发电厂电气部分课程设计主接线设计

合集下载

火力发电厂电气主接线课程设计报告

火力发电厂电气主接线课程设计报告

火力发电厂电气主接线课程设计报告前言电气主接线代表了发电厂和变压所高电压、大电流的电气部分的主体结构,是电力系统网络结构的重要组成部分。

它直接影响电力生产运行的可靠性、灵活性。

对电气设备的选择、配电装置的布置、继电保护、自动装置和控制方式等诸多方面都有决定性的关系。

本火电厂电气主接线主要从可靠性、灵活性、经济性三方面综合考虑并设计。

可靠性包括:发电厂和变电所在电力系统中的地位;负荷性质和类别;设备的制造水平;长期运行实际经验。

灵活性包括:操作的方便性;调度的方便性;扩建的方便性。

经济性包括:节省投资;降低损耗等。

综合以上三方面的考虑展开火电厂电气主接线的设计,并对设计进行可行性分析,得出结论:本设计适合实际应用。

1对原始资料的分析火力发电厂共有两台50MW的供热式机组,两台300MW的凝汽式机组。

所以Pmax=700MW;机组年利用小时Tmax=6500h。

设计电厂容量:2*50+2*300=700MW;占系统总容量700/(3500+700)*100%=16.7%;超过系统检修备用容量8%-15%和事故备用容量10%的限额。

说明该厂在系统中的作用和地位至关重要。

由于年利用小时数为6500h>5000h,远大于电力系统发电机组的平均最大负荷利用小时数。

该电厂在电力系统中将主要承担基荷,从而在设计电气主接线时务必侧重考虑可能性。

10.5KV电压级:地方负荷容量最大为25.35MW,共有10回电缆馈线,与50MW发电机端电压相等,宜采用直馈线。

220KV电压级:出线回路为5回,为保证检修出线断路器不致对该回路停电,宜采用带旁路母线接线方式。

500KV电压级:与系统有4回馈线,最大可能输送的电力为700-15-200-700*6%=443MW。

500KV电压级的界限可靠性要求相当高。

2 主接线方案的拟定2.1 10.5kV电压级根据设计规程规定:当每段母线超过24MW时应采用双母线分段式接线方式。

发电厂电气部分设计

发电厂电气部分设计

三、发电厂电缆线路设计
三、发电厂电缆线路设计
电缆线路是发电厂电能输送的重要通道,其设计应满足安全、可靠、经济和 环保的要求。在电缆线路的设计过程中,需要考虑以下几个方面:
三、发电厂电缆线路设计
1、电缆型号选择:电缆型号的选择应考虑电力系统的电压等级、电流容量、 敷设环境等因素,以确保电缆能够安全可靠地运行。
一、发电厂主接线设计
一、发电厂主接线设计
主接线是发电厂的重要组成部分,用于实现电能的生产、变换和输送。主接 线的设计应满足可靠性高、灵活性强、易于操作和维修、经济性好的要求。在主 接线的设计过程中,需要考虑以下几个方面:
一、发电厂主接线设计
1、可靠性:主接线的设计应确保电力系统的稳定运行,避免因设备故障导致 的大规模停电事故。为此,可以采用分段接线和桥型接线等方式,提高主接线的 可靠性。
一、发电厂主接线设计
4、经济性:主接线的设计应在满足可靠性和灵活性的前提下,尽量降低建设 成本和维护成本。例如,可以采用低损耗设备、优化线路布局等方式,降低能耗 和维护成本。
二、发电厂防雷设计
二、发电厂防雷设计
防雷设计是发电厂电气部分设计的关键环节之一,其目的是在雷击情况下保 护设备和建筑物不受损坏。发电厂的防雷设计应包括以下几个方面:
内容摘要
总之,本次演示通过详细阐述4200MW发电厂电气一次部分设计的原则、流程、 要求及成果,为我们成功地完成这一复杂而关键的设计工作提供了有力的支持。 通过这一设计工作,我们不仅提高了发电厂的效率和性能,还推动了电力行业的 技术进步和发展。
引言
引言
随着电力工业的不断发展,发电厂的规模不断扩大,设备日益复杂,对发电 厂的运营和管理提出了更高的要求。为了提高发电厂的运营效率和管理水平,电 气综合自动化系统的应用越来越受到。本次演示将对发电厂电气综合自动化系统 的发展和应用进行探讨。

发电厂电气部分课程设计

发电厂电气部分课程设计

发电厂电气部分课程设计设计题目火力发电厂电气主接线设计指导教师院(系、部)专业班级学号姓名日期发电厂电气部分课程设计任务书一、设计题目火力发电厂电气主接线设计二、设计任务根据所提供的某火力发电厂原始资料(详见附1),完成以下设计任务:1. 对原始资料的分析2. 主接线方案的拟定(至少两个方案)3. 变压器台数和容量的选择4. 所选方案的经济比较5. 主接线最终方案的确定三、设计计划本课程设计时间为一周,具体安排如下:第1天:查阅相关材料,熟悉设计任务第2 ~ 3天:分析原始资料,拟定主接线方案第4天:选择主变压器的台数和容量,对方案进行经济比较第5 ~ 6天:绘制主接线方案图,整理设计说明书第7天:答辩四、设计要求1. 按照设计计划按时完成2. 设计成果包括:设计说明书(模板及格式要求详见附2和附3)一份、主接线方案图(A3)一张指导教师:教研室主任:时间:摘要发电厂是电力系统的重要组成部分,也直接影响整个电力系统的安全与运行。

在发电厂中,一次接线和二次接线都是其电气部分的重要组成部分。

发电厂一次接线,即发电厂电气主接线。

其代表了发电厂高电压、大电流的电气部分主体结构,是电力系统网络结构的重要组成部分。

它直接影响电力生产运行的可靠性与灵活性,同时对电气设备选择、配电装置布置、继电保护、自动装置和控制方式等诸多方面有决定性的关系。

本设计是对配有2 ⨯ 50MW供热式机组, 2 ⨯ 600MW凝汽式机组的的大型火力发电厂电气主接线的设计,包括对原始资料的分析、主接线方案的拟定、变压器台数和容量的选择、方案的经济比较、主接线最终方案的确定。

关键词:火力发电厂;电气主接线目录1 前言 (5)2 原始资料分析 (6)2.1 工程情况 (6)2.2 电力系统情况 (6)3 主接线方案的拟定 (8)3.1 10.5kV电压级 (8)3.2 220kV电压级 (8)3.3 500kV电压级 (8)4 变压器的选择 (10)4.1 主变压器 (10)4.2 联络变压器 (10)5 方案的经济比较 (12)5.1 一次投资计算 (12)5.2 年运行费计算 (12)5.3 年费用计算 (12)6 主接线最终方案的确定 (13)7 结论 (14)8 参考文献 (15)1 前言电能是一种清洁的二次能源。

发电厂电气部分2-7发电厂电气主接线设计举例

发电厂电气部分2-7发电厂电气主接线设计举例

②双母线带旁路接线正常运行时 T1、L1、L2接W1母线, T2、T3、L3、L4接于W2段母线,母联断路器投入,以固 定接线方式运行为例,进行分析计算。 1.先求其辅助系数 (1)断路器故障率Qi由Qi= Q + LL/100 + , 对断路器分别计算。其中对母联断路器及一串的中间断 路器的Q修正为2Q值,计算结果示于表2-4及2-5。
虑限制短路电流的措施。除在主接线形式和运行方式上尽可能 采用等效阻抗较大的接线形式,如单元接线、母线硬分段等外, 更重要的是在某些电路中加装电抗器,如母线电抗器、出线电 抗器、分裂电抗器等,亦可选用低压分裂绕组变压器取代普通 变压器,均可得到较好的限流效果,故被广泛采用。
电气主接线的设计,应根据对主接线的基本要求,以设计任务 书为依据,技术规范为准绳,历经以下几个阶段: 1)对任务书原始资料进行分析,画出主接线框图。
(1)10kV电压级鉴于出线回路多,且为直馈线、电压较 低,宜采用屋内配电,其负荷亦较小,因此,可能采用单 母线分段或双母线分段接线形式。
两台50MW机组分别接在两段母线上,剩余功率通过主变压 器送往高一级电压220kV。
由于50MW机组均接于10kV母线上,为选择轻型电器,应在 分段处加装母线电抗器,各条电缆馈线上装设出线电抗器。 (2)220kV电压级出线回路数大于 4回,为使其出线断路 器检修时不停电,应采用单母线分段带旁路接线或双母线 带旁路接线,以保证其供电的可靠性和灵活性。其进线仅 从10 kV侧送来剩余容量2 X 50-[(100 X 6%)+20]= 74MW,不能满足220kV最大负荷250MW的要求。
三、方案的可靠性计算
由于500kV电压高、容量大、可靠性要求高,须对两种
可行的接线方案(图2-34)进行可靠性计算。

发电厂电气部分电气主接线及设计

发电厂电气部分电气主接线及设计

(2)降压变电站主接线常用接线形式
✓ 变电站主接线的高压侧: 1)应尽可能采用断路器数目少的接线,以节省投资,减 少占地面积;
2)随出线数的不同,可采用桥形、单母线、双母线及角 形等接线形式;
3)如果电压较高又是极为重要的枢纽变电站,宜采用带旁 路的双母线分段或一台半断路器接线。
✓ 变电站的低压侧: 常采用单母线分段或双母线接线。
用于本厂(站)用电的变压器,也称自用变。
二、主变压器容量和台数的确定
原则:尽量减少变压器台数,提高单台容量。
1、发电厂主变压器容量和台数的选择
(1)单元接线的主变压器
A、容量选择
应按发电机额定容量扣除本机组的厂用负荷后,留有10%的裕度选择
S N 1 .1 P N ( 1 G K P )/co Gs(M )VA
2)水力发电厂的升高电压侧的接线:
✓ 当出线数不多时,应优先考虑采用多角形接线等类型 的无汇流母线的接线;
✓ 当出线数较多时,可根据其重要程度采用单母线分段、 双母线或一台半断路器接线等。
某中型水电厂主接线
1)该电厂有4 台发电机 G1~G4,每两台机与一台 双绕组变压器接成扩大单 元接线;
2)110kV侧只有2回出线, 与两台主变压器接成4角 形接线。
e1
N1
d dt
e2
N2
d dt
i1
U1
i2 u1
只要一、二
u1
e1e2Biblioteka u 2ZL次绕组的匝数不 同,就能达到改
u2 变压的目的。
U2
第三节 主变压器的选择
一、有关的几个概念
1、主变压器
发电厂、变电站中向系统、用户输送功率的变压器。
2、联络变压器

发电厂电气部分-35KV变电站主接线设计

发电厂电气部分-35KV变电站主接线设计

目录1 设计任务 (1)1.1 初始资料 (1)1.2 电力系统与本站连接情况 (1)1.3负荷情况 (1)2 变电站主接线设计 (1)2.1 主接线设计依据 (1)2.2主接线中设备配置 (2)2.3 设计步骤 (3)2.4 主接线方框图 (3)2.5 主接线方案的确定 (4)3 短路电流的计算 (5)3.1 概述 (5)3.2 短路计算的目的 (6)3.3 短路计算方法 (6)4 电气设备的选择 (7)4.1变压器的选择 (7)4.2断路器的选择与校验 (8)4.3隔离开关的选择 (9)4.4母线的选择 (10)5 设计结果 (10)5.1 设计图纸 (10)5.2 设计说明书 (11)1 设计任务1.1 初始资料(1)设计变电所在城市郊外,主要向市区及变电所附近农村和工厂供电(2)确定本变电所的电压等级为35kV/10kV,35kV是本变电所的电源电压,10kV是二次电压(3)出线向用户供电在35KV侧有2回出线,出线回路数在10KV侧有8回1.2 电力系统与本站连接情况电力系统通过35KV主接线,母线与本站直接连接1.3负荷情况该电站在5-10年建设扩建中10KV负荷为10MW。

其中1,2级负荷供电占75%,最小负荷为700MW,功率因数:cosφ=0.9,最大负荷年利用率:Tmax=4000h2 变电站主接线设计2.1 主接线设计依据(1)变电所在电力系统中的地位和作用:一般变电所的多为终端或分支变电所,电压一般为35kV。

(2)变电所的分期和最终建设规模:变电所建设规模根据电力系统5—10年发展计划进行设计,一般装设两台主变压器。

(3)负荷大小和重要性:对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证全部一级负荷不间断供电,对于二级负荷一般也要两个独立电源供电,且当任何一个电源失去后,能保证全部或大部分二级负荷的供电,对于三级负荷一般只需一个独立电源供电。

(4)系统备用容量的大小:装有两台及以上主变电器的变电所,当其中一台事故断开时其余主变压器的容量应保证该变电所70%的全部负荷,在计及过负荷能力后的允许时间内,应保证用户的一、二级负荷供电。

火力发电厂电气主接线设计(辽宁工程技术大学发电厂课设,格式完全正确,10分下载即用)

火力发电厂电气主接线设计(辽宁工程技术大学发电厂课设,格式完全正确,10分下载即用)
最终成绩: 评定教师签字:
发电厂电气部分
课程设计任务书
一、设计题目
火力发电厂电气主接线设计
二、设计任务
根据所提供的某火力发电厂原始资料,完成以下设计任务:
1.对原始资料的分析
2.主接线方案的拟定(至少两个方案)
3.变压器台数和容量的选择
4.所选方案的经济比较
5.主接线最终方案的确定
三、设计计划
本课程设计时间为一周,具体安排如下:
3.3
500kV负荷容量大,其主接线是本厂向系统输送功率的主要接线方式,为保证可靠性,可能有多种接线形式,经济性分析筛选厚,可选用的方案为双母线带旁路界限和一台半断路器界限,通过联络变压器与220kV连接,并通过一台三绕组变压器联系220kV及6.3kV电压,以提高可靠性,一台300MW机组与变压器组成单元接线,直接将功率送往500kV电力系统。
2.2
500kV系统容量为无穷大,基准容量为100MVA,系统归算到本电厂500kV母线上的电抗标么值Xs*= 0.021,500kV架空线4回,备用线1回。
3
3.1
鉴于出线回路多,且发电机单机容量为25MW,远大于有关设计规程对选用单母线分段接线每段上不宜超过12MW的规定,应确定为双母线分段接线形式。两台25MW机组分别接在两段母线上,剩余功率通过主变压器送往高一级电压220kV。由于两台25MW机组均接于6.3kV母线上,有较大短路电流,为选择轻型电器,应在分段处加装母线电抗器,各条电缆馈线上装设出线电抗器。考虑到25MW机组为供热式机组,通常“以热定电”,机组年最大负荷小时数较低,同时由于6.3kV电压最大负荷24.23MW,远小于2×25MW发电机组装机容量,即使在发电机检修或升压变压器检修的情况下,也可保证该电压等级负荷要求,因而6.3kV电压级与220kV电压之间按弱联系考虑,只设一台主变压器。

发电厂电气部分主接线的设计原则和步骤

发电厂电气部分主接线的设计原则和步骤

二、电气主接线的设计程序
工程设计程序:
可行性研究 初步设计 技术设计 施工设计
课程设计:
相当于初步设计,部分可达到技术设计。
二、电气主接线的设计程序
课程设计步骤:
对原始资料分析 拟定主接线方案 短路电流的计算——为电气设备选择做准备 主要电气设备选择——第六章介绍 绘制电气主接线图——将最终确定的主接线,按工程
要求,绘制工程图 工程概算
二、电气主接线的设计程序
对原始资料分析:
① 本工程情况:发电厂类型,设计规划容量,单机容量 及台数,最大负荷利用小时数及可能的运行方式等。
② 电力系统情况:电力系统近期及远景发展规划(5~ 10年)发电厂或变电所在电力系统中的位置和作用; 本工程与电力系统连接方式等。
二、电气主接线的设计程序
经济比较方法:
静态比较法:
以设备、材料和人工等的经济价值固定不变作为前提,认为 经济价值与时间无关。
最常用的为抵偿年限法。
抵偿年限法: 若I1>I2,C1<C2,则抵偿年限为 T I1 I2 C2 C1 如果T小于5年,则采用投资大的第一方案; 如果T大于5年,则采用投资大的第二方案。
① 综合总投资计算 ② 年运行费计算 ③ 经济比较方法
二、电气主接线的设计程序
综合总投资计算:
综合总投资 I 主要包括变压器综合投资,开关设备、 配电装置综合投资以及不可预见的附加投资等。
I
I
0
,包括变压器、开关设备、 母线、配电装置及明显的增修桥梁、公路和拆迁
② 从技术上论证各方案的优、缺点,淘汰一些明显不合 理的方案,保留2~3个技术上相当、又能满足任务书 要求的方案;
③ 经济计算比较:对各方案的综合投资和年运行费进行 综合效益比较;

发电厂电气部分课程设计

发电厂电气部分课程设计

❏发电厂容量的确定与国家经济发展规划、电力负 荷增长速度、系统规模和电网结构以及备用容量等 因素有关。发电厂装机容量标志着发电厂的规模和 在电力系统中的地位和作用。在设计时,对发展中 的电力系统,可优先选用较为大型的机组。但是, 最大单机容量不宜大于系统总容量的10%,以保证 在该机检修或事故情况下系统的供电可靠性。
三、主变压器容量的确定原则
29
2.具有发电机电压母线接线的主变压器
容台容数确定原则:量数 ②③为当接在发电压机发对电在保接若确当
机电母电母电压
线压电上有负的2接线母压
台最荷及大供以上电一可主变压器时,或修检组机的台者当靠其供容于最大热发量接中性因负母线退出限需故而动荷运制行
不应,主少时他应其力不器出压厂变本行于2台压器。应器其能应总能输容从送量电除母满剩统述几功点的率送倒余上系足线力7要0求%,
❏方案比较常用的方法有最小费用法、净现值法、 内部收益率法、抵偿年限法。
❏在课程设计中,主要采用抵偿年限法。
四、主接线方案的经济比较
如:发电机容量容50量MW确,定功原率则因:数
量0压.8为负,荷厂最用小电15率MW 1投①有负率在母压主剩系在电最扣后应电剩0,%当入统发荷。发线母要余满压小除能压余,则,发运。电 和主电和线 作功足供负厂将母有主主发电行机剩变机升之用率发电荷用发线功变变电机时电余连电高间是送电的负电上和压,压机全,压功接压电将入,机日荷机的无器并器电部容 功容量送人系
❏主变压器和发电机中性点接地方式是一个综合性 问题。它与电压等级、单相接地短路电流、过电压 水平、保护配置等有关,直接影响电网的绝缘水平、 系统供电的可靠性和连续性、主变压器和发电机的 运行安全以及对通信线路的干扰等。
一、对原始资料分析

3×200MW大型火电厂电气主接线设计—课程设计

3×200MW大型火电厂电气主接线设计—课程设计

长沙理工大学城南学院教师批阅发电厂电气主系统课程设计(论文)任务书城南学院(系)电气工程及其自动化专业1104 班题目3×200MW大型火电厂电气主接线设计任务起止日期;2014 年06月16 日~2013年06 月27 日教师批阅一绪论电能是经济发展最重要的一种能源,可以方便、高效地转换成其他能源形式。

提供电能的形式有水利发电,火力发电,风力发电,随着人类社会跨进高科技时代又出现了太阳能发电,磁流体发电等。

但对于大多数发展中国家来说,火力发电仍是今后很长一段时期内的必行之路。

火力发电是现在电力发展的主力军,在现在提出和谐社会,循环经济的环境中,我们在提高火电技术的方向上要着重考虑电力对环境的影响,对不可再生能源的影响,虽然现在在我国已有部分核电机组,但火电仍占领电力的大部分市场,近年电力发展滞后经济发展,全国上了许多火电厂,但火电技术必须不断提高发展,才能适应和谐社会的要求。

“十五”期间我国火电建设项目发展迅猛。

2001年至2005年8月,经国家环保总局审批的火电项目达472个,装机容量达344382MW,其中2004年审批项目135个,装机容量107590MW,比上年增长207%;2005年1至8月份,审批项目213个,装机容量168546MW,同比增长420%。

如果这些火电项目全部投产,届时我国火电装机容量将达5.82亿千瓦,比2000年增长145%。

2006年12月,全国火电发电量继续保持快速增长,但增速有所回落。

当月全国共完成火电发电量2266亿千瓦时,同比增长15.5%,增速同比回落1个百分点,环比回落3.3个百分点;随着冬季取暖用电的增长,火电发电量环比增长较快,12月份与上月相比火电发电量增加223亿千瓦时,环比增长10.9%。

2006年全年,全国累计完成火电发电量23186亿千瓦时,同比增长15.8%,增速高于2005年同期3.3个百分点。

随着中国电力供应的逐步宽松以及国家对节能降耗的重视,中国开始加大力度调整火力发电行业的结构。

发电厂电气部分课程设计报告

发电厂电气部分课程设计报告

2×25MW+2×50MW 火电厂主接线设计本次设计是火电厂主接线设计。

该水电站的总装机容量为 2 ×25MW+2 ×50MW =150 MW。

高压侧为 110Kv,四回出线与系统相连,发电机电压级有10 条电缆出线,其最大输送功率为 150MW,该电厂的厂用电率为 10%。

根据所给出的原始资料拟定两种电气主接线方案,然后对这两种方案发展可靠性、经济性和灵便性比拟后,保存一种较合理的方案,最后通过定量的技术经济比拟确定最终的电气主接线方案。

在对系统各种可能发生的短路故障分析计算的根抵上,进展了电气设备和导体的选择校验设计。

在对发电厂一次系统分析的根抵上,对发电厂的配电装置布置、防雷保护做了初步简单的设计。

此次设计的过程是一次将理论与实际相结合的初步过程,起到学以致用,稳固和加深对本专业的理解,建立了工程设计的根本观念,提升了自身设计能力。

电气主接线,短路电流计算,设备选型,配电装置布置,防雷保护。

一、原始资料:某新建地方热电厂,发机电组 2 × 25MW+2 × 50MW ,cosΘ = 0.8 ,U=6.3KV,发电机电压级有10 条电缆出线,其最大综合负荷30MW,最小负荷 20MW,厂用电率 10%,高压侧为 110KV,有 4 条回路与电力系统相连,中压侧 35KV,最大综合负荷 20MW,最小负荷 15MW。

发电厂处于北方平原地带,防雷按当地平均雷暴日考虑,土壤为普通沙土。

系统容量 2000MW,电抗值 0.8 〔归算到 100KVA〕。

二、设计容:a) 设计发电厂的主接线〔两份选一〕,选择主变的型号;b) 选择短路点计算三相对称短路电流和不对称短路电流并汇总成表;c) 选择各电压等级的电气设备〔断路器、隔离开关、母线、支柱绝缘子、穿墙套管、电抗器、电流互感器、电压互感器〕并汇总成表;三、设计成果:设计说明计算书一份; 1 号图纸一。

《发电厂电气部分》电气主接线

《发电厂电气部分》电气主接线
环形接线:母线形成闭合环形,可靠性极高, 但投资成本极高
04
电气主接线的电气要求
可靠性要求
电气主接线应具备足够的可靠性,以保证电力系统的稳定运行。
电气主接线应具备冗余设计,以便在部分设备故障时,系统仍能正常运行。
电气主接线应具备良好的绝缘性能,以防止短路、接地等电气故障。
电气主接线应具备良好的散热性能,以防止过热导致的设备损坏。
高压直流输电技术的发展,使得电气主接线更加复杂和多样化。 高压直流输电技术的发展,对电气主接线的设计、选型和运行提出了更高的要求。 高压直流输电技术的发展,使得电气主接线需要更加注重安全性和可靠性。 高压直流输电技术的发展,对电气主接线的维护和检修Байду номын сангаас出了新的挑战。
分布式能源接入对电气主接线的影响
分布式能源接 入将改变传统 电网结构,增 加电网的复杂
作用
电气主接线是电力系统的重要组成部分,负责连接和分配电能。
电气主接线可以保证电力系统的稳定运行,提高供电可靠性。
电气主接线可以优化电力系统的运行方式,提高能源利用效率。
电气主接线可以方便地进行电力系统的扩建和改造,提高系统的灵活性。
03
电气主接线的分类
按接线形式分类
单母线接线:只有一条母线,简单可靠,但可靠性较低 双母线接线:有两条母线,可靠性较高,但投资较大 桥接线:有三条母线,可靠性较高,但投资较大 角形接线:有四条母线,可靠性较高,但投资较大 环形接线:有多条母线,可靠性较高,但投资较大 混合接线:结合了多种接线形式的特点,可靠性较高,但投资较大
电气主接线
汇报人:XX
目录
01 单 击 添 加 目 录 项 标 题 02 电 气 主 接 线 的 定 义 和 作 用 03 电 气 主 接 线 的 分 类 04 电 气 主 接 线 的 电 气 要 求 05 电 气 主 接 线 的 实 例 分 析 06 电 气 主 接 线 的 未 来 发 展 趋 势

发电厂电气课程设计二电气主接线

发电厂电气课程设计二电气主接线
优点:调度灵活,电源和负荷可自由 调配,安全可靠,有利于扩建。当变 压器故障时,和它连接于同一母线上 的断路器跳闸,由隔离开关隔离故障, 使变压器退出运行后,该母线即可恢 复运行。
适用:超高压远距离大容量输电系统 中,对系统稳定性和供电可靠性要求 较高的变电所主接线。
5、单元接线
结构特点:发电机和变压器直接连接, 中间不设置母线。
优点:结构简、便操作、不易误操作,投资省、占地小, 易扩建。
缺点:可靠性和灵活性都较差
➢ 母线和母线隔离开关检修时,全部回路均需停运; ➢ 母线故障时,继电保护会切除所有电源,全部回路均需停运。 ➢ 任一断路器检修时,其所在回路也将停运 ➢ 只有一种运行方式,电源只能并列运行,不能分列运行。
适用:出线回路少(6~10kV出线一般不超过5回,35~60kV出线不
(3)单母线带旁路母线接线


结构特点: 增加了旁路母线、专用旁路断路器 及旁路回路隔离开关。 各出线回路除通过断路器与汇流母 线连接外,还通过旁路隔离开关与 旁路母线相连接。 优点: 检修任一进出线断路器
时,不中断对该回路的供电, 供电可靠,运行灵活,适用于 向重要用户供电,出线回路较 多的变电所尤为适用。 缺点: 旁路断路器在同一时间 只能代替一个线路断路器的工 作。但母线出现故障或检修时, 仍会造成整个主母线停止工作。
缺点: ➢ 当母线故障或检修时,需使用隔离开关进行倒闸操作,容
易造成误操作; ➢ 工作母线故障时,将造成短时(切换母线时间)全部进出
线停电; ➢ 在任一线路断路器检修时,该回路仍需停电或短时停电; ➢ 使用的母线隔离开关数量较大,同时也增加了母线的长度,
使得配电装置结构复杂,投资和占地面积增大。 适用: 这种接线方式适用于供电要求比较高,出线回路较多的 变电站中,一般6~10kV 出线回路为12回及以上,35kV 出线回路超过8回, 110 ~220kV出线为5回及以上。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 需求分析
1.1主接线设计依据
1.1.1变电所在系统中的地位
变电所在电力系统中的地位和作用是决定电气主接线的主要因素。

变电所有枢纽变电所(电压等级为330~500kv)、地区变电所(电压等级为220~330kv)、一般(终端)变电所(电压等级为100kv)三类,由于它们在电力系统中的地位和作用不同,对其电气主接线的可靠性、灵活性和经济性的要求也不同。

由原始设计参数知本设计变电所为110kv一般性变电所。

1.1.2变电所近远期发展规模
变电所电气主接线的设计,应根据5-10年电力发展规划进行。

根据负荷的
大小、分布、增长速度,根据地区网络情况和潮流分布,分析各种可能的运行方式,来确定电气主接线的形式以及连接电源数和出线回数。

一般装设两台主变压器。

1.1.3 负荷大小和重要性
对一级负荷,必须有两个独立电源供电,且当一个电源失去后,应保证全部一级负荷不间断供电;对二级负荷,一般要有两个电源供电,且当一个电源失去后,应保证大部分二级负荷供电;三级负荷一般只需要一个电源供电。

由原始设计参数知本设计110kv变电所一二级负荷占50%以上,所以主接线必须保证一二类负荷的可靠性。

1.1.4系统备用容量
装有2台(组)及以上主变压器的变电所,其中一台(组)主变压器事断开,其余主变压器的容量应保证70%的全部负荷,在计及过负荷能力后的允许时间内,应保证一二级用户负荷。

1.2主接线基本要求
根据有关规定:变电站电气主接线应根据变电站在电力系统的地位,变电站的规划容量,负荷性质线路变压器的连接、元件总数等条件确定。

并应综合考虑供电可靠性、运行灵活、操作检修方便、投资节约和便于过度或扩建等要求。

1.2.1 供电可靠性
供电可靠性是电力生产和分配的首要要求,主接线能可靠的工作,以保证对用户不间断供电。

评价电气主接线可靠性的标志是:
①断路器检修时,不宜影响对系统的供电;
②线路或母线发生故障时应尽量减少线路的停运回路数和主变的停运台数,尽量保证对重要用户的供电;
③尽量避免变电站全部停运的可能性。

1.2.2 运行检修的灵活性
主接线的灵活性有以下几方面的要求:
①调度灵活,操作方便。

可灵活的投入和切除变压器、线路,调配电源和负荷;能够满足系统在正常、事故、检修及特殊运行方式下的调度要求。

②检修安全。

可方便的停运断路器、母线及其继电器保护设备,进行安全检修,且不影响对用户的供电。

③扩建方便。

随着电力事业的发展,往往需要对已经投运的变电站进行扩建,从变压器直至馈线均有扩建的可能。

所以,在设计主接线时,应留有余地,应能容易地从初期过度到终期接线,使在扩建时,无论一次和二次设备改造量最小。

1.2.3 经济性
主接线在满足可靠性、灵活性要求分析,并且进行的前提下,要求做到经济合理:
①投资省。

即变电站的建筑工程费、设备购置费、安装工程费和其他费用应节省,采用不同的接线方式,其投资具有明显的不同;
②占地面积小。

主接线设计要为配电装置创造条件,采用不同的接线方式,配电装置占地面积有很大的区别;
③能量损失小。

1.3 高压配电装置接线选择
1.3.1 110kv配电母线接线方式
因本变电所为一般变电所,即该变电所建在工业企业城镇周围,且由原始材料知110kv侧有2回进线,经综合分析可采用单母分段接线及内桥形接线。

①单母线分段接线
Q10
Q14
CB8
图1-1单母线分段接线
优点:
(1)用断路器把母线分段后,对重要用户可以从不同段引出两条回路,有两个电源供电;
(2)当一段母线发生故障,分段断路器会自动将故障段切除,保证正常段母线不间断供电和不致使重要用户停电。

缺点:
(1)当一段母线或母线隔离开关故障或检修时,该段母线的回路都要在检修期间内停电;
(2)当出线为双回路时,常使架空线路出现交叉跨越; (3)扩建时需向两个方向均衡扩建。

适用范围:
(1)
10KV 配电装置出线回路数为6回及以上时;
(2) 110配电装置出线回路数为3~4回或进线2回时。

②桥形接线 a . 内桥接线
图1-2 内桥接线
优点:
高压断路器数量少,四个回路只需三台断路器。

缺点:
(1)变压器的切除和投入较复杂,需动作两台断路器,影响一回线路的暂时停运。

(2)桥连断路器检修时,两个回路需解列运行。

(3)出线断路器检修时,线路需较长时期停运。

为避免此缺点,可加装正常断开运行的跨接线路为了轮流停电检修任何一组隔离开关,在跨接线路上须加装两组隔离开关。

桥连断路器检修时也可利用此跨接线路。

适用范围:适用于较小容量的发电厂、变电所,并且变压器不经常切换或线路较长,故障率较高情况。

1.3.2 10kv配电母线接线选择
①双母线分段带专用旁路断路器的旁路母线接线
图1-3双母线分段带专用旁路断路器的旁路母线接线
优点:
皆具双母线分段接线优点,且比双母线分段接线可靠性高。

缺点:
增加了旁路母线及旁路断路器投资。

②单母线分段带专用旁路断路器的旁路母线接线
图1-4单母线分段带专用旁路断路器的旁路母线接线
优点:
皆具单母线分段接线优点,且极大提高了供电可靠性。

缺点:
增加了一台旁路断路器的投资。

1.3.3 方案选择
由1.2分析可得一下两种方案:
方案一:110kv采用单母线分段接线,10kv采用双母线分段带专用旁路断路器的旁路母线接线;
方案二:110kv采用桥形接线,10kv单母线分段带专用旁路断路器的旁路母线接线。

各方案接线如下:
图1-5 方案一
图1-6 方案2
a.技术比较
对于110kv侧,单母接线不仅方便扩建且建设简单,而桥形接线内部器件关联性强要求系统故障率低;对10kv侧,由于电压等级低,各种主接线建造技术都相对较低。

b.经济比较
对整个方案分析,在配电装置的综合投资上,如控制设备,电缆,母线及土建费用上,虽然方案1投资相对高,但是由于负荷中一二类负荷比重高,所以综合考虑选择方案一。

1.4 主变压器型号选择
1.4.1选择原则
①为保证投入可靠性,变电所中需要投设两台主变压器;
②为同时满足运行的灵敏性和可靠性,对有重要负荷的变电所,应选择两台三绕组变压器,因为三绕组变压器占地面积小,运行及维护工作量少,价格低于四台双绕组变压器,因此三绕组变压器的选择优于双绕组变压器;
③装有两台及以上主变压器的变电所,其中一台故障后其余主变压器的容量应保证该所全部负荷的70%以上,并保证用户的一二级全部负荷的供电,过负载时也应满足大部分重要负荷。

1.4.2 主变压器型号和结构确定
由原始参数确定本设计变电所主变压器型号为SF11-16000/110,该主变压器参数为:额定电压(高压):121±2×2.5%kv,额定低压11kv,联结组号YNd11,空载损耗12.5kw,负载损耗59.9kw,空载电流(%)0.72,短路阻抗(%)10.5。

相关文档
最新文档