江苏省南通市2014届高考数学最后一卷 有答案

合集下载

2014年江苏省高考数学试卷标准答案

2014年江苏省高考数学试卷标准答案

2014年江苏省高考数学试卷标准答案(仅供参考)一、填空题(每题5分,满分70分) 1. 已知集合A={-2,-1,,3,4},B={-1,2,3},则A ∩B=【答案】{1,3}- 【解析】由题意得{1,3}AB =-.2.已知复数z=(5+2i )2 (i 为虚数单位),则z 的实部为 【答案】21【解析】由题意22(52)25252(2)2120z i i i i =+=+⨯⨯+=+,其实部为21. 3.右图是一个算法流程图,则输出的n 的值是(图略) 【答案】5【解析】本题实质上就是求不等式220n>的最小整数解.220n>整数解为5n ≥,因此输出的5n =4.从1,,2,3,6这4个数字中一次随机地取2个数,则所取2个数的乘机为6的概率是 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==. 5.已知函数y=cosx 与y=sin(2x+φ)(0≤φ<л),他们的图象有一个横坐标为л/3的交点,则φ的值是 【答案】6π【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.6.莫种树木的底部周长的频率分布直方图如图所示,则在抽测的60株树木中,有()株树木的底部周长小于100cm【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.7.在各项均值为正数的等比数列{a n }中,若a 2=1,8642a a a =+,则624a a q ==的值是 【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.8设甲,乙两个圆柱的底面积分别为S1,S2,体积分别为V1V1.若它的侧面积比为21122294S r S r ππ==21122294S r S r ππ==,则 222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==的值为 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222rh r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则9.在平面直角坐标系中xOy 中,直线x+2y-3=0被圆22(2)(1)4x y -++=截得弦长为【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为d ==,所求弦长为l ==. 10已知函数()f x a -==x 2+mx-1,若对于任意x ∈[m,m+1],都有()f x a -=<0成立,则实数m 的取值范围是【答案】(2-【解析】据题意222()10,(1)(1)(1)10,f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩解得02m -<<. 11.在平面直角坐标系xOy 中,若曲线2by ax x=+(a,b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b 的值是 【答案】2-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2by ax x=-,所以7442b a -=-②,由①②解得1,1,a b =-⎧⎨=-⎩所以b=-2,a+b=-3. 12如图,在平行四边形ABCD 中,已知AB=8,AD=5,44BP BC CP BC CD AD AB=+=+=-,()()44AP BP AD AB AD AB ⋅=+⋅-2,则2AD AB ⋅=的值是【答案】2213.已知()f x a -=是定义在R 上且周期为3的函数,当x ∈[0,3)时,21()2,[0,3)2f x x x x =-+∈若函数y=()0f x a -=在区间[3,4]x ∈-上有10个零点(互不相同),则实数a 的取值范围是 【答案】1(0,)2【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈.14.若三角形ABC 的内角满足sin 2sin A B C =,则cos C 的最小值是【解析】由已知sin 2sin A B C =及正弦定理可得2a c =,2222222cos 22a b a b cC abab+-+-==2232884a b ab ab +--=≥=,当且仅当2232a b =即a b =时等号成立,所以cos C二、解答题 (本大题共6小题,共90分.)15.(本小题满分14分)已知25cos 5α252510sin()()452510παα+==-+⨯=-210)sin cos cos )44210ππαα=++=- (1)求2252510sin()sin cos cos sin ()444252510πππααα+=+=⨯-+⨯=-的值; (2)求5553314334cos(2)cos cos2sin sin 2()666252510πππααα+-=+=-⨯+⨯-=-的值。

2014届江苏高考数学最后一讲及实战演练(含答案)2014届江苏高考数学最后一讲及实战演练(含答案)

2014届江苏高考数学最后一讲及实战演练(含答案)2014届江苏高考数学最后一讲及实战演练(含答案)

2014届江苏高考数学最后一讲及实战演练一、主要考点:(一)、填空题1.复数,2.集合(简易逻辑),3.双曲线与抛物线,4.统计,5.概率,6.流程图,7.立体几何,8.导数,9.三角,10.向量,11.数列,12.解析几何,13.不等式,14.杂题(函数)填空题的能力题体现在考试说明中的C级(8个)以及B级(36个)中,近几年,主要体现在:导数,三角计算,解析几何(直线与圆),平面向量(基本定理与数量积),不等式(线性规划、基本不等式或函数),数列综合,函数综合等.(二)、解答题15.三角与向量,16.立体几何,17.应用题,18.解析几何,19.数列,20.函数综合二:时间安排(参考意见)填空题(用时35分钟左右):1—6题防止犯低级错误,平均用时在2分钟左右。

7—12题防止犯运算错误,平均用时在2.5分钟左右。

13—14防止犯耗时错误,平均用时在4分钟左右。

解答题(用时在85分钟左右):15—16题防止犯运算和表述错误,平均用时10分钟左右。

17—18题防止犯审题和建模错误,平均用时在15分钟左右。

19—20题防止犯第一问会而不做和以后的耗时错误,平均用时在17分钟左右。

三:题型分析(一)填空题:解题的基本方法一般有:①直接求解法;②数形结合法;③特殊化法(特殊值法、特殊函数法、特殊角法、特殊数列法、图形特殊位置法、特殊点法、特殊方程法、特殊模型法);④整体代换法;⑤类比、归纳法;⑥图表法等.(二)解答题:是高考数学试卷中的一类重要题型,这些题涵盖了中学数学的主要内容,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点,解答题综合考查学生的运算能力、逻辑思维能力、空间想象能力和分析问题、解决问题的能力,分值占90分,主要分六块:三角函数(或与平面向量交汇)、立体几何、应用问题、函数与导数(或与不等式交汇)、数列(或与不等式交汇)、解析几何(或与平面向量交汇).从历年高考题看综合题这些题型的命制都呈现出显著的特点和解题规律,从阅卷中发现考生“会而得不全分”的现象大有人在,针对以上情况,最后几天时间里,能不断回顾之前做过的典型题目,从知识、方法等层面进行反思做到触类旁通,举一反三;考场上能将平时所掌握的知识、学到的方法体现在你的解题中,将你会做的做对,相信你的高考数学一定能取得满意成绩!!!四:特别提醒:(1)对会做的题目:要解决“会而不对,对而不全”这个老大难的问题,要特别注意表达准确,考虑周密,书写规范,关键步骤清晰,防止分段扣分.解题步骤一定要按教科书要求,避免因“对而不全”失分.(2)对不会做的题目:对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得分.我们说,有什么样的解题策略,就有什么样的得分策略.对此可以采取以下策略:①缺步解答:如遇到一个不会做的问题,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步.特别是那些解题层次明显的题目,每一步演算到得分点时都可以得分,最后结论虽然未得出,但分数却已过半.②跳步解答:解题过程卡在某一过渡环节上是常见的.这时,我们可以先承认中间结论,往后推,看能否得到结论.若题目有两问,第(1)问想不出来,可把第(1)问作“已知”,先做第(2)问,跳一步再解答.③辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤.实质性的步骤未找到之前,找辅助性的步骤是明智之举.如:准确作图,把题目中的条件翻译成数学表达式,根据题目的意思列出要用的公式等.罗列这些小步骤都是有分的,这些全是解题思路的重要体现,切不可以不写,对计算能力要求高的,实行解到哪里算哪里的策略.书写也是辅助解答,“书写要工整,卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应.④逆向解答:对一个问题正面思考发生思维受阻时,用逆向思维的方法去探求新的解题途径,往往能得到突破性的进展.顺向推有困难就逆推,直接证有困难就间接证.考试过程力争做到:1.难易分明,决不耗时; 2.慎于审题,决不懊悔; 3.必求规范,决不失分; 4.细心运算,决不犯错; 5.提防陷阱,决不上当; 6.愿慢求对,决不快错; 7.遇新不慌,决不急躁; 8.奋力拼杀,决不落伍;2014届高考数学最后一讲-------实战演练(一)、填空题1.设集合A ={(x ,y )⎪⎪x 24+y 216=1},B ={(x ,y )|y =3x },则A ∩B 的子集的个数是________.2.如果复数2-b i 1+2i(其中i 为虚数单位,b 为实数)的实部和虚部互为相反数,那么b 等于_____.3.某个容量为N 的样本频率分布直方图如右图所示,已知在区间[4,5)上频数为60,则N =________.4.若将一颗质地均匀的骰子(各面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷两次,向上的点数依次为m ,n ,则方程x 2+2mx +n =0无实数根的概率是________.5.有四个关于三角函数的命题:p 1:∃x ∈R ,sin 2x 2+cos 2x 2=12;p 2:∃x ,y ∈R ,sin(x -y )=sin x -sin y ;p 3:∀x ∈[0,π],1-cos 2x 2=sin x ;p 4:sin x =cos y ⇒x +y =π2.其中假命题的是________.的质量分数为 ▲ (6.若cos αcos(α+β)+sin αsin(α+β)=-35,β是第二象限的角,则tan 2β=________.7.若一个正方形的四个顶点都在双曲线C 上,且其一边经过C 的焦点,则双曲线C 的离心率是 、杯水风波化学教案脱离大众化学教案脱离现实化学教案难兴文艺之春试卷试题8.不等式228()a b b a b λ+≥+对于任意的,a b R ∈恒成立,则实数λ的取值范围为 。

2014南通高三期末统考数学试题及答案

2014南通高三期末统考数学试题及答案

2014届高三期末测试数学参考答案及评分建议一、填空题:本大题共14小题,每小题5分,共70分. 1. 复数i z =(其中i 是虚数单位)的虚部为 ▲ . 2. 某同学在7天内每天参加体育锻炼的时间(单位:分钟)用茎叶图表示如图,图中左列表示时间的十位数,右列表示时间的个位数.则这 7天该同学每天参加体育锻炼时间(单位:分钟)的平均数为 ▲ . 3. 函数()221()4x xf x -=的值域为 ▲ .4. 分别在集合A ={1,2,3,4}和集合B ={5,6,7,8}中各取一个数相乘,则积为偶数的概率为 ▲ . 5. 在平面直角坐标系xOy 中,双曲线C 的中心在原点,焦点在y 轴上,一条渐近线方程为0x =,则双曲线C 的 离心率为 ▲ . 6. 如图是计算101121k k =-∑的值的一个流程图,则常数a 的取 值范围是 ▲ .7. 函数y =()πsin 23x -的图象可由函数y = sin x 的图象作两次变换得到,第一次变换是针对函数y =sin x 的图象而言的,第二次变换是针对第一次变换所得图象而言的.现给出下列四个变换: A. 图象上所有点向右平移π6个单位;B. 图象上所有点向右平移π3个单位;C. 图象上所有点的横坐标变为原来的2倍(纵坐标不变);D. 图象上所有点的横坐标变为原来的12倍(纵坐标不变).请按顺序写出两次变换的代表字母: ▲ .(只要填写一组)8. 记max{a ,b }为a 和b 两数中的较大数.设函数()f x 和()g x 的定义域都是R ,则“()f x 和()g x都是偶函数”是“函数{}()max ()()F x f x g x =,为偶函数”的 ▲ 条件.(在“充分不必要”“必要不充分”“充分必要”和“既不充分也不必要”中选填一个) 9. 在平面直角坐标系xOy 中,圆C 1:2248190x y x y +--+=关于直线l :250x y +-=对称的圆C 2的方程为 ▲ .10. 给出以下三个关于x 的不等式:①2430x x -+<,②311x >+,③2220x m x m ++<.若③的解6 7 8 5 5 6 3 4 0 1集非空,且满足③的x 至少满足①和②中的一个,则m 的取值范围是 ▲ . 11. 设π02βα<<<,且113cos cos()ααβ=-=,,则tan β的值为 ▲ .12. 设平面向量a ,b满足3-a b a ·b 的最小值为 ▲ .13. 在平面直角坐标系xOy 中,曲线22491x y+=上的点到原点O 的最短距离为 ▲ . 14. 设函数()y f x =是定义域为R ,周期为2的周期函数,且当[)11x ∈-,时,2()1f x x =-;已知函数lg ||0()10x x g x x ≠⎧⎪=⎨=⎪⎩,,,. 则函数()f x 和()g x 的图象在区间[]510-,内公共点的个数为 ▲ .【填空题答案】1. 252. 723. (]04,4. 345. 26. (]1921,7. BD (DA ) 8. 充分不必要 9. 221x y += 10.[)10-, 11.12. 513. 16- 14. 15二、解答题:本大题共6小题,共90分.15.设向量a (cos sin )αα=,,b (cos sin )ββ=,,其中0πβα<<<.(1)若⊥a b,求+a 的值;(2)设向量c (0=,且a + b = c ,求αβ,的值.【解】(1)因为a (cos sin )αα=,,b (cos sin )ββ=,,所以11==,a b . ……………2分因为⊥a b ,所以a ·b = 0.…………………………………………………………4分于是22234=++⋅=a a b b,故2=a . ……………………6分(2)因为a + b ()(cos cos sin sin 0αβαβ=++=,,所以cos cos 0sin sin αβαβ+=⎧⎪⎨+=⎪⎩,………………………………………………………………8分由此得()cos cos παβ=-,由0πβ<<,得0ππβ<-<,又0πα<<,故παβ=-. ………………………………………………………10分代入sin sin αβ+=,得s i n s i n αβ==.……………………………………12分而0πβα<<<,所以2ππαβ==,.……………………………………………14分EADCFP东北16.如图,在三棱锥P —ABC 中,平面P AC ⊥平面ABC ,60BAC ∠= ,E ,F 分别是AP ,AC 的中点,点D 在棱AB 上,且AD AC =. 求证:(1)//EF 平面PBC ;(2)平面DEF ⊥平面P AC .【证】(1)在△P AC 中,因为E ,F 分别是AP ,AC 的中点,所以EF // PC .………2分 又因为EF ⊄平面PBC ,PC ⊂平面PBC , 所以//EF 平面PBC .………………5分(2)连结CD .因为60BAC ∠= ,AD AC =,所以△ACD 为正三角形.因为F 是AC 的中点,所以DF AC ⊥.………………………………………7分 因为平面P AC ⊥平面ABC ,DF ⊂平面ABC ,平面P AC I 平面ABC AC =, 所以DF ⊥平面P AC . …………………………………………………………11分 因为DF ⊂平面DEF ,所以平面DEF ⊥平面P AC .…………………………14分17.如图,港口A 在港口O 的正东120海里处,小岛B 在港口O 的北偏东60 的方向,且在港口A北偏西30 的方向上.一艘科学考察船从港口O 出发,沿北偏东30 的OD 方向以20海里/小时 的速度驶离港口O .一艘给养快艇从港口A 以60海里/小时的速度驶向小岛B ,在B 岛转运补 给物资后以相同的航速送往科考船.已知两船同时出发,补给装船时间为1小时. (1)求给养快艇从港口A 到小岛B 的航行时间; (2)给养快艇驶离港口A 后,最少经过多少时间能和科考船相遇?【解】(1)由题意知,在△OAB 中,OA =120,3060AOB OAB ∠=∠=o o ,.于是60AB =,而快艇的速度为60海里/小时,所以快艇从港口A 到小岛B 的航行时间为1小时. ………………………………5分 (2)由(1)知,给养快艇从港口A 驶离2小时后,从小岛B 出发与科考船汇合. 为使航行的时间最少,快艇从小岛B 驶离后必须按直线方向航行,设t 小时后恰与科考船在C 处相遇.…………………………………………………………………7分在△OAB 中,可计算得OB =而在△OCB 中,6020(2)30BC t OC t BOC ==+∠=o ,,,………………………9分 由余弦定理,得2222cos BC OB OC OB OC BOC =+-⋅⋅∠, 即([]222(60)20(2)220(2)t t t =++-⨯+亦即285130t t +-=,解得1t =或138t =-(舍去).……………………………12分故23t +=.即给养快艇驶离港口A 后,最少经过3小时能和科考船相遇?………………………14分18.设公差不为零的等差数列{}n a 的各项均为整数,S n 为其前n 项和,且满足2371574a a S a =-=,. (1)求数列{}n a 的通项公式;(2)试求所有的正整数m ,使得+12m m ma a a +为数列{}n a 中的项. 【解】(1)因为{}n a 是等差数列,且77S =,而17747()72a a S a +==,于是41a =.………2分 设{}n a 的公差为d ,则由23154a a a =-得(12)(1)5134d d d --=--, 化简得282790d d -+=,即(3)(83)0d d --=,解得3d =或38d =,但若38d =,由41a =知不满足“数列{}n a 的各项均为整数”,故3d =.………5分于是4(4)311n a a n d n =+-=-.……………………………………………………7分(2)因为+12(3)(6)189m m m m m m m ma a a a a a a a +++==++,3113(4)1n a n n =-=-+, ……10分 所以要使+12m m m a a a +为数列{}n a 中的项,18ma 必须是3的倍数, 于是m a 在1236±±±±,,,中取值,但由于1m a -是3的倍数,所以1m a =或2m a =-.由1m a =得4m =;由2m a =-得3m =. …………………………………………13分 当4m =时,+1213471m m m a a a a +⨯==;当3m =时,+123142m m m a aa a +⨯==-. 所以所求m 的值为3和4.…………………………………………………………16分 另解:因为2+12(38)(35)(311)9(311)18311311m m m a a m m m m a m m +---+-+==-- 1823332323113(4)1m m m m ⨯⨯=-+=-+--+,所以要使+12m m m a a a +为数列{}n a 中的项,233⨯⨯必须是3的倍数, 于是3(4)1m -+只能取1或2-.(后略)19. 在平面直角坐标系xOy 中,设椭圆C 的中心在原点,焦点在x 轴上,短半轴长为2,椭圆C 上1.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于A ,B 两点,且π2AOB ∠=.①求证:原点O 到直线AB 的距离为定值; ②求AB 的最小值.【解】(1)由题意,可设椭圆C 的方程为22221(0)y x a b a b+=>>,焦距为2c ,离心率为e . 于是2b =.设椭圆的右焦点为F ,椭圆上点P 到右准线距离为d , 则AFe AF e d d=⇒=⋅,于是当d 最小即P 为右顶点时,PF取得最小值, 所以1a c -=. (3)分因为2221221a c a b b c a b c ⎧⎧-==⎪⎪=⇒=⎨⎨⎪⎪==+⎩⎩,,,, 所以椭圆方程为22154x y +=.………………………………………………………5分(2)①设原点O 到直线AB 的距离为h ,则由题设及面积公式知OA OB h AB⋅=.当直线OA的斜率不存在或斜率为0时,2OA OB ⎧=⎪⎨=⎪⎩或2OB OA ⎧=⎪⎨=⎪⎩.于是d =.………………………………………………………………7分 当直线OA 的斜率k 存在且不为0时,则22222115454x y xk x y kx⎧⎪+=⇒+=⎨⎪=⎩,, 解得2222211541A A x k k y k ⎧=⎪+⎪⎪⎨⎪=⎪+⎪⎩,. 同理222221115411154BB x k k y k ⎧=⎪+⎪⎪⎨⎪=⎪+⎪⎩………………………………………9分 在Rt △OAB 中,22222222OA OB OA OB h AB OA OB ⋅⋅==+, 则222222222222222111111115544545411111k k k OA OB k h OA OB OA OB k k k k+++++==+=+=+⋅++++()()221111454511945201k k +++==+=+,所以h =.综上,原点O 到直线AB.……………………………………11分 另解:()()()()()()222222222222222111111111554411111111141114k kk k OA OB k k h OA OB k k k k k kkk ++⋅++++⋅===+++++++++++2221299992020k k k k ++==++,所以h =.②因为h 为定值,于是求AB 的最小值即求OA OB ⋅的最小值.22OA OB ⋅()()()()22222221112111411112040054204k k k k kk k k ++++=⋅=++++,令221t k k =+,则2t ≥, 于是22OA OB ⋅=()220401202011412041204120400t t t t t ++=⋅=-+++, …………………14分 因为2t ≥,所以()22116002018181OA OB ⋅⋅-=≥,当且仅当2t =,即1k =±,OA OB ⋅取得最小值409,因而min 40AB ==所以AB.…………………………………………………………16分 20.设函数()2ln f x a x bx =-,其图象在点()()22P f ,处切线的斜率为3-.(1)求函数()f x 的单调区间(用只含有b 的式子表示);(2)当2a =时,令()()g x f x kx =-,设1x ,2x ()12x x <是函数()0g x =的两个根,0x 是1x ,2x 的等差中项,求证:0()0g'x <(()g'x 为函数()g x 的导函数). 【解】(1)函数()f x 的定义域为()0+∞,.()2a f x bx '=-,则()243af b '=-=-,即86a b =-.于是()()2286bx b f x x-+-'=.……………………………………………………2分①当0b =时,()60f x x-'=<,()f x 在()0+∞,上是单调减函数; ②当0b <时,令()0f x '=,得x =, 所以()f x在(0上是单调减函数,在)+∞上是单调增函数; ③当0b >时,若304b <≤,则()0f x '<恒成立,()f x 在()0+∞,上单调减函数;若3b >,令()0f x '=,得x =,所以()f x在(0上单调增函数,在)+∞上单调减函数; 综上,若0b <,()f x的单调减区间为(0,单调增区间为)+∞; 若304b ≤≤,()f x 的单调减区间为()0+∞,;若34b >,()f x的单调增区间为(0,单调减区间为)+∞.……………………………………8分(2)因为286a a b ==-,,所以1b =,即()22ln g x x x kx =--.因为()g x 的两零点为1x ,2x ,则211122222ln 02ln 0x x kx x x kx ⎧--=⎪⎨--=⎪⎩,, 相减得:()()()221212122ln ln 0x x x x k x x -----=, 因为 12x x ≠,所以()()1212122ln ln x x k x x x x -=-+-,于是()()1200012122ln ln 242x x g'x x k x x x x x -=--=-+- ()()()112211212121212221222ln ln ln 1x x x x x x x x x x x x x x x x ⎡⎤-⎢⎥-⎡⎤=--=-⎢⎥⎢⎥-+-⎢⎥⎣⎦+⎢⎥⎣⎦. ……………………………………14分令()1201x t t x =∈,,,()()214ln 2ln 11t t t t t t ϕ-=-=--++,则()()()()222141011t 't t t t t ϕ--=-=<++,则()t ϕ在()01,上单调递减,则()()10t ϕϕ>=,又1220<,则()00g'x <.命题得证.………………16分C21A. 如图,AB 是圆O 的直径,D 为圆O 上一点,过D 作圆O 的切线交AB 的延长线于点C .若DA = DC ,求证:AB = 2 BC . 【证】连结OD ,BD ,因为AB 是圆O 的直径,所以902ADB AB OB ∠==o,.因为DC 是圆O 的切线,所以90CDO ∠=o .因为AD = DC ,所以A C ∠=∠.于是△ADB ≅△CDO ,从而AB = CO ,即2OB = OB + BC ,得OB = BC .故AB = 2 BC .……………………………………10分21B. 已知矩阵A 的逆矩阵A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-212143411,求矩阵A 的特征值. 【解】因为A 1-A =E ,所以A =(A 1-)1-.因为A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-212143411,所以A =(A 1-)1-⎥⎦⎤⎢⎣⎡=1232. …………………………………5分 于是矩阵A 的特征多项式为f (λ)1232----=λλ= λ2-3λ-4, ………………………8分令f (λ) = 0,解得A 的特征值λ1 = -1,λ2 =4 .………………………………………10分21C. 在平面直角坐标系xOy 中,求过椭圆5cos 3sin x y ϕϕ=⎧⎪⎨=⎪⎩,(ϕ为参数)的左焦点,且与直线423x t y t=-⎧⎪⎨=-⎪⎩,(t 为参数)平行的直线的普通方程.【解】椭圆的普通方程:221259x y +=,左焦点(40)F -,………………………………………3分直线的普通方程:220x y -+=. …………………………………………………………6分 设过焦点(40)F -,且与直线220x y -+=平行的直线为20x y λ-+= 将(40)F -,代入20x y λ-+=, 4.λ=所求直线的普通方程为240x y -+=.…………………………………………………10分 21D. 已知实数x ,y 满足:| x + y |31<,1|2|6x y -<,求证:| y |518<.【证】3|||3|2()(2)2|||2|y y x y x y x y x y ==+--++-≤.…………………………………5分 由题设知| x + y |1<,1|2|x y -<, 从而1153||2366y ⨯+=≤.故| y |518<.…………………………………………………10分22.从棱长为1的正方体的8个顶点中任取不同2点,设随机变量ξ是这两点间的距离.(1)求概率(P ξ=;(2)求ξ的分布列,并求其数学期望E (ξ ).【解】(1)从正方体的8个顶点中任取不同2点,共有28C 28=种.因为正方体的棱长为1 正方体每个面上均有两条对角线,所以共有2612⨯=条.因此(123287P ξ==. ……………………………………………3分(2)随机变量ξ的取值共有1正方体的棱长为1,而正方体共有12条棱,于是()1231287P ξ===.………………………5分从而(()(331111777P P P ξξξ=-=-=--=. …………………………………7分所以随机变量ξ的分布列是…………………………………………………………………8分因此331()1E ξ=⨯=. …………………………………………10分23.在平面直角坐标系xOy 中,已知抛物线C :24y x =,F 为其焦点,点E 的坐标为(2,0),设M为抛物线C 上异于顶点的动点,直线MF 交抛物线C 于另一点N ,链接ME ,NE 并延长分别交 抛物线C 与点P ,Q .(1)当MN ⊥Ox 时,求直线PQ 与x 轴的交点坐标;(2)当直线MN ,PQ 的斜率存在且分别记为k 1,k 2时,求证:122k k =. 【解】(1)抛物线C :24y x =的焦点F (1,0) .当MN ⊥Ox 时,直线MN 的方程为 1x =.将1x =代入抛物线方程24y x =,得2y =±.不妨设(12)M ,,(12)N -,, 则直线ME 的方程为2+4y x =-,由2244y x y x =-+⎧⎨=⎩,解得1x =或4x =,于是得(44)P -,.同理得(44)Q ,,所以直线PQ 的方程为4x =.故直线PQ 与x 轴的交点坐标(4,0).………………………………………………4分 (2)设直线MN 的方程为1x my =+,并设11223344()()()()M x y N x y P x y Q x y ,,,,,,,. 由2214404x my y my y x=+⎧--=⎨=⎩,得, 于是124y y =-①,从而221212144y y x x =⋅=②.设直线MP 的方程为2x t y =+, 由2224804x t y y my y x=+⎧--=⎨=⎩,得, 所以138y y =-③,134x x =④. 同理248y y =-⑤,244x x =⑥.由①②③④⑤⑥,得323241412424y y x x y y x x ====,,,.431212214312122211y y y y y y k k ---===⋅=,即122k k =.…………………………………………………………………………10分。

2014年江苏省南通市高三数学最后一卷

2014年江苏省南通市高三数学最后一卷

南通市2014届高三数学临门一脚数学I参考公式:棱锥的体积公式:13V Sh =,其中S 为锥体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置........上.. 1.已知集合A ={1,k -1},B ={2,3},且A ∩B ={2},则实数k 的值为 ▲ . 2.若复数z 满足i z =2(i 为虚数单位),则z = ▲ . 3.不等式组0,0,2x y x y ⎧⎪⎨⎪+⎩≥≥≤所表示的平面区域的面积为 ▲ .4.函数y =sin 2x 的最小正周期为 ▲ .5.若正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥A -BDA 1的体积为 ▲ . 6.已知函数23,0,()1,0,x x f x x x ->⎧=⎨+⎩≤若f (x )=5,则x = ▲ .7.设函数f (x )=log 2x (0<x <5),则f (x )<1的概率为 ▲ . 8.某鲜花店对一个月的鲜花销售数量(单位:支)进行统计,统计时间是4月1日至4月30日,5天一组分组统计,绘制了如图的鲜花销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的鲜花数(单位:支)为 ▲ .(第8题图)(第10题图)(第9题图)9法流程图.若输入A =3,B 则输出A ,B 的值分别▲ .10.已知向量a ,b ,c 在正方形网格中的位置如图所示.若(,)λμλμ=+∈R c a b ,则λμ+=▲ .11.已知实数x ,y ,满足xy =1,且x >2y >0,则2242x y x y+-的最小值为 ▲ .12.设t ∈R ,[t ]表示不超过t 的最大整数.则在平面直角坐标系xOy 中,满足[x ]2+[y ]2=13的点P (x ,y )所围成的图形的面积为 ▲ .13.设函数f (x )满足f (x )=f (3x ),且当x ∈[1,3)时,f (x )=ln x .若在区间[1,9)内,存在3个不同的实数x 1,x 2,x 3,使得312123()()()f x f x f x x x x ===t ,则实数t 的取值范围为 ▲ . 14.设各项均为正整数的无穷等差数列{a n },满足a 54=2014,且存在正整数k ,使a 1,a 54,a k 成等比数列,则公差d 的所有可能取值之和为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡...指定区域内作答........解答时应写出文字说明,证明过程或演算步骤. 15.(本小题满分14分)如图,在△ABC 中,|AB AC -|=3,|BC BA -|=5,|CA CB -|=7. (1)求C 的大小;(2)设D 为AB 的中点,求CD 的长.(第15题图)BAC如图,AB 为圆O 的直径,点E ,F 在圆上,四边形ABCD 为矩形,AB ∥EF ,∠BAF =3π,M 为BD 的中点,平面ABCD ⊥平面ABEF .求证:(1)BF ⊥平面DAF ; (2)ME ∥平面DAF .17.(本小题满分14分)图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.若凹槽的强度T 等于横截面的面积S 与边AB 的乘积,设AB =2x ,BC =y . (1)写出y 关于x 函数表达式,并指出x 的取值范围; (2)求当x 取何值时,凹槽的强度T 最大.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22221x y a b +=(a >b >0)过点(1,1).(1),求椭圆的方程;(2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .①已知命题:“直线PQ 恒与定圆C 相切”是真命题,试直接写出圆C 的方程;(不需要解答过程)②设①中的圆C 交y 轴的负半轴于M 点,二次函数y =x 2-m 的图象过点M .点A ,B在该图象上,当A ,O ,B 三点共线时,求△MAB 的面积S 的最小值.(第17题图)图1图2(第16题图)设数列{a n },a 1=1,1133n n n a a +=+.数列{b n },13n n n b a -=.正数数列{d n },2221111n n n d b b +=++.(1)求证:数列{b n }为等差数列;(2)设数列{b n },{d n }的前n 项和分别为B n ,D n ,求数列{b n D n +d n B n -b n d n }的前n 项和S n .20.(本小题满分16分)设函数f (x )=ax 2+e x (a ∈R )有且仅有两个极值点x 1,x 2(x 1<x 2). (1)求实数a 的取值范围;(2)是否存在实数a 满足f (x 1)=231e x ?如存在,求f (x )的极大值;如不存在,请说明理由.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 共4小题,请.选定其中两小题.......,并在相应的答题区域.........内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,⊙O 是等腰三角形ABC 的外接圆,AB =AC ,延长BC 到点D ,使得CD =AC ,连结AD 交⊙O 于点E ,连结BE 与AC 交于点F ,求证B .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵14a b ⎡⎤=⎢⎥-⎣⎦A ,A 的两个特征值为12λ=,2λ=3. (1)求a ,b 的值;(2)求属于2λ的一个特征向量α.C .[选修4-4:坐标系与参数方程](本小题满分10分)圆C 的参数方程为12cos ,2sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数),设P 是圆C 与x 轴正半轴的交点.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.D .[选修4-5:不等式选讲](本小题满分10分) 已知a 、b 、c 均为正实数,且a +b +c =1+的最大值.D(第21A 图)【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)(1)计算:2013320145C A +;(2)观察下面一组组合数等式:101C C n n n -=;2112C C n n n -=;3213C C n n n -=;…由以上规律,请写出第k (k ∈N *)个等式并证明.23.(本小题满分10分)设数列{a n },{b n }满足a 1=b 1,且对任意正整数n ,{a n }中小于等于n 的项数恰为b n ; {b n }中小于等于n 的项数恰为a n . (1)求a 1;(2)求数列{a n }的通项公式.南通市2014届高三数学临门一脚参考答案与评分建议数学I参考公式:棱锥的体积公式:13V Sh =,其中S 为锥体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置........上.. 1.已知集合A ={1,k -1},B ={2,3},且A ∩B ={2},则实数k 的值为 ▲ . 答案:3.2.若复数z 满足i z =2(i 为虚数单位),则z = ▲ . 答案:-2i .3.不等式组0,0,2x y x y ⎧⎪⎨⎪+⎩≥≥≤所表示的平面区域的面积为 ▲ .答案:2.4.函数y =sin 2x 的最小正周期为 ▲ . 答案:π.5.若正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥A -BDA 1的体积为 ▲ . 答案:16. 6.已知函数23,0,()1,0,x x f x x x ->⎧=⎨+⎩≤若f (x )=5,则x = ▲ .答案:8或-2.7.设函数f (x )=log 2x (0<x <5),则f (x )<1的概率为 ▲ . 答案:25.(第10题图)(第9题图)8.某鲜花店对一个月的鲜花销售数量(单位:支)进行统计,统计时间是4月1日至4月30日,5天一组分组统计,绘制了如图的鲜花销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的鲜花数(单位:支)为 ▲ . 答案:1200.9.如图是一个算法流程图.若输入A =3,B =5,则输出A ,B 的值分别为 ▲ .答案:5,3.10.已知向量a ,b ,c 在正方形网格中的位置如图所示.若(,)λμλμ=+∈R c a b ,则λμ+=▲ . 答案:53-.11.已知实数x ,y ,满足xy =1,且x >2y >0,则2242x y x y+-的最小值为 ▲ .答案:4.12.设t ∈R ,[t ]表示不超过t 的最大整数.则在平面直角坐标系xOy 中,满足[x ]2+[y ]2=13的点P (x ,y )所围成的图形的面积为 ▲ . 答案:8.13.设函数f (x )满足f (x )=f (3x ),且当x ∈[1,3)时,f (x )=ln x .若在区间[1,9)内,存在3个不同的实数x 1,x 2,x 3,使得312123()()()f x f x f x x x x ===t ,则实数t 的取值范围为 ▲ . 答案:ln 31(,)93e. 14.设各项均为正整数的无穷等差数列{a n },满足a 54=2014,且存在正整数k ,使a 1,a 54,(第8题图)a k成等比数列,则公差d的所有可能取值之和为▲ .答案:92.二、解答题:本大题共6小题,共计90分.请在答题卡...指定区域内作答........解答时应写出文字说明,证明过程或演算步骤.15.(本小题满分14分)如图,在△ABC中,|AB AC-|=3,|BC BA-|=5,|CA CB-|=7.(1)求C的大小;(2)设D为AB的中点,求CD的长.解:(1)依题意BC=3,CA=5,AB=7.······························································1分由余弦定理,得222cos2CB CA ABCCB CA+-=⋅⋅=12-.·········································4分因0<C<π,··························································································6分故C=23π.··························································································8分(2)由余弦定理,得13cos14A=.·······························································11分在△ADC中,AD=72,CD2=AC2+AD2-2AC×AD×cos A=194,于是CD.··················································································14分16.(本小题满分14分)如图,AB为圆O的直径,点E,F在圆上,四边形ABCD3π,M为BD的中点,平面ABCD⊥平面ABEF.求证:(1)BF⊥平面DAF;(2)ME∥平面DAF.(第15题图)B AC(第16题图)解:(1)因四边形ABCD 为矩形,故DA ⊥AB .因平面ABCD ⊥平面ABEF ,且DA ⊂平面ABCD ,平面ABCD ∩平面ABEF =AB , 故DA ⊥平面ABEF . ············································································3分 因BF ⊂平面ABEF ,故DA ⊥BF . ···························································4分 因AB 为直径,故BF ⊥AF .因DA ,AF 为平面DAF 内的两条相交直线,故BF ⊥平面DAF .·····················7分 (2)因∠BAF =3π,AB ∥EF ,故EF =12AB .··················································8分 取DA 中点N ,连NF ,MN ,因M 为BD 的中点, 故MN ∥AB ,且MN =12AB ,于是四边形MNFE 为平行四边形, 所以ME ∥NF .···················································································11分 因NF ⊂平面DAF ,ME ⊄平面DAF ,故ME ∥平面DAF .·············································································14分注:第(2)问,亦可先证明ME ∥平面MOE .17.(本小题满分14分)图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.若凹槽的强度T 等于横截面的面积S 与边AB 的乘积,设AB =2x ,BC =y . (1)写出y 关于x 函数表达式,并指出x 的取值范围; (2)求当x 取何值时,凹槽的强度T 最大.解:(1)易知半圆CmD 的半径为x ,故半圆CmD 的弧长为πx . 所以,4=2x +2y +πx ,得4(2)2xy -+π=.····················································4分 依题意,知:0<x <y ,得404x <<+π.所以,4(2)2x y -+π=(404x <<+π).·······················································7分 (第17题图)图1图2(2)依题意,T =AB S ⋅=212(2)2x xy x -π=238(43)x x -+π. ······························9分令2163(43)T x x '=-+π=0,得16912x =π+∈4(0,)4+π,另一解舍去.··············11分所以当16912x =π+,凹槽的强度最大.·····················································14分注:x 的范围写为404x <≤+π,不扣分.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22221x y a b +=(a >b >0)过点(1,1).(1),求椭圆的方程; (2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .(2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .①已知命题:“直线PQ 恒与定圆C 相切”是真命题,试直接写出圆C 的方程;(不需要解答过程)②设①中的圆C 交y 轴的负半轴于M 点,二次函数y =x 2-m 的图象过点M .点A ,B在该图象上,当A ,O ,B 三点共线时,求△MAB 的面积S 的最小值.解:(1)由e =,所以::a b c =.························································2分 设椭圆方程为222212x y b b +=,将(1,1)代入得221112b b+=,所以223,32b a ==,椭圆方程为222133x y +=.·············································5分(2)①221x y +=.··················································································9分 ②由题意,二次函数为y =x 2-1.······························································10分 设直线AB 的方程为y =kx .由21y x y kx⎧=-⎨=⎩,消去y 得,210x kx --=.设11(,)A x y ,22(,)B x y ,则12x x k +=,121x x =-.······································12分所以212S OM x =⋅=. ·····························14分 当0k =时,△MAB 的面积S 的最小值为1. ·············································16分19.(本小题满分16分)设数列{a n },a 1=1,1133n n n a a +=+.数列{b n },13n n n b a -=.正数数列{d n },2221111n n n d b b +=++.(1)求证:数列{b n }为等差数列;(2)设数列{b n },{d n }的前n 项和分别为B n ,D n ,求数列{b n D n +d n B n -b n d n }的前n 项和S n .解:(1)由1133n n n a a +=+,得11331n n n n a a -+=+. 又13n n n b a -=,所以11n+n b b +=.·······························································3分 又b 1=a 1=1,所以数列{b n }是以1为首项,1为公差的等差数列.·····················4分 (2)由(1)得1(1)1n b n n =+-⨯=,B n =(1)2n n +.·············································6分 因2221111n n n d b b +=++, 故222221121)111(1)(1)nn n d n n n n ++=++=+++(21[1](1)n n =++. 由d n >0,得11111(1)1n d n n n n =+=+-++.于是,111n D n n =+-+. ······································································10分 又当n ≥2时,b n D n +d n B n -b n d n =(B n -B n -1)D n +(D n -D n -1)B n -(B n -B n -1)(D n -D n -1)=B n D n -B n -1D n -1, 所以S n =(B n D n -B n -1D n -1)+(B n -1D n -1-B n -2D n -2)+…+(B 2D 2-B 1D 1)+B 1D 1=B n D n .··········14分 因S 1=b 1D 1+d 1B 1-b 1d 1=B 1D 1也适合上式,故对于任意的n ∈N *,都有S n =B n D n . 所以S n =B n D n =(1)2n n +⋅1(1)1n n +-+=321(2)2n n +. ···································16分20.(本小题满分16分)设函数f (x )=ax 2+e x (a ∈R )有且仅有两个极值点x 1,x 2(x 1<x 2). (1)求实数a 的取值范围;(2)是否存在实数a 满足f (x 1)=231e x ?如存在,求f (x )的极大值;如不存在,请说明理由.解:(1)()f x '=2ax +e x .显然a ≠0,x 1,x 2是直线y =12a -与曲线y =g (x )=ex x两交点的横坐标.··············2分由()g x '=1e xx-=0,得x =1.列表: ·························································4分 此外注意到: 当x <0时,g (x )<0;当x ∈[0,1]及x ∈(1,+∞)时,g (x )的取值范围分别为[0,1e ]和(0,1e).于是题设等价于0<12a -<1e ⇒a <e 2-,故实数a 的取值范围为(-∞,e2-).········6分 (2)存在实数a 满足题设.证明如下: 由(1)知,0< x 1<1<x 2,1()f x '=2ax 1+1e x =0,故f (x 1)=121+e x ax =111e e 2x x x -=231e x ,故11231e 1e e 02x x x --=.····························8分 记R (x )=23e 1e e 2x xx --(0<x <1),则()R x '=2e (1)1e 02xx x x --<, 于是,R (x )在(0,1)上单调递减. 又R (23)=0,故R (x )有唯一的零点x =23. 从而,满足f (x 1)=231e x 的x 1=23.所以,a=1231e 3e 24x x -=-.·····························12分 此时f (x )=2233e e 4x x -+,()f x '=233e e 2x x -+,又(0)f '>0,(1)f '<0,(2)f '>0,而x 1=23∈(0,1),故当a =233e 4-时,f (x )极大=f (x 1)=232e 3.·······················································16分南通市2014届高三数学临门一脚数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 共4小题,请.选定其中两小题.......,并在相应的答题区域.........内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,⊙O 是三角形△ABC 的外接圆,AB =AC ,延长BC 到点D ,使得CD =AC ,连结AD 交⊙O 于点E ,连结BE 与AC 交于点F ,求证BE 平分∠ABC .解:因CD =AC ,故∠D =∠CAD .因AB =AC ,故∠ABC =∠ACB . 因∠EBC =∠CAD ,故∠EBC =∠D .因∠ABC =∠ABE +∠EBC ,∠ACB =∠D +∠CAD .故∠ABE =∠EBC ,即BE 平分∠ABC . ···················································10分B .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵14a b ⎡⎤=⎢⎥-⎣⎦A ,A 的两个特征值为12λ=,2λ=3. (1)求a ,b 的值;(2)求属于2λ的一个特征向量α.解:(1)令2()()(4)(4)4014abf a b a a b λλλλλλλ--==--+=-+++=-,于是 1λ+2λ=a +4,1λ⋅2λ=4a +b .解得a =1,b =2. ············································5分(2)设α=x y ⎡⎤⎢⎥⎣⎦,则A α=1214⎡⎤⎢⎥-⎣⎦x y ⎡⎤⎢⎥⎣⎦=24x y x y +⎡⎤⎢⎥-+⎣⎦=3x y ⎡⎤⎢⎥⎣⎦=33x y ⎡⎤⎢⎥⎣⎦,故23,43,x y x x y y +=⎧⎨-+=⎩解得x =y .于是,α=11⎡⎤⎢⎥⎣⎦.···············································10分D(第21A 题图)C .[选修4-4:坐标系与参数方程](本小题满分10分)圆C 的参数方程为12cos ,2sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数),设P 是圆C 与x 轴正半轴的交点.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.解:由题设知,圆心C ,(2,0)P ,∠CPO =60°,故过P 点的切线的倾斜角为30°. ····························································3分 设(,)M ρθ是过P 点的圆C 的切线上的任一点,则在△PMO 中, ∠MOP =θ,030OMP θ∠=-,0150OPM ∠=. 由正弦定理得sin sin OM OPOPM OMP=∠∠,于是002sin150sin(30)ρθ=-, 即0cos(60)1 ρθ+=(或0sin(30)1ρθ-=)即为所求切线的极坐标方程.·········10分D .[选修4-5:不等式选讲](本小题满分10分)已知a 、b 、c 均为正实数,且a +b +c =1+的最大值.解:因 a 、b 、c >0,故+)2 111++)2≤((a +1)+(b +1)+(c +1))(1+1+1)=12,························································3分+≤,==a =b =c =13时,取“=”..··········································10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)(1)计算:2013320145C A +;(2)观察下面一组组合数等式:101C C n n n -=;2112C C n n n -=;3213C C n n n -=;…由以上规律,请写出第k (k ∈N *)个等式并证明.解:(1)原式=2074.·····················································································5分(2)等式为:11C C k k n n k n --=,k ∈N *. ····························································7分证明:C k n k =!!()!kn k n k -=(1)!(1)!((1)(1))!n n k n k -----=11C k n n --.·······························10分23.(本小题满分10分)数列{a n },{b n }满足a 1=b 1,且对任意正整数n ,{a n }中小于等于n 的项数恰为b n ; {b n }中小于等于n 的项数恰为a n . (1)求a 1;(2)求数列{a n }的通项公式.解:(1)首先,容易得到一个简单事实:{a n }与{b n }均为不减数列且a n ∈N ,b n ∈N . 若a 1=b 1=0,故{a n }中小于等于1的项至少有一项,从而b 1≥1,这与b 1=0矛盾. 若a 1=b 1≥2,则{a n }中没有小于或等于1的项,从而b 1=0,这与b 1≥2矛盾. 所以,a 1=1.························································································4分 (2)假设当n =k 时,a k =b k =k ,k ∈N *.若a k +1≥k +2,因{a n }为不减数列,故{a n }中小于等于k +1的项只有k 项, 于是b k +1=k ,此时{b n }中小于等于k 的项至少有k +1项(b 1,b 2,…,b k ,b k +1), 从而a k ≥k +1,这与假设a k =k 矛盾.若a k +1=k ,则{a n }中小于等于k 的项至少有k +1项(a 1,a 2,…,a k ,a k +1), 于是b k ≥k +1,这与假设b k =k 矛盾. 所以,a k +1=k +1.所以,当n =k +1时,猜想也成立.综上,由(1),(2)可知,a n =b n =n 对一切正整数n 恒成立.所以,a n =n ,即为所求的通项公式.························································10分。

2014年全国高考江苏省数学试卷及答案【精校版】

2014年全国高考江苏省数学试卷及答案【精校版】

2014 年江苏高考数学试题数学Ⅰ试题参照公式 :圆柱的侧面积公式 :S 圆柱 =cl, 此中 c 是圆柱底面的周长, l 为母线长 .圆柱的体积公式 :V 圆柱=Sh,此中 S 是圆柱的底面积, h 为高 .一、填空题:本大题共14 小题,每题 5 分,合计 70 分. 请把答案填写在答题卡相应地点.......上..1.已知会合 A { 2, 1,3,4} , B { 1,2 ,3} ,则 A B.【答案】 {1,3}2.已知复数z (5 2i ) 2 (i 为虚数单位 ),则 z 的实部为.【答案】 213.右图是一个算法流程图,则输出的n 的值是.【答案】 54.从1,2,3,6这4个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是.1【答案】35.已知函数y cosx 与y sin(2 x )(0 ≤) ,它们的图象有一个横坐标为的交点,则的值是.3【答案】66.为了认识一片经济林的生长状况,随机抽测了此中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频次散布直方图如下图,则在抽测的 60 株树木中,有株树木的底部周长小于100 cm.【答案】 24.在各项均为正数的等比数列{ a n } 中,若 a2 1 ,a8 a6 2a4,7则 a6的值是.【答案】 48.设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为 V1,V2,若它们的侧面积相等,且S1 9,则V1的值是.S2 4 V2【答案】329 .在平面直角坐标系xOy 中,直线x 2 y 3 0 被圆 (x 2)2 ( y 1)2 4 截得的弦长为.【答案】255510.已知函数 f ( x) x2 mx 1 ,若对随意 x [ m,m 1] ,都有 f (x) 0 建立,则实数 m 的取值范围是.【答案】 2 ,211.在平面直角坐标系xOy 中,若曲线 y ax2 b( a ,b 为常数 )过点 P(2 , 5) ,且该曲线在x点 P 处的切线与直线7 x 2 y 3 0 平行,则 a b 的值是.【答案】 312.如图,在平行四边形ABCD中,已知,AB 8 ,AD 5 ,CP 3PD ,AP BP 2,则 ABAD 的值是.【答案】 2213.已知f (x)是定义在 R 上且周期为 3 的函数,当 x [0 ,3) 时, f (x) x2 2x1 .若函2数 y f ( x) a 在区间 [ 3,4 ]上有 10 个零点 ( 互不相同 ) ,则实数 a 的取值范围是.【答案】 10 ,214.若ABC 的内角知足 sin A 2 sin B 2sin C ,则 cosC 的最小值是.【答案】 6 24二、解答题:本大题共6小题 , 合计 90 分 . 请在答题卡指定地区内作答 , 解答时应写出文字........。

2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.考点:交集及其运算.专题:集合.分析:根据集合的基本运算即可得到结论.解答:解:∵A={﹣2,﹣1,3,4},B={﹣1,2,3},∴A∩B={﹣1,3},故答案为:{﹣1,3}点评:本题主要考查集合的基本运算,比较基础.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21.考点:复数的基本概念;复数代数形式的乘除运算.专题:数系的扩充和复数.分析:根据复数的有关概念,即可得到结论.解答:解:z=(5+2i)2=25+20i+4i2=25﹣4+20i=21+20i,故z的实部为21,故答案为:21点评:本题主要考查复数的有关概念,利用复数的基本运算是解决本题的关键,比较基础.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是5.考点:程序框图.专题:算法和程序框图.分析:算法的功能是求满足2n>20的最小的正整数n的值,代入正整数n验证可得答案.解答:解:由程序框图知:算法的功能是求满足2n>20的最小的正整数n的值,∵24=16<20,25=32>20,∴输出n=5.故答案为:5.点评:本题考查了直到型循环结构的程序框图,根据框图的流程判断算法的功能是解题的关键.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.考点:古典概型及其概率计算公式.专题:概率与统计.分析:首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可.解答:解:从1,2,3,6这4个数中一次随机抽取2个数的所有基本事件有(1,2),(1,3),(1,6),(2,3),(2,6),(3,6)共6个,所取2个数的乘积为6的基本事件有(1,6),(2,3)共2个,故所求概率P=.故答案为:.点评:本题主要考查了古典概型的概率公式的应用,关键是一一列举出所有的基本事件.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.考点:三角方程;函数的零点.专题:三角函数的求值;三角函数的图像与性质.分析:由于函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,可得=.根据φ的范围和正弦函数的单调性即可得出.解答:解:∵函数y=cosx与y=sin(2x+φ),它们的图象有一个横坐标为的交点,∴=.∵0≤φ<π,∴,∴+φ=,解得φ=.故答案为:.点评:本题考查了三角函数的图象与性质、三角函数求值,属于基础题.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm.考点:频率分布直方图.专题:概率与统计.分析:根据频率=小矩形的面积=小矩形的高×组距底部求出周长小于100cm的频率,再根据频数=样本容量×频率求出底部周长小于100cm的频数.解答:解:由频率分布直方图知:底部周长小于100cm的频率为(0.015+0.025)×10=0.4,∴底部周长小于100cm的频数为60×0.4=24(株).故答案为:24.点评:本题考查了频率分布直方图,在频率分布直方图中频率=小矩形的面积=小矩形的高×组距=.7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4.考点:等比数列的通项公式.专题:等差数列与等比数列.分析:利用等比数列的通项公式即可得出.解答:解:设等比数列{a n}的公比为q>0,a1>0.∵a8=a6+2a4,∴,化为q4﹣q2﹣2=0,解得q2=2.∴a6===1×22=4.故答案为:4.点评:本题考查了等比数列的通项公式,属于基础题.8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.考点:棱柱、棱锥、棱台的体积;旋转体(圆柱、圆锥、圆台).专题:立体几何.分析:设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比.解答:解:设两个圆柱的底面半径分别为R,r;高分别为H,h;∵=,∴,它们的侧面积相等,∴,∴===.故答案为:.点评:本题考查柱体体积公式以及侧面积公式的直接应用,是基础题目.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.考点:直线与圆的位置关系.专题:直线与圆.分析:求出已知圆的圆心为C(2,﹣1),半径r=2.利用点到直线的距离公式,算出点C到直线直线l的距离d,由垂径定理加以计算,可得直线x+2y﹣3=0被圆截得的弦长.解答:解:圆(x﹣2)2+(y+1)2=4的圆心为C(2,﹣1),半径r=2,∵点C到直线直线x+2y﹣3=0的距离d==,∴根据垂径定理,得直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为2=2=故答案为:.点评:本题给出直线与圆的方程,求直线被圆截得的弦长,着重考查点到直线的距离公式、圆的方程和直线与圆的位置关系等知识,属于基础题.10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).考点:二次函数的性质.专题:函数的性质及应用.分析:由条件利用二次函数的性质可得,由此求得m的范围.解答:解:∵二次函数f(x)=x2+mx﹣1的图象开口向上,对于任意x∈[m,m+1],都有f(x)<0成立,∴,即,解得﹣<m<0,故答案为:(﹣,0).点评:本题主要考查二次函数的性质应用,体现了转化的数学思想,属于基础题.11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3.考点:利用导数研究曲线上某点切线方程.专题:导数的概念及应用.分析:由曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,可得y|x=2=﹣5,且y′|x=2=,解方程可得答案.解答:解:∵直线7x+2y+3=0的斜率k=,曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,∴y′=2ax﹣,∴,解得:,故a+b=﹣3,故答案为:﹣3点评:本题考查的知识点是利用导数研究曲线上某点切线方程,其中根据已知得到y|x=2=﹣5,且y′|x=2=,是解答的关键.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22.考点:向量在几何中的应用;平面向量数量积的运算.专题:平面向量及应用.分析:由=3,可得=+,=﹣,进而由AB=8,AD=5,=3,•=2,构造方程,进而可得答案.解答:解:∵=3,∴=+,=﹣,又∵AB=8,AD=5,∴•=(+)•(﹣)=||2﹣•﹣||2=25﹣•﹣12=2,故•=22,故答案为:22.点评:本题考查的知识点是向量在几何中的应用,平面向量数量积的运算,其中根据已知得到=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).考点:根的存在性及根的个数判断.专题:函数的性质及应用.分析:在同一坐标系中画出函数的图象与直线y=a的图象,利用数形结合判断a的范围即可.解答:解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知.故答案为:(0,).点评:本题考查函数的图象以函数的零点的求法,数形结合的应用.14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.考点:余弦定理;正弦定理.专题:三角函数的图像与性质;解三角形.分析:根据正弦定理和余弦定理,利用基本不等式即可得到结论.解答:解:由正弦定理得a+b=2c,得c=(a+b),由余弦定理得cosC====≥=,当且仅当时,取等号,故≤cosC<1,故cosC的最小值是.故答案为:.点评:本题主要考查正弦定理和余弦定理的应用,利用基本不等式是解决本题的关键.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.考点:两角和与差的正弦函数;两角和与差的余弦函数.专题:三角函数的求值;三角函数的图像与性质.分析:(1)通过已知条件求出cosα,然后利用两角和的正弦函数求sin(+α)的值;(2)求出cos2α,然后利用两角差的余弦函数求cos(﹣2α)的值.解答:解:α∈(,π),sinα=.∴cosα=﹣=(1)sin(+α)=sin cosα+cos sinα==﹣;∴sin(+α)的值为:﹣.(2)∵α∈(,π),sinα=.∴cos2α=1﹣2sin2α=,sin2α=2sinαcosα=﹣∴cos(﹣2α)=cos cos2α+sin sin2α==﹣.cos(﹣2α)的值为:﹣.点评:本题考查两角和与差的三角函数,三角函数的基本关系式的应用,考查计算能力.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.考点:平面与平面垂直的判定;直线与平面垂直的判定.专题:空间位置关系与距离;空间角;立体几何.分析:(1)由D、E为PC、AC的中点,得出DE∥PA,从而得出PA∥平面DEF;(2)要证平面BDE⊥平面ABC,只需证DE⊥平面ABC,即证DE⊥EF,且DE⊥AC 即可.解答:证明:(1)∵D、E为PC、AC的中点,∴DE∥PA,又∵PA⊄平面DEF,DE⊂平面DEF,∴PA∥平面DEF;(2)∵D、E为PC、AC的中点,∴DE=PA=3;又∵E、F为AC、AB的中点,∴EF=BC=4;∴DE2+EF2=DF2,∴∠DEF=90°,∴DE⊥EF;∵DE∥PA,PA⊥AC,∴DE⊥AC;∵AC∩EF=E,∴DE⊥平面ABC;∵DE⊂平面BDE,∴平面BDE⊥平面ABC.点评:本题考查了空间中的平行与垂直问题,解题时应明确空间中的线线、线面、面面之间的垂直与平行的互相转化关系,是基础题目.17.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.考点:椭圆的简单性质;椭圆的标准方程.专题:圆锥曲线的定义、性质与方程.分析:(1)根据椭圆的定义,建立方程关系即可求出a,b的值.(2)求出C的坐标,利用F1C⊥AB建立斜率之间的关系,解方程即可求出e的值.解答:解:(1)∵C的坐标为(,),∴,即,∵,∴a2=()2=2,即b2=1,则椭圆的方程为+y2=1.(2)设F1(﹣c,0),F2(c,0),∵B(0,b),∴直线BF2:y=﹣x+b,代入椭圆方程+=1(a>b>0)得()x2﹣=0,解得x=0,或x=,∵A(,),且A,C关于x轴对称,∴C(,﹣),则=﹣=,∵F1C⊥AB,∴×()=﹣1,由b2=a2﹣c2得,即e=.点评:本题主要考查圆锥曲线的综合问题,要求熟练掌握椭圆方程的求法以及直线垂直和斜率之间的关系,运算量较大.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?考点:圆的切线方程;直线与圆的位置关系.专题:直线与圆.分析:(1)在四边形AOCB中,过B作BE⊥OC于E,过A作AF⊥BE于F,设出AF,然后通过解直角三角形列式求解BE,进一步得到CE,然后由勾股定理得答案;(2)设BC与⊙M切于Q,延长QM、CO交于P,设OM=xm,把PC、PQ用含有x 的代数式表示,再结合古桥两端O和A到该圆上任意一点的距离均不少于80m列式求得x的范围,得到x取最小值时圆的半径最大,即圆形保护区的面积最大.解答:解:(1)如图,过B作BE⊥OC于E,过A作AF⊥BE于F,∵∠ABC=90°,∠BEC=90°,∴∠ABF=∠BCE,∴.设AF=4x(m),则BF=3x(m).∵∠AOE=∠AFE=∠OEF=90°,∴OE=AF=4x(m),EF=AO=60(m),∴BE=(3x+60)m.∵,∴CE=(m).∴(m).∴,解得:x=20.∴BE=120m,CE=90m,则BC=150m;(2)如图,设BC与⊙M切于Q,延长QM、CO交于P,∵∠POM=∠PQC=90°,∴∠PMO=∠BCO.设OM=xm,则OP=m,PM=m.∴PC=m,PQ=m.设⊙M半径为R,∴R=MQ=m=m.∵A、O到⊙M上任一点距离不少于80m,则R﹣AM≥80,R﹣OM≥80,∴136﹣﹣(60﹣x)≥80,136﹣﹣x≥80.解得:10≤x≤35.∴当且仅当x=10时R取到最大值.∴OM=10m时,保护区面积最大.点评:本题考查圆的切线,考查了直线与圆的位置关系,解答的关键在于对题意的理解,是中档题.19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.考点:利用导数求闭区间上函数的最值.专题:导数的综合应用.分析:(1)根据函数奇偶性的定义即可证明f(x)是R上的偶函数;(2)利用参数分离法,将不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,进行转化求最值问题即可求实数m的取值范围;(3)构u造函数,利用函数的单调性,最值与单调性之间的关系,分别进行讨论即可得到结论.解答:解:(1)∵f(x)=e x+e﹣x,∴f(﹣x)=e﹣x+e x=f(x),即函数:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,即m(e x+e﹣x﹣1)≤e﹣x﹣1,∵x>0,∴e x+e﹣x﹣1>0,即m≤在(0,+∞)上恒成立,设t=e x,(t>1),则m≤在(1,+∞)上恒成立,∵=﹣=﹣,当且仅当t=2时等号成立,∴m.(3)令g(x)=e x+e﹣x﹣a(﹣x3+3x),则g′(x)=e x﹣e﹣x+3a(x2﹣1),当x>1,g′(x)>0,即函数g(x)在[1,+∞)上单调递增,故此时g(x)的最小值g(1)=e+﹣2a,由于存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,故e+﹣2a<0,即a>(e+),令h(x)=x﹣(e﹣1)lnx﹣1,则h′(x)=1﹣,由h′(x)=1﹣=0,解得x=e﹣1,当0<x<e﹣1时,h′(x)<0,此时函数单调递减,当x>e﹣1时,h′(x)>0,此时函数单调递增,∴h(x)在(0,+∞)上的最小值为h(e﹣1),注意到h(1)=h(e)=0,∴当x∈(1,e﹣1)⊆(0,e﹣1)时,h(e﹣1)≤h(x)<h(1)=0,当x∈(e﹣1,e)⊆(e﹣1,+∞)时,h(x)<h(e)=0,∴h(x)<0,对任意的x∈(1,e)成立.①a∈((e+),e)⊆(1,e)时,h(a)<0,即a﹣1<(e﹣1)lna,从而e a﹣1<a e﹣1,②当a=e时,a e﹣1=e a﹣1,③当a∈(e,+∞)⊆(e﹣1,+∞)时,当a>e﹣1时,h(a)>h(e)=0,即a﹣1>(e﹣1)lna,从而e a﹣1>a e﹣1.点评:本题主要考查函数奇偶性的判定,函数单调性和最值的应用,利用导数是解决本题的关键,综合性较强,运算量较大.20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.考点:数列的应用;等差数列的性质.专题:等差数列与等比数列.分析:(1)利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”即可得到a n,再利用“H”数列的意义即可得出.(2)利用等差数列的前n项和即可得出S n,对∀n∈N*,∃m∈N*使S n=a m,取n=2和根据d<0即可得出;(3)设{a n}的公差为d,构造数列:b n=a1﹣(n﹣1)a1=(2﹣n)a1,c n=(n﹣1)(a1+d),可证明{b n}和{c n}是等差数列.再利用等差数列的前n项和公式及其通项公式、“H”的意义即可得出.解答:解:(1)当n≥2时,a n=S n﹣S n﹣1=2n﹣2n﹣1=2n﹣1,当n=1时,a1=S1=2.当n=1时,S1=a1.当n≥2时,S n=a n+1.∴数列{a n}是“H”数列.(2)S n==,对∀n∈N*,∃m∈N*使S n=a m,即,取n=2时,得1+d=(m﹣1)d,解得,∵d<0,∴m<2,又m∈N*,∴m=1,∴d=﹣1.(3)设{a n}的公差为d,令b n=a1﹣(n﹣1)a1=(2﹣n)a1,对∀n∈N*,b n+1﹣b n=﹣a1,c n=(n﹣1)(a1+d),对∀n∈N*,c n+1﹣c n=a1+d,则b n+c n=a1+(n﹣1)d=a n,且数列{b n}和{c n}是等差数列.数列{b n}的前n项和T n=,令T n=(2﹣m)a1,则.当n=1时,m=1;当n=2时,m=1.当n≥3时,由于n与n﹣3的奇偶性不同,即n(n﹣3)为非负偶数,m∈N*.因此对∀n∈N*,都可找到m∈N*,使T n=b m成立,即{b n}为H数列.数列{c n}的前n项和R n=,令c m=(m﹣1)(a1+d)=R n,则m=.∵对∀n∈N*,n(n﹣3)为非负偶数,∴m∈N*.因此对∀n∈N*,都可找到m∈N*,使R n=c m成立,即{c n}为H数列.因此命题得证.点评:本题考查了利用“当n≥2时,a n=S n﹣S n﹣1,当n=1时,a1=S1”求a n、等差数列的前n 项和公式及其通项公式、新定义“H”的意义等基础知识与基本技能方法,考查了推理能力和计算能力、构造法,属于难题.三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.考点:弦切角.专题:直线与圆.分析:利用OC=OB,可得∠OCB=∠B,利用同弧所对的圆周角相等,即可得出结论.解答:证明:∵OC=OB,∴∠OCB=∠B,∵∠B=∠D,∴∠OCB=∠D.点评:本题考查同弧所对的圆周角相等,考查学生分析解决问题的能力,属于基础题.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.考点:矩阵与向量乘法的意义.专题:矩阵和变换.分析:利用矩阵的乘法,结合A=B,可得方程组,即可求x,y的值,从而求得x+y 的值.解答:解:∵矩阵A=,B=,向量=,A=B,∴,∴x=﹣,y=4,∴x+y=点评:本题考查矩阵的乘法,考查学生的计算能力,属于基础题.【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.考点:直线的参数方程.专题:计算题;坐标系和参数方程.分析:直线l的参数方程化为普通方程,与抛物线y2=4x联立,求出A,B的坐标,即可求线段AB的长.解答:解:直线l的参数方程为,化为普通方程为x+y=3,与抛物线y2=4x联立,可得x2﹣10x+9=0,∴交点A(1,2),B(9,﹣6),∴|AB|==8.点评:本题主要考查了直线与抛物线的位置关系:相交关系的应用,考查学生的计算能力,属于基础题.【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.考点:不等式的证明.专题:证明题;不等式的解法及应用.分析:由均值不等式可得1+x+y2≥3,1+x2+y≥,两式相乘可得结论.解答:证明:由均值不等式可得1+x+y2≥3,1+x2+y≥分别当且仅当x=y2=1,x2=y=1时等号成立,∴两式相乘可得(1+x+y2)(1+x2+y)≥9xy.点评:本题考查不等式的证明,正确运用均值不等式是关键.(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).考点:离散型随机变量的期望与方差;古典概型及其概率计算公式.专题:概率与统计.分析:(1)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(2)先判断X的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.解答:解(1)一次取2个球共有=36种可能,2个球颜色相同共有=10种可能情况∴取出的2个球颜色相同的概率P=.(2)X的所有可能值为4,3,2,则P(X=4)=,P(X=3)=于是P(X=2)=1﹣P(X=3)﹣P(X=4)=,X的概率分布列为X 2 3 4P故X数学期望E(X)=.点评:本题考查了排列组合,概率公式以概率的分布列和数学期望,知识点比较多,属基础题.26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.考点:三角函数中的恒等变换应用;导数的运算.专题:函数的性质及应用;三角函数的求值.分析:(1)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:xf0(x)=sinx,然后两边求导后根据条件两边再求导得:2f1(x)+xf2(x)=﹣sinx,把x=代入式子求值;(2)由(1)得,f0(x)+xf1(x)=cosx和2f1(x)+xf2(x)=﹣sinx,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把x=代入所给的式子求解验证.解答:解:(1)∵f0(x)=,∴xf0(x)=sinx,则两边求导,[xf0(x)]′=(sinx)′,∵f n(x)为f n﹣1(x)的导数,n∈N*,∴f0(x)+xf1(x)=cosx,两边再同时求导得,2f1(x)+xf2(x)=﹣sinx,将x=代入上式得,2f1()+f2()=﹣1,(2)由(1)得,f0(x)+xf1(x)=cosx=sin(x+),恒成立两边再同时求导得,2f1(x)+xf2(x)=﹣sinx=sin(x+π),再对上式两边同时求导得,3f2(x)+xf3(x)=﹣cosx=sin(x+),同理可得,两边再同时求导得,4f3(x)+xf4(x)=sinx=sin(x+2π),猜想得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,下面用数学归纳法进行证明等式成立:①当n=1时,成立,则上式成立;②假设n=k(k>1且k∈N*)时等式成立,即,∵[kf k﹣1(x)+xf k(x)]′=kf k﹣1′(x)+f k(x)+xf k′(x)=(k+1)f k(x)+xf k+1(x)又===,∴那么n=k+1(k>1且k∈N*)时.等式也成立,由①②得,nf n﹣1(x)+xf n(x)=sin(x+)对任意n∈N*恒成立,令x=代入上式得,nf n﹣1()+f n()=sin(+)=±cos=±,所以,对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.点评:本题考查了三角函数、复合函数的求导数公式和法则、诱导公式,以及数学归纳法证明命题、转化思想等,本题设计巧妙,题型新颖,立意深刻,是一道不可多得的好题,难度很大,考查了学生观察问题、分析问题、解决问题的能力,以及逻辑思维能力.。

南通一中2014-2015学年度第二学期最后一练高三数学参考答案

南通一中2014-2015学年度第二学期最后一练高三数学参考答案

南通一中2014-2015学年度第二学期高三数学最后一练参考答案1.{(3,﹣1)}; 2.真;34;5.π4; 6.(3,1)(3,)-+∞ ; 7.π4ϕ=; 8.λ>-3;9.1023; 10.②③;1112.ππ(,);13.915,44⎛⎫⎪⎝⎭; 14. 【解析】11.方法一:令y =tx ,则t >0,代入不等式得x 2+2tx 2≤a (x 2+t 2x 2),消掉x 2得1+2t ≤a (1+t 2),即at 2-2t +a -1≥0对t >0恒成立,显然a >0,故只要Δ=4-4a (a -1)≤0,即a 2-a -1≥0,考虑到a >0,得a .方法二:令y =tx ,则a ≥22222121x xy tx y t ++=++,令m =1+2t >1,则t =12m -, 则a ≥2121tt ++=22444541)252m m m m m m m==+(--++-,故a . 13.分析:由条件213(2)n n S S n n -+=≥得21)1(3+=++n S S n n ,两式相减得361+=++n a a n n ,故9612+=+++n a a n n ,两式再相减得62=-+n n a a ,由2=n 得12121=++a a a , a a 2122-=,从而a n a n 2662-+=;3=n 得2721321=++++a a a a a ,a a 233+=,从而a n a n 23612+-=+,由条件得⎪⎩⎪⎨⎧-++<+-+-<-+-<an a n a n a n a a 26)1(6236236266212,解之得41549<<a 14.左焦点为1F .连结11,AF BF 可得四边形1AFBF 是矩形,所以AO OF OB c ===.所以2AB c =又,AF BF ⊥所以. 2sin ,2cos AF c BF c αα==.又因为1A FB F =,12AF AF a +=.所以2s i n 2c o s c c a αα+=.即11sin cos)4c aπααα==++.因为ππ,,124α⎡⎤∈⎢⎥⎣⎦π)4α+.c a ==故填. 15.(1)max()3f x =,5π12α=;(2)0b c -=.解:(1)由题意可得:ππ()1cos(2)21sin 2212sin(2)23f x x x x x x ⎡⎤=-+=+-=+-⎢⎥⎣⎦,(3分)又∵ππ,42x ⎡⎤∈⎢⎥⎣⎦,∴ππ2π2633x -≤≤,(5分)故当ππ232x -=,即5π12x α==时,max ()3f x =;(7分)(2)由(1)知ππ123A α=-=,(8分)又∵2sin sin sin B C A =,∴2bc a =,(9分) ∵222222cos a b c bc A b c bc =+-=+-,(11分)∴22b c bc bc +-=,即2()0b c -=,故b c =(13分) 所以△ABC 是等边三角形(14分)16.解:(1)连结OE Q O 是正方形的中心O AC \是的中点,又Q E 是PC 的中点 \OE 是PCA V 的中位线 \ OE ∥P A , (3分)又Q OE Ì 平面BDE ,PA Ë 平面BDE \P A ∥平面BDE .(7分)(2)Q PO ⊥底面ABCD ,BD Ì平面ABCD ,\PO ⊥BD(9分) 又Q BD ⊥AC AC PO O ?,且,AC PO ⊂平面P AC ,\BD ⊥平面PAC (12分) 又Q BD Ì 平面BDE \平面PAC ⊥平面BDE . (14分) 17.(1)21(sin )2S R θθ=-弓;(2)当园林公司把扇形的圆心角设计成π3时,总利润取最大值24π5(3R -.解:(1)212S R θ=扇,21sin 2OBD S R θ∆=, 21()(sin )2S f R θθθ==-弓. (3分)(2)设总利润为y 元,种植草皮利润为1y 元,种植花卉利润为2y ,种植学校观赏植物成本为3y2211130(π)22y R R θ=-,221sin 802y R θ=⋅,231(sin )202y R θθ=-⋅, (6分)2222123111130(π)sin 80(sin )202222y y y y R R R R θθθθ∴=+-=-+⋅--⋅ .25[3π(510sin )]R θθ=--(9分) 设()510sin g θθθ=- (0,π)θ∈.'()510cos g θθ=-'1π()0,cos ,()0,2g g θθθθ<>∈在()3上为减函数; '1π()0,cos ,(),π2g g θθθθ><∈在()3上为增函数. (12分) 当π3θ=时,()g θ取到最小值,此时总利润最大:224π5[3π(510sin )]=5-3y R R θθ=--(.(13分) 答:所以当园林公司把扇形的圆心角设计成3π时,总利润取最大值24π53R -(. (14分) 18.(1)2212516x y +=或2225125616x y+=;(2)5m =. 解:(1)当焦点在x 轴上时, 由2222221616161625332555a c a c a a c c a a ⎧⎧-=-=⎪⎪⇒⇒=⇒=⎨⎨==⎪⎪⎩⎩,故所求椭圆方程为2212516x y +=.(2分)当焦点在y 轴上时,由22222161625631225455a c a c a c c ⎧⎧-==-⎪⎪⇒⇒=⎨⎨==⎪⎪⎩⎩,故所求椭圆方程为2225125616x y +=.(4分)综上所述,所求椭圆方程为2212516x y +=或2225125616x y +=.(5分)(2)如图所示:设直线AB 的方程为()()3,0y k x k =-≠,()()1122342525,,,,,,,33A x y B x y M y N y ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,则由()()222222316515025400012516y k x k x k x k x y ⎧=-⎪⇒+-+-=⎨+=⎪⎩, 根据韦达定理(根与系数的关系)得:21221501625k x x k +=-,21222254001625k x x k -=+, (8分) ∴由()()()()2112121222232563316253y k x k y y k x x k y k x ⎧=--⎪⇒=--=⎨+=-⎪⎩ …… ①(10分)M D A 、、三点共线,即//MD DA ,且325,3MD m y ⎛⎫=-- ⎪⎝⎭,()11,DA x m y =-,∴()()()1311313252533y m y x m y m y m x -⎛⎫--=-⇒= ⎪-⎝⎭,同理可得()()2423253y m y m x -=-, ∴()()()21234123259m y y y y m x m x -=-- ……②(12分)根所题意,π2MFN ∠=(直径所对圆周角),即0FM FN FM FN ⊥⇔⋅= ,∴233434416,31625603916,3FM y y y y y FN y ⎧⎛⎫= ⎪⎪⎪⎝⎭⎛⎫⇒+=⇒=-⎨ ⎪⎝⎭⎛⎫⎪= ⎪⎪⎝⎭⎩ ……③ (14分)由①、②、③得:()()()()()22222123252562561164000916259m k k m m x m x k --⨯=-⇒+-=--+, 210k +>,∴由21640005m m -=⇒=±, 点D 在()3,0F 的右侧,∴3m >,5m =.∴存在满足条件的D 点,且5m =.(16分) 19.解:(1)()f x 的定义域为(0,)+∞,2121()2a ax a f x ax x x +++'=+=,(2分)当0a ≥ 时,0f x '()> ,故()f x 在0(,)+∞上单调递增;当1a -≤ 时,0()<f x ' ,故()f x 在0(,)+∞上单调递减; (4分)当10a -<< 时,令0()f x '=,解得x , 即0,x ⎛∈⎝时,()0f x '>;x ⎫∈+∞⎪⎪⎭时,()0.f x '< (6分) 故f (x)在0(上单调递增,在+∞)上单调递减.(8分)(2)不妨设12x x …,而1a <-,由(1)知()f x 在(0,)+∞单调递减, 从而对任意12(0,)x x ∈+∞、,恒有121212||04x x f x f x x x ∀∈+∞--,(,),()()≥ ⇔1221()()4()f x f x x x --…⇔1122()4()4f x x f x x ++…(11分)令()()4g x f x x =+,则1()24a g x ax x+'=++等价于()g x 在(0,)+∞单调递减, 即1()240a g x ax x+'=++…,(13分)从而22222241(21)42(21)2212121x x x x a x x x ------==-+++…, 故a 的取值范围为(],2.-∞-(16分)另解:min 241()21x a x --+≤ 设241()21x x x ϕ--=+, 则222222222224(21)(41)48448444(21)(1)()(21)(21)(21)(21)x x x x x x x x x x x x x x ϕ-+---⋅+-+--+'====++++当1(0,)()0,()2x x x ϕϕ'∈<时,为减函数,1(,)()0,()2x x x ϕϕ'∈+∞>时,为增函数.∴min 1()()22x ϕϕ==- ∴2].a -∞-的取值范围为(,20.解:(1)82423()03(30)9a a a a =+-=+⨯-= )91314()24210a a a a =+⨯-=+⨯=,8919a a ∴+= (3分) (2){}n a 是3级等差数列,332n n n a a a +-+=,2(2sin )2(3)sin(3)2(3)sin(3)n n n n n n ωωωωω+=++++-+-(n ∈*N )(4分) 2sin sin(3)sin(3)2sin cos3n n n n ωωωωωωω∴=++-=(n ∈*N )所以sin 0n ω=,或cos 31ω=,sin 0n ω=对n ∈*N 恒成立时, π()k k ω=∈Zcos 31ω=时,2π32π(),(),3k k k k ωω=∈∴=∈Z Z2π{|()}{|π()}3k k k k ωωωωω∴∈=∈=∈Z Z (6分)ω最小正值等于2π3,此时2π2sin 3n n a n =+. 由于2(32)π2(31)π2(3)πsin sin sin 0333n n n --++=(n ∈*N )323136(31)n n n a a a n --∴++=-(n ∈*N ) (8分)312345632313[126(31)]()()()2n n n n n n S a a a a a a a a a --+-=+++++++++=293n n =+(n ∈*N ) (9分)(3)若{}n a 为2级等差数列,222n n n a a a +-+=,则212{},{}n n a a -均成等差数列,(10分)设等差数列212{},{}n n a a -的公差分别为12,d d ,{}n a 为3级等差数列,332n n n a a a +-+=,则32{}n a -成等差数列,设公差为D 17,a a 既是中21{}n a -的项,也是32{}n a -中的项,71132a a d D -== 410,a a 既是中2{}n a 的项,也是32{}n a -中的项,104232a a d D -==12332d d D ∴== (12分)设122d d d ==,则3D d =所以21111(1)(22)n a a n d a n d -=+-=+-(n ∈*N ),2222(1)(22)n a a n d a n d =+-=+-,(n ∈*N )又4113a a D a d =+=+,42222a a d a d =+=+,所以21a a d =+, 21(21)n a a n d ∴=+-(n ∈*N )(14分)综合得:1(1)n a a n d ∴=+-,显然{}n a 为等差数列. (16分)附加题参考答案21B .得a =2(3分)设点列式(3分)得22114x y +=(4分) 21C .(10y -=;(2)32⎛⎝⎭. 解:(1)∵πsin 3ρθ⎛⎫-= ⎪⎝⎭,∴1sin 2ρθθ⎫-=⎪⎪⎝⎭12y -=即所求直线l0y -.(3分) (2)曲线C 的直角坐标方程为:()()221101x y y -+=≤≤ , (6分)∴()22011y x y ---+=⎪⎩,解得32x y ⎧=⎪⎪⎨⎪=⎪⎩或12x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去). (9分)所以,直线l 与曲线C的交点的直角坐标为32⎛ ⎝⎭. (10分)22.解:(1)设“取出的4张卡片中, 含有编号为3的卡片”为事件A ,则13222525476()7C C C C P A C +==. 所以取出的4张卡片中, 含有编号为3的卡片的概率为67.(4分) (2)随机变量X 的所有可能取值为1,2,,3,4,33471(1)35C P X C ===,34474(2)35C P X C ===,35472(3)7C P X C ===,36474(4)7C P X C ===,所以随机变量X 的分布列是随机变量X 的数学期望14241712343535775EX =⨯+⨯+⨯+⨯=.(10分) 23.解:(1)由题意知(,0)2p F ,设(,0)(0)D t t >,则FD 的中点为2(,0)4p t+,因为||||FA FD =,由抛物线的定义知:3||22p pt +=-,解得3t p =+或3t =-(舍去).由234p t+=,解得2p =.所以抛物线C 的方程为24y x =.(3分) (2)(ⅰ)由(1)知(1,0)F , 设0000(,)(0),(,0)(0)D D A x y x y D x x ≠>,因为||||FA FD =,则0|1|1D x x -=+,由0D x >得02D x x =+,故0(2,0)D x +,(8分)故直线AB 的斜率为02AB y k =-,因为直线1l 和直线AB 平行, 设直线1l 的方程为02y y x b =-+, 代入抛物线方程得200880b y y y y +-=,由题意20064320b y y ∆=+=,得02b y =-. 设(,)E E E x y ,则04E y y =-,204E x y =. 当204y ≠时,000220002044444E AB E y y y y y k y x x y y +-==-=---, 可得直线AE 的方程为000204()4yy y x x y -=--,由2004y x =,整理可得0204(1)4y y x y =--, 直线AE 恒过点(1,0)F .当204y =时,直线AE 的方程为1x =,过点(1,0)F , 所以直线AE 过定点(1,0)F .(6分)(ⅱ)由(ⅰ)知,直线AE 过焦点(1,0)F ,所以000011||||||(1)(1)2AE AF FE x x x x =+=+++=++,设直线AE 的方程为+1x my =,因为点00(,)A x y 在直线AE 上,故001x m y -=,设11(,)B x y ,直线AB 的方程为000()2y y y x x -=--, 由于00y ≠,可得0022x y x y =-++,代入抛物线方程得2008840y y x y +--=, 所以0108y y y +=-,可求得1008y y y =--,10044x x x =++, 所以点B 到直线AE 的距离为0048|4()1|x m y d ++++-===. 则ABE ∆的面积00112)162S x x =⨯++≥, 当且仅当001x x =即01x =时等号成立. 所以ABE ∆的面积的最小值为16. (10分)考后反思表。

(完整word版)2014年江苏省高考数学试卷答案与解析

(完整word版)2014年江苏省高考数学试卷答案与解析

2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3}.2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21.3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是5.4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.P=故答案为:.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.的交点,可得.根据的交点,.,∴,+=.故答案为:.6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24株树木的底部周长小于100cm..7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是4.=8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.=,它们的侧面积相等,==故答案为:.9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.==2故答案为:10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).,,,解得﹣<,11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P(2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3.(,解方程可得答案.,(,,,,是解答的关键.12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22.=3,可得=+,﹣,=3•=3,=+,=﹣,•(+)(﹣)=||•﹣|﹣•﹣•=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f (x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).|的图象如图:由图象可知)14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.(bcosC==≥=当且仅当≤.故答案为:.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.(((.∴﹣=+=sin cos﹣+.,=,﹣=cos sin2﹣)的值为:﹣16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB 的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.DE=EF=BC=417.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.的坐标为(,,即,,)+y+(=0)()==(得.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?CE=OP=m m PC=PQ=m=﹣﹣19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a﹣1与a e﹣1的大小,并证明你的结论.﹣,当且仅当m﹣﹣()﹣﹣()20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.=,解得,,则,三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.A=B,可得方程组,即可求A=B==A=B,﹣【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.的参数方程为,化为普通方程为=8【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.3,两式相乘可得结论.,(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).个球共有个球颜色相同共有P==,P=26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.代入式子求值;代入所给的式子求解验证.=代入上式得,(+))x+)对任意时,=)对任意代入上式得,(+)+cos=±)(|=。

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案

2014年普通高等学校招生全国统一考试(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲ . 2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 ▲ . 3. 右图是一个算法流程图,则输出的n 的值是 ▲ .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的 乘积为6的概率是 ▲ .5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象 有一个横坐标为3π的交点,则ϕ的值是 ▲ .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图 所示,则在抽测的60株树木中,有 ▲ 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 ▲ .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别 为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 ▲ .9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 ▲ .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x , 都有0)(<x f 成立,则实数m 的取值范围是 ▲ . 11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b为常数)过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 ▲ . 12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,3=,2=⋅BP AP ,则AD AB ⋅的值是▲ .13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 ▲ .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.(本小题满分14分) 已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)25cos(απ-的值.(第3题)100 80 90 110 120 130 底部周长/cm(第6题)(第12题)如图,在三棱锥ABC P -中,D ,E ,F 分别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河 岸AB 垂直;保护区的边界为圆心M 在线段OA 上 并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大? 19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论. (第16题)P D CE F B A设数列}{n a 的前n 项和为n S .若对任意正整数n ,总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”. (1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a +=(∈n N *)成立.参考答案。

2014年高考江苏数学试题及答案(word解析版)

2014年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题—第14 题)、解答题(第15 题第20 题).本卷满分160 分,考试时间为120 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh ,其中s为圆柱的表面积,h 为高.圆柱的侧面积公式:S圆柱=cl ,其中 c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014 年江苏,1,5 分】已知集合 A { 2 ,1,3,4} ,B { 1,2,3} ,则 A B _______ .【答案】{ 1,3}【解析】由题意得 A B { 1,3} .(2)【2014 年江苏,2,5 分】已知复数【答案】21 z(5 2i) (i 为虚数单位),则z的实部为_______. 22【解析】由题意 2 2z (5 2i) 25 2 5 2i (2i) 21 20i ,其实部为21.(3)【2014 年江苏,3,5 分】右图是一个算法流程图,则输出的n 的值是_______.【答案】 5n 的最小整数解.2n 20 整数解为n 5,因此输出的n 5 .【解析】本题实质上就是求不等式 2 20(4)【2014 年江苏,4,5 分】从1,2 ,3,6这4个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是_______.【答案】 13【解析】从1,2,3,6这4个数中任取 2 个数共有 2C4 6 种取法,其中乘积为 6 的有1,6 和2,3 两种取法,因此所求概率为 2 1P .6 3(5)【2014 年江苏,5,5 分】已知函数y cos x与y sin(2 x )(0 ≤) ,它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cos sin(2 )3 3 ,即2 1sin( )3 2,2kk ( 1) ,(k Z ) ,因为0 ,所3 6以.6(6)【2014 年江苏,6,5 分】为了了解一片经济林的生长情况,随机抽测了其中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频率分布直方图如图所示,则在抽测的60 株树木中,有株树木的底部周长小于100 cm.【答案】241【解析】由题意在抽测的60 株树木中,底部周长小于100 cm 的株数为(0.015 0.025) 10 60 24 .(7)【2014 年江苏,7,5 分】在各项均为正数的等比数列{ }a 中,若na8 a6 2a4 ,则a2 1 ,a的值是________.6【答案】 4【解析】设公比为q ,因为a2 1,则由a8 a6 2a4 得 6 4 2 2 4 2 2 0q q a ,q q ,解得2 2q ,所以4a6 a2q 4 .(8)【2014 年江苏,8,5 分】设甲、乙两个圆柱的底面积分别为S,S ,体积分别为1 2 V ,V ,若它们的侧面积相1 2等,且S1S294,则V1V2的值是_______.【答案】 32【解析】设甲、乙两个圆柱的底面和高分别为r 、h ,r2、h2 ,则2 r1h1 2 r2 h2 ,1 1 h r1 2h r2 1,又2S r1 12S r2 294,所以r1r232,则2 2 2V r h r h r r r1 1 1 1 1 12 12 2 2V r h r h r r r2 2 2 2 2 2 1 232.(9)【2014 年江苏,9,5 分】在平面直角坐标系xOy 中,直线x 2 y 3 0 被圆长为________.2 2(x2) (y1) 4 截得的弦【答案】 2 555【解析】圆 2 2(x 2) (y1) 4 的圆心为 C (2, 1) ,半径为r 2 ,点C 到直线x 2y 3 0 的距离为2 2 ( 1)3 3d ,所求弦长为2 251 22 2 9 2 55l 2 r d 2 4 .5 5(10)【2014 年江苏,10,5 分】已知函数f (x) x mx 1,若对任意x [m,m 1],都有 f (x) 0 成立,则实2数m 的取值范围是________.【答案】 2 0,2【解析】据题意2 2f (m) m m 1 02f (m 1) (m 1) m(m 1) 1 0,解得22m 0 .(11)【2014 年江苏,11,5 分】在平面直角坐标系xOy 中,若曲线 2 by axx( a,b 为常数)过点P(2 ,5) ,且该曲线在点P 处的切线与直线7x 2 y 3 0 平行,则 a b 的值是________.【答案】 3【解析】曲线y ax 2 bxb b过点P(2, 5) ,则4a 5 ①,又y'2ax 22 x,所以b 74a ②,由①②解得4 2ab11,所以 a b 2 .(12)【2014 年江苏,12,5 分】如图,在平行四边形ABCD 中,已知,AB 8 ,AD 5 ,CP 3PD ,AP BP 2 ,则AB AD 的值是________.【答案】22【解析】由题意,1AP AD DP AD AB ,43 3BP BC CP BC CD AD AB ,4 4所以1 3AP BP (AD AB) (AD AB)4 42 13 2AD AD AB AB ,2 16即 1 32 25 64AD AB ,解得AD AB 22 .2 16(13)【2014 年江苏,13,5 分】已知 f (x) 是定义在R上且周期为 3 的函数,当x [0 ,3) 时, 2 1f (x) x 2x .2 若函数y f ( x) a 在区间[ 3,4] 上有10 个零点(互不相同),则实数 a 的取值范围是________.【答案】0 1,22【解析】作出函数21f(x)x2x,x[0,3)的图象,可见21f(0),当x1时,21f(x)极大,27f,方程f(x)a0在x[3,4]上有10个零点,即函数y f(x)和图象与直线(3)2y a在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线y a与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21a(0,).2(14)【2014年江苏,14,5分】若ABC的内角满足sin A2sin B2sin C,则cos C的最小值是_______.【答案】624【解析】由已知sin A2sin B2sin C及正弦定理可得a2b2c,cosC222a b c2ab2ab223a2b22ab26ab22ab62 8ab8ab4,当且仅当223a2b,即ab23时等号成立,所以cos C的最小值为624.二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知2,,sin55.(1)求sin的值;4(2)求cos26的值.解:(1)∵sin5,,,∴25225cos1sin5,210s i n s i n c o s c o s s i n(c o s s i n).444210(2)∵43sin22sin cos cos2cos sin,,sin22sin cos cos2cos sin2255∴3314334 cos2cos cos2sin sin2666252510.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA AC,PA6,BC8,DF5.(1)求证:直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解:(1)∵D,E为PC,AC中点∴DE∥PA∵PA平面DEF,DE平面DEF∴PA∥平面DEF.(2)∵D,E为PC,AC中点,∴DE1PA3∵E,F为AC,AB中点,∴1 4EF BC,22∴DE2EF2DF2,∴DEF90°,∴DE⊥EF,∵DE//PA,PA AC,∴DE AC,∵AC EF E,∴DE⊥平面ABC,∵DE平面BDE,∴平面BDE⊥平面ABC.(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy中,F,F分别是椭圆1222yx a b221(0)a b的左、右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1(1)若点C的坐标为41,,且33B F22,求椭圆的方程;(2)若F C AB,求椭圆离心率e的值.1316 1解:(1)∵ 4 1C ,,∴3 3 9 9 9a b2 2,∵ 2 2 2 2BF b c a ,∴22 ( 2) 2 2a ,∴b,2 1∴椭圆方程为 2 x y .2 12(2)设焦点F1( c,0) ,F2 (c,0) ,C(x,y) ,∵A,C 关于x 轴对称,∴A(x ,y) ,∵B,F ,A三点共线,∴2b ybc x,即bx cy bc 0①∵y b FC AB ,∴ 1 1x c c ,即 2 0xc by c ②①②联立方程组,解得xyca2b c2 22bc2b c2 2∴Ca c 2bc2 2,2 2 2 2b c b cC 在椭圆上,∴2 2a c 2bc2 2b c b c2 2 2 2a b2 21,化简得5c a ,∴c 52 2a 5, 故离心率为55.(18)【2014 年江苏,18,16 分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段O A 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m.经测量,点 A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),tan 4BCO .3(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系x Oy.由条件知A(0, 60),C(170, 0),直线BC 的斜率 4k -tan BCO .BC3又因为AB⊥BC,所以直线AB 的斜率 3k .设点 B 的坐标为(a,b),AB4则k BC= b 0 4a 170 3 ,k AB= 60 3ba 0 4,解得a=80,b=120.所以BC= 2 2(170 80) (0 120) 150 .因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d≤60.)由条件知,直线BC 的方程为 4 ( 170)y x ,即4x 3y 680 0 ,3由于圆M 与直线BC 相切,故点M (0,d)到直线BC 的距离是r,即因为O 和A 到圆M 上任意一点的距离均不少于80 m,| 3d 680 | 680 3d r .5 5所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d ) 80≥,解得10 ≤ d ≤35 .故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA, CB 交于点F.因为tan∠BCO = 43 .所以sin∠FCO = 45,cos∠FCO = 35.因为OA =60,OC=170,所以OF= O C tan∠FCO =6803 .CF=OC850cos FCO 3,4从而500AF OF OA .因为O A⊥OC,所以cos∠AFB =sin∠FCO =3 45,又因为A B⊥BC,所以BF =AFcos∠AFB == 4003,从而BC= C F-BF=150.因此新桥B C 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D,连接M D ,则MD ⊥BC,且MD 是圆M 的半径,并设MD =r m,OM =d m(0 ≤d≤60.) 因为O A⊥OC,所以sin∠CFO =cos∠FCO,故由(1)知,sin∠CFO = MD MD r 3MF OF OM 680 5d3所以680 3dr .5因为O和A 到圆M 上任意一点的距离均不少于80 m,所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d )≥80,解得10 ≤ d ≤35 ,故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5(19)【2014 年江苏,19,16 分】已知函数( ) e ex xf x 其中e 是自然对数的底数.(1)证明: f (x) 是R上的偶函数;(2)若关于x的不等式mf (x) ≤ e m 1在(0 ,) 上恒成立,求实数m 的取值范围;x(3)已知正数 a 满足:存在你的结论.x0 [1,) ,使得 3 ea 1 与f (x ) a( x 3x ) 成立.试比较0 0 0a e 1 的大小,并证明解:(1)x R, f ( x) e e f (x) ,∴ f (x) 是R上的偶函数.x x(2)由题意,(e e ) e 1x x x m ≤,∵x (0 ,) ,∴e x e x 1 0 ,x x xm ≤m ,即(e e 1) e 1即 e 1xm ≤对x (0 ,) 恒成立.令 e ( 1)t t ,则xe e 1x x m1 t≤对任意t (1,) 恒成立.t t 12∵ 1 1 1 1t t ≥,当且仅当t 2 时等号成立,∴ 1m ≤.2 2 3t t 1 (t 1) (t 1) 1 1 3t 1 1t 1(3)f '( x) e e ,当x 1 时 f '( x) 0 ∴ f (x) 在(1,) 上单调增,令x xh(x) a( x 3x) ,h '( x) 3ax( x 1) ,33∵a 0 ,x 1,∴h '(x) 0 ,即h( x) 在x (1,) 上单调减,∵存在x0 [1,) ,使得f x a x x ,∴ f (1) e 1 2a ,即 1 e 1 ( ) ( 3 ) a .30 0 0e 2 e∵ a a a a ,设m(a) (e 1)ln a a 1 ,则m '(a ) e 1 1 e 1 a e-1ln ln ln e (e 1)ln 1e 1 a 1e a aa 1,1 1a e .当2 e 1 1e a e 1时,m '(a) 0 ,m(a) 单调增;当 a e 1 时,m '(a) 0 ,m(a ) 单调2 e减,因此m( a) 至多有两个零点,而m(1) m(e) 0 ,∴当 a e 时,m(a) 0 ,a e 1 e a 1 ;当1 e 1 ea 时,m(a) 0 ,2 e a e 1 e 1 ;当a e 时,m(a) 0 ,aa e 1 e a 1 .(20)【2014 年江苏,20,16 分】设数列{ }a 的前n 项和为S.若对任意的正整数n,总存在正整数m,使得n n S a ,n m则称{}a 是“H 数列”.nn(1)若数列{ a } 的前n 项和S 2 (n N) ,证明:{ a } 是“H 数列”;n n n(2)设{ a } 是等差数列,其首项n a1 1,公差 d 0 .若{a } 是“H 数列”,求d 的值;n(3)证明:对任意的等差数列{ }a ,总存在两个“H数列”{b } 和{c } ,使得 a b c (n N) 成立.n n n n n n解:(1)当n ≥ 2 时,n n 1 n 1a S S 1 2 2 2 ,当n 1时,n n n a1 S1 2 ,∴n 1时,S a ,当n≥2时,1 1 S a ,∴{a } 是“H 数列”.n n 1 n(2)n(n 1) n(n 1)S na d n d ,对n N,m N使n 12 2S a ,即n mn(n 1)n d 1 (m 1)d ,25取n 2 得1 d (m1)d ,m 2 1d,∵d 0 ,∴m 2 ,又m N ,∴m 1,∴d 1.(3)设{}a 的公差为d,令n b a1 (n 1)a1 (2 n) a1 ,对n N ,nb b a ,n 1 n 1c (n 1)(a d) ,n 1对n N ,c c a d ,则n 1 n 1 b c a1 (n 1)d a ,且{ b } ,{c } 为等差数列.n n n n n{ b } 的前n 项和nn(n 1)T na ( a ) ,令n 1 12T (2 m)a ,则n 1n(n 3)m 2 .2当n 1时m 1;当n 2 时m 1;当n≥3时,由于n 与n 3 奇偶性不同,即n(n 3) 非负偶数,m N .因此对n ,都可找到m N ,使T b 成立,即{b } 为“H 数列”.n m n{c } 的前n项和nn(n 1)R (a d ) ,令n 12c (m 1)(ad ) R ,则n 1 mmn(n 1)21∵对n N ,n(n 1) 是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立,n m 即{ }c 为“H 数列”,因此命题得证.n数学Ⅱ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21 题有A、B、C、D 4 个小题供选做,每位考生在4 个选做题中选答 2 题.若考生选做了3题或4题,则按选做题中的前 2 题计分.第22、23 题为必答题.每小题10 分,共40 分.考试时间30 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A、B、C、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.(21-A )【2014 年江苏,21-A,10 分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C、 D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D.解:因为B,C 是圆O 上的两点,所以OB=OC.故∠OCB =∠B.又因为C, D 是圆O 上位于AB 异侧的两点,故∠B,∠D 为同弧所对的两个圆周角,所以∠B=∠D.因此∠OCB =∠D.(21-B )【2014 年江苏,21-B,10 分】(选修4-2:矩阵与变换)已知矩阵1 2 1 1A ,B ,向量1 x2 12y,x,y为实数,若Aα= Bα,求x,y的值.解:2 y 2A ,2 xy2 yBα,由Aα= Bα得4 y2y 2 2 y,解得 1 4x ,y .2 xy 4 y, 2(21-C)【2014 年江苏,21-C,10 分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2x 1 t ,2(t 为参数),直线l 与抛物线2y 2 t2y2 4x交于A,B 两点,求线段A B 的长.解:直线l:x y 3 代入抛物线方程 2 4y x 并整理得x2 10x 9 0 ,∴交点 A (1,2) ,B(9 ,6) ,故| AB| 8 2 .(21-D )【2014 年江苏,21-D,10 分】(选修4-5:不等式选讲)已知x 0 ,y 0 ,证明: 2 21 x y 1 x y 9xy .解:因为x>0, y>0, 所以1+ x+y 2≥33 xy2 0 ,1+x2+y≥2 2 2 2 23 3 33 x y 0 ,所以(1+ x+y )( 1+x +y) ≥3 xy 3 x y =9 xy.2≥33 xy2 0 ,1+x2+y≥【必做】第22、23 题,每小题10 分,计20 分.请把答案写在.答.题.卡.的.指.定.区.域.内...(22)【2014 年江苏,22,10 分】盒中共有9 个球,其中有 4 个红球, 3 个黄球和 2 个绿球,这些球除颜色外完全相同.6(1)从盒中一次随机取出 2 个球,求取出的 2 个球颜色相同的概率P;(2)从盒中一次随机取出 4 个球,其中红球、黄球、绿球的个数分别记为x,x ,x ,随机变量X 表示1 2 3 x ,x ,x 1 2 3中的最大数,求X 的概率分布和数学期望E(X ) .解:(1)一次取 2 个球共有 2C 36 种可能情况, 2 个球颜色相同共有92 2 2C C C 10 种可能情况,4 3 2∴取出的 2 个球颜色相同的概率10 5P .36 18(2)X 的所有可能取值为4,3,2 ,则C 14P X ;( 4) 4C 12649C C C C 133 1 3 1P( X 3) 4 5 3 6 ;C 633911P( X 2) 1 P(X 3) P(X 4) .∴X 的概率分布列为:14X 2 3 4P 1114 13631126故X 的数学期望( ) 2 11 3 13 4 1 20E X .14 63 126 9(23)【2014 年江苏,23,10 分】已知函数sin xf (x) (x 0)x ,设 f (x) 为nf x 的导数,n N.n1 ( )(1)求2f f 的值;1 22 2 2(2)证明:对任意的n N,等式 2nf f 成立.n 1 n4 4 4 2解:(1)由已知,得sin x cosx sin xf (x) f (x)1 0 2x x x,于是cosx sin x sin x 2cos x 2sin xf (x) f (x)2 1 2 2 3x x x x x ,所以 4 2 16f ( ) , f ( ) ,1 2 2 32 2故2 f ( ) f ( ) 1 .1 22 2 2(2)由已知,得xf0 (x) sin x, 等式两边分别对x 求导,得 f 0 (x) xf0 (x) cos x ,即f0 ( x) xf1 (x) cos x sin(x ) ,类似可得2 2 f (x) xf (x) sin x sin( x ) ,1 233 f (x) xf (x) cos x sin( x ) ,2 32 4 f (x) xf (x) sin x sin( x 2 ) .3 4下面用数学归纳法证明等式nnf x xf x x 对所有的nn n1 ( ) ( ) sin( )2N*都成立.(i)当n=1 时,由上可知等式成立.(ii)假设当n=k 时等式成立, 即kkf 1 (x) xf (x) sin( x ) .k k2因为[kf ( x) xf (x )] kf (x) f (x) xf (x) (k 1) f (x) f ( x),k 1 k k 1 k k k k 1(k1)k k k[sin( x )] cos(x ) (x) sin[ x ] ,所以2 2 2 2 (k 1) f ( x) f (x)k k 1(k 1)sin[ x ] .2所以当n=k +1 时,等式也成立.综合(i),(ii) 可知等式nnf 1 ( x) xf (x) sin( x ) 对所有的nn n2 N都成立.*令x ,可得4nnf 1 ( ) f ( ) sin( ) ( nn n4 4 4 4 2N).所以*2nf f ( nn 1 n( ) ( )4 4 4 2N).*7。

南通市通州区2014届高三4月最后一卷数学试题

南通市通州区2014届高三4月最后一卷数学试题

江苏省南通市通州区2014届4月高三数学最后一卷一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在相应位置上. 1.设集合1|2A x x ⎧⎫=<⎨⎬⎩⎭,{}|21x B x =>,则A B = ▲ .2.复数512i+的共轭复数是 ▲ .3.已知集合|,9n A n Z παα⎧⎫==∈⎨⎬⎩⎭,若从A 中任取一个元素作为直线l 的倾斜角,则直线l的斜率小于零的概率是 ▲ .4.下面四个条件中,使a b >成立的充分而不必要条件是 ▲ .(填写序号)①1a b >-; ②1a b >+; ③22a b >; ④33a b > 5.设函数1()1f x x b=+-,若,,a b c 成等差数列(公差不为零),则()()f a f c += ▲ . 6.执行如图所示的程序框图,输出n = ▲ .7.定义在()0,+∞上的函数()f x 的导函数()0f x '<恒成立,且()41f =,若()1f x y +≤,则22x y +的最小值是 ▲ .8.设偶函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<的部分图象如图所示,KLM ∆为等 腰直角三角形,90,1KML KL ∠== ,则1()6f 的值为 ▲ .9.若两圆222240x y ax a +++-=和2224140x y by b +--+=恰有三条公切线,其中,,0a b R ab ∈≠,则2241a b +的最小值为 ▲ .第6题 x10.如图,在直角梯形ABCD 中,,,,BC DC AE DC M N ⊥⊥分别是,AD BE 的中点,将三角形ADE 沿AE 折起.下列说法正确的是 ▲ (填上所有正确的序号).①不论D 折至何位置(不在平面ABC 内),都有//MN DEC 平面;②不论D 折至何位置,都有MN AE ⊥; ③不论D 折至何位置(不在平面ABC 内), 都有//MN AB ;④在折起的过程中,一定存在某个位置,使EC AD ⊥.11.已知函数()221,11,1x ax x f x ax x x ++≥⎧=⎨++<⎩在R 上是单调递增函数,则实数a 的取值范围是▲ .12.设12,F F 是双曲线2214y x -=的左、右两个焦点,若双曲线右支上存在一点P ,使 ()220OP OF F P +⋅=(O 为坐标原点),且12PF PF λ=,则λ的值为 ▲ .13.在ABC ∆中,3AB AC =,AD 是A ∠的平分线,且AD mAC =,则实数m 的取值范围是 ▲ .14.已知等比数列{}n a 满足11a =,102q <<,且对任意正整数k ,12()k k k a a a ++-+仍是该数列中的某一项,则公比q 的取值集合为 ▲ .二、解答题:本大题共六小题,共计90分.请在指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在ABC ∆中,已知()sin sin sin cos cos B C A B C +=+. (1)判断ABC ∆的形状;(2)若角A 所对的边1a =,试求ABC ∆内切圆半径的取值范围.16.(本小题满分14分)如图,已知ABCD 是直角梯形,90,//,2,1ABC AD BC AD AB BC ∠==== , PA ABCD ⊥平面.(1)证明:PC CD ⊥;(2)若E 是PA 的中点,证明://BE PCD 平面;BE DCMNPDAE(3)若3PA =,求三棱锥B PCD -的体积.17.(本小题满分14分)诺贝尔奖发放方式为:每年一次,把奖金总金额平均分成6份,奖励在6项(物理、 化学、文学、经济学、生理学和医学、和平)为人类作出了最有益贡献的人.每年发 放奖金的总金额是基金在该年度所获利息的一半,另一半利息用于增加基金总额,以 便保证奖金数逐年递增.假设基金平均年利率为 6.24%r =.资料显示:2002年诺贝 尔奖发奖后基金总额约为19800万美元.设()f x 表示为第x (*x ∈N )年诺贝尔奖发奖 后的基金总额(2002年记为()1f ).(1)用()1f 表示()2f 与()3f ,并根据所求结果归纳出函数()f x 的表达式.(2)试根据()f x 的表达式判断网上一则新闻 “2012年度诺贝尔奖各项奖金高达150万美元”是否为真,并说明理由.(参考数据:101.0624 1.83≈,101.0312 1.36≈)19.(本小题满分16分)已知函数()ln f x x =.(1)求函数()()1g x f x x =+-的最大值;(2)若0x ∀>,不等式()21f x ax x ≤≤+恒成立,求实数a 的取值范围;(3)若120x x >>,求证:()()1222212122f x f x x x x x x ->-+.20.(本小题满分16分)已知数列{}n a ,{}n b 满足:()1*n n n b a a n N +=-∈.(1)若11,n a b n ==,求数列{}n a 的通项公式; (2)若()112n n n b bb n +-=≥,且121,2b b ==.①记()611nn c a n -=≥,求证:数列{}n c 为等差数列;②若数列n a n ⎧⎫⎨⎬⎩⎭中任意一项的值均未在该数列中重复出现无数次,求首项1a 应满足的条件.南通市通州区2012届高三数学最后一卷参考答案及评分标准一、填空题1.{}0x x ≠ 2.12i + 3.494.② 5.2 6.10 7.88 9.139 10.①②④ 11.1,02⎡⎤-⎢⎥⎣⎦12.2 13.3(0,)2 14.1} 二、解答题15.解:由已知等式利用正、余弦定理得222222()22a c b a b c b c a ac ab+-+-+=+, …………………………3分整理得()()2220b c b c a ++-=,222b c a ∴+=,所以,ABC ∆为直角三角形,且90A ∠= . …………………………6分 (2)由ABC ∆为直角三角形, 知内切圆半径11(sin sin 1)(sin cos 1)222b c a r B C B B +-==+-=+-, …………11分sin cos )4B B B π+=+≤ r ∴ …………………………14分16.(1)证明:由已知易得AC CD ==,222,90AC CD AD ACD +=∴∠= ,即AC CD ⊥. …………………………3分又PA ABCD ⊥ 平面,CD ABCD ⊂平面,PA CD ∴⊥,由PA AC A=,CD PAC∴⊥平面,PC PAC⊂平面,CD PC∴⊥.…………………………6分(2)证明:取AD的中点F,连接,BF EF.2,1,//,AD BC BC FD BC FD==∴=,∴四边形BCDF是平行四边形,即//BF CD,BF PCD⊄平面,//BF PCD∴平面.………8分,E F分别是,PA AD的中点,//EF PD∴,EF PCD⊄平面,//EF PCD∴平面.………10分EF BF F=,//BEF PCD∴平面平面,,//BE BEF BE PCD⊂∴平面平面.………11分(3)解:由已知得12BCDS∆=,所以,1132B PCD P BCD BCDV V PA S--∆==⨯⨯=.…………………………14分17.解:(1)由题意知:1(2)(1)(1 6.24%)(1)6.24%2f f f=⋅+-⋅⋅(1)(1 3.12%)f=⋅+,一般地:1(3)(2)(1 6.24%)(2)6.24%2f f f=⋅+-⋅⋅2(1)(1 3.12%)f=⋅+,…4分∴1()19800(1 3.12%)xf x-=⋅+(*x∈N).……………………………………7分(2)2011年诺贝尔奖发奖后基金总额为:9(10)19800(1 3.12%)26100f=⋅+≈,…………………………………………10分2012年度诺贝尔奖各项奖金额为11(10) 6.24%13662f⨯⨯⨯≈万美元,………12分与150万美元相比少了约14万美元.答:新闻“2012年度诺贝尔奖各项奖金高达150万美元”不真,是假新闻.……14分18.解:(1)点()3,1A代入圆C方程,得2(3)15m-+=.∵m<3,∴m=1.…………………… 2分圆C:22(1)5x y-+=.设直线PF1的斜率为k,则PF1:(4)4y k x=-+,即440kx y k--+=.∵直线PF1与圆C解得11122k k==或.…………………… 4分PDCBAEF当112k =时,直线PF 1与x 轴的交点横坐标为3611,不合题意,舍去.当12k =时,直线PF 1与x 轴的交点横坐标为-4,∴c =4. ()()124,0,4,0F F ∴-.∴2a =AF 1+AF 2==a =a 2=18,b 2=2.所以,椭圆E 的方程为:221182x y +=. ………………………8分(2)(1,3)AP = ,设(),Q x y ,(3,1)AQ x y =--,(3)3(1)36AP AQ x y x y ⋅=-+-=+-. …………………… 10分∵221182x y +=,即22(3)18x y +=, 而22(3)2|||3|x y x y +⋅≥,∴33xy -≤≤. …………………… 12分则222(3)(3)6186x y x y xy xy +=++=+的取值范围是[]0,36.3x y +的取值范围是[]6,6-.∴36AP AQ x y ⋅=+-的取值范围是[]12,0-. …………………… 16分(注:本题第二问若使用椭圆的参数方程或线性规划等知识也可解决)19.解:(1)()()()ln 11g x x x x =+->-,则()1111xg x x x -'=-=++.…………2分 当()1,0x ∈-时,()0g x '>,则()g x 在()1,0-上单调递增; 当()0,x ∈+∞时,()0g x '<,则()g x 在()0,+∞上单调递减,所以,()g x 在0x =处取得最大值,且最大值为0. ………………………4分(2)由条件得ln 1x a x a x x ⎧≥⎪⎪⎨⎪≤+⎪⎩在0x >上恒成立. ………………………6分设()ln x h x x =,则()21ln x h x x -'=.当()1,x e ∈时,()0h x '>;当(),x e ∈+∞时,()0h x '<,所以,()1h x e≤. 要使()f x ax ≤恒成立,必须1a e≥. ………………………8分另一方面,当0x >时,12x x+≥,要使21ax x ≤+恒成立,必须2a ≤. 所以,满足条件的a 的取值范围是1,2e ⎡⎤⎢⎥⎣⎦. ………………………10分 (3)当120x x >>时,不等式()()1222212122f x f x x x x x x ->-+等价于112212222ln ()1x x x x x x ->-.……12分 令12x t x =,设()()222ln 11t t t t t μ-=->+,则()()()()22221101t t t t t μ-+'=>+, ()t μ∴在()1,+∞上单调递增,()()10t μμ∴>=,所以,原不等式成立. ……………………………16分20.解:(1)当2n ≥时,有()()()21213211121122n n n n n na a a a a a a a ab b b --=+-+-++-=++++=-+ .又11a =也满足上式,所以数列{}n a 的通项公式是2122n n na =-+.……………4分(2)①因为对任意的*n N ∈,有5164321n n n n n n n b b b b b b b ++++++====,所以,1656161661626364111221722n n n n n n n n n n cc a a b b b b b b ++--++++-=-=+++++=+++++=, 所以,数列{}n c 为等差数列. …………………… 8分②设()6*nn i c a n N +=∈(其中i 为常数且{}1,2,3,4,5,6i ∈,所以,1666661626364657n n n i n i n i n i n i n i n i n i cc a a b b b b b b +++++++++++++++-=-=+++++=,即数列{}6n i a +均为以7为公差的等差数列. …………………… 10分设()677767766666666i i k i i k i k a i a i a a k f k i i k i k i k+++--+====+++++.(其中6,0,n k i k i =+≥为{}1,2,3,4,5,6中一个常数)当76i a i =时,对任意的6n k i =+,有76n a n =; …………………… 12分当76i a i ≠时,()()()17776666166616i i k k i a i a if f a i k i k i k i k i +---⎛⎫-=-=- ⎪++++++⎡⎤⎝⎭⎣⎦. (Ⅰ)若76i a i >,则对任意的k N ∈有1k k f f +<,所以数列66k i a k i +⎧⎫⎨⎬+⎩⎭为递减数列;(Ⅱ)若76i a i <,则对任意的k N ∈有1k k f f +>,所以数列66k i a k i +⎧⎫⎨⎬+⎩⎭为递增数列.综上所述,集合74111174111,,,,63236263236B ⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫⎧⎫=--=--⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭⎩⎭ .当1a B ∈时,数列n a n ⎧⎫⎨⎬⎩⎭中必有某数重复出现无数次;当1a B ∉时,数列()61,2,3,4,5,66k i a i k i +⎧⎫=⎨⎬+⎩⎭均为单调数列,任意一个数在这6个数列中最多出现一次,所以数列n a n ⎧⎫⎨⎬⎩⎭任意一项的值均未在该数列中重复出现无数次.…… 16分。

2014年江苏省高考数学试卷(含答案)

2014年江苏省高考数学试卷(含答案)

2014年江苏省高考数学试卷解析参考版答案仅供参考一、填空题(每题5分,满分70分,将答案填在答题纸上).【答案】{1,3}- 【解析】由题意得{1,3}A B =-.【考点】集合的运算【答案】21【解析】由题意22(52)25252(2)2120z i i i i =+=+⨯⨯+=+,其实部为21. 【考点】复数的概念.【答案】5【解析】本题实质上就是求不等式220n>的最小整数解.220n>整数解为5n ≥,因此输出的5n =【考点】程序框图.【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==. 【考点】古典概型.【答案】6π 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.【考点】三角函数图象的交点与已知三角函数值求角.6。

【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=. 【考点】频率分布直方图.【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.【考点】等比数列的通项公式.【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.【考点】圆柱的侧面积与体积.【答案】2555【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=.【考点】直线与圆相交的弦长问题.【答案】2(2-【解析】据题意222()10,(1)(1)(1)10,f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩解得202m -<<. 【考点】二次函数的性质.【答案】2-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得1,1,a b =-⎧⎨=-⎩所以b=—2,a+b=-3.【考点】导数与切线斜率.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-, 即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=. 【考点】向量的线性运算与数量积.【答案】1(0,)2【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈.【考点】函数的零点,周期函数的性质,函数图象的交点问题.62- 【解析】由已知sin 22sin A B C =及正弦定理可得22a b c +=,2222222(2cos 22a b a b a b cC abab++-+-==223222262262a b ab ab ab +---=≥=,当且仅当2232a b =即23a b =时等号成立,所以cos C 62- 【考点】正弦定理与余弦定理.二、解答题 (本大题共6小题,共90分。

2014年江苏高考数学卷及答案

2014年江苏高考数学卷及答案

6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图 所示,则在抽测的 60 株树木中,有 ▲ 株树木的底部周长小于 100cm.
n n1
2n 20 N Y
输出 n
7. 在各项均为正数的等比数列{a n} 中, a 2 1, a 8 a 6 2a 4 ,则 a 6的值是 ▲ .
0.015 0.010
都有 f (x) 0 成立,则实数 m 的取值范围是 ▲ .
11. 在平面直角坐标系 xOy 中,若曲线 y ax2 b (a,b x
80 90 100 110 120 130 底部周长/cm
(第 6 题)
为常数)过点 P(2, 5) ,且该曲线在点 P 处的切线与直线 7x 2 y 3 0 平行,则 a b 的值是 ▲ .
并与 BC 相切的圆.且古桥两端 O 和 A 到该圆上 任意一点的距离均不少于 80m. 经测量,点 A 位
于点 O 正北方向 60m 处, 点 C 位于点 O 正东方向 170m 处(OC 为河岸), tan BCO 4 .
3 (1)求新桥 BC 的长; (2)当 OM 多长时,圆形保护区的面积最大?
BC 8, DF 5.
求证: (1)直线 PA// 平面 DEF ;
P
(2)平面 BDE 平面 ABC .
D
A
E
C
F
B
17.(本小题满分 14 分)
第 第 16第 第
如图,在平面直角坐标系
xOy
中,
F1
,
F2
分别是椭圆
x a
2 2

y3 b2
1(a b 0) 的左、右焦点,顶点 B 的坐
标为 (0,b) ,连结 BF2并延长交椭圆于点 A,过点 A 作 x 轴的垂线交椭圆于另一点 C,连结 F1C .

2014年高考江苏省数学真题(详细答案及解析)

2014年高考江苏省数学真题(详细答案及解析)

2014年高考某某省数学真题(详细答案及解析)-----易题库教研团队题目:已知集合{}2,1,3,4A =--,{}1,2,3B =-,则A B ⋂=___________。

答案:{3}解析过程:根据集合的运算性质A B ⋂={3} —————————— 题目:已知复数2(52)Z i =-(i 为虚数单位),则复数Z 的实部是___________。

答案:21解析过程:2(52)252042120Z i i i =-=--=-,所以复数Z 的实部是21. —————————— 题目:下图是一个算法流程图,则输出的n 的值是___________。

答案:5解析过程:程序循环过程为n=0,n=1;执行N ,n=2,执行N ,n=3,执行N ,n=4,执行N ,n=5,输出n 的值,n=5 —————————— 题目:从1,2,3,6这四个数中一次随机地取2个数,则所取两个数的乘积为6的概率为___________。

答案:13解析过程:从1,2,3,6中取出两个数,乘积为6的有(2,3)(1,6)所以取两个数的乘积为6的概率为24213C = —————————— 题目:已知函数cos y x =与函数sin(2)(0)y x φφπ=+≤<,它们的图像有一个横坐标为3π的交点,则ϕ的值是___________。

答案:6π 解析过程:两个函数的交点坐标为1(,)32π,[)2125sin(),0,32366ππππϕϕπϕϕ+=∈∴+=∴= —————————— 题目:某种树木的底部周长的取值X 围是[]90,130,它的频率分布直方图如图所示,则在抽测的60株树木中,有_________株树木的底部周长小于100 cm 。

答案:24解析过程:根据题意60(0.0150.025)1024⨯+⨯= —————————— 题目:在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是__________。

2014年江苏高考数学试卷及答案

2014年江苏高考数学试卷及答案

2014年普通高等学校统一考试试题(江苏卷)参考公式:圆柱的侧面积公式:d S =圆柱侧,其中c 是圆柱地面的周长,l 为母线长.. 圆柱的体积公式:V Sh =圆柱,其中S 是锥体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A .2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为 .3. 右图是一个算法流程图,则输出的n 的值是 .4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),它们的图象有一个横坐标为3π的交点,则ϕ的值是 .6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是 .8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是 . 9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为 .10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是 .11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数) 过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是 .12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则ADAB ⋅的值是 .开始 0←n1+←n n202>n输出n 结束 (第3题)NYABDCP(第12题)13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是 .14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥A B C P -中,D ,E ,F 分zxxk 别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .17.(本小题满分14分) 如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a b y a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.(第16题)P D C E F B A F 1 F 2OxyBC18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,学科网求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(0300x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,学科网总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明: }{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.170 m60 m 东北 OA BM C(第18题)1.【答案】{1,3}- 【解析】由题意得{1,3}A B =-.2.【答案】21【解析】由题意22(52)25252(2)2120z i i i i =+=+⨯⨯+=+,其实部为21. 3.【答案】5【解析】本题实质上就是求不等式220n>的最小整数解.220n>整数解为5n ≥, 因此输出的5n = 4.【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==. 5.【答案】6π 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.6.【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.7.【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==. 8.【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222rh r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.9.【答案】2555【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为2222(1)33512d +⨯--==+, 所求弦长为22925522455l r d =-=-=. 10.【答案】2(,0)2-【解析】据题意222()10,(1)(1)(1)10,f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩解得202m -<<. 11.【答案】2- 【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2by ax x=-,所以7442b a -=-②,由①②解得1,1,a b =-⎧⎨=-⎩所以2a b +=-. 12.【答案】22 【解析】由题意,14A P A D D P A D=+=+,3344BP BC CP BC CD AD AB =+=+=-,所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-, 即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=.13.【答案】1(0,)2【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈.14.【答案】624- 【解析】由已知sin 2sin 2sin A B C +=及正弦定理可得22a b c +=,2222222()2cos 22a b a b a b cC abab++-+-==223222262262884a b ab ab ab ab ab +---=≥=,当且仅当2232a b =即23a b =时等号成立,所以cos C 的最小值为624-. 15【答案】(1)1010-;(2)33410+- 解: sin α55,α∈),(ππ2 ∴cos α=2)55(1--=552- (1) sin)(απ+4=sin4πcos α+cos 4πsin α=1010-(2)cos)(απ2-65=)26cos(απ+-=—(cos 6πcos2α—sin 6πsin2α)=23-cos2α+21sin2α=23-)sin 21(2α-+21(2sin αcos α)=104-33- 16.【解析】(1)由于,D E 分别是,PC AC 的中点,则有//PA DE ,又PA DEF ⊄平面,DE DEF ⊂平面,所以//PA DEF 平面.(2)由(1)//PA DE ,又P A A C ⊥,所以P E A C ⊥,又F 是AB 中点,所以132D E P A ==,142EF BC ==,又5DF =,所以222DE EF DF +=,所以DE EF ⊥,,EF AC 是平面ABC 内两条相交直线,所以DE ABC ⊥平面,又DE ⊂平面BDE ,所以平面BDE ⊥平面ABC . 17.【答案】(1)2212x y +=;(2)12.【解析】(1)由题意,2(,0)F c ,(0,)B b ,2222BF b c a =+==,又41(,)33C ,∴22241()()3312b +=,解得1b =.∴椭圆方程为2212x y +=.(2)直线2BF 方程为1x y c b +=,与椭圆方程22221x y a b+=联立方程组,解得A 点坐标为2322222(,)a c b a c a c -++,则C 点坐标为2322222(,)a c b a c a c++,133222232222F C b b a c k a c a c cc a c +==+++,又ABb kc =-,由1FC AB ⊥得323()12b b a c c c⋅-=-+,即42242b a c c =+, ∴222224()2a c a c c -=+,化简得12c e a ==. 18.【答案】(1)150m ;(2)10m . 【解析】yx(1)如图,以,OC OA 为,x y 轴建立直角坐标系,则(170,0)C ,(0,60)A ,由题意43BC k =-,直线BC 方程为4(170)3y x =--.又134AB BC k k =-=,故直线AB 方程为3604y x =+,由4(170)33604y x y x ⎧=--⎪⎪⎨⎪=+⎪⎩,解得80120x y =⎧⎨=⎩,即(80,120)B ,所以22(80170)120150BC =-+=()m ;(2)设OM t =,即(0,)M t (060)t ≤≤,由(1)直线BC 的一般方程为436800x y +-=,圆M 的半径为36805t r -=,由题意要求80,(60)80,r t r t -≥⎧⎨--≥⎩,由于060t ≤≤,因此36805t r -=6803313655t t -==-,∴313680,53136(60)80,5t t t t ⎧--≥⎪⎪⎨⎪---≥⎪⎩∴1035t ≤≤,所以当10t =时,r 取得最大值130m ,此时圆面积最大. 19.【答案】(1)证明见解析;(2)13m ≤-;(3)当11()2e a e e+<<时,11a e e a --<,当a e =时,11a e ea --=,当a e >时,11a e e a -->.【解析】(1)证明:函数()f x 定义域为R ,∵()()x x f x e e f x --=+=,∴()f x 是偶函数.(2)由()1xmf x e m -≤+-得(()1)1xm f x e--≤-,由于当0x >时,1x e >,因此()2xxf x e e -=+>,即()110f x ->>,所以11()11x x x x e e m f x e e -----≤=-+-211x x xe e e -=+-,令211x x x e y e e -=+-,设1xt e =-,则0t <,21(1)11t t t y t t-+==+-,∵0t <,∴12t t +≤-(1t =-时等号成立),即1213y≤--=-,103y -≤<,所以13m ≤-.(3)由题意,不等式3()(3)f x a x x <-+在[1,)+∞上有解,由3()(3)f x a x x <-+得330x x ax ax e e --++<,记3()3x x h x ax ax e e -=-++,2'()3(1)x x h x a x e e -=-+-,显然'(1)0h =,当1x >时,'()0h x >(因为0a >),故函数()h x 在[1,)+∞上增函数,()(1)h x h =最小,于是()0h x <在[1,)+∞上有解,等价于1(1)30h a a e e=-++<,即11()12a e e >+>.考察函数()(1)l n (1),(1g x e x x x =---≥,1'()1e g x x -=-,当1x e =-时,'()0g x =,当11x e <<-时,'()0g x >,当1x e >-时'()0g x <,即()g x 在[1,1]e -上是增函数,在(1,)e -+∞上是减函数,又(1)0g =,()0g e =,11()12e e+>,所以当11()2e x e e+<<时,()0g x >,即(1)ln 1e x x ->-,11e x x e -->,当x e >时,()0g x <,,即(1)ln 1e x x -<-,11e x x e --<,因此当11()2e a e e+<<时,11a e e a --<,当a e =时,11a e e a --=,当a e >时,11a e e a -->.【考点】(1)偶函数的判断;(2)不等式恒成立问题与函数的交汇;(3)导数与函数的单调性,比较大小.20.【答案】(1)证明见解析;(2)1d =-;(3)证明见解析.【解析】(1)首先112a S ==,当2n ≥时,111222n n n n n n a S S ---=-=-=,所以12,1,2,2,n n n a n -=⎧=⎨≥⎩,所以对任意的*n N ∈,2n n S =是数列{}n a 中的1n +项,因此数列{}n a 是“H 数列”.(2)由题意1(1)n a n d =+-,(1)2n n n S n d -=+,数列{}n a 是“H 数列”,则存在*k N ∈,使(1)1(1)2n n n d k d -+=+-,1(1)12n n n k d --=++,由于(1)*2n n N -∈,又*k N ∈,则1n Z d-∈对一切正整数n 都成立,所以1d =-. (3)首先,若n d bn =(b 是常数),则数列{}n d 前n 项和为(1)2n n n S b -=是数列{}n d 中的第(1)2n n -项,因此{}n d 是“H 数列”,对任意的等差数列{}n a ,1(1)n a a n d =+-(d是公差),设1n b na =,1()(1)n c d a n =--,则n n n a b c =+,而数列{}n b ,{}n c 都是“H 数列”,证毕.【考点】(1)新定义与数列的项,(2)数列的项与整数的整除;(3)构造法.。

2014年江苏省高考数学试卷标准答案[1]

2014年江苏省高考数学试卷标准答案[1]

2014年江苏省高考数学试卷标准答案(仅供参考)一、填空题(每题5分,满分70分) 1. 已知集合A={-2,-1,,3,4},B={-1,2,3},则A ∩B=【答案】{1,3}-【解析】由题意得{1,3}A B =- .2.已知复数z=(5+2i )2 (i 为虚数单位),则z 的实部为 【答案】21【解析】由题意22(52)25252(2)2120z i i i i =+=+⨯⨯+=+,其实部为21. 3.右图是一个算法流程图,则输出的n 的值是(图略) 【答案】5【解析】本题实质上就是求不等式220n>的最小整数解.220n>整数解为5n ≥,因此输出的5n =4.从1,,2,3,6这4个数字中一次随机地取2个数,则所取2个数的乘机为6的概率是 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==. 5.已知函数y=cosx 与y=sin(2x+φ)(0≤φ<л),他们的图象有一个横坐标为л/3的交点,则φ的值是 【答案】6π【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.6.莫种树木的底部周长的频率分布直方图如图所示,则在抽测的60株树木中,有()株树木的底部周长小于100cm【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.7.在各项均值为正数的等比数列{a n }中,若a 2=1,8642a a a =+,则624a a q ==的值是 【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.8设甲,乙两个圆柱的底面积分别为S1,S2,体积分别为V1V1.若它的侧面积比为21122294S r S r ππ==21122294S r S r ππ==,则 222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==的值为 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222rh r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则9.在平面直角坐标系中xOy 中,直线x+2y-3=0被圆22(2)(1)4x y -++=截得弦长为【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为d ==,所求弦长为l ==. 10已知函数()f x a -==x 2+mx-1,若对于任意x ∈[m,m+1],都有()f x a -=<0成立,则实数m 的取值范围是【答案】(2-【解析】据题意222()10,(1)(1)(1)10,f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩解得02m -<<. 11.在平面直角坐标系xOy 中,若曲线2by ax x=+(a,b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7x+2y+3=0平行,则a+b 的值是 【答案】2-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2by ax x=-,所以7442b a -=-②,由①②解得1,1,a b =-⎧⎨=-⎩所以b=-2,a+b=-3. 12如图,在平行四边形ABCD 中,已知AB=8,AD=5,44BP BC CP BC CD AD AB =+=+=-,()()44AP BP AD AB AD AB ⋅=+⋅- 2,则2AD AB ⋅= 的值是【答案】2213.已知()f x a -=是定义在R 上且周期为3的函数,当x ∈[0,3)时,21()2,[0,3)2f x x x x =-+∈若函数y=()0f x a -=在区间[3,4]x ∈-上有10个零点(互不相同),则实数a 的取值范围是 【答案】1(0,)2【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大,7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈.14.若三角形ABC 的内角满足sin 2sin A B C =,则cos C 的最小值是【解析】由已知sin 2sin A B C =及正弦定理可得2a c =,2222222cos 22a b a b cC abab+-+-==2232884a b ab ab +--=≥=,当且仅当2232a b =即a b =时等号成立,所以cos C二、解答题 (本大题共6小题,共90分.)15.(本小题满分14分)已知25cos 5α252510sin()()452510παα+==-+⨯=-210)sin cos cos )44210ππαα=++=- (1)求2252510sin()sin cos cos sin ()444252510πππααα+=+=⨯-+⨯=-的值; (2)求5553314334cos(2)cos cos2sin sin 2()666252510πππααα+-=+=-⨯+⨯-=-的值。

2014江苏高考数学试卷含答案(校正精确版)

2014江苏高考数学试卷含答案(校正精确版)

2014年江苏省高考数学试卷标准答案一、填空题1已知集合A ={-2,-1,,3,4},B ={-1,2,3},则A ∩B = 【解析】由题意得{1,3}A B =-I .2.已知复数z =(5+2i )2 (i 为虚数单位),则z 的实部为【解析】由题意22(52)25252(2)2120z i i i i =+=+⨯⨯+=+,其实部为21. 3.右图是一个算法流程图,则输出的n 的值是(图略)【解析】本题实质上就是求不等式220n >的最小整数解.220n>整数解为5n ≥,故输出的5n = 4.从1,,2,3,6这4个数字中一次随机地取2个数,则所取2个数的乘机为6的概率是【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,故所求概率为2163P ==. 5.已知函数y =cosx 与y =sin(2x +φ)(0≤φ<л),他们的图象有一个横坐标为л/3的交点,则φ的值是 【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因0ϕπ≤<,故6πϕ=.6.莫种树木的底部周长的频率分布直方图如图所示,则在抽测的60株树木中,有()株树木的底部周长小于100cm【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.7.在各项均值为正数的等比数列{a n }中,若a 2=1,8642a a a =+,则624a a q ==的值是 【解析】设公比为q ,因21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,故4624a a q ==.8设甲,乙两个圆柱的底面积分别为S1,S2,体积分别为V1V1.若它的侧面积比为21122294S r S r ππ==21122294S r S r ππ==,则 222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==的值为 【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,故1232r r =,则9.在平面直角坐标系中xOy中,直线x +2y -3=0被圆22(2)(1)4x y -++=截得弦长为 【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为22512d ==+,所求弦长为22925522455l r d =-=-=.10已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有()0f x <成立,则实数m 的取值范围是【解析】据题意222()10,(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得202m -<<. 11.在平面直角坐标系xOy 中,若曲线2by ax x=+(a ,b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是 【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,故7442b a -=-②,由①②解得1,1a b =-⎧⎨=-⎩故b =-2,a +b =-3.12如图,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是 【解】由题图可得,AP →=AD →+DP →=AD →+14AB →,BP →=BC →+CP →=BC →+34CD →=AD→-34AB →.∴AP →·BP →=⎝⎛⎭⎫AD →+14AB →·⎝⎛⎭⎫AD →-34AB →=AD →2-12AD →·AB →-316AB →2=2,故有2=25-12AD →·AB →-316×64,解得AD →·AB →=22.13.已知f (x )是定义在R 上且周期为3的函数,当x ∈[0,3)时,f (x )=⎪⎪⎪⎪x 2-2x +12.若函数y =f (x )-a 在区间[-3,4]上有10个零点(互不相同),则实数a 的取值范围是________.【解析】作出函数y =f (x )在[-3,4]上的图象,f (-3)=f (-2)=f (-1)=f (0)=f (1)=f (2)=f (3)=f (4)=12,观察图象可得0<a <12.14.若三角形ABC 的内角满足sin 2sin 2sin A B C +=,则cos C 的最小值是【解析】由已知sin 2sin 2sin A B C +=及正弦定理可得22a b c +=,2222222()2cos 22a b a b a b cC abab++-+-==2232222622628a b ab ab ab ab +---=≥=,当且仅当2232a b =即23a b =时等号成立,故cos C 的最小值为624-. 二、解答题15.已知(,)2παπ∈,5sin 5α=. ⑴.求2252510sin()sin cos cos sin ()444252510πππααα+=+=⨯-+⨯=-的值; ⑵.求5553314334cos(2)cos cos 2sin sin 2()666252510πππααα+-=+=-⨯+⨯-=-的值. 【解析】⑴.由题意2525cos 1()5α=--=-, 故2252510sin()sincos cossin ()444πππααα+=+=⨯-+⨯=-. ⑵.由⑴得,4sin 22sin cos 5ααα==-,23cos 22cos 15αα=-=,故5553314334cos(2)cos cos 2sin sin 2()666525πππααα+-=+=-⨯+⨯-=-. 16如图,在三棱锥P -ABC 中,D ,E ,F ,分别为棱PC ,AC ,AB 的中点.已知PA AC ⊥,PA =6,BC =8,DF =5.求证:⑴.直线//PA DEF 平面; ⑵.平面BDE ⊥平面ABC【解析】⑴.由于,D E 分别是,PC AC 的中点,则有//PA DE ,又PA DEF ⊄平面,DE DEF ⊂平面,故//PA DEF 平面.⑵.由⑴.//PA DE ,又PA AC ⊥,故PE AC ⊥,又F 是AB 中点,故132DE PA ==,142EF BC ==,又5DF =,故222DE EF DF +=,故DE EF ⊥,,EF AC 是平面ABC 内两条相交直线,故DE ABC ⊥平面,又DE ⊂平面BDE ,故平面BDE ⊥平面ABC .17.如图,在平面直角坐标系xOy 中,1F ,2F 分别是椭圆22221(0)x y a b a b+=>>的左,右焦点,顶点B 的坐标为(0,)b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1F C .⑴.若点C 的坐标为41(,)33C ,且22BF =,求椭圆的方程;⑵.若1F C AB ⊥,求椭圆离心率e 的值. 【解】⑴.由题意,2(,0)F c ,(0,)B b ,222||2BF b c a =+==,又41(,)33C ,故22241()()3312b +=,解得1b =.故椭圆方程为2212x y +=.⑵.直线2BF 方程为1x yc b +=,与椭圆方程22221x y a b +=联立方程组,解得A 点坐标为2322222(,)a c b a c a c -++,则C 点坐标为2322222(,)a c b a c a c++,133222232223F C b b a c k a c a c cc a c +==+++,又ABb k c=-,由1F C AB ⊥得,323()13b b a c c c ⋅-=-+,即42243b a c c =+,故222222()()3b c b c a c -+=,即224b c =,化简得5c e a ==. 18.如图1-6所示,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80 m .经测量,点A 位于点O 正北方向60 m 处,点C 位于点O 正东方向170 m 处(OC 为河岸),4tan 3BCO ∠=. ⑴.求新桥BC 的长.⑵.当OM 多长时,圆形保护区的面积最大?图1-6【解】⑴.【法一】如图所示,以O 为坐标原点,OC 所在直线为 x 轴,建立平面直角坐标系xOy .由条件知,(0,60)A ,(170,0)C ,直线BC 的斜率4tan 3BC k BCO =-∠=-.又AB BC ⊥,故直线AB 的斜率34AB k =.设点B 的坐标为(,)a b ,则43BC k =-,34AB k =,解得80a =,120b =,故150BC =.故新桥BC 的长是150 m .【法二】过点B 作BE OC ⊥于点E ,过点A 作AD BE ⊥于点F .因4tan 3BCO ∠=,设5BC x =,3CE x =,4BE x =,故1703OE x =-,1703AF x =-,60EF AO ==,460BF x =-,又AB BC ⊥,且2BAF ABF π∠+∠=,2CBE BOC π∠+∠=,故2ABF CBE π∠+∠=,故2CBE BAF π∠+∠=,故3460tan 41703BF x BAF AF x-∠===-,故30x =,5150BC x ==m ,故新桥BC 的长为150m .【法三】如图所示,延长 OA ,BC 交于点F .因 tan ∠FCO =43,故sin ∠FCO =45,cos ∠FCO =35.因OA =60,OC =170,故OF =OC tan ∠FCO =6803,CF =OC cos ∠FCO =8503,从而AF =OF -OA =5003.因OA ⊥OC ,故cos ∠AFB =sin ∠FCO =45.又AB ⊥BC ,故BF =AF cos ∠AFB =4003,从而BC =CF-BF =150.故新桥BC 的长是150 m .⑵.【法一】设保护区的边界圆M 的半径为r m ,OM =d m (0≤d ≤60).由条件知,直线BC 的方程为y =-43(x -170),即4x +3y -680=0.由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即r =|3d - 680|42+32=680-3d5.因O 和A 到圆M 上任意一点的距离均不少于80m ,故⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680 - 3d 5-(60-d )≥80,解得10≤d ≤35.故当d =10时,r =680 - 3d5最大,即圆面积最大,故当OM =10 m 时,圆形保护区的面积最大. 【法二】设保护区的边界圆 M 与BC 的切点为D ,连接 MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m (0≤d ≤60).因OA ⊥OC ,故sin ∠CFO =cos ∠FCO .故由(1)知sin ∠CFO =MD MF =MD OF -OM =r 6803-d =35,故r =680-3d 5.因O 和A 到圆M 上任意一点的距离均不少于80 m ,故⎩⎪⎨⎪⎧r -d ≥80,r -(60-d )≥80,即⎩⎨⎧680-3d5-d ≥80,680-3d 5-(60-d )≥80,解得10≤d ≤35.故当d =10时,r =680 - 3d5最大,即圆面积最大,故当OM =10 m 时,圆形保护区的面积最大. 【法三】以OC 方向为x 轴,OA 为y 轴建立直角坐标系.设点(0,)M m ,点(0,60)A ,(80,120)B ,(170,0)C ,直线BC 方程为4(170)3y x =--,即436800x y +-=,故半径68035m R -=,又古桥两端O 和A 到该圆上任意一点的距离均不少于80m ,故80R AM -≥且80R OM -≥,故6803(60)805m m ---≥,6803805m m --≥,故1035m ≤≤,故68031305mR -=≤,此时圆面积最大.故当10OM =时圆形保护区面积最大.19.已知函数f (x )=e x +e -x ,其中e 是自然对数的底数.(1)证明:f (x )是R 上的偶函数;(2)若关于x 的不等式mf (x )≤e -x +m -1在(0,+∞)上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在x 0∈[1,+∞),使得f (x 0)<a (-x 30+3x 0)成立.试比较e a -1与a e-1的大小,并证明你的结论.(1)证明 因为对任意x ∈R ,都有f (-x )=e -x +e-(-x )=e -x +e x =f (x ),所以f (x )是R 上的偶函数.(2)由条件知m (e x +e -x -1)≤e -x -1在(0,+∞)上恒成立.令t =e x (x >0),则t >1,所以m ≤-t -1t 2-t +1=-1t -1+1t -1+1对任意t >1成立.因为t -1+1t -1+1≥2(t -1)·1t -1+1=3,所以-1t -1+1t -1+1≥-13,当且仅当t =2,即x =ln 2时等号成立.因此实数m 的取值范围是(-∞,-13].(3)令函数g (x )=e x +1e x -a (-x 3+3x ),则g ′(x )=e x -1e x +3a (x 2-1).当x ≥1时,e x -1e x >0,x 2-1≥0,又a >0,故g ′(x )>0.所以g (x )是[1,+∞)上的单调增函数,因此g (x )在[1,+∞)上的最小值是g (1)=e +e -1-2a .由于存在x 0∈[1,+∞),使e x 0+e-x0-a (-x 30+3x 0)<0成立,当且仅当最小值g (1)<0.故e +e -1-2a <0,即a >e +e -12.令函数h (x )=x -(e -1)ln x -1,则h ′(x )=1-e -1x .令h ′(x )=0,得x =e -1,当x ∈(0,e -1)时,h ′(x )<0,故h (x )是(0,e -1)上的单调减函数;当x ∈(e -1,+∞)时,h ′(x )>0,故h (x )是(e -1,+∞)上的单调增函数.所以h (x )在(0,+∞)上的最小值是h (e -1).注意到h (1)=h (e)=0,所以当x ∈(1,e -1)⊆(0,e -1)时,h (e -1)≤h (x )<h (1)=0.当x ∈(e -1,e)⊆(e -1,+∞)时,h (x )<h (e)=0.所以h (x )<0对任意的x ∈(1,e)成立. ①当a ∈⎝⎛⎭⎫e +e -12,e ⊆(1,e)时,h (a )<0,即a -1<(e -1)ln a ,从而e a -1<a e -1;②当a =e 时,e a -1=a e -1;③当a ∈(e ,+∞)⊆(e -1,+∞)时,h (a )>h (e)=0,即a -1>(e -1)ln a ,故e a -1>a e -1.综上所述,当a ∈⎝⎛⎭⎫e +e -12,e 时,e a -1<a e -1;当a =e 时,e a -1=a e -1;当a ∈(e ,+∞)时,e a-1>a e -1.20.设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.⑴.若数列{}n a 的前n 项和*2()n n S n N =∈,证明{}n a 是“H 数列”;⑵.设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值; ⑶.证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c .使得n n n a b c =+,*n N ∈成立.【解析】⑴.首先112a S ==,当2n ≥时,111222n n n n n n a S S ---=-=-=,故12,1,2,2,n n n a n -=⎧=⎨≥⎩,故对任意的*n N ∈,2n n S =是数列{}n a 中的1n +项,故数列{}n a 是“H 数列”.⑵.由题意1(1)n a n d =+-,(1)2n n n S n d -=+,数列{}n a 是“H 数列”,则存在*k N ∈,使(1)1(1)2n n n d k d -+=+-,1(1)12n n n k d --=++,由于*(1)2n n N -∈,又*k N ∈,则1n Zd-∈对一切正整数n 都成立,故1d =-.⑶.首先,若n d bn =(b 是常数),则数列{}n d 前n 项和为(1)2n n n S b -=是数列{}n d 中的第(1)2n n -项,故{}n d 是“H 数列”,对任意的等差数列{}n a ,1(1)n a a n d =+-(d 是公差),设1n b na =,1()(1)n c d a n =--,则n n n a b c =+,而数列{}n b ,{}n c 都是“H 数列”,证毕.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

南通市2014届高三数学临门一脚 分数学I 卷和II 卷,有答案数学I参考公式:棱锥的体积公式:13V Sh =,其中S 为锥体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置........上.. 1.已知集合A ={1,k -1},B ={2,3},且A ∩B ={2},则实数k 的值为 ▲ . 2.若复数z 满足i z =2(i 为虚数单位),则z = ▲ . 3.不等式组0,0,2x y x y ⎧⎪⎨⎪+⎩≥≥≤所表示的平面区域的面积为 ▲ .4.函数y =sin 2x 的最小正周期为 ▲ .5.若正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥A -BDA 1的体积为 ▲ . 6.已知函数23,0,()1,0,x x f x x x ->⎧=⎨+⎩≤若f (x )=5,则x = ▲ .7.设函数f (x )=log 2x (0<x <5),则f (x )<1的概率为 ▲ . 8.某鲜花店对一个月的鲜花销售数量(单位:支)进行统计,统计时间是4月1日至4月30日,5天一组分组统计,绘制了如图的鲜花销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的鲜花数(单位:支)为 ▲ .(第8题图)(第10题图)(第9题图)9.如图是一个算法流程图.若输入A =3,B =5,则输出A ,B 的值分别为 ▲ .10.已知向量a ,b ,c 在正方形网格中的位置如图所示.若(,)λμλμ=+∈R c a b ,则λμ+=▲ .11.已知实数x ,y ,满足xy =1,且x >2y >0,则2242x y x y+-的最小值为 ▲ .12.设t ∈R ,[t ]表示不超过t 的最大整数.则在平面直角坐标系xOy 中,满足[x ]2+[y ]2=13的点P (x ,y )所围成的图形的面积为 ▲ .13.设函数f (x )满足f (x )=f (3x ),且当x ∈[1,3)时,f (x )=ln x .若在区间[1,9)内,存在3个不同的实数x 1,x 2,x 3,使得312123()()()f x f x f x x x x ===t ,则实数t 的取值范围为 ▲ . 14.设各项均为正整数的无穷等差数列{a n },满足a 54=2014,且存在正整数k ,使a 1,a 54,a k 成等比数列,则公差d 的所有可能取值之和为 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡...指定区域内作答........解答时应写出文字说明,证明过程或演算步骤.15.(本小题满分14分)如图,在△ABC 中,|AB AC -|=3,|BC BA -|=5,|CA CB -|=7. (1)求C 的大小;(2)设D 为AB 的中点,求CD 的长.(第15题图)BAC如图,AB 为圆O 的直径,点E ,F 在圆上,四边形ABCD 为矩形,AB ∥EF ,∠BAF =3π,M 为BD 的中点,平面ABCD ⊥平面ABEF .求证:(1)BF ⊥平面DAF ; (2)ME ∥平面DAF .17.(本小题满分14分)图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.若凹槽的强度T 等于横截面的面积S 与边AB 的乘积,设AB =2x ,BC =y . (1)写出y 关于x 函数表达式,并指出x 的取值范围; (2)求当x 取何值时,凹槽的强度T 最大.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(a >b >0)过点(1,1).(1),求椭圆的方程;(2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .①已知命题:“直线PQ 恒与定圆C 相切”是真命题,试直接写出圆C 的方程;(不需要解答过程)②设①中的圆C 交y 轴的负半轴于M 点,二次函数y =x 2-m 的图象过点M .点A ,B在该图象上,当A ,O ,B 三点共线时,求△MAB 的面积S 的最小值.(第17题图)图1图2(第16题图)设数列{a n },a 1=1,1133n n n a a +=+.数列{b n },13n n n b a -=.正数数列{d n },2221111n n n d b b +=++. (1)求证:数列{b n }为等差数列;(2)设数列{b n },{d n }的前n 项和分别为B n ,D n ,求数列{b n D n +d n B n -b n d n }的前n 项和S n .20.(本小题满分16分)设函数f (x )=ax 2+e x (a ∈R )有且仅有两个极值点x 1,x 2(x 1<x 2). (1)求实数a 的取值范围;(2)是否存在实数a 满足f (x 1)=231e x ?如存在,求f (x )的极大值;如不存在,请说明理由.数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 共4小题,请.选定其中两小题.......,并在相应的答题区域.........内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,⊙O 是等腰三角形ABC 的外接圆,AB =AC ,延长BC 到点D ,使得CD =AC ,连结AD 交⊙O 于点E ,连结BE 与AC 交于点F ,求证BE 平分∠ABC .B .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵14a b ⎡⎤=⎢⎥-⎣⎦A ,A 的两个特征值为12λ=,2λ=3. (1)求a ,b 的值;(2)求属于2λ的一个特征向量α.C .[选修4-4:坐标系与参数方程](本小题满分10分)圆C的参数方程为12cos ,2sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数),设P 是圆C 与x 轴正半轴的交点.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.D .[选修4-5:不等式选讲](本小题满分10分) 已知a 、b 、c 均为正实数,且a +b +c =1D(第21A 图)【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)(1)计算:2013320145C A +;(2)观察下面一组组合数等式:101C C n n n -=;2112C C n n n -=;3213C C n n n -=;…由以上规律,请写出第k (k ∈N *)个等式并证明.23.(本小题满分10分)设数列{a n },{b n }满足a 1=b 1,且对任意正整数n ,{a n }中小于等于n 的项数恰为b n ; {b n }中小于等于n 的项数恰为a n . (1)求a 1;(2)求数列{a n }的通项公式.南通市2014届高三数学临门一脚参考答案与评分建议数学I参考公式:棱锥的体积公式:13V Sh =,其中S 为锥体的底面积,h 为高.一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应的位置........上.. 1.已知集合A ={1,k -1},B ={2,3},且A ∩B ={2},则实数k 的值为 ▲ . 答案:3.2.若复数z 满足i z =2(i 为虚数单位),则z = ▲ . 答案:-2i .3.不等式组0,0,2x y x y ⎧⎪⎨⎪+⎩≥≥≤所表示的平面区域的面积为 ▲ .答案:2.4.函数y =sin 2x 的最小正周期为 ▲ . 答案:π.5.若正方体ABCD -A 1B 1C 1D 1的棱长为1,则三棱锥A -BDA 1的体积为 ▲ . 答案:16. 6.已知函数23,0,()1,0,x x f x x x ->⎧=⎨+⎩≤若f (x )=5,则x = ▲ .答案:8或-2.7.设函数f (x )=log 2x (0<x <5),则f (x )<1的概率为 ▲ . 答案:25.(第10题图)(第9题图)8.某鲜花店对一个月的鲜花销售数量(单位:支)进行统计,统计时间是4月1日至4月30日,5天一组分组统计,绘制了如图的鲜花销售数量频率分布直方图.已知从左到右各长方形的高的比为2∶3∶4∶6∶4∶1,且第二组的频数为180,那么该月共销售出的鲜花数(单位:支)为 ▲ . 答案:1200.9.如图是一个算法流程图.若输入A =3,B =5,则输出A ,B 的值分别为 ▲ .答案:5,3.10.已知向量a ,b ,c 在正方形网格中的位置如图所示.若(,)λμλμ=+∈R c a b ,则λμ+=▲ .答案:53-.11.已知实数x ,y ,满足xy =1,且x >2y >0,则2242x y x y+-的最小值为 ▲ .答案:4.12.设t ∈R ,[t ]表示不超过t 的最大整数.则在平面直角坐标系xOy 中,满足[x ]2+[y ]2=13的点P (x ,y )所围成的图形的面积为 ▲ . 答案:8.13.设函数f (x )满足f (x )=f (3x ),且当x ∈[1,3)时,f (x )=ln x .若在区间[1,9)内,存在3个不同的实数x 1,x 2,x 3,使得312123()()()f x f x f x x x x ===t ,则实数t 的取值范围为 ▲ . 答案:ln31(,)93e. 14.设各项均为正整数的无穷等差数列{a n },满足a 54=2014,且存在正整数k ,使a 1,a 54,(第8题图)a k 成等比数列,则公差d 的所有可能取值之和为 ▲ . 答案:92.二、解答题:本大题共6小题,共计90分.请在答题卡...指定区域内作答........解答时应写出文字说明,证明过程或演算步骤.15.(本小题满分14分)如图,在△ABC 中,|AB AC -|=3,|BC BA -|=5,|CA CB -|=7. (1)求C 的大小;(2)设D 为AB 的中点,求CD 的长.解:(1)依题意BC =3,CA =5,AB =7.······························································1分 由余弦定理,得222cos 2CB CA AB C CB CA+-=⋅⋅=12-. ·········································4分因0<C <π,··························································································6分 故C =23π.··························································································8分 (2)由余弦定理,得13cos 14A =.·······························································11分 在△ADC 中,AD =72,CD 2=AC 2+AD 2-2AC ×AD ×cos A =194, 于是CD.··················································································14分16.(本小题满分14分)如图,AB 为圆O 的直径,点E ,F 在圆上,四边形ABCD 为矩形,AB ∥EF ,∠BAF =3π,M 为BD 的中点,平面ABCD ⊥平面ABEF .求证:(1)BF ⊥平面DAF ; (2)ME ∥平面DAF .解:(1)因四边形ABCD 为矩形,故DA ⊥AB .(第15题图)BAC(第16题图)因平面ABCD ⊥平面ABEF ,且DA ⊂平面ABCD ,平面ABCD ∩平面ABEF =AB , 故DA ⊥平面ABEF . ············································································3分 因BF ⊂平面ABEF ,故DA ⊥BF . ···························································4分 因AB 为直径,故BF ⊥AF .因DA ,AF 为平面DAF 内的两条相交直线,故BF ⊥平面DAF .·····················7分 (2)因∠BAF =3π,AB ∥EF ,故EF =12AB .··················································8分 取DA 中点N ,连NF ,MN ,因M 为BD 的中点, 故MN ∥AB ,且MN =12AB ,于是四边形MNFE 为平行四边形, 所以ME ∥NF .···················································································11分 因NF ⊂平面DAF ,ME ⊄平面DAF ,故ME ∥平面DAF .·············································································14分注:第(2)问,亦可先证明ME ∥平面MOE .17.(本小题满分14分)图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD 是矩形,弧CmD 是半圆,凹槽的横截面的周长为4.若凹槽的强度T 等于横截面的面积S 与边AB 的乘积,设AB =2x ,BC =y . (1)写出y 关于x 函数表达式,并指出x 的取值范围; (2)求当x 取何值时,凹槽的强度T 最大.解:(1)易知半圆CmD 的半径为x ,故半圆CmD 的弧长为πx . 所以,4=2x +2y +πx ,得4(2)2xy -+π=.····················································4分 依题意,知:0<x <y ,得404x <<+π. 所以,4(2)2x y -+π=(404x <<+π).·······················································7分(2)依题意,T =AB S ⋅=212(2)2x xy x -π=238(43)x x -+π. ······························9分(第17题图)图1图2令2163(43)T x x '=-+π=0,得16x =∈4(0,),另一解舍去.··············11分所以当16912x =π+,凹槽的强度最大.·····················································14分注:x 的范围写为404x <≤+π,不扣分.18.(本小题满分16分)在平面直角坐标系xOy 中,已知椭圆22221x y a b+=(a >b >0)过点(1,1).(1),求椭圆的方程; (2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .(2)若椭圆上两动点P ,Q ,满足OP ⊥OQ .①已知命题:“直线PQ 恒与定圆C 相切”是真命题,试直接写出圆C 的方程;(不需要解答过程)②设①中的圆C 交y 轴的负半轴于M 点,二次函数y =x 2-m 的图象过点M .点A ,B在该图象上,当A ,O ,B 三点共线时,求△MAB 的面积S 的最小值.解:(1)由e =,所以::a b c .························································2分 设椭圆方程为222212x y b b+=,将(1,1)代入得221112b b +=,所以223,32b a ==,椭圆方程为222133x y +=.·············································5分 (2)①221x y +=.··················································································9分 ②由题意,二次函数为y =x 2-1.······························································10分 设直线AB 的方程为y =kx .由21y x y kx⎧=-⎨=⎩,消去y 得,210x kx --=. 设11(,)A x y ,22(,)B x y ,则12x x k +=,121x x =-.······································12分所以2112S OM x x=⋅-=·····························14分当0k=时,△MAB的面积S的最小值为1.·············································16分19.(本小题满分16分)设数列{a n},a1=1,1133nn naa+=+.数列{b n},13nn nb a-=.正数数列{d n},2221111nn ndb b+=++.(1)求证:数列{b n}为等差数列;(2)设数列{b n},{d n}的前n项和分别为B n,D n,求数列{b n D n+d n B n-b n d n}的前n项和S n.解:(1)由1133nn naa+=+,得11331n nn na a-+=+.又13nn nb a-=,所以11n+nb b+=.·······························································3分又b1=a1=1,所以数列{b n}是以1为首项,1为公差的等差数列.·····················4分(2)由(1)得1(1)1nb n n=+-⨯=,B n=(1)2n n+.·············································6分因2221111nn ndb b+=++,故222221121)111(1)(1)nn ndn n n n++=++=+++(21[1](1)n n=++.由d n>0,得11111(1)1ndn n n n=+=+-++.于是,111nD nn=+-+.······································································10分又当n≥2时,b n D n+d n B n-b n d n=(B n-B n-1)D n+(D n-D n-1)B n-(B n-B n-1)(D n-D n-1)=B n D n-B n-1D n-1,所以S n=(B n D n-B n-1D n-1)+(B n-1D n-1-B n-2D n-2)+…+(B2D2-B1D1)+B1D1=B n D n.··········14分因S1=b1D1+d1B1-b1d1=B1D1也适合上式,故对于任意的n∈N*,都有S n=B n D n.所以S n=B n D n=(1)2n n+⋅1(1)1nn+-+=321(2)2n n+.···································16分20.(本小题满分16分)设函数f(x)=ax2+e x(a∈R)有且仅有两个极值点x1,x2(x1<x2).(1)求实数a的取值范围;(2)是否存在实数a满足f(x1)=231e x?如存在,求f(x)的极大值;如不存在,请说明理由.解:(1)()f x'=2ax+e x.显然a ≠0,x 1,x 2是直线y =12a-与曲线y =g (x )=e x x两交点的横坐标.··············2分由()g x '=1xx-=0,得x =1.列表: ·························································4分 此外注意到: 当x <0时,g (x )<0;当x ∈[0,1]及x ∈(1,+∞)时,g (x )的取值范围分别为[0,1e ]和(0,1e ).于是题设等价于0<12a -<1e⇒a <e 2-,故实数a 的取值范围为(-∞,e2-).········6分(2)存在实数a 满足题设.证明如下: 由(1)知,0< x 1<1<x 2,1()f x '=2ax 1+1e x =0,故f (x 1)=121+e x ax =111e e 2x x x -=231e x ,故11231e 1e e 02x x x --=.····························8分 记R (x )=23e 1e e 2x x x --(0<x <1),则()R x '=2e (1)1e 02x x x x --<,于是,R (x )在(0,1)上单调递减. 又R (23)=0,故R (x )有唯一的零点x =23. 从而,满足f (x 1)=231e x 的x 1=23.所以,a=1231e 3e 24x x -=-.·····························12分 此时f (x )=2233e e 4x x -+,()f x '=233e e 2x x -+,又(0)f '>0,(1)f '<0,(2)f '>0,而x 1=23∈(0,1), 故当a =233e 4-时,f (x )极大=f (x 1)=232e 3.·······················································16分南通市2014届高三数学临门一脚数学Ⅱ(附加题)21.【选做题】本题包括A 、B 、C 、D 共4小题,请.选定其中两小题.......,并在相应的答题区域.........内作答....若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4-1:几何证明选讲](本小题满分10分)如图,⊙O 是三角形△ABC 的外接圆,AB =AC ,延长BC 到点D ,使得CD =AC ,连结AD 交⊙O 于点E ,连结BE 与AC 交于点F ,求证BE 平分∠ABC .解:因CD =AC ,故∠D =∠CAD .因AB =AC ,故∠ABC =∠ACB . 因∠EBC =∠CAD ,故∠EBC =∠D .因∠ABC =∠ABE +∠EBC ,∠ACB =∠D +∠CAD .故∠ABE =∠EBC ,即BE 平分∠ABC . ···················································10分B .[选修4-2:矩阵与变换](本小题满分10分) 已知矩阵14a b ⎡⎤=⎢⎥-⎣⎦A ,A 的两个特征值为12λ=,2λ=3. (1)求a ,b 的值;(2)求属于2λ的一个特征向量α.解:(1)令2()()(4)(4)4014abf a b a a b λλλλλλλ--==--+=-+++=-,于是 1λ+2λ=a +4,1λ⋅2λ=4a +b .解得a =1,b =2. ············································5分(2)设α=x y ⎡⎤⎢⎥⎣⎦,则A α=1214⎡⎤⎢⎥-⎣⎦x y ⎡⎤⎢⎥⎣⎦=24x y x y +⎡⎤⎢⎥-+⎣⎦=3x y ⎡⎤⎢⎥⎣⎦=33x y ⎡⎤⎢⎥⎣⎦, 故23,43,x y x x y y +=⎧⎨-+=⎩解得x =y .于是,α=11⎡⎤⎢⎥⎣⎦.···············································10分D(第21A 题图)C .[选修4-4:坐标系与参数方程](本小题满分10分)圆C 的参数方程为12cos ,2sin x y θθ=+⎧⎪⎨=⎪⎩(θ为参数),设P 是圆C 与x 轴正半轴的交点.以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.设过点P 的圆C 的切线为l ,求直线l 的极坐标方程.解:由题设知,圆心(1C ,(2,0)P ,∠CPO =60°,故过P 点的切线的倾斜角为30°. ····························································3分 设(,)M ρθ是过P 点的圆C 的切线上的任一点,则在△PMO 中, ∠MOP =θ,030OMP θ∠=-,0150OPM ∠=. 由正弦定理得sin sin OM OPOPM OMP=∠∠,于是002sin150sin(30)ρθ=-, 即0cos(60)1 ρθ+=(或0sin(30)1ρθ-=)即为所求切线的极坐标方程.·········10分D .[选修4-5:不等式选讲](本小题满分10分)已知a 、b 、c 均为正实数,且a +b +c =1解:因 a 、b 、c >0,故 2 111)2≤((a +1)+(b +1)+(c +1))(1+1+1)=12,························································3分,=a =b =c =13时,取“=”..··········································10分【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答..........,解答时应写出文字说明、证明过程或演算步骤.22.(本小题满分10分)(1)计算:2013320145C A +;(2)观察下面一组组合数等式:101C C n n n -=;2112C C n n n -=;3213C C n n n -=;…由以上规律,请写出第k (k ∈N *)个等式并证明.解:(1)原式=2074.·····················································································5分(2)等式为:11C C k k n n k n --=,k ∈N *. ····························································7分证明:C k n k =!!()!kn k n k -=(1)!(1)!((1)(1))!n n k n k -----=11C k n n --.·······························10分23.(本小题满分10分)数列{a n },{b n }满足a 1=b 1,且对任意正整数n ,{a n }中小于等于n 的项数恰为b n ; {b n }中小于等于n 的项数恰为a n . (1)求a 1;(2)求数列{a n }的通项公式.解:(1)首先,容易得到一个简单事实:{a n }与{b n }均为不减数列且a n ∈N ,b n ∈N . 若a 1=b 1=0,故{a n }中小于等于1的项至少有一项,从而b 1≥1,这与b 1=0矛盾. 若a 1=b 1≥2,则{a n }中没有小于或等于1的项,从而b 1=0,这与b 1≥2矛盾. 所以,a 1=1.························································································4分 (2)假设当n =k 时,a k =b k =k ,k ∈N *.若a k +1≥k +2,因{a n }为不减数列,故{a n }中小于等于k +1的项只有k 项, 于是b k +1=k ,此时{b n }中小于等于k 的项至少有k +1项(b 1,b 2,…,b k ,b k +1), 从而a k ≥k +1,这与假设a k =k 矛盾.若a k +1=k ,则{a n }中小于等于k 的项至少有k +1项(a 1,a 2,…,a k ,a k +1), 于是b k ≥k +1,这与假设b k =k 矛盾. 所以,a k +1=k +1.所以,当n =k +1时,猜想也成立.综上,由(1),(2)可知,a n =b n =n 对一切正整数n 恒成立.所以,a n =n ,即为所求的通项公式.························································10分。

相关文档
最新文档