正弦函数的图像与性质说课稿
正弦函数余弦函数的性质说课稿公开课一等奖课件省赛课获奖课件
y
1
3 5
2
2 3
2
O
2
2
1
3 2
2
5 3
2
x
正弦函数的图象
y
1
3 5
2
2 3
2
O
2
2
1
3 2
2
5 3
2
x
余弦函数的图象
问题:它们的图象有何对称性?
它们的形状相似,且都夹在两条平行直线y=1 与y=-1之间。
它们的位置不同,正弦曲线交y轴于原点,余 弦曲线交y轴于点(0,1).
(1)y=cos x ,xR ; (2) y=2-sin2x,xR
3
解:(1)当cos
x 3
=1,即x=6k
(kZ)时,ymzx=1
∴函数的最大值为1,
取最大值时x的集合为{x|x=6k,kZ}.
(2)当sin2x=-1时,即 2x 2k (k Z )
2
x=k-
4
(kZ)时,ymax=3
∴函数的最大值为3,取最大值时x的集合为{x|x=k-
2
x
由余弦函数的周期性知:
增区间为:[2k , 2k ]
其值从-1增大到1 ;
减区间为:[2k , 2k ]
其值从1减小到-1。
探究:余弦函数的最大值和最小值
y
1
3 5
2
2 3
2
O
2
2
1
3 2
2
5 3
2
x
最大值:当 x 0 2k 时,有最大值 y 1
最小值:当 x 2k 时,有最小值y 1
z
z
2
2k , k
Z
正弦函数的图象与性质说课稿
正弦函数的图象与性质(第一课时)(说课稿)一、教材分析1、教材的地位与作用《正弦函数的图象与性质》是高中《数学》第一册(下)(人教试验修订本)第四章第八节的内容,其主要内容是正弦函数的图象与性质。
过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数的图象与性质,为今后余弦函数、正切函数的图象与性质、函数)sin(ϕ+=wx A y 的图象的研究打好基础。
因此,本节的学习有着极其重要的地位。
本节共分两个课时,本课为第一课时,主要是利用正弦线画出x y sin =,[]π2,0∈x 的图象,考察图象的特点,介绍“五点作图法”,再利用图象研究正弦函数的主要性质(定义域、值域、周期性、奇偶性和单调性)。
2、教学重点和难点教学重点:用“五点作图法”画长度为一个周期的闭区间上的正弦函数图象;正弦函数的性质。
教学难点:利用单位圆画正弦函数图象;正弦函数性质的理解和应用。
二、目标分析根据《高中数学教学大纲》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目标如下。
1、知识目标正弦函数的图象与性质 2、能力目标(1)会用单位圆中的正弦线画出正弦函数图象; (2)掌握正弦函数图象的“五点作图法”;(3)理解正弦函数的定义域、值域、周期性、奇偶性和单调性的意义; (4)会求简单函数的定义域、值域和单调区间;(5)培养观察能力、分析能力、归纳能力和表达能力等; (6)培养数形结合和化归转化的数学思想方法。
3、德育目标(1)渗透由抽象到具体的思想,使学生理解动与静的辩证关系,培养辩证唯物主义观点;(2)培养学生勇于探索、勤于思考的精神;(3)培养学生合作学习和数学交流的能力;(4)使学生懂得数学是源于生活,服务于生活的数学特点。
三、教法分析根据上述教材分析和目标分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,确定本课主要的教法为:1、计算机辅助教学借助多媒体教学手段引导学生理解利用单位圆中的正弦线画出正弦函数的图象,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图象,给人以美的享受。
教案正弦型函数的图像和性质
教案:正弦型函数的图像和性质第一章:正弦函数的定义与图像1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图像1.2 教学内容正弦函数的定义:y = sin(x)正弦函数的图像特点:周期性、振幅、相位、对称性1.3 教学步骤1. 引入正弦函数的概念,解释正弦函数的定义2. 利用数学软件或图形计算器,绘制正弦函数的图像3. 分析正弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性1.4 练习与作业练习绘制不同振幅和相位的正弦函数图像完成课后练习题,巩固对正弦函数图像的理解第二章:正弦函数的性质2.1 教学目标了解正弦函数的性质能够应用正弦函数的性质解决问题2.2 教学内容正弦函数的单调性:增减区间正弦函数的奇偶性:奇函数与偶函数正弦函数的周期性:周期为2π正弦函数的值域:[-1, 1]2.3 教学步骤1. 介绍正弦函数的单调性,利用图像进行解释2. 解释正弦函数的奇偶性,利用数学公式进行证明3. 强调正弦函数的周期性,引导学生理解周期为2π4. 分析正弦函数的值域,解释正弦函数的取值范围2.4 练习与作业练习判断正弦函数的单调性、奇偶性和周期性完成课后练习题,应用正弦函数的性质解决问题第三章:余弦函数的定义与图像3.1 教学目标了解余弦函数的定义能够绘制余弦函数的图像3.2 教学内容余弦函数的定义:y = cos(x)余弦函数的图像特点:周期性、振幅、相位、对称性3.3 教学步骤1. 引入余弦函数的概念,解释余弦函数的定义2. 利用数学软件或图形计算器,绘制余弦函数的图像3. 分析余弦函数的图像特点,引导学生理解周期性、振幅、相位、对称性3.4 练习与作业练习绘制不同振幅和相位的余弦函数图像完成课后练习题,巩固对余弦函数图像的理解第四章:正切函数的定义与图像4.1 教学目标了解正切函数的定义能够绘制正切函数的图像4.2 教学内容正切函数的定义:y = tan(x)正切函数的图像特点:周期性、振幅、相位、对称性4.3 教学步骤1. 引入正切函数的概念,解释正切函数的定义2. 利用数学软件或图形计算器,绘制正切函数的图像3. 分析正切函数的图像特点,引导学生理解周期性、振幅、相位、对称性4.4 练习与作业练习绘制不同振幅和相位的正切函数图像完成课后练习题,巩固对正切函数图像的理解第五章:正弦型函数的应用5.1 教学目标了解正弦型函数的应用能够解决与正弦型函数相关的问题5.2 教学内容正弦型函数在物理、工程等领域的应用解决与正弦型函数相关的问题:如振动、波动、音乐等5.3 教学步骤1. 介绍正弦型函数在物理、工程等领域的应用实例2. 解释正弦型函数在振动、波动、音乐等方面的作用3. 示例解决与正弦型函数相关的问题,引导学生应用正弦型函数的性质和图像5.4 练习与作业练习解决与正弦型函数相关的问题完成课后练习题,应用正弦型函数解决实际问题第六章:正弦型函数的积分与微分6.1 教学目标理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数6.2 教学内容正弦型函数的不定积分:基本积分公式正弦型函数的定积分:利用积分公式计算面积正弦型函数的导数:求导法则6.3 教学步骤1. 介绍正弦型函数的不定积分,讲解基本积分公式2. 通过例题演示如何计算正弦型函数的定积分3. 讲解正弦型函数的导数,引导学生理解求导法则6.4 练习与作业练习计算正弦型函数的不定积分和定积分完成课后练习题,巩固对正弦型函数积分和导数的理解第七章:正弦型函数在坐标系中的应用7.1 教学目标学会在直角坐标系中绘制正弦型函数的图像能够利用正弦型函数解决实际问题7.2 教学内容利用直角坐标系绘制正弦型函数的图像解决实际问题:如测量角度、计算物理振动等7.3 教学步骤1. 讲解如何在直角坐标系中绘制正弦型函数的图像2. 通过实例演示如何利用正弦型函数解决实际问题7.4 练习与作业练习绘制不同类型的正弦型函数图像完成课后练习题,应用正弦型函数解决实际问题第八章:正弦型函数在三角变换中的应用8.1 教学目标理解三角恒等式及其应用学会利用正弦型函数进行三角变换8.2 教学内容三角恒等式:sin^2(x) + cos^2(x) = 1 等正弦型函数的三角变换:和差化积、积化和差等8.3 教学步骤1. 讲解三角恒等式的含义和应用2. 讲解如何利用正弦型函数进行三角变换8.4 练习与作业练习运用三角恒等式进行计算完成课后练习题,巩固对正弦型函数在三角变换中应用的理解第九章:正弦型函数在工程和技术中的应用9.1 教学目标了解正弦型函数在工程和技术领域的应用学会解决与正弦型函数相关的工程问题9.2 教学内容正弦型函数在信号处理、电子工程等领域的应用解决与正弦型函数相关的工程问题:如信号分析、电路设计等9.3 教学步骤1. 讲解正弦型函数在信号处理、电子工程等领域的应用实例2. 示例解决与正弦型函数相关的工程问题,引导学生应用正弦型函数的性质和图像9.4 练习与作业练习解决与正弦型函数相关的工程问题完成课后练习题,应用正弦型函数解决实际工程问题第十章:总结与拓展10.1 教学目标总结正弦型函数的图像和性质的主要内容了解正弦型函数在其他领域的拓展应用10.2 教学内容总结正弦型函数的图像和性质的关键点介绍正弦型函数在其他领域的拓展应用:如地球物理学、天文学等10.3 教学步骤1. 回顾正弦型函数的图像和性质的主要内容,强调重点和难点2. 介绍正弦型函数在其他领域的拓展应用,提供相关实例10.4 练习与作业复习正弦型函数的图像和性质的主要内容,巩固所学知识完成课后练习题,探索正弦型函数在其他领域的拓展应用重点和难点解析重点环节一:正弦函数的定义与图像理解正弦函数的定义:y = sin(x)掌握正弦函数图像的特点:周期性、振幅、相位、对称性重点环节二:正弦函数的性质掌握正弦函数的单调性:增减区间理解正弦函数的奇偶性:奇函数与偶函数认识正弦函数的周期性:周期为2π了解正弦函数的值域:[-1, 1]重点环节三:余弦函数的定义与图像理解余弦函数的定义:y = cos(x)掌握余弦函数图像的特点:周期性、振幅、相位、对称性重点环节四:正切函数的定义与图像理解正切函数的定义:y = tan(x)掌握正切函数图像的特点:周期性、振幅、相位、对称性重点环节五:正弦型函数的应用了解正弦型函数在物理、工程等领域的应用实例学会解决与正弦型函数相关的问题:如振动、波动、音乐等重点环节六:正弦型函数的积分与微分理解正弦型函数的不定积分和定积分学会计算正弦型函数的导数重点环节七:正弦型函数在坐标系中的应用学会在直角坐标系中绘制正弦型函数的图像学会利用正弦型函数解决实际问题重点环节八:正弦型函数在三角变换中的应用理解三角恒等式及其应用学会利用正弦型函数进行三角变换重点环节九:正弦型函数在工程和技术中的应用了解正弦型函数在信号处理、电子工程等领域的应用实例学会解决与正弦型函数相关的工程问题重点环节十:总结与拓展总结正弦型函数的图像和性质的关键点了解正弦型函数在其他领域的拓展应用全文总结和概括:本教案涵盖了正弦型函数的图像和性质的各个方面,从基本定义到图像特点,再到性质和应用,每个环节都进行了深入的讲解和演示。
正弦函数、余弦函数的图象和性质说课稿
《正弦函数、余弦函数的图象和性质》说课稿各位老师:大家好!我是潞新三中数学教师杨凌翔,今天我讲的这节课的内容是高中数学必修四的第一章三角函数的第四节的内容,下面我为大家介绍一下本节课我的教学设计的思路和对课程的理解,其中有不当之处,还请各位老师指正。
一、教材分析(一)我对教材的理解:本节课所讲的是三角函数第四部分“正弦函数、余弦函数的图象和性质”中的内容,三角函数是中学数学的重要内容之一,它的基础是几何中的相似形和圆,研究方法主要是代数中的式子变形和图形分析,因此三角函数的研究已经初步把几何与代数联系起来了。
教材通过对正余弦曲线的形状特点的研究得到了正弦函数、余弦函数的性质,进一步研究函数性质的应用,注意重点培养学生的数形结合思想。
(二)教学目标的确定:根据《课程标准》关于本节课的教学要求,以教材的特点和所教学生的实际为出发点,我对教材进行了必要的取舍和整合,由大纲上要求的2课时,整合为1课时,整合的方法是通过函数的图象将函数的性质展示出来,舍去了推导过程,在教学内容上教材中有2个例题被舍去,做为学生的阅读材料。
这样设定教学目标如下:知识目标:1、正弦函数的性质;2、余弦函数的性质;能力目标:1、能够利用函数图象研究正弦函数、余弦函数的性质;2、会求简单函数的单调区间;德育目标:渗透数形结合思想和类比学习的方法。
(三)教学重点和难点的确定:在本节课的教学内容中,函数的图象性质是核心,因此:教学重点:正弦函数、余弦函数的性质;教学难点:正、余弦函数性质的简单应用(函数单调区间的求法)在函数性质的简单应用中,我只讲解函数单调区间的求法,原因是函数的奇偶性和周期性在讲解诱导公式时,已经通过代数形式呈现给了学生,在此我对教材进行了取舍。
二、教学方法和教学手段分析:(一)教学方法的说明本节课以数形结合的方式,通过观察函数图象,教师适当讲解,引导学生自主探究,总结规律,并能应用规律分析问题,解决问题。
在教学中以引导启发为主,在学生观察比较的基础上,师生以问答形式共同研究探讨,步步深入,完成本节课的教学任务,从而实现“教师引导,学生探究、师生互动、和谐高效”的教学模式。
正弦函数、余弦函数的图象和性质的一等奖说课稿3篇
1、正弦函数、余弦函数的图象和性质的一等奖说课稿一、教材分析1. 地位与重要性“正弦函数、余弦函数的图象和性质”一节是高中《数学》第一册(下)的重要内容,这一节共分为四个课时。
本课为第二课时,其主要内容是通过观察正弦线、余弦线及正、余弦曲线研究正、余弦函数性质中最基本的定义域与值域。
通过对这一节课的学习,既可加深学生对单位圆、正弦线、余弦线及正、余弦函数图象的认识,又可加强学生对三角函数概念的理解,还为后面其它性质的学习作好准备,起到承上启下的重要作用。
2. 教学目标:(1)能力目标:①培养学生的观察能力、分析能力、归纳能力、表达能力;②培养学生数形结合、类比等思想方法;③培养学生进行数学交流,获得数学知识的能力。
(2)情感目标:培养学生勇于探索,勤于思考的精神。
(3)知识目标:①使学生正确理解正、余弦函数的定义域、值域的意义;②会求简单函数的定义域、值域。
3. 教学重、难点:重点:正弦、余弦函数的定义域和值域。
理解并掌握正、余弦函数的定义域、值域是高中数学的重要内容,也是大纲的明确要求。
复习好三角函数定义及正弦线、余弦线等有关知识是解决问题的关键。
难点:有关函数定义域、值域的求解。
解三角函数问题时,学生普遍存在会而不对,对而不全,造成失误的很大原因来自定义域和值域问题,往往不注意角的范围,在求最值方面更为突出。
二、教法分析:根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化教学改革,确定本课主要的教法为:(1)讨论式教学:通过学生对图形的观察,让学生分组讨论、交流、总结,并发表意见,说出正弦、余弦函数的定义域与值域。
(2)讲议结合教学:教师适时指导、分析、讲解和提问,并及时对学生的意见进行肯定与评价。
(3)电脑多媒体辅助教学:借助电脑多媒体引导学生观察图形,使问题变得直观,易于突破;同时其灵活多样的形式可以极大地提高学生的学习兴趣;其软件交互功能可以帮助教师更好地实施教学,加大一堂课的信息量,使教学目标更好的实现。
说课稿(正弦函数的图像和性质 劳动版教材 职校)
各位评委老师:大家好!今天我参加优质课评比的课题为《正弦函数的图像和性质》,下面我将从对教材内容的理解(含教学目标)、教法学法的选择、重难点上的突破、教学过程的设计几个方面说说我的教学:一、从教材内容上:不过分强调数学知识的严谨性和系统性,突出技校数学的实用性和服务性。
《正弦函数的图像和性质》是劳动版《数学》上册第三章第三节内容。
三角函数是把以前学习的三角比(指三角函数定义中的两线段的数量比)的知识和函数知识结合起来,是刻画生活中周期现象问题的典型函数模型。
与普教版内容不同,本节教学内容不强调数学知识的严谨性和系统性(用正弦线画图像),而是突出技校数学的应用性和服务性(用“五点法”画图像、对周期函数模型的理解)。
同样,对于电工专业和机械类专业的同学来说,今后的正弦交流电的波形图形、机械振动波形图都会应用到本节内容。
因此本节内容的学习就显得尤为重要了。
鉴于以上教材内容分析,我制定了本节的教学目标和重难点。
知识与技能:1. 掌握“五点法”画正弦函数的简图;2. 通过实例理解周期函数的概念;3. 应用数形结合的方法,观察图像特征得到正弦函数图像的性质;过程与方法:培养学生的观察分析、合作交流等能力;培养数形结合的数学思想方法.情感态度与价值观:1.了解数学源于生活,服务于生活的特点;2.感受波形曲线的对称美,激发学习兴趣,提高审美情趣.重点:正弦函数图像“五点画图法”、周期性的理解难点:理解正弦函数图像的特点和性质是本节课的难点二、对于教学学法的分析:让学生在现实情境中体验和理解数学学情分析:在知识方面,学生在初中已接触描点法(即列表,描点、连线)画图像,上学期又学习了指数函数、对数函数等,因此对于画函数图像的步骤不会陌生。
但对于通过图像归纳出性质具有抽象性,学生会感到困难。
在情感方面,职高一年级年龄段的学生大部分数学成绩较落后,他们刚刚经历中考的失利,有自卑心理,缺乏进一步学好数学的信心。
教师要“让学生在现实情境中体验和理解数学”,激发学生求知欲强,培养自学能力、合作探究能力。
正弦函数的图像与性质说课稿
正弦函数的图像与性质(说课稿)一、 教材分析1、教材的地位与作用本节所用教材系丘维声主编、高等教育出版社出版的中等职业教育课程改革国家规划新教材(基础版)上册第5章的第5节的内容,此节课是在已有函数基础知识和三角函数线知识的基础上,来研究正弦函数的图像与性质的,它是学习三角函数图像与性质的入门课,是今后研究余弦函数、正切函数的图像与性质、正弦型函数)sin(ϕ+=wx A y 的图像的知识基础和方法准备。
因此,本节的学习在全章中乃至整个函数的学习中具有极其重要的地位与作用。
2.教学内容:教授内容《正弦函数的图像与性质》是刻画周期变化现象的数学模型,研究函数的的性质常常以图像直观为基础,本节在学习了用几何法画正弦函数图像、用五点法画正弦函数图像简图在此基础上再利用图像来研究它们的性质。
二、学情分析1、授课对象:14届电子1班。
2、学生情况分析:14届电子1班为高考班,班上大多数学生思维较活跃,对具体形象的实例比较感兴趣,但对学习抽象理论知识存在畏难情绪,缺乏主动性。
三、教学目标及重难点1.教学目标教学目标是教学的出发点和归宿,《数学教学大纲》除了要求使学生掌握必要的数学基础知识外,还要求对学生进行能力培养和情感教育。
根据《职高数学教学大纲》的要求和教学内容的结构特征,依据学生学习时有简单到抽象、由表象到内涵的认知规律和素质教育对学习注重过程与方法的要求,结合学生的实际水平,制定本节课的教学目标如下。
(1)知识与技能目标(1)正弦函数的定义域、值域、周期性、单调性、奇偶性等。
(2)提升学生的观察能力;(2)过程与方法目标◆ 渗透数形结合和转化化归的数学思想方法;◆ 通过问题驱动,让学生在质疑、交流、讨论中形成良好的数学思维品质(3)情感与价值目标通过本节课的学习,使学生对周期现象有一个初步认识,感受生活中处处有数学,从而激发学生的学习积极性。
2.教学重点和难点教学重点:正弦函数的主要性质(包括周期性、单调性、奇偶性、最值或值域)。
正弦函数说课稿
《正弦函数的图像与性质》说课稿旬阳县职教中心王培丽尊敬的各位评委老师好!我叫王培丽,来自旬阳县职教中心。
今天我说课的题目是《正弦函数的图像与性质》,选自人教版《数学》上册第五章第三单元第一节。
下面我将从教材分析、教法设计、学法指导、教学过程、板书设计、教学反思等方面对本节课作以简要说明。
一、说教材1、本节课在教材中的地位及作用学生在过去已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线、诱导公式、正弦函数的图像。
而10秋电子专业《电子线路》课将学习简谐交流电。
在这个时候学习《正弦函数的性质》,一来为以后学习余弦函数、正切函数图像与性质奠定了基础,二来服务于电子专业的专业理论课。
因此,本节的内容地位十分重要,它对数学知识及专业理论知识的学习将起到了承上启下的作用。
2、学情分析及对策我所授课的班级是10秋电子班,经了解这班学生实际状况是:基础知识相对薄弱,表达概括能力较差,理论联系实际不灵活。
因此我在教学中运用视频和大量直观的图形,通过一课时的讲授,指导学生合作交流,联系自身学习实际,掌握正弦函数的单调性、最值、周期性,更好的为专业课的学习奠定基础,为就业做好铺垫。
3、教学目标根据中等职业学校数学教学大纲要求,教学内容的结构特征,依据学生学习的心理规律和职业学校学生就业的素质要求,结合学生的实际水平,制定本节课的教学目标如下:◆知识目标:了解正弦函数的值域、奇偶性,理解正弦函数的最值、单调性、周期性。
◆能力目标:(1)根据正弦函数的单调性、最值解决实际问题。
(2)培养学生的观察能力、分析能力、归纳能力和表达能力等。
◆价值目标:培养学生讨论交流、合作学习的能力。
4、教学重点、难点通过重点学习正弦函数的单调性、最值,使学生进一步熟悉和掌握研究函数的过程和方法,为学生研究余弦函数、正切函数提供方法,为专业课的学习提供知识支撑。
因此:教学重点:理解掌握正弦函数的单调性、最值、周期性。
教学难点:根据正弦函数一个周期内的单调性、最值得出整个定义域的单调性、最值。
《正弦函数的性质》说课稿
《正弦函数的性质》说课稿《正弦函数的性质》说课稿1(约2527字)尊敬的各位老师:大家好,我是__场的__号考生。
今天,我说课的内容是__,对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。
一、说教材教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。
正弦函数的性质是选自北师大版高中数学必修四第一章三角函数第五节正弦函数的性质与图象5.3正弦函数的性质的内容,主要内容便是正弦函数的性质,教材通过作图、观察、诱导公式等方法得出正弦函数y=sinx的性质。
并且教材突出了正弦函数图象的重要性,可以帮助学生更深刻的认识、理解、记忆正弦函数的性质。
二、说学情合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。
高中的学生掌握了一定的基础知识,思维较敏捷,动手能力较强,但理解能力、自主学习能力较缺乏。
基于此,本节课注重引导学生动脑思考,更富有启发性。
并且学生的自尊心较强,所以对学生的评价注重先扬后抑,鼓励学生多多发言,还能够对学生进行正确引导。
三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:(一)知识与技能会用正弦函数图象研究和理解正弦函数的性质,能熟练运用正弦函数的性质解决问题。
(二)过程与方法通过正弦函数的图象,探索正弦函数的性质,提升逻辑思考、归纳总结的能力。
(三)情感态度价值观通过本节的学习体验数学的严谨性,养成细心观察、认真分析、严谨认真的良好思维习惯和不断探求新知识的精神。
四、说教学重难点本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点(一)教学重点由正弦函数的图象得到正弦函数的性质。
(二)教学难点正弦函数的周期性和单调性。
五、说教法和学法现在的文盲不是不懂字的人,而是没有掌握学习方法的人。
因而在本节课我将采用讲授法、探究法、练习法等教学方法,我在教学过程中特别重视对学生的引导,让学生从机械的学答中向学问转变,从学会到会学,成为真正学习的主人。
教案正弦型函数的图像和性质
教案:正弦型函数的图像和性质第一章:正弦型函数的定义与基本性质1.1 教学目标了解正弦型函数的定义及标准形式掌握正弦型函数的周期性、奇偶性及对称性理解正弦型函数的相位变换1.2 教学内容正弦型函数的定义:y = A sin(Bx + C) + D标准形式:y = A sin(B(x α))周期性:T = 2π/B奇偶性:f(-x) = ±f(x)对称性:关于y轴对称或原点对称相位变换:通过平移、伸缩、翻折等变换1.3 教学活动引入正弦型函数的概念,引导学生从实际问题中抽象出正弦型函数讲解正弦型函数的标准形式,让学生理解各个参数的含义引导学生通过作图观察正弦型函数的周期性、奇偶性和对称性讲解相位变换,让学生了解如何通过变换得到不同的正弦型函数图像1.4 作业与练习练习1:根据给定的参数,画出正弦型函数的图像练习2:判断给定的正弦型函数的奇偶性和对称性练习3:通过相位变换,将一个正弦型函数变换为另一个正弦型函数第二章:正弦型函数的图像2.1 教学目标学会绘制正弦型函数的图像掌握正弦型函数图像的局部特征理解正弦型函数图像的物理意义2.2 教学内容正弦型函数图像的基本特点:波形、峰值、零点、相位局部特征:波峰、波谷、拐点物理意义:正弦型函数在工程、物理等领域的应用2.3 教学活动引导学生通过作图掌握正弦型函数图像的基本特点讲解波峰、波谷、拐点的形成原因,让学生理解正弦型函数的局部特征结合实际问题,让学生了解正弦型函数图像的物理意义2.4 作业与练习练习4:绘制给定参数的正弦型函数图像练习5:找出正弦型函数图像的波峰、波谷、拐点练习6:分析实际问题中正弦型函数图像的物理意义第三章:正弦型函数的性质3.1 教学目标理解正弦型函数的单调性、奇偶性、周期性、对称性学会利用正弦型函数的性质解决实际问题3.2 教学内容单调性:了解正弦型函数的单调递增、单调递减区间奇偶性:f(-x) = ±f(x)周期性:T = 2π/B对称性:关于y轴对称或原点对称3.3 教学活动引导学生通过观察正弦型函数图像理解单调性、奇偶性、周期性、对称性讲解如何利用正弦型函数的性质解决实际问题3.4 作业与练习练习7:判断给定的正弦型函数的单调性、奇偶性、周期性、对称性练习8:利用正弦型函数的性质解决实际问题第四章:正弦型函数的应用4.1 教学目标学会利用正弦型函数解决工程、物理等领域的实际问题了解正弦型函数在其他领域的应用4.2 教学内容工程领域:信号处理、电路设计等物理领域:振动、波动、电磁场等其他领域:数据通信、地球科学等4.3 教学活动结合实际问题,讲解正弦型函数在工程、物理等领域的应用引导学生了解正弦型函数在其他领域的应用4.4 作业与练习练习9:利用正弦型函数解决给定的工程、物理问题练习10:了解正弦型函数在其他领域的应用第五章:正弦型函数的导数与积分5.1 教学目标掌握正弦型函数的导数和积分公式学会运用导数和积分解决相关问题5.2 教学内容正弦型函数的导数:y' = A B cos(Bx + C)正弦型函数的积分:∫sin(Bx + C) dx = -A B/B cos(Bx + C) + D 应用:求解最大值、最小值、曲线长度、曲线下的面积等5.3 教学活动引导学生运用导数求解正弦型函数的极值、拐点等讲解如何利用积分求解曲线长度、曲线下的面积等5.4 作业与练习练习11:求解给定正弦型函数的导数和积分练习12:运用导数和积分解决实际问题第六章:正弦型函数的复合函数6.1 教学目标理解正弦型函数与其他类型函数的复合关系学会分析复合函数的图像和性质6.2 教学内容复合函数的定义:y = f(g(x))正弦型函数与其他函数的复合:y = A sin(Bf(x) + C) + D分析复合函数的图像和性质:周期性、奇偶性、对称性等6.3 教学活动引导学生理解复合函数的概念,观察复合函数的图像讲解如何分析复合函数的性质6.4 作业与练习练习13:分析给定复合函数的图像和性质练习14:将一个正弦型函数与其他函数进行复合,观察图像和性质的变化第七章:正弦型函数在实际问题中的应用7.1 教学目标学会运用正弦型函数解决实际问题了解正弦型函数在工程、物理等领域的应用7.2 教学内容工程领域:信号处理、电路设计等物理领域:振动、波动、电磁场等其他领域:数据通信、地球科学等7.3 教学活动结合实际问题,讲解正弦型函数在工程、物理等领域的应用引导学生了解正弦型函数在其他领域的应用7.4 作业与练习练习15:利用正弦型函数解决给定的工程、物理问题练习16:了解正弦型函数在其他领域的应用第八章:正弦型函数的综合应用8.1 教学目标掌握正弦型函数的基本概念、图像、性质及应用提高解决实际问题的能力8.2 教学内容综合运用正弦型函数的知识解决实际问题分析正弦型函数在各个领域的应用8.3 教学活动引导学生将正弦型函数的知识运用到实际问题中分析正弦型函数在不同领域的应用案例8.4 作业与练习练习17:综合运用正弦型函数的知识解决实际问题练习18:分析正弦型函数在各个领域的应用第九章:正弦型函数的拓展与研究9.1 教学目标了解正弦型函数的拓展知识培养学生的研究能力和创新意识9.2 教学内容正弦型函数的变形式:y = A sin(Bx + C) + D正弦型函数的推广:y = A sin(Bx + C) cos(Dx) 等研究正弦型函数的新性质、新应用9.3 教学活动引导学生了解正弦型函数的变形式和推广鼓励学生研究正弦型函数的新性质、新应用9.4 作业与练习练习19:研究正弦型函数的拓展知识练习20:探索正弦型函数的新性质、新应用10.1 教学目标评价学生的学习成果10.2 教学内容评价学生的学习效果,提出改进意见10.3 教学活动-重点和难点解析1. 正弦型函数的定义与基本性质难点解析:正弦型函数的相位变换的理解和应用。
正弦函数的图象说课课件
优势:
思维较活跃,对具
对学习抽象理论
体形象的实例比较
知识存在畏难情
感兴趣,具有一定
绪,缺乏主动性
数学基础及分析解
决问题的能力
正弦函数的图象说课
8
三.教法学法
教师
学生
情境教学法 问题驱动法 多媒体辅助教学法
认识分析解决问题 协作学习
培养探究精神
正弦函数的图象说课
9
四.教学过程
1 创设情境,提出问题
图象的最高点:
与 x 轴的交点:
( π ,1); 2
( 0,0 ),( π ,0 ),(2 π,0);
图象的最低点:
( 3π , 1) .
2
正弦函数的图象说课
设计意图:培养学生认真观察,勇于探索勤于思考的精神
五点 作图法
16
(三) 实战演练,巩固新知
例1 画出函数 y=sin x + 1, x[0,2 ] 的简图.
解 列表 描点作图
x
0
π 2
sin x 0 1
π
3π 2
2π
0 1 0
sinx1 1 2 1 0 1
y
2-
y 1 s x i, n x [0 , 2 π ]
1-
o
π 2
π
3π 2
2π
x
1-
y s ix, nx [0 , 2π ]
步骤:
1.列表 2.描点 3.连线
设计意图:通过实例演练,正弦归函纳数总的图结象,说让课学生迅速熟悉”五点法作图“ 17
正弦曲线:由终边相同的角三角函数值相同,所以 y=sin x
的图象在 … ,[-4 ,-2 ] , [-2 ,0] , [0,2 ] ,[2 ,4 ] , …
教案正弦型函数的图像和性质
正弦型函数的图像和性质第一章:正弦型函数的定义与基本性质1.1 引入正弦型函数的概念解释正弦函数的定义:y = sin(x)说明正弦函数的周期性:sin(x + 2π) = sin(x)1.2 探究正弦函数的图像分析正弦函数在0≤x≤2π的图像特征总结正弦函数的振幅、周期、相位、对称性等基本性质1.3 引出正弦型函数的一般形式介绍正弦型函数的一般形式:y = A sin(Bx + C) + D解释各参数A、B、C、D对函数图像的影响第二章:正弦型函数的图像变换2.1 纵坐标变换:伸缩与平移分析纵坐标变换对正弦型函数图像的影响探究如何通过纵坐标变换实现图像的伸缩和平移2.2 横坐标变换:伸缩与平移分析横坐标变换对正弦型函数图像的影响探究如何通过横坐标变换实现图像的伸缩和平移2.3 综合图像变换结合纵坐标和横坐标变换,探究正弦型函数图像的综合变换方法第三章:正弦型函数的性质探究3.1 单调性分析正弦型函数的单调性:在单调增区间和单调减区间内举例说明单调性的应用3.2 奇偶性探究正弦型函数的奇偶性:sin(-x) = -sin(x)分析奇偶性在函数图像上的表现3.3 极值与拐点求解正弦型函数的极值与拐点分析极值与拐点在函数图像上的特征第四章:正弦型函数的应用4.1 振动问题应用正弦型函数描述简谐振动:x = A sin(ωt + φ)分析振动过程中的位移、速度、加速度等物理量的变化规律4.2 波动问题应用正弦型函数描述波动:u = A sin(kx ωt + φ)分析波动过程中的波长、周期、波速等物理量的关系第五章:案例分析与拓展5.1 分析实际问题中的正弦型函数模型举例分析正弦型函数在实际问题中的应用:温度变化、电流强度等5.2 探究正弦型函数的周期性分析正弦型函数在不同周期下的图像特征探究周期性在实际问题中的应用5.3 总结与拓展总结正弦型函数的图像和性质及其应用提出拓展问题,引导学生深入研究正弦型函数的相关领域第六章:正弦型函数的积分与级数6.1 不定积分介绍正弦型函数的不定积分:∫sin(x)dx = -cos(x) + C讲解基本积分技巧,如分部积分法、换元积分法等6.2 定积分解释正弦型函数的定积分:∫[a, b] sin(x)dx = -cos(b) + cos(a)分析定积分的性质,如对称性、周期性等6.3 级数展开探究正弦型函数的级数展开:sin(x) = Σ(-1)^(n+1) (x^(2n+1))/(2n+1)! 讲解泰勒级数展开的概念及应用第七章:正弦型函数的三角恒等式7.1 和差化积介绍和差化积公式:sin(A ±B) = sin(A)cos(B) ±cos(A)sin(B)讲解如何利用和差化积公式简化正弦型函数的表达式7.2 积化和差讲解积化和差公式:sin(A)cos(B) + cos(A)sin(B) = sin(A + B)分析积化和差公式在函数求解中的应用7.3 二倍角公式与半角公式介绍二倍角公式:sin(2A) = 2sin(A)cos(A), cos(2A) = cos^2(A) sin^2(A) 讲解半角公式:sin(A/2), cos(A/2)的求解方法及应用第八章:正弦型函数的解法与应用8.1 解正弦型方程讲解如何利用正弦函数的性质解正弦型方程:sin(x) = A, cos(x) = B等分析正弦型方程的解法技巧,如相位法、图像法等8.2 正弦型函数在物理中的应用介绍正弦型函数在电磁学、波动光学等物理领域的应用分析正弦型函数在物理问题中的作用及意义第九章:正弦型函数与现代数学方法9.1 傅里叶级数介绍傅里叶级数:将周期函数展开为正弦、余弦函数的和分析傅里叶级数在信号处理、热传导等领域的应用9.2 最小二乘法讲解最小二乘法在正弦型函数拟合中的应用举例说明最小二乘法在实际问题中的作用及意义第十章:总结与拓展10.1 总结正弦型函数的图像与性质回顾正弦型函数的图像变换、性质探究、应用等方面的重要知识点强调正弦型函数在数学及自然科学领域中的重要性10.2 提出拓展问题与研究建议针对正弦型函数的图像与性质提出拓展问题,引导学生深入研究鼓励学生探索正弦型函数在其他领域中的应用,如机器学习、生物信息学等第十一章:正弦型函数的数值方法11.1 数值解法概述介绍数值解法在求解正弦型函数相关问题中的应用讲解数值解法的基本概念和分类11.2 数值积分探究数值积分方法:梯形法则、辛普森法则等分析数值积分在正弦型函数应用中的实例11.3 数值微分介绍数值微分方法:中心差分法、向前差分法等讲解数值微分在正弦型函数应用中的实例第十二章:正弦型函数的编程实践12.1 编程基础介绍编程语言的选择(如Python、MATLAB等)讲解编程基本语法和数据结构12.2 正弦型函数的图像绘制展示如何使用编程语言绘制正弦型函数的图像分析图像绘制过程中的关键参数和技巧12.3 正弦型函数的数值计算讲解如何使用编程语言进行正弦型函数的数值计算分析数值计算过程中的误差和稳定性问题第十三章:正弦型函数在工程中的应用13.1 信号处理介绍正弦型函数在信号处理领域的应用:调制、解调等分析正弦型函数在信号处理中的优势和局限性13.2 机械振动探究正弦型函数在机械振动分析中的应用讲解振动系统的周期性、对称性等特性第十四章:正弦型函数在现代科学研究中的应用14.1 量子力学介绍正弦型函数在量子力学中的应用:波函数、能级等分析正弦型函数在量子力学中的基本作用14.2 天体物理探究正弦型函数在天体物理中的应用:星体运动、引力波等讲解正弦型函数在天体物理中的关键作用第十五章:总结与展望15.1 总结正弦型函数的图像与性质回顾本教程中正弦型函数的图像变换、性质探究、应用等方面的重要知识点强调正弦型函数在数学及自然科学领域中的重要性15.2 展望正弦型函数的发展趋势分析正弦型函数在科技、工程等领域的前景和挑战鼓励学生继续探究正弦型函数的奥秘,为相关领域的发展做出贡献重点和难点解析本文主要介绍了正弦型函数的图像和性质,涵盖了正弦型函数的定义、图像变换、性质探究、应用、积分与级数、三角恒等式、解法与现代数学方法、数值方法、编程实践、工程应用以及现代科学研究等领域。
人教B版高中数学必修四第一章第三节正弦函数的图象与性质二说课稿
正弦函数的图象与性质(二)》《版高中数学教材必修四第一章第三节人教B 说课稿一、教材分析(一)教材的地位与作用《正弦函数的图象与性质》是人教B版高中数学教材必修四第一章第三节的内容,是本章的重点内容之一,既是解决生产实际问题的工具,又是学习后继内容和高等数学的基础,三角函数是数学中重要的数学模型之一,是研究自然界周期变化规律最强有力的数学工具,与其他学科(特别是物理学、天文学)联系紧密。
因此,本节的学习有着极其重要的地位。
(二)教学内容本节的内容分为三课时,第一课时为学习正弦函数的图像及周期性,我说课的内容为第二课时,主要是学习正弦函数的值域、奇偶性和单调性。
二、学情分析我授课的对象为我校高一学生。
通过前面的学习,学生对正弦函数定义、三角函数线,正弦曲线有了一定的掌握。
虽然我校学生基础比较薄弱,学习动力不足,但是好奇、好动、好表现也是我校学生的一个共同特点,是教学应当利用的一个关键点。
三、教学目标及重难点为进一步促进学生知识体系的形成,深化数学思想方法,进一步提高学生学习探索知识的能力,制定如下目标:知识与能力目标理解并掌握正弦函数的性质,并应用性质解决相关问题。
培养学生的观察分析归纳和表达能力。
过程与方法目标渗透数形结合和转化化归的数学思想方法;通过问题驱动,使学生主动思考,主动发现,亲历知识的形成过程,对正弦函数的性质有深刻的理解,形成良好的数学思维品质。
情感与态度目标.通过本节课的学习,使学生对周期函数有一个更深层次的认识,感受生活中处处有数学,从而激发学生的学习积极性。
重点:正弦函数的主要性质(包括值域、最值、单调性、奇偶性。
)难点:正弦函数的单调区间四、教学设计及教学过程为了实现改变课程由注重知识传授向注重知识形成过程转化这一目标采用了建构式教学法,以知识为载体,以问题为驱动,通过小组合作探究,利用计算机多媒体辅助教学。
本节课应用这种教学模式的具体操作程序是:导课——自主探究(课前完成)——小组合作研究——典例探究——归纳总结。
正弦函数的图像说课稿
2019“创新杯”教师信息化教学说课大赛正弦函数的图象与性质说课稿正弦函数的图象及性质各位评委大家好!今天我说课的题目是《正弦函数的图象及性质》,本课参考河南大学出版社“十三五”高等职业教育国家规划教材《应用数学基础》(2)。
该书由姬小龙、杨尚义主编。
本课选自第五章第 6 节“三角函数的图像及性质”。
需 2 个课时。
下面我将从六个方面对本节课进行阐述.一、教材分析二、学情分析三、教学目标及重难点四、教法分析五、教学过程六、板书设计七.教学反思及改进一、教材分析本课是学习三角函数图象与性质的入门课,是今后研究函数的性质、正弦型函数的图象性质等知识的基础和方法准备.同时本课是数形结合的思想方法的良好题材.因此,本节的学习在全章中乃至整个函数的学习中具有极其重要的地位与作用.二、学情分析本课的教学对象是五年制大专一年级学生,他们具有以下特点:优势:年级较小,大部分16岁左右,学习本课之前学生已经学习了三角函数的诱导公式。
在机电专业学习中接触了正弦交流电的图像,具备一定的动手能力和识图能力。
劣势:学生空间想象力不足、对抽象的理论知识往往缺乏兴趣及信心。
因此如何让他们愉快的去主动接受知识就成为最主要的问题.在讲新课之前需要把这节课要用到的旧知识预热充分.三、教学目标和重难点①知识与技能掌握正弦、余弦函数图象的作法;理解并掌握五点法作图②过程与方法先以动手操作的形式激发学生的探究兴趣,再通过分析动态演示正弦曲线的形成过程,让学生领会数形结合的数学思想方法.③情感态度和价值观使学生体验探究的乐趣,培养学生善于观察勇于探究的良好习惯和严谨的科学态度.教学重点:“五点法”作长度为一个周期的闭区间上的正余弦函数图象.教学难点:利用单位圆中的正弦线画正弦函数图象.四、教法分析①教学的思想决定着教学的方法,课的方向:本课我以学生为主体让学生体会知识的形成过成。
充分利用学习通软件,让学生参与进去,让学生成为主题。
②利用多媒体形象动态的演示功能提高教学的直观性和趣味性,易于突破难点以提高课堂效益.五、教学过程任意给定一个实数x,有唯一确定的值sin x与之对应.由这个对应法则所确定的函数y=sin x叫做正弦函数,其定义域是R(一)实验引入实物演示:“装满细沙的漏斗在做单摆运动时,沙子落在与单摆运动方向垂直运动的木板上的轨迹”这就是物理中的简谐运动的图象,我们把间歇运动的图象叫做“正弦曲线”或“余弦曲线”有了上述的实验,我们多正弦函数、余弦函数的图象有了一个直观的印象。
正弦函数的性质与图象说课稿
正弦函数的性质(说课稿)各位老师:大家好!今天我说课的课题是《正弦函数的性质》,下面我将从以下六个方面阐述本节课我的教学设计的思路和对教材的理解,其中有不当之处,还请各位老师指正。
一、说课标三角函数是高中阶段系统学习的又一基本初等函数,是描述周期现象的重要数学模型。
在数学和其他领域有着极其广泛的应用。
本节课则主要是借助正弦函数图像观察,发现,理解,记忆正弦函数的性质,并会简单应用。
根据《高中数学教学大纲》的要求并结合学生的实际水平,制定本节课的教学目标如下: 1.知识与技能目标(1)会利用正弦曲线,探索发现正弦函数的性质;(2)理解并正确表述正弦函数的单调性和对称性:(3)过程中理解体会数形结合的研究方法;2.过程与方法目标(1)通过自主探索正弦函数性质的过程,培养学生观察、分析、归纳的学习能力;(2)通过设置问题情境,让学生在质疑,交流,讨论中形成良好的数学思维品质。
3.情感态度价值观目标(1)让学生通过图像来感受正弦曲线的对称美及周期变化的过程;(2)培养学生合作学习和数学交流的能力;二.说教材1、教材的内容、地位与作用本节课是北师大版高中《数学》必修四第一章三角函数第5小节的内容,中学阶段,是在学习了单位圆与三角函数的性质及掌握了正弦函数图像画法的基础上从另一个角度进一步研究正弦函数的性质。
三角函数的性质是三角函数部分的核心,是高考考查的热点。
而正弦函数作为第一个三角函数来研究,这就为后续学习余弦函数、正切函数及正弦型函数A=wxy打好了基础。
同时本节蕴含着丰富的数学思想,如“数形结合”、化归、)sin(ϕ+特殊到一般等。
有利于培养学生良好的数学思维品质。
因此,本节课在教材中的知识作用和思想地位是相当重要的。
2.教学重点和难点重点:利用正弦函数图像观察归纳正弦函数的性质。
难点:理解并正确表述正弦函数单调性及对称性。
三.说学情1.优势:知识方面和能力方面有了一定的储备:(1)学生初步掌握了研究函数的一般方法。
正弦余弦函数图像说课稿
正弦、余弦函数的图象说课稿大家好,我今天说课的内容是人教A版必修四第一章第四节正弦、余弦函数的图像第一课时,下面我将从课标要求、教材分析、学情分析、教学目标、教学方法、教学理念、教学过程几个方面进行说明。
一、课标要求:能画出y=sinx, y=cosx, y=tanx的图像,了解三角函数的周期性。
二、教材分析:1、教材的地位和作用:本节的主要内容是正弦函数的图象,过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学了锐角的正弦函数和任意角的正弦函数,在此基础上来学习正弦函数y=sinx的图象,为今后正弦函数的性质、余弦函数、正切函数的图象与性质,函数y=Asin(ωx+φ)的图象的研究打好基础,起到了承上启下的作用,因此,本节的学习有着极其重要的地位。
教学重点:理解并掌握用单位圆中的正弦线作正弦函数的图象的方法。
教学难点:理解作余弦函数的图象的方法。
如何突破重难点:先通过沙漏,学生初步认识正弦、余弦曲线形状,教师可通过逐步引导,用单位圆做出正弦函数的图象,继而发现用作正弦函数图象的方法来作余弦函数显然是不可行的,但是可以用正弦函数的图象来得出余弦函数的图象,引导学生想到诱导公式和平移的知识来得出余弦函数的图象。
三、学情分析:认知上学生已经学习了函数基础知识和诱导公式、三角函数线等知识,本节课在已有知识的基础上来研究图象,进一步表达数形结合和化归思想在高中数学中的运用。
心理上学生已经具备一定的自学能力,多数同学对数学的学习有相当的兴趣和积极性。
但学生在学习函数上仍有畏难情绪,在探究问题的能力,合作交流的意识等方面发展不够,尚有待加强。
思维上已经具备一定的抽象思维能力,对本节课的内容不难理解。
四、教学目标知识与技能:理解并掌握用单位圆作正弦函数以及作余弦函数的图象的方法。
过程与方法:利用单位圆中的三角函数线作出y=sinx, x∈R的图象,明确函数的图象;根据关系cosx=sin(x+π/2)作出y=cosx,x∈R的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《正弦函数的图像与性质》
(第一课时)(说课稿)
数学组谢雪文
一、说教材
1、章节的地位与作用
《正弦函数的图像与性质》是中职课改新教材《数学》(基础模块)上册(高教版)第5章第6节的内容,其主要内容是正弦函数的图像与性质。
前面学生已经学习了一次函数、二次函数、指数函数和对数函数等,在此基础上来学习正弦函数的图像与性质,为今后余弦函数、正切函数的图像与性质的研究打好基础。
因此,本节的学习有着极其重要的地位。
本节共分两个课时,本课为第一课时,主要是介绍“五点法”作图,利用正弦函数的图像观察函数的特点,研究正弦函数的主要性质(定义域、值域、周期性、奇偶性和单调性)。
2、教学目标
根据《中职数学教学大纲》和《单招数学考试说明》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目标如下:
1、知识目标
(1)理解正弦函数的周期性;
(2)掌握用“五点法”作正弦函数的简图;
(3)掌握利用正弦函数的图像观察其性质;
(4)会求简单函数的定义域、值域和单调区间。
2、能力目标
(1)掌握正弦函数图像的“五点法”作图;
(2)培养观察能力、分析能力、归纳能力和表达能力等;
(3)培养数形结合和化归转化的数学思想方法。
3、教学重点和难点
教学重点:用“五点法”画正弦函数在一个周期上的图像;利用函数图像观察正弦函数的性质。
教学难点:正弦函数性质的理解和应用。
二、 说教法
根据上述教材分析和目标分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,确定本课主要的教法为:
1、多媒体辅助教学
借助多媒体教学手段引导学生理解利用正弦函数的图像,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图像,给人以美的享受。
2、讨论式教学
通过观察正弦函数的“五点法”作图课件的演示,让学生分组(四人一组)讨论、交流、总结,由小组成员代表小组发表意见(不同层次的组员回答,教师给予评价不同),说出正弦函数的主要性质和函数的图像中起着关键作用的点(五点)。
3、讲议结合教学
教师耐心引导、分析、讲解和提问,并及时对学生的意见进行肯定与评议。
4、分层教学
提问分层、评价分层、作业分层,注意面向全体学生,充分调动不同层次学生的积极性。
三、说学法
引导学生认真观察正弦函数的“五点法” 作图教学课件的演示,指导学生进行分组讨论交流,促进学生知识体系的建构和数学思想方法的形成,注重“数形结合”思想的贯穿,突破难点!注意面向全体学生,培养学生勇于探索、勤于思考的精神,提高学生合作学习和数学交流的能力。
四、 说教学程序
1、通过时钟引入周期概念,由
得到正弦函数为周期函数,以及最小正周期为 2π。
2、多媒体展示,用“描点法”作函数x y sin =在[]0,2π上的图像,通过平移得到x y sin =的图像。
3、通过图像研究函数的性质,定义域,值域,奇偶性,单调性,周期性。
4、抓住关键“五点”,即五点法画草图。
sin(2π)=sin ()k k αα+∈Z ,
5、利用上面知识,练习两道题
五、说板书
左边右边
多媒体展示描点画图像对照左边给出函数性质
定义域
值域
奇偶性
单调性
周期性
课本例题1 例题2。