12sin )x α-=222(1)1x x x -+=4221x x x -+,令PA PB y •=u u u v u u u v ,则4221x x y x -=+,即42(1)0x y x y -+-=,由2x 是实数,所以2[(1)]41()0y y ∆=-+-⨯⨯-≥,2610y y ++≥,解得32y ≤--322y ≥-+故min ()322PA PB •=-+u u u v u u u v.此时21x =-【解析2】设,0APB θθπ∠=<<,()()2cos 1/tan cos 2PA PB PA PB θθθ⎛⎫•== ⎪⎝⎭u u u v u u u v PABO2222221sin12sincos22212sin2sin sin22θθθθθθ⎛⎫⎛⎫--⎪⎪⎛⎫⎝⎭⎝⎭=⋅-=⎪⎝⎭换元:2sin,012x xθ=<≤,()()112123223x xPA PB xx x--•==+-≥-u u u v u u u v(12)已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为(A)233(B)433(C) 23 (D)83312.B【命题意图】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.【解析】过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为h,则有ABCD11222323V h h=⨯⨯⨯⨯=四面体,当直径通过AB与CD的中点时,22max22123h=-=,故max433V=.第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,然后贴好条形码。

陕西高考教学文科数学习题及答案

陕西高考教学文科数学习题及答案

精品文档2021年普通高等学校招生全国统一考试(陕西卷)文科数学考前须知:本试卷分为两局部,第一局部为选择题,第二局部为非选择题.考生领到试卷后,须按规定在试卷上填写姓名、准考证号,并在答题卡上填涂对应的试卷类型信息. 所有解答必须填写在答题卡上指定区域内.考试结束后,将本试卷和答题卡一并交回.第一局部(共50分)10小题,一、选择题:在每题给出的四个选项中,只有一项符合题目要求〔本大题共每题5分,共50分〕1.设全集为R,函数f(x)1x的定义域为M,那么CR M为(A)(-∞,1)(B)(1,+∞)(C)(,1](D)[1,)2.向量a (1,m),b(m,2),假设a//b,那么实数m等于(A)2(B)2(C)2或2(D)0设a,b,c均为不等于1的正实数,那么以下等式中恒成立的是(A)log a b·log c b log c a(B)log a b·log a a log a b (C)log a(bc)log a bglog a c(D)log a(b c) log a b log a c (A)根据以下算法语句,当输入x为60时,输出y的值为25303161 输入xIfx≤50Theny=*xElsey=25+0.6*(x-50) End If输出y对一批产品的长度(单位:毫米)进行抽样检测,以下图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和区间[25,30)上为二等品,在区间[10,15)和[30,35)上为三等品.用频率估计概率,现从该批产品中随机抽取1件,那么其为二等品的概率为(A)(B)(C)(D)设z是复数,那么以下命题中的假.命题是(A)假设z20,那么z是实数(B)假设z20,那么z是虚数(C)假设z是虚数,那么z20(D)假设z是纯虚数,那么z20假设点(x,y)位于曲线y=|x|与y=2所围成的封闭区域,那么2x-y的最小值为(A)-6(B)-2(C)0(D)2.精品文档8.点M(a,b)在O:x 2 y 2 1外,直ax+by=1与O 的位置关系是 (A)相切 (B)相交 (C)相离 (D)不确定9△ABC 的内角A,B,C 所的分a,b,c,假设bcosCccosBasinA ,△ABC 的形状10. (A)直角三角形 (B)角三角形 (C)角三角形 (D)不确定 [x]表示不大于x 的最大整数,任意数x,有 (A)[-x]=-[x](B)[x+ 1]=[x]2(C)[2x]=2[x](D)[x]1[x][2x]2二、填空:把答案填写在答卡相号后的横上〔本大共 5小,每小5分,共25分〕 11. 双曲x 2y 2 1的离心率 .16 9.12. 某几何体的三如所示,其外表.13. 察以下等式:(1 1)2 1(2 1)(22) 22 1 3x40m23(3 1)(32)(3 3)1 3 5⋯照此律,第n 个等式可 .40m在如所示的角三角形空地中,欲建一个面最大的内接矩形花园(阴影局部), 其x (m).(考生注意:在以下三中任一作答,如果多做,按所做的第一分) A.(不等式做) a,b ∈R,|a -b|>2,关于数 x 的不等式|x a| |x b|2的解集是. (几何明做)如,AB 与CD 相交于点E,E 作BC 的 平行与AD 的延相交于点P.AC ,PD=2DA=2,CBPE= .DAx t PEC.(坐系与参数方程做)曲2y(t 参数)的焦点2t坐是 .三、解答:解答写出文字明、明程及演算步〔本大共6小,共75分〕16.(本小分12分)1(3sinx,cos2x),xR ,函数f(x)a ·b .向量a(cosx,),b2(Ⅰ)求f(x)的最小正周期. (Ⅱ)求f(x)在0,上的最大和最小.2.精品文档17.(本小题总分值12分)设S n 表示数列{a n }的前n 项和.(Ⅰ)假设{a n }为等差数列,推导S n 的计算公式;(Ⅱ)假设a 11,q0,且对所有正整数n,有S n1 q n .判断{a n }是否为等比数列.1 q(本小题总分值12分)如图,四棱柱ABCD -A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD, AB AA 1 2.D 1 C 1 A 1 B 1DCOAB(Ⅰ)证明:A 1BD//平面CD 1B 1;(Ⅱ)求三棱柱ABD -A 1B 1D 1的体积.(本小题总分值12分)有7位歌手(1至7号)参加一场歌唱比赛,由500名群众评委现场投票决定歌手名次,根据年龄将群众评委分为5组,各组的人数如下: 组 A B C D E 别人 5 10 15 15 5 数0 0 0 0 0 (Ⅰ)为了调查评委对7位歌手的支持状况,现用分层抽样方法从各组中抽取假设干评委,其中从B 组中抽取了6人.请将其余各组抽取的人数填入下表. 组别 A B C D E 人数 5 10 15 15 50 0 0 0 0 抽取人 6数(Ⅱ)在(Ⅰ)中,假设A,B 两组被抽到的评委中各有 2人支持1号歌手,现从这两组被抽到 的评委中分别任选 1人,求这2人都支持1号歌手的概率.20.(本小题总分值13分).精品文档动点M(x,y)到直线l:x=4的距离是它到点 N(1,0)的距离的2倍. (Ⅰ)求动点M 的轨迹C 的方程; Ⅱ过点P(0,3)的直线m 与轨迹C 交于A,B 两点.假设A 是PB 的中点,求直线m 的斜 率. (本小题总分值14分) 函数f(x)e x ,xR . (Ⅰ)求f(x)的反函数的图象上图象上点(1,0)处的切线方程;(Ⅱ)证明:曲线y=f(x)与曲线y 1 x 2 x1有唯一公共点.2(Ⅲ)设a<b,比拟fab与f(b)f(a)的大小,并说明理由.2b a.精品文档答案:2.C3.B4.C5.D6.C7.A8.B9.A10.D11.5412.32n13.(n1)(n 2)(n 3)L (nn)13 L(2n 1)B 20(-∞,﹢∞)6.(1,0)16【解】f(x)a ·b=cosx3sinx1cos2x3sin2x1cos2x sin(2x)。

文科高等数学试题及答案

文科高等数学试题及答案

文科高等数学试题及答案一、选择题(每题3分,共30分)1. 函数f(x) = x^2 - 4x + 3的零点个数是()。

A. 0B. 1C. 2D. 32. 极限lim(x→0) (sin x)/x的值是()。

A. 0B. 1C. π/2D. 23. 以下哪个函数是奇函数()。

A. f(x) = x^2B. f(x) = x^3C. f(x) = x^4D. f(x) = x^54. 曲线y = e^x在点(0,1)处的切线斜率是()。

A. 0B. 1C. eD. e^25. 以下哪个级数是收敛的()。

A. 1 + 1/2 + 1/3 + ...B. 1 - 1/2 + 1/3 - 1/4 + ...C. 1 + 1/2^2 + 1/3^2 + ...D. 1/2 + 1/3 + 1/4 + ...6. 函数y = ln(x)的不定积分是()。

A. x ln(x) + CB. x + CC. e^x + CD. 1/x + C7. 微分方程dy/dx = 2x的通解是()。

A. y = x^2 + CB. y = 2x^2 + CC. y = x^3 + CD. y = 2x^3 + C8. 以下哪个矩阵是可逆的()。

A. [1 0; 0 0]B. [1 1; 1 1]C. [1 0; 0 1]D. [2 3; 4 6]9. 以下哪个事件是必然事件()。

A. 抛一枚硬币,正面朝上B. 抛一枚硬币,反面朝上C. 抛一枚硬币,正面或反面朝上D. 抛一枚硬币,既不正面也不反面朝上10. 以下哪个函数是周期函数()。

A. f(x) = xB. f(x) = sin(x)C. f(x) = e^xD. f(x) = ln(x)二、填空题(每题4分,共20分)11. 函数f(x) = x^3 - 3x的导数是_________。

12. 极限lim(x→∞) (x^2 - 1)/(x^2 + 1)的值是_________。

普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)

普通高等学校招生全国统一考试数学文科试题(全国I卷)全解析(部分解析)

2020 年一般高等学校招生全国一致考试文科数学 ( 必修 +选修 )分析版本试卷分第I 卷 ( 选择题 ) 和第Ⅱ卷 ( 非选择题 ) 两部分。

第I 卷 1 至 2 页。

第Ⅱ卷3至 4 页。

考试结束后,将本试卷和答题卡一并交回。

第 I 卷注意事项:1.答题前,考生在答题卡上务必用直径0.5 毫米黑色墨水署名笔将自己的姓名、准考据号填写清楚,并贴好条形码。

请仔细批准条形码上的准考据号、姓名和科目。

2.每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需变动,用橡皮擦洁净后,再选涂其余答案标号,在试题卷上作答无效。

.........3.第 I 卷共 12 小题,每题 5 分,共 60 分。

在每题给出的四个选项中,只有一项为哪一项切合题目要求的。

参照公式:假如事件 A、 B互斥,那么球的表面积公式P( A B) P( A) P(B)假如事件 A、 B互相独立,那么P( AgB) P(A)gP(B)假如事件 A 在一次试验中发生的概率是p ,那么n 次独立重复试验中事件 A 恰巧发生 k 次的概率P n (k) C n k p k (1 p) n k (k 0,1,2,⋯ n)一、选择题(1)cos300S 4R2此中 R 表示球的半径球的体积公式V 3 R34此中 R 表示球的半径31(C)1(D)3(A)(B)-22221.C 【命题企图】本小题主要考察引诱公式、特别三角函数值等三角函数知识【分析】 cos300 cos 360601 cos602(2) 设全集U1,2,3,4,5,会合 M1,4, N 1,3,5,则 N e MUA. 1,3B.1,5C.3,5D.4,52.C 【命题企图】本小题主要考察会合的观点、会合运算等会合相关知识【分析】 e M2,3,5 , N1,3,5 ,则 N e M1,3,52,3,5= 3,5 U Uy1,(3) 若变量x, y知足拘束条件x y0,则 z x 2 y 的最大值为x y20,(A)4(B)3(C)2(D)1( 4)已知各项均为正数的等比数列{ a n } ,a1a2a3 =5,a7a8a9 =10,则a4a5a6 =(A) 5 2 (B) 7 (C) 6 (D) 4 24.A 【命题企图】本小题主要考察等比数列的性质、指数幂的运算、根式与指数式的互化等知识,侧重考察了转变与化归的数学思想.【解析】由等比数列的性质知 a1a2a3(a1a3 )ga2 a23 5 ,a7a8a9 (a7 a9 )ga8 a831 10, 因此a2a8503,1因此 a4 a5a6 ( a4a6 )ga5a53( a2a8 )3(506 )3 5 2(5) (1x) 4 (1x ) 3的睁开式x2的系数是(A)-6 (B)-3 (C)0(D)35.A.【命题企图】本小题主要考察了考生对二项式定理的掌握状况,特别是睁开式的通项公式的灵巧应用,以及可否划分睁开式中项的系数与其二项式系数,同时也考察了考生的一些基本运算能力 .【分析】 (1 x)4 (1 x )3 1 4x 6x24x3x413 1 3x23x x 2x2的系数是-12+6=-6(6) 直三棱柱ABC A1B1C1中,若BAC90, AB AC AA1,则异面直线BA1与AC1所成的角等于(A)30°(B)45° (C)60°(D)90°( 8)已知F1、F2为双曲线C: x2y21的左、右焦点,点P 在 C上,∠F1P F2 = 600,则| PF1 |g| PF2 |(A)2(B)4(C) 6(D) 88.B 【命题企图】本小题主要考察双曲线定义、几何性质、余弦定理,考察转变的数学思想,.经过此题能够有效地考察考生的综合运用能力及运算能力【分析 1】 . 由余弦定理得cos ∠F1 P F2 =| PF1 |2| PF2 |2| F1F2 |22| PF1 ||PF2 |PF1PF22 2 PF1 PF2F1 F22222PF1 PF2 2 221cos6002 PF1 PF2 2 PF1PF22| PF1|g| PF2|4【解析2】由焦点三角形面积公式得:S FPF b2260031PF2sin 6001PF1PF232cot1 cot PF1122222 | PF1|g| PF2|4( 9)正方体ABCD -A1 B1C1D1中, BB1与平面 ACD1所成角的余弦值为( A)2( B)3(C)2( D)63333【分析 2】设上下底面的中心分别为O 1 , O ;O 1 O 与平面AC D1所成角就是B B1与平面AC D1所成角, cos O1OD1O1O361/23 OD1( 10)设 a log 3 2,b ln 2,c 15 2则( A ) a bc (B ) b c a(C)c a b (D) c b a11.D 【命题企图】本小题主要考察向量的数目积运算与圆的切线长定理,侧重考察最值的求法——鉴别 式法 , 同时也考察了考生综合运用数学知识解题的能力及运算能力 .【分析 1】如下图: 设 PA=PB=x (x0) , ∠ APO= , 则∠ AAPB=,PO=1 2, sin1,O2x 1 x 2Puuuv uuuv uuuv uuuvx 2 (1 2sin 2)PA? PB | PA | | PB | cos 2= =B224 2 uuuv uuuv42y ,则 y xx ,x ( x 1) = x x,令 PA ? PBx 2 1 x 21x 2 1即 x 4 (1 y) x 2 y 0 ,由 x 2 是实数,因此[ (1 y)] 2 4 1 ( y)0 , y 2 6 y 10 ,解得 y32 2 或 y322.故uuuv uuuv(PA ? PB)min3 2 2 . 此时 x21.uuuvuuuv2【分析 2】设 APB,0, PA?PBPA PB cos1/ tancos2cos21sin212sin 2 212sin222 222sinsin22uuuv uuuv 1x 1 2x2x 12 2 3PA? PBx3 x(12)已知在半径为 2 的球面上有 A、 B、C、 D四点,若大值为23432 3(D)(A)(B)(C)332换元:x sin,0 x 1,AB=CD=2,则四周体ABCD的体积的最8 3312.B 【命题企图】本小题主要考察几何体的体积的计算、球的性质、异面直线的距离, 经过球这个载体考察考生的空间想象能力及推理运算能力.【分析】过CD 作平面 PCD,使 AB⊥平面 PCD,交 AB 与 P, 设点 P 到 CD 的距离为h , 则有V四周体ABCD1 212 h2h ,当直径经过AB与CD的中点时,h max 2 2212 2 3,故32343Vmax.3第Ⅱ卷注意事项:1.答题前,考生先在答题卡上用直径毫米黑色墨水署名笔将自己的姓名、准考据号填写清楚,而后贴好条形码。

高考文科数学集合专题讲解及高考真题含答案.doc

高考文科数学集合专题讲解及高考真题含答案.doc

集合、简易逻辑( 1)集合的概念集合中的元素具有确定性、互异性和无序性.(2)常用数集及其记法N 表示自然数集, N或N表示正整数集,Z表示整数集,Q表示有理数集,R表示实数集 .(3)集合与元素间的关系对象 a与集合M的关系是a M ,或者 a M ,两者必居其一 .(4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法: { x | x具有的性质 } ,其中x为集合的代表元素 .④图示法:用数轴或韦恩图来表示集合.(5)集合的分类①含有有限个元素的集合叫做有限集. ②含有无限个元素的集合叫做无限集. ③不含有任何元素的集合叫做空集( ).(6)子集、真子集、集合相等名称记号意义性质示意图(1)A A(或(2) AA 中的任一元素A(B)子集BAB A) 都属于 B若 A B 且 B C ,则 A C 或(3)(4) 若 A B 且 B A ,则A BA BA B,且B 中(1) A (A 为非空子集)真子(或至少有一元素不(2) 若 A B 且 B C ,则 A C集B )属于 AAA中的任一元素集合都属于(1)A B B,B 中的相等任一元素都属于A(2)BA(7)已知集合A有n(n1) 个元素,则它有2n个子集,它有2n1个真子集,它有 2n1个非空子集,它有 2n2非空真子集 .集合的基本运算1.集合运算:交、并、补 .2.主要性质和运算律(1)包含关系:A A,A, A U ,CUA U ,A B,BC A C ; A I B A, A I B B; A U B A, A U B B.(2)等价关系:A B A I B A A U B B C U A U B U(3)集合的运算律:交换律: A B B A; A B B A.结合律 : (A B) C A (B C ); ( A B) C A (B C )分配律 :. A(B C ) ( A B) ( A C ); A ( B C ) ( A B) ( A C )0-1 律:I A, U A A,U I A A,U U A U等幂律: A A A, A A A.求补律: A∩C U A=φ A ∪C U A=U ?C U U=φ ?C Uφ=U反演律:C U(A∩B)= (C U A) ∪( C U B) C U(A∪B)= (C U A)∩( C U B)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。

全国 数学甲卷(文科)(解析版)2022

全国 数学甲卷(文科)(解析版)2022

2022年普通高等学校招生全国统一考试(全国甲卷)文科数学(解析版)2022.06.07(本试卷适合河南、安徽、江西、山西、陕西、甘肃、吉林、黑龙江、青海、宁夏、新疆)一、单选题(本大题共12小题,共60.0分)},则A∩B=()1.设集合A={−2,−1,0,1,2},B={x|0≤x<52A. {0,1,2}B. {−2,−1,0}C. {0,1}D. {1,2}【答案】A【解析】直接通过交集的运算定义可得A∩B={0,1,2}.2.某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:则()A. 讲座前问卷答题的正确率的中位数小于70%B. 讲座后问卷答题的正确率的平均数大于85%C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差【答案】B【解析】讲座前中位数为70%+75%>70%,所以A错;2讲座后问卷答题的正确率只有一个是80%,4个85%,剩下全部大于等于90%,所以讲座后问卷答题的正确率的平均数大于85%,所以B对;讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;讲座后问卷答题的正确率的极差为100%−80%=20%,讲座前问卷答题的正确率的极差为95%−60%=35%>20%,所以错.3.若z=1+i,则|iz+3z|=() A. 4√5 B. 4√2 C. 2√5 D. 2√2【答案】D【解析】由z=1+i,故iz+3z=i(1+i)+3(1−i)=2−2i,|iz+3z|=|2−2i|=2√2.4.如图,网格纸上绘制的是一个多面体的三视图,网格小正方形的边长为1,则该多面体的体积为()A. 8B. 12C. 16D. 20【答案】B【解析】由三视图还原几何体,如图,则该直四棱柱的体积V=2+42×2×2=12.5.将函数f(x)=sin(ωx+π3)(ω>0)的图像向左平移π2个单位长度后得到曲线C,若C关于y轴对称,则ω的最小值是( ) A. 16B. 14C. 13D. 12【答案】C【解析】记g(x)为f(x)向左平移π2个单位后得到的曲线,则,由g(x)关于y轴对称,可得:π2ω+π3=kπ+π2,k∈Z,故有ω=13+2k,ω>0,所以ω的最小值为13.6.从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为()A. 15B. 13C. 25D. 23【答案】C【解析】无放回随机抽取2张方法有1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6;共15种,其中数字之积为4的倍数的是1,4;2,4;2,6;3,4;4,5;4,6;共6种,p=615=25.7.函数y=(3x−3−x)cosx在区间[−π2,π2]的图象大致为()A. B.C. D. 【答案】A【解析】令f(x)=(3x−3−x)cosx,x∈[−π2,π2 ],则f(−x)=(3−x−3x)cos(−x)=−(3x−3−x)cosx=−f(x),所以f(x)为奇函数,排除BD;又当x∈(0,π2)时,3x−3−x>0,cosx>0,所以f(x)>0,排除C.8.当x=1时,函数f(x)=alnx+bx取得最大值−2,则f′(2)=()A. −1B. −12C. 12D. 1【答案】B【解析】因为函数f(x)定义域为(0,+∞),所以依题可知,f(1)=−2,f′(1)=0,而f′(x)=ax −bx2,所以b=−2,a−b=0,即a=−2,b=−2,所以f′(x)=−2x +2x2,因此函数f(x)在(0,1)上递增,在(1,+∞)上递减,x=1时取最大值,满足题意,即有f′(2)=−1+12=−12.9.在长方体ABCD−A1B1C1D1中,已知B1D与平面ABCD和平面AA1B1B所成的角均为30∘,则()A. AB=2ADB. AB与平面AB1C1D所成的角为30∘C. AC=CB1D. B1D与平面BB1C1C所成的角为45∘【答案】D【解析】如图所示:不妨设AB =a,AD =b,AA 1=c ,依题意及长方体的结构特征可知,B 1D 与平面ABCD 所成角为∠B 1DB ,B 1D 与平面AA 1B 1B 所成角为∠DB 1A ,所以sin30∘=cB 1D=b B 1D,即b =c ,B 1D =2c =√a 2+b 2+c 2,解得a =√2c . 对于A ,AB =a ,AD =b ,AB =√2AD ,A 错误;对于B ,过B 作BE ⊥AB 1于E ,易知BE ⊥平面AB 1C 1D ,所以AB 与平面AB 1C 1D 所成角为∠BAE ,因为tan∠BAE =ca=√22,所以∠BAE ≠30∘,B 错误;对于C ,AC =√a 2+b 2=√3c ,CB 1=√b 2+c 2=√2c ,AC ≠CB 1,C 错误; 对于D ,B 1D 与平面BB 1C 1C 所成角为∠DB 1C ,sin∠DB 1C =CD B 1D=a 2c=√22, 而0<∠DB 1C <90∘,所以∠DB 1C =45∘.D 正确.10.甲、乙两个圆锥的母线长相等,侧面展开图的圆心角之和为2π,侧面积分别为S 甲和S 乙,体积分别为V 甲和V 乙.若S 甲S 乙=2,则V 甲V 乙=( )A. √5 B. 2√2 C. √10 D. 5√104【答案】C【解析】设母线长为 l ,甲圆锥底面半径为 r 1 ,乙圆锥底面圆半径为 r 2 ,则S 甲S 乙=πr 1l πr 2l =r1r 2=2,所以r 1=2r 2,又2πr 1l +2πr 2l =2π,则r 1+r 2l=1,所以r 1=23l,r 2=13l ,所以甲圆锥的高ℎ1=√l 2−49l 2=√53l ,乙圆锥的高ℎ2=√l 2−19l 2=2√23l , 所以V 甲V 乙=13πr 12ℎ113πr 22ℎ2=49l 2×√53l 19l ×2√23l =√10.11.已知椭圆C:x 2a 2+y 2b 2=1(a >b >0)的离心率为13,A 1,A 2分别为C 的左、右顶点,B 为C 的上顶点.若BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ·BA 2⃗⃗⃗⃗⃗⃗⃗⃗ =−1,则C 的方程为( )A. x 218+y216=1 B. x 29+y 28=1 C. x 23+y 22=1 D. x 22+y 2=1【答案】B【解析】由题意, A 1(−a,0) , A 2(a,0) , B(0,b) ,所以 BA 1⃗⃗⃗⃗⃗⃗⃗⃗ =(−a,−b) ,BA 2⃗⃗⃗⃗⃗⃗⃗⃗ =(a,−b) , BA 1⃗⃗⃗⃗⃗⃗⃗⃗ ⋅BA 2⃗⃗⃗⃗⃗⃗⃗⃗ =−a 2+b 2=−1 ①. 又 1−b 2a 2=19 ,即b 2=89a 2 ,代入 ① 式解得 a 2=9 , b 2=8 , 所以 C 的方程为x 29+y 28=1 .12.已知9m =10,a =10m −11,b =8m −9,则( )A. a >0>bB. a >b >0C. b >a >0D. b >0>a【答案】A【解析】由9m =10 ,可得 m =log 910∈(1,1.5) .根据 a , b 的形式构造函数 f(x)=x m −x −1(x >1) ,则 f′(x)=mx m−1−1 , 令 f′(x)=0 ,解得 x 0=m 11−m ,由 m =log 910∈(1,1.5) 知 x 0∈(0,1) . f(x) 在 (1,+∞) 上单调递增,所以 f(10)>f(8) ,即 a >b , 又因为 f(9)=9log 9 10−10=0 ,所以 a >0>b .二、填空题(本大题共4小题,共20.0分)13.己知向量a ⃗ =(m,3),b ⃗ =(1,m +1).若a ⃗ ⊥b ⃗ ,则m = . 【答案】−34【解析】 ∵a ⃗ ⊥b ⃗ ∴m +3(m +1)=0 ,解得 m =−3414.设点M 在直线2x +y −1=0上,点(3,0)和(0,1)均在⊙M 上,则⊙M 的方程为 . 【答案】(x −1)2+(y +1)2=5 【解析】设圆心 M(a,1−2a)则 r 2=(a −3)2+(1−2a)2=(a −0)2+(1−2a −1)2 , 解得 a =1 . 从而得 ⊙M 的方程为 (x −1)2+(y +1)2=5 . 15.记双曲线C:x 2a 2−y 2b 2=1(a >0,b >0)的离心率为e ,写出满足条件“直线y =2x 与C 无公共点”的e 的一个值 . 【答案】2(答案不唯一)【解析】因为双曲线C 的渐近线方程为y =±ba x , 要使直线y =2x 与C 无公共点,则只需要2⩾b a 即可, 由ba ⩽2得c 2−a 2a 2=b 2a 2⩽4,所以e 2=c 2a 2⩽5,解得1<e ⩽√5 . 故 e 的值可以取 2 .16.已知▵ABC 中,点D 在边BC 上,∠ADB =120∘,AD =2,CD =2BD.当ACAB 取得最小值时,BD = . 【答案】√3−1(或−1+√3)【解析】设 CD =2BD =2m >0 , 则在▵ABD 中,AB 2=BD 2+AD 2−2BD ⋅ADcos∠ADB =m 2+4+2m ,在▵ACD 中,AC 2=CD 2+AD 2−2CD ⋅ADcos∠ADC =4m 2+4−4m , 所以AC 2AB 2=4m 2+4−4m m 2+4+2m =4(m 2+4+2m )−12(1+m )m 2+4+2m=4−12(m+1)+3m+1≥42√(m+1)⋅3m+1=4−2√3,当且仅当m +1=3m+1即m =√3−1时,等号成立, 所以当ACAB 取最小值时,m =√3−1.三、解答题(本大题共7小题,共80.0分)17.甲、乙两城之间的长途客车均由A 和B 两家公司运营,为了了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率; (2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关? 附:K 2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d), 【解析】(1)A 公司一共调查了260辆车,其中有240辆准点,得A 公司准点的概率=240260=0.923, B 公司一共调查了240辆,其中有210辆准点,则B 公司准点的概率=210240=0.875. (2):由题意得2×2列联表:K 2=(a +b)(c +d)(a +c)(b +d)=260×240×450×50=3.2>2.706所以有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关18.记S n为数列{a n}的前n项和.已知2S nn+n=2a n+1.(1)证明:{a n}是等差数列;(2)若a4,a7,a9成等比数列,求S n的最小值.【解析】(1)因为2S nn+n=2a n+1,即2S n+n2=2na n+n①,当n≥2时,2S n−1+(n−1)2=2(n−1)a n−1+(n−1)②,①−②得,2S n+n2−2S n−1−(n−1)2=2na n+n−2(n−1)a n−1−(n−1),即2a n+2n−1=2na n−2(n−1)a n−1+1,即2(n−1)a n−2(n−1)a n−1=2(n−1),所以a n−a n−1=1,n≥2且n∈N∗,所以{a n}是以1为公差的等差数列.(2)由(1)可得a4=a1+3,a7=a1+6,a9=a1+8,又a4,a7,a9成等比数列,所以a72=a4⋅a9,即(a1+6)2=(a1+3)⋅(a1+8),解得a1=−12,所以a n=n−13,所以S n=−12n+n(n−1)2=12n2−252n=12(n−252)2−6258,所以,当n=12或n=13时(S n)min=−78.19.小明同学参加综合实践活动,设计了一个封闭的包装盒.包装盒如图所示:底面ABCD 是边长为8(单位:cm)的正方形,△EAB,△FBC,△GCD,△HDA均为正三角形,且它们所在的平面都与平面ABCD垂直.(1)证明:EF//平面ABCD;(2)求该包装盒的容积(不计包装盒材料的厚度).【答案】(1)过点E作EE′⊥AB于点E′,过点F作FF′⊥BC于点F′,连接E′F′.∵底面ABCD是边长为8的正方形,△EAB、△FBC均为正三角形,且它们所在的平面都与平面ABCD垂直,∴EE′=FF′,又平面EAB∩平面ABCD=AB,平面FBC∩平面ABCD=BC,∴EE′⊥平面ABCD,FF′⊥平面ABCD,∴EE′//FF′,则四边形EE′F′F为平行四边形,∴EF//E′F′,∵E′F′⊂平面ABCD,EF⊄平面ABCD,∴EF//平面ABCD.(2)同理,过点G,H分别作GG′⊥CD,HH′⊥DA,交CD,DA于点G′,H′,连接F′G′,G′H′,H′E′,AC,由(1)及题意可知,G′,H′分别为CD,DA的中点,EFGH−E′F′G′H′为长方体,故该包装盒可看成由一个长方体和四个相等的四棱锥组合而成. 由底面ABCD 是边长为8的正方形可得:E′F′=H′E′=12AC =4√2, 由线面垂直可知四棱锥的高为14AC ,∴所求该包装盒的容积为V =V EFGH−E′F′G′H′+4V A−EE′H′H=E′F′×E′H′×EE′+4×13×S EE′H′H ×14AC=4√2×4√2×4√3+4×13×4√2×4√3×14×8√2=640√33. 20.已知函数f(x)=x 3−x ,g(x)=x 2+a ,曲线y =f(x)在点(x 1,f(x 1))处的切线也是曲线y =g(x)的切线.(1)若x 1=−1,求a ;(2)求a 的取值范围.【解析】(1)∵f′(x)=3x 2−1,∴f′(−1)=2,且f(−1)=0 故y =f(x)在点(−1,0)处的切线方程为y =2x +2 又y =2x +2与y =g(x)相切,将直线y =2x +2代入y =g(x)=x 2+a 得x 2−2x +a −2=0由Δ=4−4a +8=0得a =3 (2)∵f′(x)=3x 2−1,曲线y =f(x)在点(x 1,f(x 1))处的切线方程为 y −(x 13−x 1)=(3x 12−1)(x −x 1),即y =(3x 12−1)x −2x 13; 由g(x)=x 2+a 得g′(x)=2x ,设y =g(x)在点(x 2,g(x 2))处的切线方程为y −(x 22+a)=2x 2(x −x 2), 即y =2x 2x −x 22+a ,∴{3x 12−1=2x 2−2x 13=a −x 22, ∴a =x 22−2x 13=14(9x 14−8x 13−6x 12+1).令ℎ(x 1)=9x 14−8x 13−6x 12+1,则ℎ′(x 1)=36x 13−24x 12−12x 1=12x 1(x 1−1)(3x 1+1)当x 1<−13或0<x 1<1时,ℎ′(x 1)<0,此时函数y =ℎ(x 1)单调递减; 当−13<x 1<0或x 1>1时,ℎ′(x 1)>0,此时函数y =ℎ(x 1)单调递增 又ℎ(−13)=2027,ℎ(0)=1,ℎ(1)=−4,∴ℎ(x 1)min =ℎ(1)=−4 ∴a ≥−44=−1,故a ≥−121.设抛物线C:y 2=2px(p >0)的焦点为F ,点D(p,0),过F 的直线交C 于M ,N 两点.当直线MD 垂直于x 轴时,|MF|=3.(1)求C 的方程;(2)设直线MD,ND 与C 的另一个交点分别为A ,B ,记直线MN,AB 的倾斜角分别为α,β.当α−β取得最大值时,求直线AB 的方程.【解析】(1)抛物线的准线为x =−p2,当MD 与x 轴垂直时,点M 的横坐标为p , 此时|MF|=p +p2=3,所以p =2,所以抛物线C 的方程为y 2=4x ; (2)设M(y 124,y 1),N(y 224,y 2),A(y 324,y 3),B(y 424,y 4),直线MN:x =my +1,由{x =my +1y 2=4x 可得y 2−4my −4=0,,由斜率公式可得k MN =y 1−y 2y 124−y 224=4y1+y 2,k AB =y 3−y 4y 324−y 424=4y3+y 4,直线MD:x =x 1−2y 1⋅y +2,代入抛物线方程可得y 2−4(x 1−2)y 1⋅y −8=0,,所以y 3=2y 2,同理可得y 4=2y 1,所以k AB =4y3+y 4=42(y1+y 2)=k MN 2又因为直线MN 、AB 的倾斜角分别为α,β,所以k AB =tan β=k MN 2=tan α2,若要使α−β最大,则β∈(0,π2),设k MN =2k AB =2k >0,则tan (α−β)=tan α−tan β1+tan αtan β=k1+2k 2=11k+2k ⩽2√1k⋅2k=√24,当且仅当1k =2k 即k =√22时,等号成立,所以当α−β最大时,k AB =√22,设直线AB:x =√2y +n ,代入抛物线方程可得y 2−4√2y −4n =0,,所以n =4,所以直线AB:x =√2y +4. 【说明】本题主要考查抛物线的定义与方程,以及直线与抛物线的位置及应用,属于难题. (1)利用抛物线的定义,求出p ,即可求C 的方程;(2)解决本题的关键是利用抛物线方程对斜率进行化简,利用韦达定理得出坐标间的关系.22.在直角坐标系xOy 中,曲线C 1的参数方程为{x =2+t 6y =√t(t 为参数),曲线C 2的参数方程为{x =−2+s6y =−√s(s 为参数).(1)写出C 1的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 3的极坐标方程 为2cosθ−sinθ=0,求C 3与C 1交点的直角坐标,及C 3与C 2交点的直角坐标. 【解析】 (1)因为x =2+t 6,y =√t ,所以x =2+y 26,即C 1的普通方程为y 2=6x −2(y ≥0).(2)因为x =−2+s6,y =−√s ,所以6x =−2−y 2,即C 2的普通方程为y 2=−6x −2(y ≤0),由2cosθ−sinθ=0⇒2ρcosθ−ρsinθ=0,即C 3的普通方程为2x −y =0. 联立{y 2=6x −2(y ≥0)2x −y =0,解得:{x =12y =1或{x =1y =2,即交点坐标为(12,1),(1,2);联立{y 2=−6x −2(y ≤0)2x −y =0,解得:{x =−12y =−1或{x =−1y =−2,即交点坐标为(−12,−1),(−1,−2).23.已知a ,b ,c 均为正数,且a 2+b 2+4c 2=3,证明: (1)a +b +2c ≤3;(2)若b =2c ,则1a +1c ≥3.【解析】证明:(1)由柯西不等式有[a 2+b 2+(2c )2](12+12+12)≥(a +b +2c )2, 所以a +b +2c ≤3,当且仅当a =b =2c =1时,取等号,所以a +b +2c ≤3; (2)因为b =2c ,a >0,b >0,c >0,由(1)得a +b +2c =a +4c ≤3, 即0<a +4c ≤3,所以1a+4c ≥13, 由权方和不等式知1a +1c=12a +224c ≥(1+2)2a+4c=9a+4c ≥3,当且仅当1a =24c ,即a =1,c =12时取等号,所以1a +1c ≥3.。

高考数学试卷文科参考答案与试题解析9

高考数学试卷文科参考答案与试题解析9

高考数学试卷(文科)参考答案与试题解析一、选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)(•浙江)已知集合P={x|x2﹣2x≥3},Q={x|2<x<4},则P∩Q=()A.[3,4)B.(2,3] C.(﹣1,2)D.(﹣1,3]考点:交集及其运算.专题:集合.分析:求出集合P,然后求解交集即可.解答:解:集合P={x|x2﹣2x≥3}={x|x≤﹣1或x≥3},Q={x|2<x<4},则P∩Q={x|3≤x<4}=[3,4).故选:A.点评:本题考查二次不等式的解法,集合的交集的求法,考查计算能力.2.(5分)(•浙江)某几何体的三视图如图所示(单位:cm),则该几何体的体积是()A.8cm3 B.12cm3 C.D.考点:由三视图求面积、体积.专题:空间位置关系与距离.分析:判断几何体的形状,利用三视图的数据,求几何体的体积即可.解答:解:由三视图可知几何体是下部为棱长为2的正方体,上部是底面为边长2的正方形奥为2的正四棱锥,所求几何体的体积为:23+×2×2×2=.故选:C.点评:本题考查三视图与直观图的关系的判断,几何体的体积的求法,考查计算能力.3.(5分)(•浙江)设a,b是实数,则“a+b>0”是“ab>0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:简易逻辑.分析:利用特例集合充要条件的判断方法,判断正确选项即可.解答:解:a,b是实数,如果a=﹣1,b=2则“a+b>0”,则“ab>0”不成立.如果a=﹣1,b=﹣2,ab>0,但是a+b>0不成立,所以设a,b是实数,则“a+b>0”是“ab>0”的既不充分也不必要条件.故选:D.点评:本题考查充要条件的判断与应用,基本知识的考查.4.(5分)(•浙江)设α,β是两个不同的平面,l,m是两条不同的直线,且l⊂α,m⊂β,()A.若l⊥β,则α⊥βB.若α⊥β,则l⊥m C.若l∥β,则α∥βD.若α∥β,则l∥m考点:空间中直线与平面之间的位置关系.专题:综合题;空间位置关系与距离.分析:A根据线面垂直的判定定理得出A正确;B根据面面垂直的性质判断B错误;C根据面面平行的判断定理得出C错误;D根据面面平行的性质判断D错误.解答:解:对于A,∵l⊥β,且l⊂α,根据线面垂直的判定定理,得α⊥β,∴A正确;对于B,当α⊥β,l⊂α,m⊂β时,l与m可能平行,也可能垂直,∴B错误;对于C,当l∥β,且l⊂α时,α与β可能平行,也可能相交,∴C错误;对于D,当α∥β,且l⊂α,m⊂β时,l与m可能平行,也可能异面,∴D错误.故选:A.点评:本题考查了空间中的平行与垂直关系的应用问题,也考查了数学符号语言的应用问题,是基础题目.5.(5分)(•浙江)函数f(x)=(x ﹣)cosx(﹣π≤x≤π且x≠0)的图象可能为()A.B.C.D.考点:函数的图象.专题:函数的性质及应用.分析:由条件可得函数f(x)为奇函数,故它的图象关于原点对称;再根据在(0,1)上,f(x)<0,结合所给的选项,得出结论.解答:解:对于函数f(x)=(x﹣)cosx(﹣π≤x≤π且x≠0),由于它的定义域关于原点对称,且满足f(﹣x)=(﹣x)cosx=﹣f(x),故函数f(x)为奇函数,故它的图象关于原点对称.故排除A、B.再根据在(0,1)上,>x,cosx>0,f(x)=(x﹣)cosx<0,故排除C,故选:D.点评:本题主要考查函数的奇偶性的判断,奇函数的图象特征,函数的定义域和值域,属于中档题.6.(5分)(•浙江)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m2)分别为x,y,z,且x<y <z,三种颜色涂料的粉刷费用(单位:元/m2)分别为a,b,c,且a<b<c.在不同的方案中,最低的总费用(单位:元)是()A.a x+by+cz B.a z+by+cx C.a y+bz+cx D.a y+bx+cz考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:作差法逐个选项比较大小可得.解答:解:∵x<y<z且a<b<c,∴ax+by+cz﹣(az+by+cx)=a(x﹣z)+c(z﹣x)=(x﹣z)(a﹣c)>0,∴ax+by+cz>az+by+cx;同理ay+bz+cx﹣(ay+bx+cz)=b(z﹣x)+c(x﹣z)=(z﹣x)(b﹣c)<0,∴ay+bz+cx<ay+bx+cz;同理az+by+cx﹣(ay+bz+cx)=a(z﹣y)+b(y﹣z)=(z﹣y)(a﹣b)<0,∴az+by+cx<ay+bz+cx,∴最低费用为az+by+cx故选:B点评:本题考查函数的最值,涉及作差法比较不等式的大小,属中档题.7.(5分)(•浙江)如图,斜线段AB与平面α所成的角为60°,B为斜足,平面α上的动点P满足∠PAB=30°,则点P的轨迹是()A.直线B.抛物线C.椭圆D.双曲线的一支考点:圆锥曲线的轨迹问题.专题:圆锥曲线的定义、性质与方程.分析:根据题意,∠PAB=30°为定值,可得点P的轨迹为一以AB为轴线的圆锥侧面与平面α的交线,则答案可求.解答:解:用垂直于圆锥轴的平面去截圆锥,得到的是圆;把平面渐渐倾斜,得到椭圆;当平面和圆锥的一条母线平行时,得到抛物线.此题中平面α上的动点P满足∠PAB=30°,可理解为P在以AB为轴的圆锥的侧面上,再由斜线段AB与平面α所成的角为60°,可知P的轨迹符合圆锥曲线中椭圆定义.故可知动点P的轨迹是椭圆.故选:C.点评:本题考查椭圆的定义,考查学生分析解决问题的能力,比较基础.8.(5分)(•浙江)设实数a,b,t满足|a+1|=|sinb|=t.()A.若t确定,则b2唯一确定B.若t确定,则a2+2a唯一确定C.若t确定,则sin唯一确定D.若t确定,则a2+a唯一确定考点:四种命题.专题:开放型;简易逻辑.分析:根据代数式得出a2+2a=t2﹣1,sin2b=t2,运用条件,结合三角函数可判断答案.解答:解:∵实数a,b,t满足|a+1|=t,∴(a+1)2=t2,a2+2a=t2﹣1,t确定,则t2﹣1为定值.sin2b=t2,A,C不正确,∴若t确定,则a2+2a唯一确定,故选:B点评:本题考查了命题的判断真假,属于容易题,关键是得出a2+2a=t2﹣1,即可判断.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.(6分)(•浙江)计算:log2=,2=.考点:对数的运算性质.专题:函数的性质及应用.分析:直接利用对数运算法则化简求值即可.解答:解:log2=log2=﹣;2===3.故答案为:;.点评:本题考查导数的运算法则的应用,基本知识的考查.10.(6分)(•浙江)已知{an}是等差数列,公差d不为零,若a2,a3,a7成等比数列,且2a1+a2=1,则a1=,d=﹣1.考点:等比数列的性质.专题:等差数列与等比数列.分析:运用等比数列的性质,结合等差数列的通项公式,计算可得d=﹣a1,再由条件2a1+a2=1,运用等差数列的通项公式计算即可得到首项和公差.解答:解:由a2,a3,a7成等比数列,则a32=a2a7,即有(a1+2d)2=(a1+d)(a1+6d),即2d2+3a1d=0,由公差d不为零,则d=﹣a1,又2a1+a2=1,即有2a1+a1+d=1,即3a1﹣a1=1,解得a1=,d=﹣1.故答案为:,﹣1.点评:本题考查等差数列首项和公差的求法,是基础题,解题时要认真审题,注意等差数列和等比数列的性质的合理运用.11.(6分)(•浙江)函数f(x)=sin2x+sinxcosx+1的最小正周期是π,最小值是.考点:二倍角的余弦;三角函数的最值.专题:三角函数的图像与性质.分析:由三角函数恒等变换化简解析式可得f(x)=sin(2x﹣)+,由正弦函数的图象和性质即可求得最小正周期,最小值.解答:解:∵f(x)=sin2x+sinxcosx+1=+sin2x+1=sin(2x﹣)+.∴最小正周期T=,最小值为:.故答案为:π,.点评:本题主要考查了三角函数恒等变换的应用,考查了正弦函数的图象和性质,属于基本知识的考查.12.(6分)(•浙江)已知函数f(x)=,则f(f(﹣2))=,f (x)的最小值是2﹣6.考点:函数的最值及其几何意义.专题:函数的性质及应用.分析:由分段函数的特点易得f(f(﹣2))=的值;分别由二次函数和基本不等式可得各段的最小值,比较可得.解答:解:由题意可得f(﹣2)=(﹣2)2=4,∴f(f(﹣2))=f(4)=4+﹣6=﹣;∵当x≤1时,f(x)=x2,由二次函数可知当x=0时,函数取最小值0;当x>1时,f(x)=x+﹣6,由基本不等式可得f(x)=x+﹣6≥2﹣6=2﹣6,当且仅当x=即x=时取到等号,即此时函数取最小值2﹣6;∵2﹣6<0,∴f(x)的最小值为2﹣6故答案为:﹣;2﹣6点评:本题考查函数的最值,涉及二次函数的性质和基本不等式,属中档题.13.(4分)(•浙江)已知1,2是平面向量,且1•2=,若平衡向量满足•1=•=1,则||=.考点:平面向量数量积的性质及其运算律.专题:平面向量及应用.分析:根据数量积得出1,2夹角为60°,<,1>=<,2>=30°,运用数量积的定义判断求解即可.解答:解:∵1,2是平面单位向量,且1•2=,∴1,2夹角为60°,∵平衡向量满足•1=•=1∴与1,2夹角相等,且为锐角,∴应该在1,2夹角的平分线上,即<,1>=<,2>=30°,||×1×cos30°=1,∴||=故答案为:点评:本题简单的考查了平面向量的运算,数量积的定义,几何图形的运用,属于容易题,关键是判断夹角即可.14.(4分)(•浙江)已知实数x,y满足x2+y2≤1,则|2x+y﹣4|+|6﹣x﹣3y|的最大值是15.考点:简单线性规划.专题:开放型;不等式的解法及应用.分析:由题意可得2x+y﹣4<0,6﹣x﹣3y>0,去绝对值后得到目标函数z=﹣3x﹣4y+10,然后结合圆心到直线的距离求得|2x+y﹣4|+|6﹣x﹣3y|的最大值.解答:解:如图,由x2+y2≤1,可得2x+y﹣4<0,6﹣x﹣3y>0,则|2x+y﹣4|+|6﹣x﹣3y|=﹣2x﹣y+4+6﹣x﹣3y=﹣3x﹣4y+10,令z=﹣3x﹣4y+10,得,如图,要使z=﹣3x﹣4y+10最大,则直线在y轴上的截距最小,由z=﹣3x﹣4y+10,得3x+4y+z﹣10=0.则,即z=15或z=5.由题意可得z的最大值为15.故答案为:15.点评:本题考查了简单的线性规划,考查了数形结合的解题思想方法,考查了数学转化思想方法,是中档题.15.(4分)(•浙江)椭圆+=1(a>b>0)的右焦点F(c,0)关于直线y=x的对称点Q在椭圆上,则椭圆的离心率是.考点:椭圆的简单性质.专题:圆锥曲线的定义、性质与方程.分析:设出Q的坐标,利用对称知识,集合椭圆方程推出椭圆几何量之间的关系,然后求解离心率即可.解答:解:设Q(m,n),由题意可得,由①②可得:m=,n=,代入③可得:,解得e2(4e4﹣4e2+1)+4e2=1,可得,4e6+e2﹣1=0.即4e6﹣2e4+2e4﹣e2+2e2﹣1=0,可得(2e2﹣1)(2e4+e2+1)=0解得e=.故答案为:.点评:本题考查椭圆的方程简单性质的应用,考查对称知识以及计算能力.三、解答题:本大题共5小题,共74分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档