第三章 刚体力学分析
第三章刚体力学基础
(2)轴通过棒的中心并与棒垂直;
dm
解:
J
r 2dm
dm dx m dx
o x dx
x
l
J l x2 m dx 1 m x3 l J 1 ml2
0l
3l 0
3
L
JC
2 L
x 2dx
mL2
/ 12
A
C
2
L/2
B
L/2
x
注:同一刚体,相对不同的转轴,转动惯量是不同的。
J ,r
质点A
T1 mg sin maA
质点B
mg T2 maB
滑轮(刚体) T2r T1r J
( T2 T2,T1 T1)
联系量 aA aB r
联立求解可得T1 、T2、 aA、 aB、
A
B
FN
T1 FR T1 mg T2
T2 m1g
为什么此时T1 ≠ T2 ?
mg
3、 平行轴定理与垂直轴定理
J11 J1 J2 2
ω
则B轮的转动惯量
J2
1 2 2
J1
n1 n2 n2
J1
20.0kg m2
(2)系统在啮合过程中机械能的变化为.
E
1 2
J1
J2
12
1 2
J112
1.32
104
J
质点的运动规律和刚体定轴转动规律的对比(一)
速度 加速度
质点v的运d动r
a
dt dv
dt
质量m, 力F
第一节 刚体运动的描述
一. 刚体
内部任意两点的距离在运动过程中始终保持不变的物 体,即运动过程中不发生形变的物体。
理论力学第三章刚体力学 ppt课件
正常转动,赝张量的变换多出一个负号。
对于张量,可定义如下运算:
1)相等。
设A和B为两个同阶张量,如果它们的所有分量相等,
即
A ... B ... ,则称它们相等,记为A = B.
2)加法。
两个同阶张量A和B的和定义为 C ...=A ...+B ... 它仍为一个张量,记为 C=A+B
L
a
L
a AL L )(a L
a L
a
B L
L
)
a L aa L a AL L BL L (a a )
a L aa L a ( AL L BL L )
nr nr nr nr
1)转动前: rr 2)转动nr 后:rr nr rr
3)再rr 转动nr rrnr后nr:rr nr rr
不计二阶微量,则有
rr rr nr rr nrrr
交换转动次序,则有
rr rr nrrr nr rr 已知对线位移,有 rr rr rr rr 可得 nr rr nrrr nrrr nr rr
§3.1 刚体运动的分析 §3.2 角速度矢量 §3.3 欧勒角 §3.4 刚体运动方程与平衡方程 §3.5 转动惯量 §3.6 刚体的平动与绕固定轴的转动
§3.7 刚体的平面平行运动 §3.8 刚体绕固定点的运动 §3.9 重刚体绕固定点转动的解 §3.10 拉莫尔进动
§3.1 刚体运动的分析
1. 描写刚体位置的独立变量
将两个矢量Av和Bv按顺序并在一起,不作任何运算
得到的量称为并矢,记为
vv AB
A
B ev ev
第3章 刚体力学
说明 ( 1)
M J , 与 M 方向相同.
(2) 为瞬时关系. (3) 转动中 M J 与平动中 F ma 地位相同.
第三章 刚体力学
如果刚体所受合力为零,同时 合力矩为零, 好,现在我们可以问一个问题: Fi 0 , Mi 0 则刚体会做什么样的运动?
R
2
dm m R
R
r
dr
一质量为m、半径为R的均匀圆盘,求通过盘中心O并与 盘面垂直的轴的转动惯量。 解:设盘质量面密度为 ,在盘上取半径为r,宽为dr的圆环
m π R2
R 2 0
dm 2 π rdr
3
J r dm
R
0
1 2 π R mR 2πσr dr 2 2
v v0 at 2 x x0 v0t 1 at 2 2 2 v v0 2a( x x0 )
ω ω0 βt θ θ 0 ω 0 t 12 β t 2 ω 2 ω 02 2 β ( θ θ 0 )
第三章 刚体力学
z
重要
刚体定轴转动的特点 O
第三章 刚体力学
5. 角速度正负的判断
0
0
逆时钟转动
顺时钟转动
第三章 刚体力学 (2)角量和线量的关系
z
s r
v r
an r 2
O
at r
dv d(r ) at r dt dt
(3)角量与线量的公式比较
x
质点匀变速直线运动
刚体绕定轴作匀变速转动
平 动 刚体:外力作用下形状和大小都不发生变化的物体。 转 动 二、刚体的运动形式 [实例]
第三章刚体力学(2)
J 00 ( J 0 mR )
2
J 00 ( J 0 0)
0
J 00 J 0 mR2
R
O’ Cபைடு நூலகம்
B
(2) 球与环及地球为系统,机械能守恒
势能零点
1 1 2 1 2 2 J 00 mg 2 R mv J 00 2 2 2
v 2 gR
环上C点处对惯性系的速度为零
d A M d
1 2 Ek J 2
A Md
1
2
定轴转动动能定理 势能 刚体的机械能
1 1 2 A J 2 J 12 2 2
E p mghc
1 2 E E p Ek mghc J 2 A外 A非保 E
A外+A非保=0 ΔE=0
*
机械能守恒
三、定轴转动定理定律 力矩 角动量
M r F
L J L J z
dLz M z J dt
定轴转动定律
分析问题:对刚体列出定轴转动定律方程
对质点列出牛顿定律方程 线量与角量的关系 M = 0 L = 常量——角动量守恒 J = 常量
力(力矩)对刚体的功 定轴转动动能
各质点的位置和速度 某点的位矢 = 质心的位矢 + 该质点相对质心的位矢 某点的速度 = 质心的平动速度 + 该质点相对质心的速度
y
ri rc ri
vi vc vi vc ri
mi
ri
ri′ rc
x
质心系
ω是该质点相对质心做转动时的角速度
O
八.细杆长l,质量m.从水平位置释放后与物 体碰撞,物体质量m,与地面摩擦系数u,撞后 滑行S停止,求碰后杆质心C上升的最大高度. 解: 分三阶段考虑 杆机械能守恒
理论力学第三章刚体力学
线量和角量的对应
dr
dr v dt
d
d dt
dv a dt
d dt
6.欧勒角
1).欧勒角 章动 角 自转 角 Z轴位置由 θ,φ角决 定 进动 角
节线ON
0 0 2 0 2
2).欧勒运动学方程
在直角坐标系
x i y j z k
理 论 力 学
第三章 刚体运动
概述
1.刚体是一个理想模型,它可以看作是一种特
殊的质点组,这个质点组中任何两个质点之间
的距离不变.这使得问题大为简化,使我们能 更详细地研究它的运动性质,得到的结果对实 际问题很有用。 2.一般刚体的自由度为6.如果刚体运动受到约束, 自由度相应减少.
3.刚体的两种基本运动
刚体上任一点p的坐标分别为
v r ra a ra 而在系 a xy z r r ( r b a a b ra ) rb ra (rb ra )
得
r ra ra
2
drci (rci mi Jc ) dt i 1 n (e) (rci Fi ) Mc
n
i 1
简表为:
d Mc Jc dt
(6个方程正好确定刚体的6个独立变量)
刚体的动量矩 (角动量) n n ) 简表为: J J c J ci (ri mi vi ) rc mvc (rci mi vci
三.刚体的平衡
刚体平衡条件
(e) Fi 0
n i
n (e) Fi ) 0 (rci Mc i 1
第三章-刚体力学基础
薄板对Z轴的转动惯量 J Z =
对X轴的转动惯量 J X
对Y轴的转动惯量 JY
Z
垂直轴定理
JZ JX JY
O
yi
Y
xi
ri
X
JZ miri2 mi xi2 mi yi2 Jx J y
五 刚体定轴转动的转动定律的应用
例1、一个质量为M、半径为R的定
滑轮(当作均匀圆盘)上面绕有细绳, 绳的一端固定在滑轮边上,另一端挂
分析: 由 每分钟150转 可知
0
t
2 150
60
5
rad
/ s
而已知 r=0.2m t=30s ω=0
可由公式求相应的物理量
解: (1) 0 0 5 (rad / s2 )
t
30
6
负号表示角加速度方向与角速度方向相反
(飞轮做匀减速转动)
2 02 2
(5 )2 2 ( )
末位置:
Ek
1 2
J 2
l
由刚体定轴转动的动能定理
1 mgl sin 1 J 2 0
2
2
mgl sin 3g sin
J
l
M
1 mgl cos
2
3g cos
J
1 ml2
2l
3
dm dl
gdm
(用机械能守恒定律解) 假设棒在水平位置时的重力势能为零势能
0 1 J2 (mg l sin ) O
动。最初棒静止在水平位置,求它由此下摆角时的
角加速度和角速度。(分别用动能定理和机械能守
恒定律求解)
解: (用动能定理解)
重力对轴的力矩为
M 1 mgl cos(M
O
大学物理第三章刚体力学
薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
刚体力学基础第三章
二、转动惯量J
对分立的质点系: J miri2
i
对刚体: 质量是连续分布
J r2dm
r 2dl 线分布,为线密度
J r 2ds 面分布,为面密度 r 2 dV 体分布,为体密度
z
dm
r
讨论
J r2dm
(1)转动惯量的物理意义:J表示刚体转动时惯性的大小
(2)转动惯量J的大小决定于
r 3dr
1 2
mR2
m
R 2
J
常 见 刚 体 的 转 动 惯 量
§3 刚体定轴转动定律
一、 力矩
使物体转动,必须给定一 个作用力,另外考虑转动与力 的作用点以及作用力的方向有 关,因此在研究物体转动中引
入力矩这一物理量。 (1)若刚体所受力 F在转动平面内
z
Od r
F
F
P
力臂:rsin = d 表示转轴到力作用线的垂直距离。
m
2(2
m
1
+
m
2
m 1+m 2
+
m
2
)g
T1
a m1 m1g T2 a m2 m2g
§4 力矩的功 动能定理
一、力矩的功
刚体在合外力矩作用下绕定轴转动而发生角位移时
d,A则力F矩 d对r刚体F作d了r功co。s F cos(900 )ds
F sin rd
Md
z
O d
dr
F
r P
元功:力矩对质点(或刚体)所作的 元功等于力矩和角位移的乘积
盘)。如A下降,B与水平桌面间的滑动摩擦系数为μ,
绳与滑轮之间无相对滑动,试求系统的加速度及绳中的
张力FT1和FT2。 受力分析 FT1
理论力学周衍柏第三章
(e) dT Fi dri
(e) 若 Fi dri dV 则 T V E
为辅助方程,可代替上述6个方程中任何一个
§3.5 转动惯量
一、刚体的动量矩 1. 某时刻刚体绕瞬轴OO’转动,则pi点的速度为
vi rii
动量矩为 2. 坐标表示
R Fi Fi 0 M M i ri Fi 0
2. 几种特例 1)汇交力系(力的作用线汇交于一点):取汇交点为 简化中心,则
Fix 0 R Fi 0 Fiy 0 Fiz 0
三、力偶力偶矩 1. 力偶:等大、反向、不共线的两个力组成的利系。
力 偶 所在平面角力偶面. 2. 力偶矩: 对任意一点O M rA F rB F (rA rB ) F r F M Fd
方向 : 右手法则 上式表明:
J z x mi zi xi y mi zi yi z mi ( xi2 yi2 )
I yy mi ( zi2 源自xi2 ) I zy mi zi yi I yz mi yi zi I xz mi xi zi
I zz mi ( xi2 yi2 )
第三章 刚体力学
(5) 空间力系向一点简化 力系中每一个力都向简化中心简化得一力和力偶矩, 这些共点力和诸力偶矩可合成为一个单力和一个单 力偶矩,其作用与原力系等效。
结论:作用在刚体上的任意空间力系 F1 , F2 ......Fn ) (
l sin 0 cos 0 f N2 h l sin 0 cos2 0
2
B C
l
说明:也可用二矩式和三矩式 平衡条件求解
l
A
例2:相同的两个均质光滑球悬在结于定点O的两根 绳子上,求两球同时又支撑一个等重的均质球,求: 角与 角之间的关系。 解:(1) 本题需求角与 角的关系,
①力偶矩等于力偶中两力对任意一点力矩的矢量 和,故力偶矩的量值与取矩点无关。
证明:o点任取
M o rA F1 rB F2 (rA rB ) F1 rAB F 1 M o
结论:力偶矩是自由矢量 力的作用面不能随意移动。
2
mxc Fx 即: myc Fy mzc Fz
①
由对质心的动量矩定理(平动质心系中): dJ cx dt M cx dJ c M c 即: dJ cy dt M cy dt dJ cz dt M cz
B C
l
l
A
(3) 本题为平面力系的平衡问题
平衡条件:Fx 0, Fy 0, M z 0
Fx 0 f N1 cos 90 0 0 f N1 sin 0 Fy 0 N 2 N1 sin 90 0 P 0 N 2 P N1 cos 0 M 0 Pl cos N h N Pl sin cos / h 0 1 1 0 0 Az sin 0
§3.1 刚体运动的分析
空间力系的简化 可以简化为空间定点的一个单力F和一个力偶矩M,F称主矢, M称主矩,定点称简化中心。
Note: (1)简化中心可以任意选取(一般取质心);
(2)主矢与简化中心无关,主矩与简化中心有关。
例如:作用在A点的力F分别向B、C迁移:
B rBC
迁移到B,需添加:M
z
质点组(n个质点):自由度= 3n
确定刚体在空间的位置,最少需要几个独立变量?
B
A
C
至少需要6个独立变6个独立变量?
刚体位置的描述 (1)三点法:
C xC , yC , zC
从9个非独立坐标 中任取6个独立的
A xA, yA, zA B xB , yB , zB
定点转动的自由度:3个
§3.2 角速度矢量
设刚体绕通过定点O的某轴线转动了Δθ角度
角位移: 在转动轴上截取有向线段 n称为角位移
n的方向:与旋转方向成右手螺旋关系
n
n
角位移是不是矢量?
——矢量的合成满足平行四边形法则 满足对易律:A+B=B+A
A B
有限转动 :角位移不是矢量,不满足矢量加法对易律
dJ dt
Fe Me
刚体: mdJrC dt
i i
Fie
F
ri
Fi e
M
Note:
6个方程正好确定
①明确方程中各个量的意义。 刚体的6个独立变量
F
:主矢
J ,
M:以质心为中心得到的动量矩和主矩。
②当研究刚体对固定点的转动时,可以将第二方程换为
dJ dt
i
ri
Fi e
刚体力学
每一质点既然要三个独立变量来确定 它的位置,而确定刚体的位置需要确定 刚体内不共线的三点,因此,确定刚体 的位置需要九个变量。但因三点间三个 距离是常数,所以实际上只要用六个独 立变量就可以确定刚体的位置。 刚体中的任一点O,需三个独立坐标变量。 A
过O点的任一直线位置的确定,需要三 个变量——方位角:α,β,γ。而
2016/8/31 长春大学应用物理系
z
y y
N
x
16
地球的章动带来一个非常有趣的现象:每平均19年后,阳历 与阴历所对应的日子会重合一次。比如,2001年的国庆节(阳 历10月1日)与中秋节(阴历8月15日)是同一天。2020年,两个 节日又重合。 地轴除了章动外,还有另外一种运动, 使得地轴不是在一个平面内运动,而是
如开、关门窗。
5
3、平面平行运动:在刚体运动的过程中,刚体上的任一点始终 在平行于某一固定平面的平面内运动。 运动可分解为某一平面内任意一点的
平动及绕通过此点且垂直于固定平面 的固定轴的转动,所以刚体作平面平行
运动时只有三个独立变量.
用基点的坐标(xo,yo)及其对垂直平面过基点的轴的转角φ描述。 注意:平面平行运动与平动的区别。
x
自转 角
2016/8/31
进动 角
长春大学应用物理系
节线ON
13
章动 角
静系
[ksai]; [eit ]; [zi : t].
动系
自转 角 Z轴位置由θ, φ角决定
o xyz
ON O z ON O
节线:ON
节线ON 进动 角 ˆ 进动角: oN , 绕 轴转,
第三章 刚体力学1
1
v v v rvc = 0 v v J = rc × m v c + J ′ → = J ′
上页 下页 返回 结束
角速度 与其本身的叉积。 与其本身的叉积。 ωv
v
dA v v = ω× A dt
例: 单位矢量的微商公式 v v
di v v =ω×i dt
v dj v v dk v v 后面要用! = ω × k 后面要用! = ω× j dt dt
上页 下页 返回 结束
第三章 刚体力学
§3.3 欧勒角
: 静系 o −ξηζ
v v ∆n v v v v v v r → r ′ = r + ∆r = r + ∆n × r
(1)
v v ∆ n′ v v v v r → r ′ = r + ∆n′ × r
v v ∆n v v v v v v v v v r′ → r ′′ = r + ∆n′ × r + ∆n × r + ∆n × (∆n′ × r ) (2) v v 比较(1)、 , 很小时, 比较 、(2),只有 ∆ n 与 ∆ n ′ 很小时,二阶小量忽
v v v M = r ×F
上页 下页 返回 结束
v v v F2 = −F = F 1
PO2 F2 − PO1F1 = O1O2F P v M : 可作用于力偶面上的任一
点,亦称为自由矢量。 亦称为自由矢量。 自由矢量 (3)空间力系求和 ) 为作用在刚体A点上的一 设: A 为作用在刚体 点上的一 个力, 为空间任一点 为空间任一点。 个力,P为空间任一点。
第三章 刚体力学
第三章刚体力学本章介绍刚体运动状态的描述(§3.1-§3.2)以及刚体受力与运动状态的关系(§3.3-§3.10)。
其内容包括:刚体运动学、刚体静力学和刚体动力学,重点掌握刚体运动学和刚体动力学。
刚体是指在任何情况下形状、大小都不发生变化的力学体系,它是一种理想物理模型,只要一个物体中任意两点的距离不因受力而改变,它就可以称为刚体。
§3.1 刚体运动的分析一、描述刚体位置的独立变量刚体的特性是任意两点距离不因受力而变。
这种特性决定了确定刚体的位置并不需要许多变量,而只要少数变量就行。
能完全确定刚体位置的,彼此独立的变量个数叫刚体的自由度。
二、刚体运动的分类及其自由度1、平动:自由度3,可用其中任一点的坐标x、y、z描述;2、定轴转动:自由度1,用对轴的转角φ描述;3、平面平行运动:自由度3,用基点的坐标(x o,y o)及其对垂直平面过基点的轴的转角φ描述。
4、定点转动:自由度3,用描述轴的方向的θ,ψ角和轴线的转角ψ描述。
5、一般运动:自由度6,用描述质心位置的坐标(x c,y c,z c)和通过的定点的轴的三个角(θ,φ,ψ)描述。
§3.2 角速度矢量、角速度矢量及其与刚体中任本节重点是:掌握角位移矢量一点的线位移、线速度的相互关系。
理解有限转动时角位移不是矢量,只有无限小角位移才是矢量。
一、有限转动与无限小转动1、有限转动不是矢量,不满足对易律2、无限小转动是矢量,它满足矢量对易律。
①线位移△r与无限小角位移△n的关系设转轴OM,有矢量△n,其大小等于很小的转角Δθ,方向沿转轴方向,转轴的方向与刚体转动方向成右手螺旋,则△n称为角位移矢量。
由图3.2.1很容易求得即线位移△r=角位移△n与位矢r的矢量积。
②角位移和△n满足矢量对易律利用两次位移的可交换性,可证得该式表明:微小转动的合成遵循平行四边形加法的对易律,从而无限小角位移△n是一个矢量。
第三章 刚体力学
y’
y,η x
ψ
N
x,ξ
实际上,据刚才的分析, O 轴 可认为 是刚体绕 转动的角速度 ,绕ON轴 转动的角速度 ,和绕 z轴转动的角速度 的矢量
z θ
z
ψ
y
M ’
y’
sin sini sin cosj cosk
F2
d o1o2
P
O1 A
rAB
B
F1 F2 F
O2
为力偶面
F1
力偶臂:两平行力之间的垂直距离 如图所示的O1O2 力偶对任意一点P的力矩等于两平 行力对同一点P的力矩之代数和
M F2 .PO2 F1.PO1 F.O1O2
M
力偶矩:力和力偶臂的乘积,方向右手螺旋法则
二 角速度矢量 角速度:
lim
t 0
既然角位移 且与角位移的方向相同 转动瞬轴: 定点转动时某时刻的转轴
n是矢量,则角速度也是矢量,
线速度:因转动而具有的速度 线速度和角速度之间的关系:
r 为刚体内某质点到点O的位矢, 是刚体绕通过
该点某轴线的角速度
dr dn r v r dt dt
y,η
k
ψ N
cosi sinj
y
x,ξ
x’
x
cos sin sin x
sin sin cos y
x
cos z
已知 (t ) ,θ(t),ψ(t)可以求得ω,反之亦然。
二、刚体的运动微分方程 1.质心运动方程 根据质心运动定理,取质心为简化中心, d r 为刚体质心相对于 m F F 则 dt 某定点O的位矢 分量式: m C Fx x
大学物理-第三章 刚体力学
大小:M rF sin Fd
M
O
z
M
r
d
P*
F
方向:右手螺旋,图中向上
0 , M o,沿转轴向上,使刚体绕转轴逆时针转
2 , M o,沿转轴向下,使刚体绕转轴顺时针转
上一页 下一页
2.外力F不在转动平面内 MFOFr FFz r F r Fz
T
N2
mg T2 T2 2m
2mg
解 : 设 整 体 顺 时 针 运 动, 即 两 滑 轮 转 轴 正 向 向内 。
右 质 点2m正 向 向 下 , 左 质 点m正 向 向 上 ,
受力分析如图。
上一页 下一页
右质点 2mg T2 2ma
左质点 T1 mg ma
右 滑 轮 T2 r
Tr
第三章 刚体力学
上一页 下一页
刚体:不发生形变的物体(理想模型)
刚体模型突出了物体的大小形状,忽略形变和振动。 刚体的运动形式:平动、转动、滚动、进动
刚体复杂运动可视为:平动 转动(绕某轴线转动) 刚体力学研究方法 把刚体看成不变质点系(任意两个质元的相对距离 保持不变),运用质点系定理和定律研究刚体的运动。
m 2
r
2
左滑轮Tr
T1r
m 2
r 2
关联方程 a r
解出 T 11 mg 8
N1
T
T1
mg
T1 m
mg
T
N2
a
mg T2
T2 2m
2mg
上一页 下一页
M,
J
刚体力学基础 ppt课件
O
F1
F
F2
F 对转轴的力矩
M rF2 sin
r
17
PPT课件
第三章 刚体力学
17
§3.2 刚体定轴转动的转动定律 二、转动定律 质点绕轴作圆周运 动,根据牛顿第二定律沿 切线方向的分量式
O
z
ri
Fii
mi
i
i
Fie
Fie sin i Fii sin i mi ait mi ri
z
O
r *
P
F
M Fr sin
0 π
π 2π
sin 0 力矩为正.
sin 0 力矩为负.
15
15
0 或 π sin 0 力矩为零. PPT课件 第三章 刚体力学
§3.2 刚体定轴转动的转动定律
力臂: 点 O 至力 F
的作用线的垂直距离.
3
PPT课件
第三章 刚体力学
3
教学基本要求
四 了解力矩的功和刚体转动动能的概念。
五 理解刚体对定轴的角动量概念,理解 刚体定轴转动的角动量定理,理解角动量守 恒定律。 六 了解经典力学的适用范围。
4
PPT课件
第三章 刚体力学
4
§3.1
刚体 刚体定轴转动的描述
一、刚体的平动和定轴转动 刚体:在力的作用下,大小和形状都保持不变的物体. 刚体最基本的运动形式是平动和定轴转动.
n n
18
18
§3.2 刚体定轴转动的转动定律
n 2 Fie ri sin i Fii ri sin i mi ri i 1 i 1 i 1
理论力学第三章 刚体力学-3
3、求 a1 (转动加速度 ) d总 a1 r dt d总 d di 其中, (ctgi ) ctg
dt
h h 2 ctg cos 2k ctg sin 2i cos cos 2h (cos2k sin 2i ) sin
1
1 I mR 2 2
平行轴定理
I I c md
2
叙述:刚体对某一轴线的转动惯量,等于对通过质 心的平行轴的转动惯量加上刚体的质量与两 轴间垂直距离平方的乘积。
2、对定点转动惯性的大小,由于转轴的方向不断变 化,要用一个张量才能描述。 z
I xx 1 惯量张量: I yx I zx I xy I yy I zy I xz I yz I zz
N
O
y
x
§3.7 转动惯量
一、定点转动刚体的动量矩 动坐标系oxyz
z
i
设 Pi 为刚体上任一质点,该质点对定点 o的动量矩为
i
ri mii
整个刚体对同一点o的动量矩为
n J ri mii
i 1 n
o
x
ri
y
mi ri ri
2
h 2 h 2 2 大小: a1 ( ) [cos 2 sin 2 ] sin sin
2 2
2h 所以: a1 sin
3、求 a2(向轴加速度 )
a2 总 (总 r )
h h 其中,总 r ctgi ( cos 2i sin 2k ) cos cos h ctg sin 2j cos cos h 2 sin cosj sin cos 2h cosj a2 总 (总 r ) (ctgi ) (2h cosj ) 2 2 cos 2 h k sin 2 cos 2 所以: a2 a2 2 h sin
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连续分布
J r 2 dm
J S r 2 dS
J V r 2 dV
2
J l r dl
【例】如图所示,在不计质量的细杆组成的正三角形的顶 角上,各固定一个质量为m的小球,三角形边长为l。求: ⑴系统对过C点,且与三角形平面垂直轴的转动惯量; ⑵系统对过A点,且与三角形平面垂直轴的转动惯量; ⑶若A处质点也固定在B处,⑵的结果如何? m
h
代入数据,得
F 5.91×1010 N
2018/11/1
【例】 有一圆盘质量为m,均匀分布,圆盘半径为R 可绕过盘中心的光滑竖直轴在水平桌面上转动,圆 盘与桌面间的滑动摩擦系数为μ,求圆盘转动后受的 摩擦力矩。 解:摩擦力距在圆盘的不同 R部位是不相同的,在圆盘 上取一半径r—r+dr的圆环 圆环质量: r dr
T' T
o
r
T T
m
m g T m a Tr J
a r
2 gt 2 J mr ( 1) 2S
1 2 S at 2
mg
【思考】组合轮可以绕通过其中心且垂直于盘面的光滑水 平固定轴o转动,对o轴的转动惯量J=9mr2/2 。两圆盘边缘 上分别绕有轻质细绳,细绳下端各悬挂质量为m的物体A和 B,这一系统从静止开始运动,绳与盘无相对滑动且长度不 变。已知小圆盘的半径为r,质量为m;大圆盘的半径 r’=2r,质量m’ = 2m 。 求:组合轮的角加速度的大小。
与质点匀变速直线运动公式相对应.
0 t
(6) 角量与线量的关系
线量——质点做圆周运动的v、a 角量——描述刚体转动整体运动的 ,, 弧长 线速度 切向加速度
s r
y
et
v 2 r 法向加速度 an r
注: r:质点到转轴的垂直距离.
v r at r
J z J c md
1 J c mR 2 2
2
Jz
Jc
R
m
3 1 2 2 2 J z mR mR mR 2 2
垂直于杆的轴通过杆的中心
1 J ml 2 12
垂直于杆的轴通过杆的端点
1 2 J ml 3
垂直于杆的轴通过杆的1/4处
7 J ml 2 48
匀 质 直 杆 对 垂 直 于 杆 的 转 轴 的 转 动 惯 量
l l l (1)J c m m m 3 3 3 1 2 l Ml ( M 3m) 3 2 2 2 2 (2)J A ml ml Ml 3 m 2 2 2 A (3)J A ml 2ml Ml
l
O x dx
x
【例】一质量为m, 半径为R的均匀圆盘, 求通过盘中 心并与盘面垂直的轴的转动惯量.
解:取圆环为质量元 质量面密度:
m 2 R
3
R
o
r
dr
dm dS 2 rdr
dJ r dm 2r dr
2
R 1 2 J dJ 2 r dr mR 2 2
3
4
几种典型形状刚体的转动惯量 O´ ω m O 圆环
J mR
2
ω
R
l
细圆棒
R
L
R
1 J ml 2 12 ω
R2
2 圆球 J mR 2 5 ω
R
R1
圆柱 J
1 mR 2 2
1 2 2 J m ( R R 圆筒 1 2) 2
2 球壳 J mR 2 3
平行轴定理
若刚体对过质心的轴的转动惯量为Jc, 则刚体对与 该轴相距为 d 的平行轴 z 的转动惯量Jz是:
T
m0
对m0: TR J
(2) (3) 恒矢量 ,与 时间无关.
a R
TmΒιβλιοθήκη mg2m g 联立(1),(2),(3)解得: a 2m m0
2m gt 由初始条件 v0 0 ,得 v at 2m m0
【例】一质量为m的物体悬于一条轻绳的一端,绳绕在一 滑轮的轴上。轴水平且垂直于轮轴面,其半径为r,整 个装置架在光滑的固定轴承上。当物体从静止释放后, 在时间t内下降了一段距离S,试求整个滑轮的转动惯量 (用m,r,t和S表示)
挂钟摆锤的转动惯量 ( 杆长为 l, 质 量为m1, 摆锤半径为R, 质量为m2) :
J Jc m d
2
1 2 1 2 2 m1l m2 R m2 l R 3 2
挂在光滑钉子上的匀质圆环摆动 的转动惯量 ( 圆环质量为 m, 半径 为R):
J Jc m d
2
m R2 m R2 2m R2
d 角速度 dt
O
(rad/s)
逆时针转动 >0, 顺时针转动 < 0.
2 πn πn rad/s 每分转n转 60 30 (4) 角加速度 d d 2 2 (rad/s2)
dt dt
与 同 号 刚 体 加 速 转 动 与 异 号 刚 体 减 速 转 动
2 2 2
B
l C l m D
讨论:⑴J与质量有关(见⑴、⑵、⑶结果) 图 4-6 ⑵J与轴的位置有关(比较⑴、⑵结果) ⑶J与刚体质量分布有关(比较⑵、⑶结果)
【例】求一质量为m,长为 l 的均匀细棒的转动惯量. (1) 转轴通过棒的中心并与棒垂直. (2) 轴通过棒的一端并与棒垂直. 解: 在棒上取质量元,长为dx, 离轴 O 为 x . m l 棒的线密度为:
M
力 F 不在转动平面内
O
r
F//
F
F
F// 不能改变刚体绕轴的转动状态 M r F
2)力平行轴或与轴重合
F F// F
1)力的作用线通过转轴 M 0的两种情况:
【例】有一大型水坝高110 m、长1000m,水深100m, 水面与大坝表面垂直,如图所示。求水作用在大坝上的 力,以及这个力对通过大坝基点Q且与x轴平行的力矩。
结论:刚体平动时,其上各点具有相同的速度、
加速度及相同的轨迹。可用一个质点的运动代 替刚体的运动。
转动:刚体运动时,各个质点在运动中都绕同一直线作 圆周运动。转动又分定轴转动和非定轴转动。
定轴转动: 转轴固定于参考系的转动。 非定轴转动: 转轴的方位随时间变化。
刚体的复杂运动一般可分解为平动和转动。
加速
z
r
减速
v
转动平面
(5)刚体定轴转动运动方程
d (t )dt
0 (t )dt
0 (t )dt
0
0 t
t
d (t )dt
匀速转动 =常量 0 t
匀变速转动 =常量
1 2 0 0 t t 2 2 2 0 2( 0)
取参考点O 图中rij表示质点 i指向质点 j的矢量 ,
由平动定义 rij为恒矢量
dri dt dt 2 d rj d 2 ri 2 2 dt dt dr j
rj ri rij
v j vi
rj
O
rij
ri
a j ai
解 设水深h,坝长L,在坝面上取面积元 dA Ldy 作用在此面积元上的力
dF = pdA = pLdy
dF pdA pLdy
令大气压为 p0 ,则
p p0 ρg (h y)
dF [ p0 ρg (h y)]Ldy
1 F [ p0 g (h y )] Ldy p0 Lh gLh 2 0 2
第三章
一、刚体
刚体力学
§3.1 刚体的运动 物体运动问题的影响因素(物体的性质)
(1)大小(2)形状(3)质量 (4)占有空间位置(5)变形
刚体:受力时不改变形状和体积的物体,是理想模型。
特点:(1)是一个质点系 (2)内部任意两质点间的距离保持不变.
二、 刚体的平动和转动
平动:刚体在运动过程中,在刚体中任作一条直线, 如果各个时刻该直线始终保持平行,这种运动称为 刚体的平动。
mA
A
T1
T 1' C
R
T1 mA a
C
T2 '
mC
TB2 m
B
mB g T2 mB a 1 T '2 R T '1 R mc R 2 2
T2 ' T2
图 4-9
合内力矩 可证明:
ri
mi
Fi
f
i
it i
r 0
2 2 Fit ri mi ri M mi ri i i i
2 M mi ri i
转动惯量 转动定理
J mi ri2
i
单位: kgm2
2
O
r
s
x
§3.2 刚体定轴转动定理
一、力对轴的力矩
力的大小?
力的作用点?
表征力对物体 转动作用 , 称为 力矩.
力 F 在转动平面内
M r F ( N m) 大小: M rF sin Fd
z
方向:由右手螺旋关系确定 , 垂直于 r 和 F 确定的平面.
解: T mg ma
T T
A
mg
m g T ma
m, r
m, r
o
T T
B
mg
T (2r ) Tr 9mr2 2
a r
a' (2r )