材料力学第05章(弯曲应力)-
材料力学第五章 弯曲应力分析
B
D
1m
1m
1m
y2
20
120
FRA
F1=9kN FRB F2=4kN
A C
BD
1m
1m
1m
2.5 Fs
+
+
4 kN
-
6.5 2.5
M
kNm
-
+
4
解: FRA 2.5kN FRB 10.5kN
88
52
-
+
C 2.5
4 B 80
z
20
120
20
B截面
σ t max
M B y1 Iz
4 • 52 763
20
+
-
+
10
Fs
kN
10
20
30
30
25
25
M
kNm
max
M max W
[ ]
W Mmax 30 187.5cm3
[ ] 160
1)圆 W d 3 187.5
32
d 12.4cm
A d 2 121cm2
4
2)正方形
a3 W 187.5
6
3)矩形
a 10.4cm
A a2 108cm2
压,只受单向拉压. (c)同一层纤维的变形相同。 (d)不同层纤维的变形不相同。
推论:必有一层变形前后长度不变的纤维—中性层
中性轴
中性轴⊥横截面对称轴
中性层
横截面对称轴
二、变形几何关系
dx
dx
图(a)
O
O
zb
O yx b
y
图(b)
材料力学5弯曲应力
2020/5/13
目录
第五章 弯曲应力
§5-1 纯弯曲 §5-2 纯弯曲时的正应力 §5-3 横力弯曲时的正应力 §5-4 弯曲切应力 §5-6 提高弯曲强度的措施
2020/5/13
目录
§5-1 纯弯曲
回顾与比较
内力
应力
FN
A
T
IP
2020/5/13
目录
平面对称弯曲:梁有纵向对称面,外力作用在此面内,梁的
2020/5/13
内部变形
横截面 纵向对称面
将梁视为无数平行底面的纵向纤维 层(垂直纵向对称面) ,则:
(a)每层上的各条纤维伸、缩量相等。
(同层上的纤维条受力相同)
中性层
中性轴
(b)必然有一层纤维既不伸长,也不缩
短,称为中性层。 中性层与横截面的交线为中性轴。
中性轴 z 垂直与梁的纵向对称面(加载平面)。
变形对称于纵向对称面。
弯曲时,截面上的分布内力系可以合成为剪力Fs 、弯矩M。
P1
P1
M RA O
RA 纵向对 称面
Fs 剪力Fs
弯矩M
P1
切向内力系
RA
切向内力系 法向内力系
法向内力系
纯弯曲
§5-1 纯弯曲
梁段CD上,只有弯矩,没有剪力--纯弯曲
梁段AC和BD上,既有弯矩,又有剪力--横力弯曲
空心矩形截面
IZ
bh 3 12
IZ
D4
64
(14)
IZ
b0h03 12
bh3 12
Wz
bh2 6
Wz
D3
32
(14)
Wz (b10h203 b1h23)/(h0/2)
材料力学第五章 弯曲应力-正式
4.静力关系
横截面上内力系为垂直于横截 面的空间平行力系,这一力系简化 得到三个内力分量.
M
Mz
z
内力与外力相平衡可得
O
y
dA
x σdA
FN
FN A dFN AσdA 0
A A
(1)
My
y
M iy dM y zσ dA 0 (2)
dFN σ d A
d M y z dA
29
S * y1dA
* z A
z
h/2
y
FS S FS h ( y2 ) I zb 2 I z 4
* z
b h 2 y1bdy1 ( y ) 2 4
2
2
y1
y A1
O B1 A
x
d y1
m1
B
可见,切应力沿截面高度按抛物线规律变化. y=±h/2(即在横截面上距中性轴最远处)0 y=0(即在中性轴上各点处),切应力达到最大值
明,当
l / h 5 时, 用纯弯曲时的正应力公式计算横力弯曲
时横截面上的正应力,精度可以满足工程要求。 横力弯曲时,等直杆横截面上的最大正应力在弯矩最大截面、
离中性轴最远处:
σ max
M max ymax M max Iz W Iz W ymax
17
其中,抗弯截面系数为:
二、强度条件
x
m
n dx
m’
z
m
y
n x
B
z x
B1 A B y
h
O
A1 B1 A
FN1
ḿ
FN2
m’
y
m
《材料力学》 第五章 弯曲内力与弯曲应力
第五章 弯曲内力与应力 §5—1 工程实例、基本概念一、实例工厂厂房的天车大梁,火车的轮轴,楼房的横梁,阳台的挑梁等。
二、弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线。
变形特点——杆轴线由直线变为一条平面的曲线。
三、梁的概念:主要产生弯曲变形的杆。
四、平面弯曲的概念:受力特点——作用于杆件上的外力都垂直于杆的轴线,且都在梁的纵向对称平面内(通过或平行形心主轴且过弯曲中心)。
变形特点——杆的轴线在梁的纵向对称面内由直线变为一条平面曲线。
五、弯曲的分类:1、按杆的形状分——直杆的弯曲;曲杆的弯曲。
2、按杆的长短分——细长杆的弯曲;短粗杆的弯曲。
3、按杆的横截面有无对称轴分——有对称轴的弯曲;无对称轴的弯曲。
4、按杆的变形分——平面弯曲;斜弯曲;弹性弯曲;塑性弯曲。
5、按杆的横截面上的应力分——纯弯曲;横力弯曲。
六、梁、荷载及支座的简化(一)、简化的原则:便于计算,且符合实际要求。
(二)、梁的简化:以梁的轴线代替梁本身。
(三)、荷载的简化:1、集中力——荷载作用的范围与整个杆的长度相比非常小时。
2、分布力——荷载作用的范围与整个杆的长度相比不很小时。
3、集中力偶(分布力偶)——作用于杆的纵向对称面内的力偶。
(四)、支座的简化:1、固定端——有三个约束反力。
2、固定铰支座——有二个约束反力。
3、可动铰支座——有一个约束反力。
(五)、梁的三种基本形式:1、悬臂梁:2、简支梁:3、外伸梁:(L 称为梁的跨长) (六)、静定梁与超静定梁静定梁:由静力学方程可求出支反力,如上述三种基本形式的静定梁。
超静定梁:由静力学方程不可求出支反力或不能求出全部支反力。
§5—2 弯曲内力与内力图一、内力的确定(截面法):[举例]已知:如图,F ,a ,l 。
求:距A 端x 处截面上内力。
解:①求外力la l F Y l FaF m F X AYBY A AX)(F, 0 , 00 , 0-=∴==∴==∴=∑∑∑ F AX =0 以后可省略不求 ②求内力xF M m l a l F F F Y AY C AY s ⋅=∴=-==∴=∑∑ , 0)( , 0∴ 弯曲构件内力:剪力和弯矩1. 弯矩:M ;构件受弯时,横截面上存在垂直于截面的内力偶矩。
材料力学第五章
y
= ∫ y dA
2 A
1 1 π ⋅ d4 π ⋅ d4 I y = Iz = I ρ = ⋅ = z 2 2 32 64
1 π ⋅ (D4 − d 4 ) 对空心圆截面: 对空心圆截面: I = I = I = y z ρ 2 64
第五章 弯曲应力
§5-2 对称弯曲正应力 对称弯曲正应力
M⋅ y 二、弯曲正应力一般公式: 弯曲正应力一般公式: σ= Iz
Ip
弯曲 剪力Q 剪力
?
第五章 弯曲应力
§5-1 引言 y
梁段
M τ Q
z
σ
横截面上剪应力 横截面上正应力
横截面上内力
Q = ∫τdA
剪应力造成剪力
M = ∫σydA
正应力造成弯矩
剪应力和正应力的分布规律是什么? 剪应力和正应力的分布规律是什么?
超静定问题
第五章 弯曲应力
§5-1 引言
§5-2 对称弯曲正应力 对称弯曲正应力 §5-3 对称弯曲切应力 对称弯曲切应力 弯曲 §5-4 梁的强度条件与合理强度设计 梁的强度条件与合理强度设计 §5-5 双对称截面梁的非对称弯曲 双对称截面梁的非对称弯曲 §5-6 弯拉(压)组合 弯拉( 对称弯曲(平面弯曲): 对称弯曲(平面弯曲): 外力作用在纵向对称面内, 外力作用在纵向对称面内,梁轴线变形 后为一平面曲线,也在此纵向对称面内。 后为一平面曲线,也在此纵向对称面内。
(3)
Mz = ∫ σ ⋅ y ⋅ dA = M (5) A E 2 E 2 E (5) M z = ∫ ρ y dA = ∫ y dA = ρ I z = M
A
ρ
A
1 M = ρ EIz
第五章 弯曲应力
材料力学第5章弯曲应力
M
M
中性轴
z
m
n
y
o
o
dA
z
mn
y
dx
Mzy
Iz
max
Mz Wz
M
MZ:横截面上的弯矩
y:到中性轴的距离
IZ:截面对中性轴的惯性矩
M
中性轴
§5-2 惯性矩的计算
一、静矩 P319
y
Sz ydA
A
z dA
zc
c y
S y zdA
yc
A
o
z
分别为平面图形对z 轴和 y 轴的静矩。
ySc Az ydA
F M
F
a
B
F
Fa
5.3 梁弯曲时的正应力
若梁在某段内各横截
面上的弯矩为常量, F
F
a
a
剪力为零, 则该段梁 A 的弯曲就称为纯弯曲。
B
Fs
在 AC 和 DB 段 内 横 截 面上既有弯矩又有剪 M 力, 这种情况称为横 力弯曲或剪切弯曲。
F F
Fa
平面假设
变形前原为平面的梁的横截面变形后仍保持为 平面, 并绕垂直于纵对称面的某一轴旋转, 且仍 然垂直于变形后的梁轴线。这就是弯曲变形的 平面假设。
C y'
a
x'
xc
b
注意!C点必须为截面形心。
六、组合截面的惯性矩
Iy Iyi
Iz Izi
例2:求对倒T字型形心 轴yC和zC的惯性矩。
解:1. 取参考轴yOz 2. 求形心
2cm y(yc)
1 c1
6 cm
yc
Ai yi A
y
c 1
材料力学第五章 弯曲应力
F F d F 0 N 2 N 1 S
将FN2、FN1和dFS′的表达式带入上式,可得
* M M d M * S S b d x 0 z z
I z I z
简化后可得
dM S z* dx I z b
dM F S ,代入上式得 由公式(4-2), dx
* 式中 S z
A1
y1dA ,是横截面距中性轴为 y 的横线 pq 以下的面积对中性轴的静矩。同理,
可以求得左侧面 rn 上的内力系的合力 FN 1 为
M * FN 1 S z Iz
在顶面rp上,与顶面相切的内力系的合力是
d F b d x S
根据水平方向的静平衡方程
F 0 ,可得
综上所述,对于各横截面剪力相同的梁和剪力不相同的
细长梁(l>5h),在纯弯曲情况下推导的弯曲正应力公式 (5-2)仍然适用。
例5-1
图5-10(a)所示悬臂梁,受集中力F与集中力
偶Me作用,其中F=5kN,Me=7.5kN· m,试求梁上B点左邻 面1-1上的最大弯曲正应力、该截面K点处正应力及全梁的 最大弯曲正应力。
第五章 弯曲应力
5.1 弯曲正应力 5.2 弯曲切应力简介 5.3 弯曲强度条件及其应用 5.4 提高梁弯曲强度的主要措施
5.1 弯曲正应力
上一章研究表明,一般情况下,梁横截面上同时存在
剪力FS和弯矩M。由于只有切向微内力τ dA才可能构成剪力, 也只有法向微内力σdA才可能构成弯矩,如图5-1(a)所示。 因此,在梁的横截面上将同时存在正应力σ和切应力τ(见图 5-1(b))。梁弯曲时横截面上的正应力与切应力分别称为 弯曲正应力与弯曲切应力。
材料力学第5章弯曲应力
4)
最大切应力: max
k
FS A
矩形:k =3/2 工字形:k =1 圆形:k =4/3
5)
切应力强度条件: max
F S* S max z max Izb
[
]
梁的强度条件小结:
1)应力公式:
正应力: My
Iz
最大值在距中 性轴最远处 max
M W
切应力:
FS Sz* Izb
最大值在 中性轴处
。 F位于跨中时,M最大
FRA
F
FRB
Mmax=Fl/4 F靠近支座时,FS最大 Qmax=F 按弯曲正应力强度条件选择截面
Wz
Fl
4
3.0 104 m3
300cm 3
max
FS z max Izd
14.11MPa
选择 22a工字钢
Iz / Szmax 18.9cm
d=7.5mm
5.16 铸铁梁的载荷及横截面尺寸如图所示。许用 拉应力[ t ] 40,MP许a 用压应力 [ c ] 。 1试60按MP正a 应力
My Iz
My
zdA
E
yzdA
E
I yz
0——y为主惯轴
总结: • 应力应变沿高度线性变化,中间有零应力应变层
• 应力应变公式的适用范围 • 最大应力、应变点在哪里
§5.3 横力弯曲时的正应力
1)横力弯曲时的正应力公式
横力弯曲时,基本假设不成立,但
My 满足精度要求,可使用。
Iz
max
Mmax ymax Iz
应变: (bb bb) / bb
(
y)d d
d
y
2)物理方程: E Ey /
《材料力学》教学课件—第5章 弯曲应力
M C 901 601 0.5 60kN m
x 90kN
IZ
bh3 12
0.12 0.183 12
5.832 105 m4
M
ql 2 / 8 67.5kN m
x
K
MC IZ
yK
60 103
(180 2
30)
103
5.832 105
61.73MPa
23
2. C 截面最大正应力
q=60kN/m
Wz
bh2 Wz = 6
1 2 hh2 63
h3 9
M max
[ ]
11.25 103 10 106
1125106 m3
h 3 91125106 0.216m 取 : h 216 mm b 2 h 144 mm
3
40
y2=139 y1=61
例5-3 外伸梁荷载与几何尺寸如图所示,已知材料的许用应力
IZ
• 纯弯曲或细长梁的横力弯曲 • 横截面惯性积 IYZ=0 • 弹性变形阶段
19
梁理论发展进程
Galileo Galilei 1564-1642
近代科学之父
20
梁理论发展进程
Jacob Bernoulli 1654-1705
Galileo Galilei 1564-1642
E. Mariotte 1620-1684
A
1m
FAY
C
l = 3m
Fs 90kN
M ql 2 / 8 67.5kN m
B
x
FBY
x 90kN
x
180
120
30
K
z
y
C 截面弯矩
M C 60kN m
材料力学(刘鸿文)第五章-弯曲应力
关于中性层的历史
1620年,荷兰物理学家、力学家比克门首先发现中性层; 英国科学家胡克于1678年也阐述了同样现象, 但没有涉及中性轴的位置问题; 法国科学家纳维于1826年,出版《材料力学》讲义, 给出结论: 中性轴 过截面形心。
观察建筑用的预制板的特征,并给出合理解释
P
为什么开孔?孔开在何处? 可以在任意位置随便开孔吗? 为什么加钢筋? 施工中如何安放?
(3)特别注意正应力沿高度呈线性分布;
(4)中性轴上正应力为零, 而在梁的上下边缘处分别是最大拉应力和最大压应力。
注意
(5)梁在中性轴的两侧分别受拉或受压; 正应力的正 负号(拉或压)可根据弯矩的正负 及梁的变形状态来 确定。
(6)熟记矩形、圆形截面对中性轴的惯性矩的计算式。
例1 T型截面铸铁梁,截面尺寸如图。
a 无论截面形状如何, 无论内力图如何
梁内最大应力 其强度条件为
σmax
σmax
M y max max
M
Iyz
max max
Iz
σ
b 但对于塑性材料,通常将梁做成矩形、圆形、工字形等
对称于中性轴的截面;
此类截面的最大拉应力与最大压应力相等。
因此:
强度条件可以表示为
σmax
M max wz
σ
3m
180
30 K
z
1、C 截面上K点正应力
y
2、C 截面上最大正应力
3、全梁上最大正应力
4、已知E=200GPa,C 截面的曲率半径ρ
180
1、截面几何性质计算
120
z
确定形心的位置 确定形心主轴的位置
确定中性轴的位置
IZ
bh 3 12
材料力学ppt_闫晓鹏第5章_弯曲应力
例4 图示梁的的荷载及截面尺寸如图所示,材料的许 用拉应力[t]=40MPa、许用压应力[c] =100MPa,许 用切应力[] =20MPa 。试校核该梁的强度。
A B 2m C 3m 1m D 157. 5 200 C 30
q 10kN / m
F 20kN
200
解:求支座反力; z
0 : M D 12kN m
(上面受拉) (拉)
M D 6 M D 6 12 103 a 120 MPa 2 2 W bh 6 10
2 2 b a 120 48MPa (拉) 5 5
c 0
例2求图示T 形截面梁的最大拉应力和最大压应力。 30 50kN 20kN
a b
c d M c d
a b
⑵横向线代表一横截面,变形后仍为直线,但转过一个角 度,且仍与纵向线正交。横截面与中性层的交线称为中性轴。
纵向对称面 中性层 中性轴
⒉ 基本假设 ⑴平面假设:梁的横截面变形后仍为平面,且与梁变形 后的轴线正交; ⑵单向受力假设:纵向纤维之间无正应力,即无挤 压。各纵向纤维仅仅承受轴向的拉应力或者压应力。
max
Fs S z I z b0
*
式中b0为工字型腹板的厚度。
Fs S z* 在腹板上距中性轴为y处的切应力: I z b0
*
1 h0 h h0 h0 1 h h0 h0 S z b b0 y y y 2 2 2 2 2 2 2 2 2 b 2 b0 h02 2 (h h0 ) ( y 2 ) 8 2 4 b 2 FS b 2 b h 2 2 0 0 h h y ( ) ( ) 0 I z b0 8 2 4 h0 2 y FS bh 2 h0 腹板 max b b ( ) 0 I z b0 8 8
材料力学课件第五章弯曲应力的分析
A
① 将(2)代入(3)
y
E dA 0
A
Sz =
ydA 0
A
M y
z dA 0 -(4)
A
SZ称为静矩,当通过截 面形心时为0
中性轴通过截面形心
② 将(2)代入(4)
A
zE
ydA
0
A zydA 0
当截面具有对称轴时,自然满足. z, y轴是主惯性轴
M
(中性轴)
z x
y σdA
z
y (对称轴)
139mm
(3)截面对中性轴的惯性矩
Iz
200 303 12
200 30 462
30 1703 12
30 170 542
• 中性轴: 中性层与横截面的交线, 用Z轴表示。
梁弯曲时,实际上各个截面绕着中性轴转动。
如果正号弯矩如图作用在梁的横截面上,该梁下部将伸 长、上部将缩短
中性层曲率半径
d
M
M
•纤维bb变形前的长度:
m’ n’
y bb o 'o ' d dx
a’
a’
o’ b’
m’
o’ b’
n’
•纤维bb变形后的长度:
))
b 'b ' ( y)d
•纤维bb的应变:
( y )d d y - - - - (1)
d
( 与 y 成正比)
2.物理关系:
假设: 各层纤维之间无挤压作用,各条纤维仅受单 向拉压受力, 应此可以使用简单虎克定律。
根据简单虎克定律: E y - - - - (2)
(中轴性尚未确定, y、未知)
z 形后,横截面仍保持平面,
且仍与纵线正交
材料力学课件第五章 弯曲应力
MI = RA ×200×10 = 23.6×200×10 = 4.72kN⋅ m= Mm ax
−3 −3
MIV = RB ×115×10−3 = 27×115×10−3 = 3.11kN⋅ m
可能的危险截面: 截面, 截面, 可能的危险截面: I-I截面,II-II截面,III-III截面 截面 截面 截面
※一般实心截面细长梁: 最大正应力强度是梁强度的控制因素 一般实心截面细长梁:
Mm ax ≤[σ] W z
※如下情况,需特别校核剪应力: 如下情况,需特别校核剪应力: a) 自制薄壁截面(组合截面)梁: ) 自制薄壁截面(组合截面) b)梁跨度较小 ) c)支座附近有较大集中力 )
简支梁L=2m,a=0.2m。梁上载荷为 例 5.5:图示 简支梁 : 。 q=10kN/m,P=200kN。材料许用应力为 。材料许用应力为[σ]=160MPa, , [τ]=100MPa 。试选择适用的工字钢型号。 试选择适用的工字钢型号。 解: 一、作Q、M图 、 图
m m m m
(三)梁横截面上各点变形规律 三 ①中性层 ②中性轴 ③变形规律
m b x
y b dx
m z y
∵b b′ = ( ρ + y)dθ = ρdθ + ydθ
'
b'b′ − dx = ydθ ∴ε x = dx dx
=
y
b dx
b
dθ
ρ y b’
ρ
b’
∴ε x =
y
ρ
(1)
m b x
例5.2 卷扬机卷筒心轴的材料 为45钢,弯曲许用应力 = 钢 弯曲许用应力[σ] 100MPa,心轴的结构和受力 , 情如图所示。 情如图所示。P = 25.3kN。试 。 校核心轴的强度。 校核心轴的强度。 画心轴计算简图: 解: 一、画心轴计算简图: 求支反力: 二、求支反力:由整体平衡
材料力学 第5章 弯曲应力
材料力学
(三)静力学关系
FN x
dA 0
A
Mz A (dA) y M
1 Mz
EI z
由(2)(3)两式可得
… …(3)
x
M y Iz
z x
y
EIz ——抗弯刚度
...... (4)
材料力学
(四)最大正应力
… …(5)
z x
Wz
Iz ymax
——抗弯截面系数
y
z
D
z b
实心圆截面
Pa
92.6MPa
④全梁最大正应力
max
M max Wz
67.5103 6.48 104
Pa
104
.2MPa
材料力学
5.4 弯曲切应力
一、 矩形截面梁横截面上的切应力
x dx 图a
M(x) Fs(x)
Fs(x) y
x 图b
dx M(x)+d M(x)
z
t1
x
b FN1
t
y FN2 图c
1、两点假设: ①切应力与剪力平行; ②距中性轴等距离处,切应力 相等。 2、研究方法:分离体平衡。
60
103 (60 10 3 ) 5.832 10 5
Pa
61.7MPa
材料力学
1 q=60kN/m
A
B
1m
2m
1
180 30
12 z
120 y
qL2
M
8
+
M1 Mmax
x
③1-1截面上的最大正应力
Wz
Iz y
Iz h2
6.48 10 4 m3
1max
材料力学课件 第五章弯曲应力
1 M = ρ EI z
EIz—弯曲刚度。表示梁抵抗弯曲变形的能力。 正应力公式
My y σ=E I zρ
公式适用范围: 1、对称弯曲,且纵向纤维无挤压。 2、线弹性范围,且拉压弹性模量相等。 思考题:若不是对称弯曲,以上正应力公式能 否成立?什么条件下成立?
4、最大正应力
最大正应力在横截面的上、下边缘点处
M B = 2.5kNm M C = −4kNm
9kN
A 2.5kN B
8kN/m
C D 88
80 b
20 z 120 20
I z = 763 × 106 mm 4
M B = 2.5kNm
1m
1m
14.5kN
1m
a
M C = −4kNm
3、确定危险点进行强度计算 C截面a点 C截面b点 B截面a点
[q2 ] = 8Wz [σ ] = 8 × 7.22 × 104 × 10 × 10 −6 = 5.78 kN
m
☻提高弯曲截面系数是提高梁的承载能力的主要 措施之一。
例题:一T型铸铁梁受外力如图所示,已知横截面对 中性轴的惯性矩Iz=763×104mm4,铸铁材料的容许 拉应力[σt]=30MPa,容许压应力[σc] =60MPa。试校 核梁的正应力强度。
梁满足强度条件 ☻非对称截面梁可能有两个危险截面、三个危险点
例题:图示20号槽钢受弯曲变形时,测出边缘点A、 B两点间长度的改变量为Δl=27×10-3mm,材料的弹 性模量E=200GPa。试确定两横截面上的弯矩M。
A M 50 B M
问题分析 边缘点
σ max M 单向应力 = Wz
Δl = ε max l AB
σ t max ≤ [σ t ] σ c max ≤ [σ c ]
第五章 弯曲应力(材料力学)PPT课件
n
作如下假设: (1) 梁的横截面变形后仍保持为平面,且垂直于变形
后的轴线,即弯曲变形的平面假设。 (2) 纵向纤维间无挤压作用,各纵向纤维均处于单向
受拉或受压状态。
材料力学Ⅰ电子教案
第五章 弯曲应力
bb 变形前的长度等于中性层
中性层长度不变, 所以:
bbO 1 O 2 O1O 2 d
纵向线bb变形后的长度为:
纯弯曲和横力弯曲的概念
F
F
在 AC 和 DB 段 , 梁 的 横 截 面既有弯矩,又有剪力,这 种情况称为横力弯曲(剪切 弯曲)。 在 CD 段 内 , 梁 的 横 截 面
A C
a
F
+
B
D
a
上剪力为零,而弯矩为常量, 这种情况称为纯弯曲。
+
F. a
F
梁在纯弯曲变形时,横截面
+
上只有与弯矩有关的正应力。
材料力学Ⅰ电子教案
材料力学
第五章 弯曲应力
第五章 弯曲应力
четверг, 3 декабря 2020 г.
材料力学Ⅰ电子教案
第五章 弯曲应力
第五章 弯曲应力
§5-1 纯弯曲 §5-2 纯弯曲时的正应力
§5-3 横力弯曲时的正应力
§5-4 弯曲切应力
§5-5* 关于弯曲理论的基本假设
§5-6 提高弯曲强度的措施
即:
FN
dA0,
A
My
zdA0,
A
Mz
ydAM
A
材料力学Ⅰ电子教案
第五章 弯曲应力
FN
dA0
A
AdAEAydA0
AydASz 0
z 轴通过形心
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1m
FB
B +
F2=4kN
y1
D C
t
y2
z y
-
MB
1m
c
FB 10.5kN()
2.5kNm M
+ -
4kNm
解:(1)求支座反力
FA 2.5kN()
(2)画弯矩图找危险截面 B截面弯矩最大,是危险截面
负弯矩,上边缘受拉,下边缘受压
FA
A
F1=9kN
C 1m 1m
FB
y1 77mm
I z 3.9110 mm
7
[ c ]
∴ 梁安全。
[例5-3] T 字形截面的铸铁梁,受力如图,铸铁的[t]=30MPa, (P146) [c]=60 MPa,其截面形心位于C点,y1=52mm, y2=88mm,Iz=763cm4 ,试校核此梁的强度。
FA
A
F1=9kN
k 40 C yc 120 y1 z 180 y 30
800
k
30
题:附I.8(b)
解:(1)求形心位置和惯性矩
(2)求危险截面上的弯矩
yC 103mm
y1 77mm
I z 3.91107 mm4
Mk 12 0.8
9.6 kN m
F
k
Mk
t
Mk
t
770
120 40 C 30 y
y
6.25MPa [ ]
FS +
M
5 .4 kN
4.05 kN m
(3)校核切应力强度 Fs max 5400 1.5 max 1.5 0.120.18 A
0.375MPa [ ]
∴梁安全!
[例8] 已知:q =407kN/m,[ ]=190MPa,[ ]=130 MPa,校 核梁的弯曲正应力和切应力强度强度。 FB 300×20 FA q y1 382.6 y1
z h b y
z
y
[改题5.26] (P172) 用螺钉将四块木板连接成箱形截面梁,每块木板横 截面尺寸相同(150mm25mm)。木材的许用弯曲正应力 []=10MPa, F=12kN。试校核木梁的弯曲正应力强度。
F s 1 1m 1m
150 25 25 25
25 150
解:画弯矩图
6 + M /kN m
162(MPa) [ ]
FA
A
0.2m
q
FB
B
300×20 650×16 400×22 C
y1 y2
z
y1 382.6
y2 309.4
3.7m +
0.2m
753
–
FS / kN
753
* 3 3.287106 FSmax S z 753 10 max I zb 2109 16
M C y1 M B y2 c <[c] Iz Iz
∴梁安全
讨论:若将T字形梁倒置,梁是否安全?
FA
A 1m
F1=9kN
C 1m
FB
F2=4kN
D 1m
t
C
B
y1 y2
C
z y2
y1
z
y
2.5kNm M
y
c MB
+ -
4kNm
B截面的拉应力: M B y2 t Iz
6 88 4 10 46 .2MPa [ t ] 4 763 10
(4)弯曲切应力强度
* Sz 287.416 287.4
77.4(MPa) [ ]
∴梁安全
2
400 22 298 .4
3.287106 (mm3 )
[孙题4-49] (P154) 图示箱形截面简支梁用四块木板胶合而成,材 料为红松,木材的许用弯曲正应力为[ ]=10 MPa,许用切应力 为[ ]= 1.1MPa,胶合缝的许用切应力为[ 胶]= 0.35MPa, 若横 截面对中性轴的惯性矩Iz=478.8×106mm4,试校核梁的强度。
FA
A
F1=9kN
FB
B +
F2=4kN
t
y1
y2
C
- C +
1m 1m
MB
c
MC
-
D 1m
y
2.5kNm M
c
t
+ -
4kNm
(3)C截面的强度
正弯矩,下边缘受拉,上边缘受压
My Iz
M C y2 2.510 6 88 28.2MPa <[t] t 4 Iz 763 10
M max y1 7.4(MPa) [ ] max Iz
10kN
10kN
10kN
A
1m 15kN 1m 1m 1m
B
c
y =162
z
y 1=178
FS
+ –
15kN
y (3)木材的弯曲切应力强度
* FSmax S z max I zb
* A* y* A* y* A* y* Sz 1 1 2 2 3 3
s
F
1 1m 3m
25 150 25 25
25 150
由螺钉的剪切强度
sb ≤ 2[FS ]
其中: [FS ] 1.1(kN)
3 2[ FS ] 2 1 . 1 10 117 mm s≤ b 0.377225
[改题5.26]
用螺钉将四块木板连接成箱形截面梁,每块木板横 截面尺寸相同(150mm25mm)。木材的许用弯曲正应力 []=10MPa,许用切应力[ ]=1MPa,每一螺钉的许可剪力为 1.1kN,螺钉的间距s=100mm,F=12kN。1)试校核木梁的弯 曲正应力和切应力强度;2)螺钉的间距是否满足要求?
7.8(MPa) [ ] 安全
[例7] 矩形截面木梁如图, []=7MPa,[ ]=0. 9 M Pa,校核 梁的弯曲正应力和切应力强度。
q=3.6kN/m 121)画内力图找危险截面
z
A
180
(2)校核正应力强度
max
M max 6 M max 64050 Wz bh 2 0.120.182
2
M max 由 max Wz
∴b≥3
3 M max 125mm 2[ ]
2kN 0.6m 1.4m 1m
3kN 2b
b d
A (2)
M A 10(kNm)
b( 2b ) 3 bd 3 Iz 1.6108 mm4 12 12
M A ymax M A b 10106 125 max Iz Iz 1.6108
9.12105 mm3
b 50 50 100mm
0.286(MPa) [ 胶 ]
10kN
10kN
10kN
A
1m 15kN 1m 1m 1m
B
b
C
y =162
z
y 1=178
y
FS
+ –
15kN
* A* y* Sz
3.36105 mm3
* FSmax S z 0.263(MPa)[ 胶 ] b I zb
k
c
c
(3)正应力强度 M k y1 9.610 6 77 y1 t 18.9MPa < [ t ] 7 I z 180 3.9110 z
yc 30
yC 103mm
M k y c 9.610 6 103 25.3MPa c 7 Iz 3.9110
<
4
(3)工字形截面梁 z h z
b
y
y
M max ≤ [ ] max Wz M max .8(cm3 ) Wz ≥ [ ] 1558
查表,选择No.45c工字钢 Wz 1570 cm3
(4)比较耗材
A矩 160.8 241.2 3.23 A工 12000
工字钢耗材是矩形截面梁的三分之一。
梁的强度不够。
[例4] 已知:矩形截面木梁, []=10MPa。 (1)确定截面尺寸b;(2)在A处钻d=60mm的圆孔,
试问梁是否安全。
2kN 0.6m 1.4m 1m
3kN 2b
b
A 解:(1)
M max 2 2 3 3 13(kNm)
≤ [ ]
3 3 2 b 4 b bh Wz 3 6 6
A
B
650×16
z
0.2m
3.7m
753 +
0.2m
400×22
C
y2
y2 309.4
解:(1)求形心位置和惯性矩 FS /kN
– 753
150
I z 2109 (mm4 )
(2)画内力图
150
847 +
(3)弯曲正应力强度
M /kN m
M max y1 847 10 6 382 .6 max Iz 210 9
20
10kN
10kN 10kN
300
A
1m 1m 1m 1m
B
300
C
y
y =162
z
y1=178
50
20
50
200
10kN
10kN
10kN
20
300
A
1m 15kN 1m 1m 1m
B
300
C
y
y =162
z
y1=178
50
FS