【三维设计】人教版高中数学选修2-1练习:1.1.1 命 题(含答案解析)

合集下载

2020秋高中数学人教版2-1学案:1.1.1命题含解析

2020秋高中数学人教版2-1学案:1.1.1命题含解析

2020秋高中数学人教A版选修2-1学案:1.1.1命题含解析第一章常用逻辑用语德国伟大的诗人歌德,有一次在魏玛公园散步.当他走在一条仅能容一个人通过的小路上时,迎面走来了一位曾经把歌德的所有作品都贬得一文不值的文艺批评家.那位批评家站在歌德的对面,傲慢地说:“对一个傻子,我绝不让路." “我却正好相反."歌德边说边微笑着站到了一边.顿时,那位批评家满脸通红,羞得无地自容.这里反映的就是常用逻辑用语在现实生活中的应用.日常生活中,我们经常涉及一些逻辑上的问题.无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思维,需要对一些命题进行判断和推理.因此,正确地使用逻辑用语是现代社会公民应该具备的基本素质.本章我们将学习常用逻辑用语,体会逻辑用语在表述和论证中的作用.学习目标1.了解命题的概念,会判断命题的真假.2.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.3.通过数学实例,了解逻辑联结词“且”“或"“非”的含义.4.能够正确地对含有一个量词的命题进行否定.5.理解必要条件、充分条件与充要条件的意义.6.了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.本章重点命题及其关系;充分条件、必要条件、充要条件的意义;逻辑联结词“或”“且”“非”的含义;全称量词与存在量词的应用.本章难点必要条件的含义;含有一个量词的全称命题和特称命题的否定.1。

1命题及其关系1。

1。

1命题自主预习·探新知情景引入中国古代伟大的逻辑学家公孙龙提出过一个命题:白马非马.对于一般人来说,“白马是马”就如同说“苹果是水果”一样清楚明白,怎么可能“白马非马”呢?孔子的六世孙孔穿,为了驳倒公孙龙的主张,找上门去辩论,结果公孙龙说:“如果白马是马,那么黑马也是马,因此就有白马是黑马,也就是说白等于黑.像你这样黑白不分,我不值得和你辩论.”孔穿几句话就败下阵来.公孙龙在这里正是运用了逻辑推理才将这个错误的命题“证明”了,它的破绽在哪里呢?新知导学命题及相关的概念(1)定义:用__语言、符号或式子__表达的,可以__判断真假__的陈述句.(2)分类:①真命题:判断为__真__的语句;②假命题:判断为__假__的语句.(3)形式:命题的结构形式是“__若p,则q__”,其中__p__是命题的条件,__q__是命题的结论.预习自测1.下列语句中,命题的个数是(C)①空集是任何集合的真子集;②请起立;③单位向量的模为1;④你是高二的学生吗?A.0B.1C.2D.3[解析]由命题的定义知,语句①③能判断真假,所以是命题,故选C.2.下列语句中是命题的是(D)A.两点确定一条直线吗?B.在线段AB上任取一点C.作∠A的平分线AMD.两个锐角的和大于直角[解析]两个锐角的和大于直角是一个假命题,A、B、C都不能判断真假.3.下列命题为假命题的是(C)A.log24=2B.直线x=0的倾斜角是错误!C.若|a|=|b|,则a=bD.若直线a⊥平面α,直线a⊥平面β,则α∥β[解析]由|a|=|b|得a与b的模相等,但方向不定,故a与b不一定相等,故选C.4.下列命题为真命题的是(A)A.若错误!=错误!,则x=y B.若x2=1,则x=1C.若x=y,则错误!=错误!D.若x〈y,则x2〈y2[解析]B中,若x2=1,则x=±1;C中,若x=y<0,则x与错误!无意义;D中,若x=-2,y=-1,满足x〈y,但x2〉y2,故选A.5.把命题“函数f(x)=sin x是奇函数”改写成“若p,则q”的形式是__若一个函数是f(x)=sin x,则该函数是奇函数__。

高中数学选修2-1学案及答案(人教B版)

高中数学选修2-1学案及答案(人教B版)

【高二数学学案】第1章 1.1 命题与量词1.1.1 命题主备人:许秋冰 审核人:葛红 时间:一.学习目标:理解命题的概念,会判断是否是命题;会判断命题的真假。

二.自主学习:什么是命题?什么是真命题?什么是假命题?三.典型例题例1:下列语句是命题的个数为( )①空集是任何集合的真子集; ②0432=--x x ; ③3x-2>0; ④把门关上! ⑤集合{a ,b ,c}有3个子集;⑥ 垂直于同一条直线的两直线必平行吗? A 、1个 B 、2个 C 、3个 D 、4个 训练1:判断下列语句是否是命题 (1)一条直线l ,不是与平面α平行就是相交。

(2)这是一棵大树。

(3)等边三角形是等腰三角形(4)若平面上两条直线不相交,则这两条直线平行; 例2:判断下列命题的真假(1)当x=2时,0232=+-x x 。

(2)当0232=+-x x 时, x=2(3)平行四边形的对角线互相平分。

(4)若a>b 则a 2 >b 2(5)空集是任何集合的子集; 训练2:判断下列命题的真假 (1)当abc=0时,a=0或b=0或c=0。

(2)弦的垂直平分线经过圆心,且平分弦所对的弧。

(3)若两条直线没有公共点,则它们平行。

(4)在三角形ABC 中,若sinA>sinB 则A>B 四.课后作业(a)1、下列语句中,不能成为命题的是( )A 、5>12B 、x>0C 、若0,=⋅⊥b a b a 则D 、三角形的三条中线交于一点 (a)2、下列语句中命题的个数为( )①平行四边形不是梯形; ②10是有理数;③请坐!;④方程x 2+x+1=0无实根。

A 、1B 、2C 、3D 、4(a)3、下列命题中,是真命题的是( ) A.{φ}是空集B {x ∈N| |x -1|<3}是无限集C. π是有理数D. x 2-5x = 0的根是自然数 (b)4、下列命题中真命题的个数为( )①面积相等的三角形是全等三角形; ②若xy=0,则|x|+|y|=0; ③若a>b ,则a+c>b+c ; ④矩形的对角线互相垂直。

2022-2021学年高中数学人教B版选修2-1学业测评:1.1.1 命题

2022-2021学年高中数学人教B版选修2-1学业测评:1.1.1 命题

学业分层测评(建议用时:45分钟)[学业达标]一、选择题1.在空间中,下列命题正确的是()A.平行直线的平行投影重合B.平行于同始终线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【解析】A中平行投影可能平行,A为假命题.B、C中的两个平面可以平行或相交,为假命题.由线面垂直的性质知,D为真命题.【答案】 D2.下列命题中是假命题的是()A.a·b=0(a≠0,b≠0),则a⊥bB.若|a|=|b|,则a=bC.若ac2>bc2,则a>bD.若α=60°,则cos α=1 2【解析】由于|a|=|b|只能说明a与b的模相等,所以a=b不肯定成立,故选B. 【答案】 B3.下列四个命题中,真命题是()【导学号:15460001】A.a>b,c>d⇒ac>bdB.a<b⇒a2<b2C.1a<1b⇒a>bD.a>b,c<d⇒a-c>b-d【解析】可以通过举反例的方法说明A、B、C为假命题.【答案】 D4.已知实数a,b,c,d满足a+b=c+d=1,ac+bd>1,则下列四个命题为真命题的是() A.在a,b,c,d中有且仅有一个是负数B.在a,b,c,d中有且仅有两个是负数C.在a,b,c,d中至少有一个是负数D.在a,b,c,d中都是负数【解析】举例取特殊值,验证可知C是真命题.【答案】 C5.下面的命题中是真命题的是()A.y=sin2x的最小正周期为2πB.若方程ax2+bx+c=0(a≠0)的两根同号,则ca>0C.若a=(1,k),b=(-2,6),a∥b,则k=3D.在△ABC中,若AB→·BC→>0,则B为锐角【解析】A中,y=sin2x=1-cos 2x2,T=2π2=π,故A为假命题;C中,∵a∥b,∴1-2=k6,得k=-3,故C为假命题;D中,当AB→·BC→>0时,向量AB→与BC→的夹角为锐角,B为钝角,故D为假命题.【答案】 B二、填空题6.下列命题:①若xy=1,则x,y互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac2>bc2,则a>b.其中真命题的序号是________.【解析】②中四条边相等的四边形是菱形,不肯定是正方形,③中平行四边形不是梯形,①④正确.【答案】①④7.给出下列语句:①空集是任何集合的真子集;②函数y=a x+1是指数函数吗?③老师写的粉笔字真秀丽!④若x∈R,则x2+4x+5>0.其中为命题的序号是________,为真命题的序号是________.【解析】①是命题,且是假命题,由于空集是任何非空集合的真子集;②该语句是疑问句,不是命题;③该语句是感叹句,不是命题;④是命题,由于x2+4x+5=(x+2)2+1>0恒成立,所以是真命题.【答案】①④④8.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β;②若α外一条直线l与α内的一条直线平行,则l和α平行;③设α和β相交于直线l,若α内有一条直线垂直于l,则α和β垂直;④直线l与α垂直的等价条件是l与α内的两条直线垂直.上面命题中,真命题的序号为________(写出全部真命题的序号).【导学号:15460002】【解析】由线面平行及面面平行的判定定理可知,①②正确;当两平面斜交时,在α内的直线可以与交线垂直,故③不对;只有直线l与α内的两条相交直线垂直时,直线l与α垂直,故④不对.【答案】①②三、解答题9.推断下列语句中哪些是命题?哪些不是命题?(1)2+22是有理数;(2)1+1>2;(3)2100是个大数;(4)968能被11整除;(5)非典型性肺炎是怎样传播的?【解】(1)(2)(4)均是命题;(3)(5)不是命题.由于(1)(2)(4)都可以推断真假,且为陈述句;(3)中的“大数”是一个模糊的概念,无法推断其真假,所以不是命题;(5)中的语句是疑问句,所以不是命题.10.将下列命题改写成“若p,则q”的形式,并推断真假.(1)等腰梯形的两条对角线相等;(2)平行四边形的两条对角线相互垂直.【解】(1)若一个梯形是等腰梯形,则它的两条对角线相等.真命题.(2)若一个四边形是平行四边形,则它的两条对角线相互垂直.假命题.[力量提升]1.若a,b∈R,且a2+b2≠0,则下列命题:①a,b全为0;②a,b不全为0;③a,b全不为0;④a,b至少有一个不为0.其中真命题的个数为()A.0B.1C.2D.3【解析】②④为真命题.【答案】 C2.给出下列命题:①在△ABC中,若∠A>∠B,则sin A>sin B;②函数y=x3在R上既是奇函数又是增函数;③函数y=f(x)的图象与直线x=a至多有一个交点;④若将函数y=sin 2x的图象向左平移π4个单位,则得到函数y=sin⎝⎛⎭⎪⎫2x+π4的图象.其中真命题的序号是()A.①②B.①②③C.①③④D.①②③④【解析】①②③是真命题.【答案】 B3.设a,b为正实数.现有下列命题:①若a2-b2=1,则a-b<1;②若1b-1a=1,则a-b<1;③若|a-b|=1,则|a-b|<1;④若|a3-b3|=1,则|a-b|<1.其中的真命题有________.(写出全部真命题的序号)【解析】将条件方程变形分析.①中,a2-b2=(a+b)(a-b)=1,a,b为正实数,若a-b≥1,则必有a+b>1,不合题意,故①正确.②中,1b -1a=a-bab=1,只需a-b=ab即可.如取a=2,b=23满足上式,但a-b=43>1,故②错.③中,a,b为正实数,所以a+b>|a-b|=1,且|a-b|=|(a+b)(a-b)|=|a+b |>1, 故③错.④中,|a3-b3|=|(a-b)(a2+ab+b2)|=|a-b|·(a2+ab+b2)=1.若|a-b|≥1,不妨取a>b>1,则必有a2+ab+b2>1,不合题意,故④正确.【答案】①④4.把下列命题改写成“若p,则q”的形式,并推断命题的真假.(1)当m>14时,方程mx2-x+1=0无实根;(2)平行于同一平面的两条直线平行.【解】(1)命题可改写为:若m>14,则mx2-x+1=0无实根.由于当m>14时,Δ=1-4m<0,所以是真命题.(2)命题可改写为:若两条直线平行于同一平面,则它们相互平行.由于平行于同一平面的两条直线可能平行、相交或异面,所以是假命题.。

高二数学(人教A版)选修2-1能力拓展提升:1-1-1命题.docx

高二数学(人教A版)选修2-1能力拓展提升:1-1-1命题.docx

能力拓展提升一、选择题11.设α、β、γ为两两不重合的平面,c、m、n为两两不重合的直线,给出下列四个命题:①如果α⊥γ,β⊥γ,则α∥β;②如果α∥β,c⊂α,则c∥β;③如果α∩β=c,β∩γ=m,γ∩α=n,c∥γ,则m∥n.其中真命题个数是( )A.0个B.1个C.2个D.3个[答案] C[解析]①α⊥γ,β⊥γ,则α与β可相交,①错误;②中∵α∥β,∴α与β无公共点,又c⊂α,∴c与β无公共点,∴c∥β,故②正确;由c∥γ,c⊂β,β∩γ=m得c∥m,同理可得c∥n,∴m∥n,故③正确.12.若a>1,则函数f(x)=a x是增函数( )A.不是命题B.是真命题C.是假命题D.是命题,但真假与x的取值有关[答案] B[解析]当a>1时,指数函数f(x)=a x是增函数,故“若a>1,则函数f(x)=a x是增函数”是真命题.13.下面的命题中是真命题的是( )A.y=sin2x的最小正周期为2πB.若方程ax2+bx+c=0(a≠0)的两根同号,则ca>0C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB →·BC →>0,则△ABC 为锐角三角形[答案] B[解析] y =sin 2x =1-cos2x 2,T =2π2=π,故A 为假命题; 当M ⊆N 时,M ∪N =N ,故C 为假命题;当AB →·BC →>0时,向量AB →与BC →的夹角为锐角,B 为钝角,故D 为假命题.14.(2013·广东文,10)设a 是已知的平面向量且a ≠0.关于向量a 的分解,有如下四个命题:①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定向量b 和正数μ,总存在单位向量c ,使a =λb +μc .④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b 、c 和a 在同一平面内,且两两不共线,则真命题的个数是( )A .1B .2C .3D .4[答案] C[解析] 对于①,由向量的三角形加法法则可知其正确;由平面向量基本定理知②正确;对③,可设e 与b 是不共线单位向量,则存在实数λ,y 使a =λb +y e ,若y >0,则取μ=y ,c =e ,若y <0,则取μ=-y ,c =-e ,故③正确;④显然错误,给定正数λ和μ,不一定满足“以|a |,|λb |,|μc |为三边长可以构成一个三角形”,这里单位向量b 和c 就不存在.可举反例:λ=μ=1,b 与c 垂直,此时必须a 的模为2才成立.二、填空题15.给出下列四个命题:①若a >b >0,则1a >1b; ②若a >b >0,则a -1a >b -1b; ③若a >b >0,则2a +b a +2b >a b; ④若a >0,b >0,且2a +b =1,则2a +1b的最小值为9. 其中正确命题的序号是________.(把你认为正确命题的序号都填上)[答案] ②④[解析] ①在a >b >0两端同乘以1ab 可得1b >1a,故①错; ②由于⎝ ⎛⎭⎪⎫a -1a -⎝ ⎛⎭⎪⎫b -1b =(a -b )⎝⎛⎭⎪⎫1+1ab >0, 故②正确;③由于2a +b a +2b -a b =b 2-a 2(a +2b )b <0,即2a +b a +2b <a b, 故③错;④由2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·(2a +b )=5+2b a +2a b ≥5+22b a ·2a b=9,当且仅当2b a =2a b ,即a =b =13时取得等号,故④正确.16.已知命题“若x 1<x 2<0,则a x 1>a x 2”是假命题,则a 满足的条件是________.[答案] a ≤0[解析] 由x 1<x 2<0,得x 1x 1x 2<x 2x 1x 2,即1x 2<1x 1,要使a x 1>a x 2是假命题,则a ≤0.三、解答题17.把下列命题改写成“若p ,则q ”的形式.(1)ac >bc ⇒a >b ;(2)当m >14时,mx 2-x +1=0无实根;(3)方程x 2-2x -3=0的解为x =3或x =-1.[解析] (1)若ac >bc ,则a >b .(2)若m >14,则mx 2-x +1=0无实根.(3)若x 2-2x -3=0,则x =3或x =-1.18.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p是真命题,命题q 是假命题,求实数x 的取值范围.[解析] 由lg(x 2-2x -2)≥0,得x 2-2x -2≥1,即x 2-2x -3≥0.解得x ≤-1或x ≥3.故命题p :x ≤-1或x ≥3.又命题q :0<x <4,且命题p 为真,命题q 为假,则⎩⎪⎨⎪⎧ x ≤-1或x ≥3x ≤0或x ≥4,所以x ≤-1或x ≥4.所以,满足条件的实数x的取值范围为(-∞,-1]∪[4,+∞).。

高中数学 专题1.1.1 命题测试(含解析)新人教A版选修2-1(2021年整理)

高中数学 专题1.1.1 命题测试(含解析)新人教A版选修2-1(2021年整理)

高中数学专题1.1.1 命题测试(含解析)新人教A版选修2-1编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(高中数学专题1.1.1 命题测试(含解析)新人教A版选修2-1)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为高中数学专题1.1.1 命题测试(含解析)新人教A版选修2-1的全部内容。

命题(时间:25分,满分55分)班级姓名得分一、选择题1.下列语句中命题的个数为()①{0}∈N;②他长得很高;③地球上的四大洋;④5的平方是20.A.0 B.1C.2 D.3[答案] C[解析]①④是命题,②③不是命题.地球上的四大洋是不完整的句子.2.若a〉1,则函数f(x)=a x是增函数( )A.不是命题B.是真命题C.是假命题D.是命题,但真假与x的取值有关[答案]B[解析]当a〉1时,指数函数f(x)=a x是增函数,故“若a>1,则函数f(x)=a x是增函数”是真命题.3.已知m、n为两条不同的直线,α、β为两个不同的平面,则下列命题中正确的是() A.m⊂α,n⊂α,m∥β,n∥β⇒α∥βB.α∥β,m⊂α,n⊂β⇒m∥nC.m⊥α,m⊥n⇒n∥αD.n∥m,n⊥α⇒m⊥α[答案] D4.给定下列命题:①若k〉0,则方程x2+2x-k=0有实数根;②若a>b〉0,c〉d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0。

其中是真命题的是() A.①②③B.①②④高中数学专题1.1.1 命题测试(含解析)新人教A版选修2-1C.①③④D.②③④[答案] B[解析] ①中Δ=4-4(-k)=4+4k〉0,所以①为真命题;②由不等式的乘法性质知命题正确,所以②为真命题;③如等腰梯形对角线相等,不是矩形,所以③是假命题;④由等式性质知命题正确,所以④是真命题,故选B。

2020-2021学年人教A版数学选修2-1配套学案:1.1.1 命题 Word版含解析

2020-2021学年人教A版数学选修2-1配套学案:1.1.1 命题 Word版含解析

1.1命题及其关系1.1.1命题内容标准学科素养1.了解命题的概念.2.理解命题的构成,并能指出此类命题的条件和结论.3.能判断一些简单命题的真假.利用数学抽象发展逻辑推理授课提示:对应学生用书第1页[基础认识]知识点一命题的概念预习教材P2-3,思考并完成以下问题初中学习的什么叫做命题?提示:一般地,对某一件事情做出判断的语句(陈述句),叫做命题.下列语句的表述形式有什么特点?你能判断这些语句的真假吗?(1)2+4=7;(2)垂直于同一条直线的两个不同平面平行;(3)6能被2整除;(4)全等三角形面积相等.提示:这些语句都是陈述句,并且可以判断真假.其中语句(2)(3)(4)判断为真,语句(1)判断为假.知识梳理(1)命题的概念:在数学中,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.(2)命题定义中的两个要点:“可以判断真假”和“陈述句”.我们学习过的定理、推论都是命题.(3)分类命题⎩⎪⎨⎪⎧真命题:判断为真的语句,假命题:判断为假的语句.思考 陈述句一定是命题吗? 提示:不一定. 知识点二 命题的结构 思考并完成以下问题 命题的构成是什么? 提示:条件与结论. 观察命题:(1)若整数a 是素数,则a 是奇数; (2)若两个三角形全等,则它们的面积相等. 上述命题的形式是怎样的?提示:这两个命题都是“若p ,则q ”的形式.知识梳理 (1)命题的一般形式为“若p ,则q ”.其中p 叫做命题的条件,q 叫做命题的结论.(2)确定命题的条件和结论时,常把命题改写成“若p ,则q ”的形式.[自我检测]1.下列语句不是命题的个数为( )①2<1;②x <1;③若x <1,则x <2;④函数f (x )=x 2是R 上的偶函数. A .0 B .1 C .2 D .3答案:B2.下列命题为真命题的是( ) A .互余的两个角不相等 B .相等的两个角是同位角 C .若a 2=b 2,则|a |=|b |D .三角形的一个外角等于和它不相邻的一个内角 答案:C3.把命题“三角形的内角和等于180°”写成“若p ,则q ”的形式为________. 答案:若一个平面图形是三角形,则它的内角和等于180°授课提示:对应学生用书第2页 探究一 命题的概念[阅读教材P 2-3例1及解答]判断下列语句中哪些是命题?(1)空集是任何集合的子集;(2)若整数a是素数,则a是奇数;(3)指数函数是增函数吗?(4)若空间中两条直线不相交,则这两条直线平行;(5)(-2)2=2;(6)x>15.题型:判断一个语句是不是命题.方法步骤:①根据命题的定义:语句必须满足两个条件:陈述句且能判断真假.②(3)不是陈述句,(6)不能判断真假,其余均是陈述句且能判断真假.因此(3)(6)不是命题,(1)(2)(4)(5)是命题.[例1](1)下列语句中,命题的个数为()①空集是任何非空集合的真子集.②起立!③垂直于同一个平面的两条直线必平行吗?④偶数是自然数.A.1B.2C.3 D.4[解析]②是祈使句,③是疑问句,所以②③都不是命题,①④是命题.故选B.[答案] B(2)“红豆生南国,春来发几枝?愿君多采撷,此物最相思.”这是唐代诗人王维的《相思》,这首诗中,在当时条件下,可以作为命题的是()A.红豆生南国B.春来发几枝C.愿君多采撷D.此物最相思[解析]“红豆生南国”是陈述句,所述事件在唐代是事实,所以本句是命题,且是真命题;“春来发几枝”是疑问句,“愿君多采撷”是祈使句,“此物最相思”是感叹句,都不是命题,故选A.[答案] A方法技巧判断一个语句是不是命题,关键是把握好以下两点:(1)一般来说,命题必须是陈述句,祈使句、疑问句、感叹句等都不是命题.(2)该语句表述的结构可以判断真假,含义模糊不清,无法判断真假的语句不是命题.跟踪探究 1.判断下列语句是不是命题,并说明理由.(1)三角形的三个内角的和等于360°;(2)a+b=4;(3)2016年奥运会的举办城市是巴西的里约热内卢;(4)这是一棵大树;(5)你是高二的学生吗?(6)求证:2是无理数; (7)并非所有的人都喜欢数学; (8)x 2+1>0.解析:(1)这是陈述句,且可以判断真假,因此是命题;(2)由于变量a ,b 的值不确定,无法判断其真假,因此不是命题; (3)这是陈述句,且可以判断真假,因此是命题;(4)“大树”的标准不确定,无法判断其真假,因此不是命题; (5)这是疑问句,不是命题; (6)这是祈使句,不是命题;(7)可以判断为真,人群中有的人喜欢数学,也存在着不喜欢数学的人,因此是命题; (8)虽然变量x 的值不确定,但可以判断其真假,因此是命题.2.给出下列语句:①北京是中国的首都;②x =2是方程x 2-4x +4=0的根;③3200不是大数;④sin x >-x 2;⑤0是自然数吗?⑥我希望明年考上北京大学;⑦函数y =x 2是奇函数.其中是命题的是________.解析:①②⑦均是陈述句且能判断真假,故是命题;③④是陈述句,但不能判断真假,故不是命题;⑤是疑问句,故不是命题;⑥是祈使句,故不是命题,故答案为①②⑦.答案:①②⑦探究二 命题真假的判断[教材P 4练习2题]判断下列命题的真假: (1)能被6整除的整数一定能被3整除;(2)若一个四边形的四条边相等,则这个四边形是正方形; (3)二次函数的图象是一条抛物线;(4)两个内角等于45°的三角形是等腰直角三角形.解析:(1)真命题;(2)假命题,四边相等的四边形不一定是正方形,例如菱形;(3)真命题;(4)真命题.[例2] 判断下列命题是真命题还是假命题? (1)AB →+BC →=AC →; (2)log 2x 2=2log 2x ;(3)若m >1,则方程x 2-2x +m =0无实根; (4)直线x +y =0的倾斜角是π4;(5)若α=3π4,则sin α=22;(6)若x ∈A ,则x ∈A ∩B .[解析] (1)真命题.由向量加法的三角形法则知AB →+BC →=AC →.(2)是假命题,如当x =-1时,log 2x 2=0,而2log 2x =2log 2(-1)无意义. (3)是真命题,若m >1, 则Δ=4-4m <0.(4)是假命题,直线x +y =0的倾斜角是3π4.(5)是真命题.(6)是假命题,如当A ={1,2,3},B ={2,3,4}时,1∈A ,但1∉A ∩B .方法技巧 判断命题真假常用的方法(1)直接法数学中的定义、公理、公式、定理等都是真命题,它们是判断一个命题是否为真命题的依据.(2)举反例法通过构造反例来否定一个命题的正确性,是判断一个命题为假命题的常用方法. 跟踪探究 3.(1)给定下列命题: ①若a >b ,则2a >2b ;②命题“若a ,b 是无理数,则a +b 是无理数”是真命题; ③直线x =π2是函数y =sin x 的一条对称轴;④在△ABC 中,若AB →·BC →>0,则△ABC 是钝角三角形. 其中为真命题的是________.解析:①③④是真命题;②是假命题,例a =3,b =-3,则a +b =0是有理数. 答案:①③④(2)下列命题中假命题的个数为( ) ①多边形的外角和与边数有关;②如果数量积a·b =0,那么向量a =0或b =0; ③二次方程a 2x 2+2x -1=0有两个不相等的实根; ④函数f (x )在区间[a ,b ]内有零点,则f (a )·f (b )<0. A .1 B .2 C .3D .4解析:对于①,多边形的外角和为360°,与边数无关,故①是假命题. 对于②,若a·b =0,那么向量a =0或b =0或a ⊥b ,故②是假命题. 对于③,Δ=4+4a 2>0,故③是真命题.对于④,若f (x )=x 2-2x -3,x ∈(-2,4)的零点为-1和3,但f (-2)·f (4)>0,故④是假命题,故选C.答案:C探究三命题的结构形式[阅读教材P3例3及解答]将下列命题改写成“若p,则q”的形式,并判断真假:(1)垂直于同一条直线的两条直线平行;(2)负数的立方是负数;(3)对顶角相等.题型:分析命题的条件和结论.方法步骤:①对“若p,则q”的命题中,“p”是命题的条件,“q”是命题的结论.②若命题的表述不是“若p,则q”形式,要先将命题改写为“若p则q”的形式,再确定条件p和结论q.[例3]将下列命题写成“若p,则q”的形式.(1)末位数是0或5的整数,能被5整除;(2)方程x2-x+1=0有两个实数根.[解析](1)若一个整数的末位数字是0或5,则这个数能被5整除.(2)若一个方程是x2-x+1=0,则它有两个实数根.方法技巧(1)要把一个命题写成“若p,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”的形式,有一些命题虽然不是“若p,则q”的形式,但是把它们的表述作适当的改变,也能写成“若p,则q”的形式,但要注意语言的流畅性.(2)当一个命题改写成“若p,则q”的形式之后,判断这种命题真假的办法是:若由“p”经过逻辑推理得出“q”,则可判断“若p,则q”是真;而判定“若p,则q”是假,则只需要举出一个反例即可.跟踪探究 4.把下列命题改写成“若p,则q”的形式.(1)各位数数字之和能被9整除的整数,可以被9整除;(2)斜率相等的两条直线平行;(3)能被6整除的数既能被3整除也能被2整除;(4)钝角的余弦值是负数.解析:(1)若一个整数的各位数数字之和能被9整除,则这个整数可以被9整除.(2)若两条直线的斜率相等,则这两条直线平行.(3)若一个数能被6整除,则它既能被3整除也能被2整除.(4)若一个角是钝角,则这个角的余弦值是负数.授课提示:对应学生用书第3页[课后小结](1)判断一个语句是否为命题应紧抓两点:①是不是陈述句,②能否判断真假.(2)判断命题真假的难点是对已有知识的掌握,尤其是真命题的判断.(3)准确判断命题的条件与结论的关键是把命题改写为“若p,则q”形式.[素养培优]1.对命题的概念把握不清致误给出下列语句:①直角三角形也可能是等边三角形;②若x∈R,则-x2>0;③|x-y|=x -y;④与0非常非常接近的数.其中是命题的是________.易错分析直角三角形不可能是等边三角形,故①是命题且是假命题;若x∈R,则必有-x2≤0,-x2>0不成立,故②是命题且是假命题.不能误认为假命题不是命题,而将①②错误地判断为不是命题.考查数学抽象及逻辑推理的学科素养.自我纠正①是陈述语句,且能够判断真假,是命题,并且是假命题;②虽然变量x的值没确定,但可以判断真假,所以是命题,并且是假命题;|x-y|=x-y不一定成立,故③不是命题;④“非常”没有一个确定的标准,无法判断真假,故④不是命题.因此答案是①②.答案:①②2.改写命题时,写错大前提致误已知c>0,当a>b时,ac>bc.把该命题改写成“若p,则q”的形式.易错分析“已知c>0”是大前提,条件应是“a>b”错误地把“c>0,当a>b时”当成条件.自我纠正已知c>0,若a>b,则ac>bc.。

高中数学人教B版高二数学选修2-1检测 1.1.1命题

高中数学人教B版高二数学选修2-1检测 1.1.1命题

一、选择题1.下列语句是命题的是()①三角形的内角和等于180°;②2>3;③偶数是自然数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤【解析】①②③是命题,④中x>2无法判断真假,⑤是感叹句,∴④⑤不是命题.【答案】 A2.(2013·郑州高二检测)在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【解析】A中平行投影可能平行,A为假命题.B、C中的两个平面可以平行或相交,为假命题.由线面垂直的性质,D为真命题.【答案】 D3.下列说法正确的是()A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“当a>4时,方程x2-4x+a=0有实根”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题【解析】将命题“直角相等”写成“若p,则q”的形式为:若两个角都是直角,则这两个角相等,所以选项A是错误的;语句“当a>4时,方程x2-4x+a=0有实根.”是陈述句而且可以判断真假,并且是假的,所以选项B是错误的;选项D是正确的;选项C是错误的,应为“对角线互相垂直的平行四边形是菱形”.【答案】 D4.(2013·黔东南州高二检测)下列四个命题中,真命题是()A.a>b,c>d⇒ac>bdB.a<b⇒a2<b2C.1a<1b⇒a>bD.a>b,c<d⇒a-c>b-d【解析】可以通过举反例的方法说明A、B、C为假命题.【答案】 D5.设有不同的直线m,n和不同的平面α,β.下列四个命题中,正确的是() A.若m∥α,n∥α,则m∥nB.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α【解析】若α∥β,m⊂β,n⊂β可知m∥α,n∥α,但m与n可以相交,所以A不正确;B不正确;若α⊥β,则α中仍有不与β垂直的直线,C不正确;若α⊥β,则在α中可作与β垂直的直线n,又m⊥β,则m∥n,又m⊄α,所以m ∥α,D正确.【答案】 D二、填空题6.指出下列命题的条件和结论.(1)当x=2时,x2-3x+2≠0.条件是:________,结论是:________.(2)平行四边形的对角线互相平分.条件是:________,结论是:________.【解析】(1)条件是“x=2”,结论是“x2-3x+2≠0”.(2)命题可改写为:若一个四边形为平行四边形,则它的对角线互相平分.条件是“四边形为平行四边形”,结论“对角线互相平分”.【答案】(1)x=2x2-3x+2≠0(2)四边形为平行四边形对角线互相平分7.下列命题:①若xy=1,则x,y互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac2>bc2,则a>b.其中真命题的序号是________.【解析】②中四条边相等的四边形是菱形,不一定是正方形,③中平行四边形不是梯形,①、④正确.【答案】①④8.将正方形ABCD沿对角线BD折成直二面角A—BD—C,有如下四个结论:①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成45°的角.其中真命题的编号是________.(写出所有真命题的编号)【解析】如图所示,取BD的中点E,连AE、EC,取AC、AD的中点F、G,连结EF、FG、EG.∵AE⊥BD,EC⊥BD,∴∠AEC就是二面角A—BD—C的平面角.∴∠AEC=90°.由BD⊥平面AEC,可知BD⊥AC,①正确;由△AEC≌△AED,可知AD=AC=CD,②正确;由AE⊥平面BCD知,∠ABE=45°是AB与平面BCD所成的角,③正确.故①②③为真命题.【答案】①②③三、解答题9.判断下列语句是否是命题,若是,判断其真假,并说明理由.①函数y=sin4x-cos4x的最小正周期是π;②若x=4,则2x+1<0 ;③一个等比数列的公比大于1时,该数列为递增数列;④求证:x∈R时,方程x2-x+2=0无实根.【解】①②③是命题,④不是命题.命题①中,y=sin4x-cos4x=sin2x-cos2x=-cos 2x,显然其最小正周期为π,是真命题.命题②中,当x=4时,2x+1>0,∴②是假命题.命题③中,若等比数列的首项a1<0,公比q>1时,该数列为递减数列,是假命题.④是一个祈使句,没有作出判断,不是命题.10.把下列命题改写成“如果p,则q”的形式,并判断命题的真假.(1)当m>14时,方程mx2-x+1=0无实根;(2)平行于同一平面的两条直线平行.【解】(1)命题可改写为如果m>14,则mx2-x+1=0无实根.∵当m>14时,Δ=1-4m<0,所以是真命题.(2)命题可改写为如果两直线平行于同一平面,则它们互相平行.∵平行于同一平面的两条直线可能平行、相交或异面.所以是假命题.11.命题“ax2-2ax-3≤0恒成立”是真命题,求实数a的取值范围.【解】由于ax2-2ax-3≤0恒成立是真命题,(1)当a =0时,-3≤0成立.(2)当a ≠0时,应满足⎩⎪⎨⎪⎧ a <0Δ≤0,解之得-3≤a <0.由(1)(2)得a 的取值范围为[-3,0].。

2019年人教版高中数学【选修2-1】参考答案与解析

2019年人教版高中数学【选修2-1】参考答案与解析

的错误 , 将锐角三角形的概念和钝角三角形的概念混淆在一起
, 从而误判得出不正确的答案.
10. A
【解析】
试题分析:由 a1, a2, a5 成等比数列,得 (a1 d )2 a1( a1 4d ) ,即 (2 d )2 2(2 4d ) ,
解得 d 0 或 d 4 ,所以“ d 4 ”是“ a1, a2, a5 成等比数列”的充分不必要条件.
2a 2
10. 1 2
【解析】
a 1, 从而求得该双曲线的离心率
e 2 , 进而获得答案.
试 题 分 析 : 设 F1 到 AB 的 垂 足 为 D , 因 为 F1 DA
BOA 900 , A为 公 共 角 , 所 以
ADF1
AOB ,所以 AF1 AB
DF1 ,所以 OB
曲线 y x2 (2 a 3) x 1与 x 轴交于不同两点等价于 (2 a 3)2 4 0 ,
即a
1 或a
5

2
2
①若 P 正确,且 q 不正确,即函数 y log a ( x 1) 在 (0,
) 内单调递减,
曲线 y x2 (2 a 3) x 1与 x 轴不交于两点,此时 a
1 ,1 . 2
②若 P 不正确,且 q 正确,即函数 y log a ( x 1) 在 (0,
出渐近线的斜率的取值范围是解答的关键,属于中档试题
.
6. B
【解析】
试题分析:设 Q到 l 的距离为 d,则 |QF|=d ,
∵ FP 4FQ ,
∴ |PQ|=3d ,
∴直线 PF 的斜率为 -2 2 ,
∵ F(2, 0),
∴直线 PF 的方程为 y=-2 2 ( x-2 ),

【三维设计】人教版高中数学选修1-1练习:2.1.1 椭圆及其标准方程(含答案解析)

【三维设计】人教版高中数学选修1-1练习:2.1.1 椭圆及其标准方程(含答案解析)

课时跟踪检测(六) 椭圆及其标准方程层级一 学业水平达标1.设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于( )A .4B .5C .8D .10解析:选D 根据椭圆的定义知,|PF 1|+|PF 2|=2a =2×5=10,故选D .2.已知△ABC 的顶点B ,C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析:选C 由于△ABC 的周长与焦点有关,设另一焦点为F ,利用椭圆的定义,|BA|+|BF|=23,|CA|+|CF|=23,便可求得△ABC 的周长为43.3.命题甲:动点P 到两定点A ,B 的距离之和|PA|+|PB|=2a(a>0,常数);命题乙:P 点轨迹是椭圆.则命题甲是命题乙的( )A .充分不必要条件B .必要不充分条件C .充分且必要条件D .既不充分又不必要条件解析:选B 利用椭圆定义.若P 点轨迹是椭圆,则|PA|+|PB|=2a(a>0,常数),∴甲是乙的必要条件.反过来,若|PA|+|PB|=2a(a>0,常数)是不能推出P 点轨迹是椭圆的.这是因为:仅当2a>|AB|时,P 点轨迹才是椭圆;而当2a =|AB|时,P 点轨迹是线段AB ;当2a<|AB|时,P 点无轨迹,∴甲不是乙的充分条件.综上,甲是乙的必要不充分条件.4.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是( )A .a>3B .a<-2C .a>3或a<-2D .a>3或-6<a<-2解析:选D 由a 2>a +6>0得⎩⎪⎨⎪⎧ a 2-a -6>0,a +6>0,所以⎩⎪⎨⎪⎧a<-2或a>3,a>-6,所以a>3或-6<a<-2.5.已知P 为椭圆C 上一点,F 1,F 2为椭圆的焦点,且|F 1F 2|=23,若|PF 1|与|PF 2|的等差中项为|F 1F 2|,则椭圆C 的标准方程为( )A .x 212+y 29=1B .x 212+y 29=1或x 29+y 212=1C .x 29+y 212=1D .x 248+y 245=1或x 245+y 248=1解析:选B 由已知2c =|F 1F 2|=23,∴c =3. ∵2a =|PF 1|+|PF 2|=2|F 1F 2|=43, ∴a =23.∴b 2=a 2-c 2=9.故椭圆C 的标准方程是x 212+y 29=1或x 29+y 212=1.6.椭圆x 2m +y 24=1的焦距是2,则m 的值是________.解析:当椭圆的焦点在x 轴上时,a 2=m ,b 2=4,c 2=m -4,又2c =2,∴c =1. ∴m -4=1,m =5.当椭圆的焦点在y 轴上时,a 2=4,b 2=m , ∴c 2=4-m =1, ∴m =3. 答案:3或57.已知椭圆C 经过点A(2,3),且点F(2,0)为其右焦点,则椭圆C 的标准方程为________________.解析:法一:依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),且可知左焦点为F′(-2,0).从而有⎩⎪⎨⎪⎧ c =2,2a =|AF|+|AF′|=3+5=8,解得⎩⎪⎨⎪⎧c =2,a =4.又a 2=b 2+c 2,所以b 2=12, 故椭圆C 的标准方程为x 216+y 212=1.法二:依题意,可设椭圆C 的方程为x 2a 2+y 2b2=1(a>b>0),则⎩⎪⎨⎪⎧4a 2+9b 2=1,a 2-b 2=4,解得b 2=12或b 2=-3(舍去),从而a 2=16.所以椭圆C 的标准方程为x 216+y 212=1.答案:x 216+y 212=18.椭圆的两焦点为F 1(-4,0),F 2(4,0),点P 在椭圆上,若△PF 1F 2的面积最大为12,则椭圆方程为__________.解析:如图,当P 在y 轴上时△PF1F 2的面积最大,∴12×8b =12,∴b =3. 又∵c =4,∴a 2=b 2+c 2=25. ∴椭圆的标准方程为x 225+y 29=1.答案:x 225+y 29=19.设F 1,F 2分别是椭圆C :x 2a 2+y 2b 2=1(a>b>0)的左、右焦点.设椭圆C 上一点⎝⎛⎭⎫3,32到两焦点F 1,F 2的距离和等于4,写出椭圆C 的方程和焦点坐标.解:由点⎝⎛⎭⎫3,32在椭圆上,得 3 2a 2+⎝⎛⎭⎫322b 2=1,又2a =4,所以椭圆C 的方程为x 24+y 23=1,焦点坐标分别为(-1,0),(1,0).10.已知椭圆C 与椭圆x 2+37y 2=37的焦点F 1,F 2相同,且椭圆C 过点⎝⎛⎭⎫572,-6.(1)求椭圆C 的标准方程;(2)若P ∈C ,且∠F 1PF 2=π3,求△F 1PF 2的面积.解:(1)因为椭圆x 237+y 2=1的焦点坐标为(-6,0),(6,0).所以设椭圆C 的标准方程为x 2a 2+y 2a 2-36=1(a 2>36).将点⎝⎛⎭⎫572,-6的坐标代入整理得4a 4-463a 2+6 300=0,解得a 2=100或a 2=634(舍去),所以椭圆C 的标准方程为x 2100+y 264=1.(2)因为P 为椭圆C 上任一点, 所以|PF 1|+|PF 2|=2a =20. 由(1)知c =6,在△PF 1F 2中,|F 1F 2|=2c =12, 所以由余弦定理得:|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|cos π3,即122=|PF 1|2+|PF 2|2-|PF 1|·|PF 2|.因为|PF 1|2+|PF 2|2=(|PF 1|+|PF 2|)2-2|PF 1|·|PF 2|, 所以122=(|PF 1|+|PF 2|)2-3|PF 1|·|PF 2|. 所以122=202-3|PF 1||PF 2|.所以|PF 1|·|PF 2|=202-1223=32×83=2563.S △PF 1F 2=12|PF 1|·|PF 2|sin π3=12×2563×32=6433.所以△F 1PF 2的面积为6433.层级二 应试能力达标1.下列说法中正确的是( )A .已知F 1(-4,0),F 2(4,0),平面内到F 1,F 2两点的距离之和等于8的点的轨迹是椭圆B .已知F 1(-4,0),F 2(4,0),平面内到F 1,F 2两点的距离之和等于6的点的轨迹是椭圆C .平面内到点F 1(-4,0),F 2(4,0)两点的距离之和等于点M(5,3)到F 1,F 2的距离之和的点的轨迹是椭圆D .平面内到点F 1(-4,0),F 2(4,0)距离相等的点的轨迹是椭圆解析:选C A 中,|F 1F 2|=8,则平面内到F 1,F 2两点的距离之和等于8的点的轨迹是线段,所以A 错误;B 中,到F 1,F 2两点的距离之和等于6,小于|F 1F 2|,这样的轨迹不存在,所以B 错误;C 中,点M(5,3)到F 1,F 2两点的距离之和为 5+4 2+32+ 5-4 2+32=410>|F 1F 2|=8,则其轨迹是椭圆,所以C 正确;D 中,轨迹应是线段F 1F 2的垂直平分线,所以D 错误.故选C .2.椭圆x 225+y 29=1的焦点为F 1,F 2,P 为椭圆上的一点,已知PF 1 ·PF 2 =0,则△F 1PF 2的面积为( )A .9B .12C .10D .8解析:选A ∵PF 1 ·PF 2=0,∴PF 1⊥PF 2.∴|PF 1|2+|PF 2|2=|F 1F 2|2且|PF 1|+|PF 2|=2a . 又a =5,b =3,∴c =4,∴⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2=64, ①|PF 1|+|PF 2|=10. ② ②2-①,得2|PF 1|·|PF 2|=36, ∴|PF 1|·|PF 2|=18, ∴△F 1PF 2的面积为 S =12·|PF 1|·|PF 2|=9.3.若α∈⎝⎛⎭⎫0,π2,方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是( )A .⎝⎛⎭⎫π4,π2B .⎝⎛⎦⎤0,π4 C .⎝⎛⎭⎫0,π4 D .⎣⎡⎭⎫π4,π2解析:选A 易知sin α≠0,cos α≠0,方程x 2sin α+y 2cos α=1可化为x 21sin α+y 21cos α=1.因为椭圆的焦点在y 轴上,所以1cos α>1sin α>0,即sin α>cos α>0.又α∈⎝⎛⎭⎫0,π2,所以π4<α<π2. 4.已知P 为椭圆x 225+y 216=1上的一点,M ,N 分别为圆(x +3)2+y 2=1和圆(x -3)2+y 2=4上的点,则|PM|+|PN|的最小值为( )A .5B .7C .13D .15解析:选B 由题意知椭圆的两个焦点F 1,F 2分别是两圆的圆心:且|PF 1|+|PF 2|=10,从而|PM|+|PN|的最小值为|PF 1|+|PF 2|-1-2=7.5.若椭圆2kx 2+ky 2=1的一个焦点为(0,-4),则k 的值为________.解析:易知k≠0,方程2kx 2+ky 2=1变形为y 21k +x 212k=1,所以1k -12k =16,解得k =132.答案:1326.已知椭圆C :x 29 +y 24=1,点M 与C 的焦点不重合.若M 关于C 的焦点的对称点分别为A ,B ,线段MN 的中点在C 上,则 |AN|+|BN|=________.解析:取MN 的中点G ,G 在椭圆C 上,因为点M 关于C 的焦点F 1,F 2的对称点分别为A ,B ,故有|GF 1|=12|AN|,|GF 2|=12|BN|,所以|AN|+|BN|=2(|GF 1|+|GF 2|)=4a =12.答案:127.已知点P 在椭圆上,且P 到椭圆的两个焦点的距离分别为5,3.过P 且与椭圆的长轴垂直的直线恰好经过椭圆的一个焦点,求椭圆的标准方程.解:法一:设所求的椭圆方程为x 2a 2+y 2b 2=1(a>b>0)或y 2a 2+x 2b2=1(a>b>0),由已知条件得⎩⎪⎨⎪⎧ 2a =5+3, 2c 2=52-32,解得⎩⎪⎨⎪⎧a =4,c =2, 所以b 2=a 2-c 2=12.于是所求椭圆的标准方程为x 216+y 212=1或y 216+x 212=1.法二:设所求的椭圆方程为x 2a 2+y 2b 2=1(a>b>0)或y 2a 2+x 2b 2=1(a>b>0),两个焦点分别为F 1,F 2.由题意知2a =|PF 1|+|PF 2|=3+5=8,所以a =4. 在方程x 2a 2+y 2b 2=1中,令x =±c ,得|y|=b 2a ;在方程y 2a 2+x 2b 2=1中,令y =±c ,得|x|=b 2a .依题意有b 2a=3,得b 2=12.于是所求椭圆的标准方程为x 216+y 212=1或y 216+x 212=1.8. 如图在圆C :(x +1)2+y 2=25内有一点A(1,0).Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解:如图,连接MA .由题意知点M 在线段CQ 上,从而有|CQ|=|MQ|+|MC|.又点M 在AQ 的垂直平分线上,则|MA|=|MQ|,故|MA|+|MC|=|CQ|=5.又A(1,0),C(-1,0),故点M 的轨迹是以(1,0),(-1,0)为焦点的椭圆,且2a =5,故a =52,c =1,b 2=a 2-c 2=254-1=214.故点M 的轨迹方程为x 2254+y 2214=1.。

数学高中人教A版选修2-1课后习题:1.1.1 命题

数学高中人教A版选修2-1课后习题:1.1.1 命题

第一章常用逻辑用语1.1命题及其关系1.1.1命题课后篇巩固提升1.已知下列语句:①一束美丽的花;②x>3;③2是一个偶数;④若x=2,则x2-5x+6=0.其中是命题的个数是() A.1 B.2C.3D.4解析①不能判断真假,不是命题;②变量x的值不确定,无法判定其真假,不是命题;③④都是命题.答案B2.下列命题正确的是()A.三点确定一个平面B.两条直线确定一个平面C.四边形确定一个平面D.不共面的四点可以确定四个平面解析因为四点不共面,所以任意三点不共线,又不共线的三点确定一个平面,所以不共面的四点可以确定四个平面.答案D3.下列命题中的假命题是()A.若log2x<2,则0<x<4B.若a与b共线,则a与b的夹角为0°C.已知各项都不为零的数列{a n}满足a n+1-2a n=0,则该数列为等比数列D.点(π,0)是函数y=sin x图象上一点解析B中当a与b共线,但方向相反时,a与b的夹角为180°,所以B是假命题.答案B4.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是()A.这个四边形的对角线互相平分B.这个四边形的对角线互相垂直C.这个四边形的对角线既互相平分,也互相垂直D.这个四边形是平行四边形解析把命题改写成“若p,则q”的形式后可知C正确.故选C.答案C5.命题“关于x的方程ax2+2x+1=0有两个不等实数解”为真命题,则实数a的取值范围为.解析由题意知{a ≠0,Δ=4-4a >0,解得a<1,且a ≠0. 答案(-∞,0)∪(0,1)6.下列语句中是命题的有 ,其中是真命题的有 (填序号).①“垂直于同一条直线的两个平面必平行吗?”②“一个数不是正数就是负数”;③“在一个三角形中,大角所对的边大于小角所对的边”;④“若x+y 为有理数,则x ,y 都是有理数”;⑤作一个三角形.解析①是疑问句,没有对垂直于同一直线的两个平面是否平行作出判断,不是命题.②是假命题,数0既不是正数也不是负数.③是真命题,在同一个三角形中,大边对大角,大角对大边.④是假命题,如x=√3,y=-√3.⑤是祈使句,不是命题.答案②③④ ③7.有下列语句:①集合{a ,b }有2个子集;②x 2-4≤0;③今天天气真好啊;④f (x )=2log 3x (x>0)是奇函数;⑤若A ∪B=A ∩B ,则A=B.其中真命题的序号为 .解析①是命题,但不是真命题,因为{a ,b }应有4个子集;②不是命题;③不是命题;④是假命题,f (x )=2log 3x (x>0)是非奇非偶函数;⑤是命题且是真命题.答案⑤8.判断下列命题的真假:(1)形如a+b √6的数是无理数;(2)正项等差数列的公差大于零;(3)奇函数的图象关于原点对称;(4)能被2整除的数一定能被4整除.解(1)假命题.反例,若a=1,b=0,则a+b √6为有理数.(2)假命题.反例,正项等差数列为递减数列时,公差小于零,如数列20,17,14,11,8,5,2,它的公差为-3.(3)真命题.(4)假命题.反例,数6能被2整除,但不能被4整除.9.将命题“已知a ,b 为正数,当a>b 时,有√a 2>√b 2”写成“若p ,则q ”的形式,并指出条件和结论. 解根据题意,写成“若p ,则q ”的形式为:已知a ,b 为正数,若a>b ,则√a 2>√b 2.其中条件p :a>b ,结论q :√a 2>√b 2.10.已知命题p :方程x 2-2x-a=0没有实数根;命题q :不等式x 2-ax+4>0对一切实数x 恒成立.若命题p 和q 都是真命题,求实数a 的取值范围.解当命题p 为真命题时,应有4+4a<0,解得a<-1;命题q 是真命题时,应有a2-16<0,解得-4<a<4.所以当命题p 和q 都是真命题时,a 应满足{a <-1,-4<a <4,即-4<a<-1, 因此,实数a 的取值范围是(-4,-1).由Ruize收集整理。

高中数学选修2-1各章节课时同步练习及详解

高中数学选修2-1各章节课时同步练习及详解

第1章1.1.1一、选择题(每小题5分,共20分)1.下列语句中命题的个数是( )①-5∈Z;②π不是实数;③大边所对的角大于小边所对的角;④2是无理数.A.1 B.2C.3 D.4解析:①②③④都是命题.答案: D2.下列说法正确的是( )A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“最高气温30 ℃时我就开空调”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题解析:对于A,改写成“若p,则q”的形式应为“若有两个角是直角,则这两个角相等”;B所给语句是命题;C的反例可以是“用边长为3的等边三角形与底边为3,腰为2的等腰三角形拼成的四边形不是菱形”来说明.故选D.答案: D3.下列语句中假命题的个数是( )①3是15的约数;②15能被5整除吗?③{x|x是正方形}是{x|x是平行四边形}的子集吗?④3小于2;⑤矩形的对角线相等;⑥9的平方根是3或-3;⑦2不是质数;⑧2既是自然数,也是偶数.A.2 B.3C.4 D.5解析:④⑦是假命题,②③不是命题,①⑤⑥⑧是真命题.答案: A4.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n;②若α∥β,β⊥γ,则α∥γ;③若m⊥α,n⊥α,则m∥n;④若α⊥γ,β⊥γ,则α∥β.其中为真命题的是( )A.①②B.①③C.③④D.②④解析:显然①是正确的,结论选项可以排除C,D,然后在剩余的②③中选一个来判断,即可得出结果,①③为真命题.故选B.答案: B二、填空题(每小题5分,共10分) 5.给出下列命题:①在△ABC 中,若∠A >∠B ,则sin A >sin B ; ②函数y =x 3在R 上既是奇函数又是增函数; ③函数y =f (x )的图象与直线x =a 至多有一个交点;④若将函数y =sin 2x 的图象向左平移π4个单位,则得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π4的图象. 其中正确命题的序号是________.解析: ①∠A >∠B ⇒a >b ⇒sin A >sin B .②③易知正确. ④将函数y =sin 2x 的图象向左平移π4个单位,得到函数y =sin ⎝ ⎛⎭⎪⎫2x +π2的图象. 答案: ①②③6.命题“一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根”,条件p :________,结论q :________,是________(填“真”或“假”)命题.答案: 一元二次方程ax 2+bx +c =0(a ≠0) 此方程有两个不相等的实数根 假 三、解答题(每小题10分,共20分) 7.指出下列命题的条件p 和结论q : (1)若x +y 是有理数,则x ,y 都是有理数;(2)如果一个函数的图象是一条直线,那么这个函数为一次函数. 解析: (1)条件p :x +y 是有理数,结论q :x ,y 都是有理数. (2)条件p :一个函数的图象是一条直线,结论q :这个函数为一次函数.8.已知命题p :lg(x 2-2x -2)≥0;命题q :0<x <4,若命题p 是真命题,命题q 是假命题,求实数x 的取值范围.解析: 命题p 是真命题,则x 2-2x -2≥1, ∴x ≥3或x ≤-1,命题q 是假命题,则x ≤0或x ≥4. ∴x ≥4或x ≤-1. 尖子生题库 ☆☆☆9.(10分)(1)已知下列命题是真命题,求a 、b 满足的条件. 方程ax 2+bx +1=0有解.(2)已知下列命题是假命题,若x 1<x 2<0,则a x 1>a x 2,求a 满足的条件. 解析: (1)∵ax 2+bx +1=0有解.∴当a =0时,bx +1=0有解,只有b ≠0时, 方程有解x =-1b.当a ≠0时,方程为一元二次方程,有解的条件为 Δ=b 2-4a ≥0.综上,当a =0,b ≠0或a ≠0,b 2-4a ≥0时,方程ax 2+bx +1=0有解. (2)∵命题当x 1<x 2<0时,a x 1>a x 2为假命题, ∴应有当x 1<x 2<0时,a x 1≤a x 2. 即a x 2-x 1x 1x 2≤0.∵x 1<x 2<0,∴x 2-x 1>0,x 1x 2>0, ∴a ≤0.第1章 1.2一、选择题(每小题5分,共20分) 1.“|x |=|y |”是“x =y ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析: |x |=|y |⇒x =y 或x =-y ,但x =y ⇒|x |=|y |. 故|x |=|y |是x =y 的必要不充分条件. 答案: B2.“x =2k π+π4(k ∈Z)”是“tan x =1”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析: 当x =2k π+π4时,tan x =1,而tan x =1得x =k π+π4,所以“x =2k π+π4”是“tan x =1”成立的充分不必要条件.故选A.答案: A3.设x ,y ∈R ,则“x ≥2且y ≥2”是“x 2+y 2≥4”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件解析: ∵x ≥2且y ≥2, ∴x 2+y 2≥4,∴x ≥2且y ≥2是x 2+y 2≥4的充分条件;而x 2+y 2≥4不一定得出x ≥2且y ≥2,例如当x ≤-2且y ≤-2时,x 2+y 2≥4亦成立,故x ≥2且y ≥2不是x 2+y 2≥4的必要条件.答案: A4.设A 是B 的充分不必要条件,C 是B 的必要不充分条件,D 是C 的充要条件,则D 是A 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件解析: 由题意得:故D 是A 的必要不充分条件 答案: B二、填空题(每小题5分,共10分)5.下列命题中是假命题的是________.(填序号) (1)x >2且y >3是x +y >5的充要条件 (2)A ∩B ≠∅是A B 的充分条件(3)b 2-4ac <0是ax 2+bx +c <0的解集为R 的充要条件(4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形 解析: (1)因x >2且y >3⇒x +y >5,x +y >5⇒/ x >2且y >3,故x >2且y >3是x +y >5的充分不必要条件. (2)因A ∩B ≠∅⇒/ A B, A B ⇒A ∩B ≠∅. 故A ∩B ≠∅是A B 的必要不充分条件. (3)因b 2-4ac <0⇒/ ax 2+bx +c <0的解集为R ,ax 2+bx +c <0的解集为R ⇒a <0且b 2-4ac <0,故b 2-4ac <0是ax 2+bx +c <0的解集为R 的既不必要也不充分条件. (4)三角形的三边满足勾股定理的充要条件是此三角形为直角三角形. 答案: (1)(2)(3) 6.设集合A =⎩⎨⎧⎭⎬⎫x |xx -1<0,B ={x |0<x <3},那么“m ∈A ”是“m ∈B ”的________条件.解析: A =⎩⎨⎧⎭⎬⎫x |xx -1<0={x |0<x <1}.m ∈A ⇒m ∈B ,m ∈B ⇒/ m ∈A .∴“m ∈A ”是“m ∈B ”的充分不必要条件. 答案: 充分不必要三、解答题(每小题10分,共20分)7.已知p :12≤x ≤1,q :a ≤x ≤a +1,若p 的必要不充分条件是q ,求实数a 的取值范围.解析: q 是p 的必要不充分条件, 则p ⇒q 但q ⇒/p .∵p :12≤x ≤1,q :a ≤x ≤a +1.∴a +1≥1且a ≤12,即0≤a ≤12.∴满足条件的a 的取值范围为⎣⎢⎡⎦⎥⎤0,12.8.求证:0≤a <45是不等式ax 2-ax +1-a >0对一切实数x 都成立的充要条件.证明: 充分性:∵0<a <45,∴Δ=a 2-4a (1-a )=5a 2-4a =a (5a -4)<0, 则ax 2-ax +1-a >0对一切实数x 都成立. 而当a =0时,不等式ax 2-ax +1-a >0可变成1>0.显然当a =0时,不等式ax 2-ax +1-a >0对一切实数x 都成立. 必要性:∵ax 2-ax +1-a >0对一切实数x 都成立,∴a =0或⎩⎪⎨⎪⎧a >0,Δ=a 2-4a 1-a <0.解得0≤a <45.故0≤a <45是不等式ax 2-ax +1-a >0对一切实数x 都成立的充要条件.尖子生题库 ☆☆☆9.(10分)已知条件p :A ={x |2a ≤x ≤a 2+1},条件q :B ={x |x 2-3(a +1)x +2(3a +1)≤0}.若p 是q 的充分条件,求实数a 的取值范围.解析: 先化简B ,B ={x |(x -2)[x -(3a +1)]≤0}, ①当a ≥13时,B ={x |2≤x ≤3a +1};②当a <13时,B ={x |3a +1≤x ≤2}.因为p 是q 的充分条件, 所以A ⊆B ,从而有⎩⎪⎨⎪⎧a ≥13a 2+1≤3a +12a ≥2,解得1≤a ≤3. 或⎩⎪⎨⎪⎧a <13a 2+1≤22a ≥3a +1,解得a =-1.综上,所求a 的取值范围是{a |1≤a ≤3或a =-1}.第1章 1.3一、选择题(每小题5分,共20分)1.已知p :x 2-1≥-1,q :4+2=7,则下列判断中,错误的是( ) A .p 为真命题,p 且q 为假命题 B .p 为假命题,q 为假命题 C .q 为假命题,p 或q 为真命题 D .p 且q 为假命题,p 或q 为真命题解析: ∵p 为真命题,q 为假命题, ∴p 且q 为假命题,p 或q 是真命题.答案: B2.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为( ) ①命题“p ∧q ”是真命题; ②命题“p ∧q ”是假命题; ③命题“p ∨q ”是真命题; ④命题“p ∨q ”是假命题. A .①③ B .②④ C .②③D .①④解析: ∵綈p ∨綈q 是假命题 ∴綈(綈p ∨綈q )是真命题 即p ∧q 是真命题 答案: A3.“p ∨q 为假命题”是“綈p 为真命题”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 解析: 若p ∨q 为假命题,则p ,q 都为假命题,綈p 为真命题. 若綈p 为真命题,则p ∨q 可能为真命题,∴“p ∨q 为假命题”是“綈p 为真命题”的充分不必要条件. 答案: A4.已知命题p 1:函数y =2x-2-x在R 上为增函数,p 2:函数y =2x +2-x 在R 上为减函数,则在命题q 1:p 1∨p 2,q 2:p 1∧p 2,q 3:(綈p 1)∨p 2和q 4:p 1∧(綈p 2)中,真命题是( ) A .q 1,q 3 B .q 2,q 3 C .q 1,q 4D .q 2,q 4解析: ∵y =2x 在R 上为增函数,y =2-x=⎝ ⎛⎭⎪⎫12x 在R 上为减函数,∴y =-2-x=-⎝ ⎛⎭⎪⎫12x 在R 上为增函数,∴y =2x-2-x在R 上为增函数,故p 1是真命题.y =2x +2-x 在R 上为减函数是错误的,故p 2是假命题.∴q 1:p 1∨p 2是真命题,因此排除B 和D ,q 2:p 1∧p 2是假命题,q 3:綈p 1是假命题,(綈p 1)∨p 2是假命题,故q 3是假命题,排除A.故选C.答案: C二、填空题(每小题5分,共10分)5.“a ≥5且b ≥3”的否定是____________; “a ≥5或b ≤3”的否定是____________. 答案: a <5或b <3 a <5且b >3 6.在下列命题中:①不等式|x +2|≤0没有实数解;②-1是偶数或奇数;③2属于集合Q,也属于集合R;④A A∪B.其中,真命题为________.解析:①此命题为“非p”的形式,其中p:不等式|x+2|≤0有实数解,因为x=-2是该不等式的一个解,所以p是真命题,所以非p是假命题.②此命题是“p或q”的形式,其中p:-1是偶数,q:-1是奇数.因为p为假命题,q 为真假题,所以p或q是真命题,故是真命题.③此命题是“p且q”的形式,其中p:2属于集合Q,q:2属于集合R.因为p为假命题,q为真命题,所以p且q是假命题,故是假命题.④此命题是“非p”的形式,其中p:A⊆A∪B.因为p为真命题,所以“非p”为假命题,故是假命题.所以填②.答案:②三、解答题(每小题10分,共20分)7.分别写出由下列各组命题构成的p∧q,p∨q,綈p形式命题.(1)p:8∈{x|x2-8x≤0},q:8∈{2,8}.(2)p:函数f(x)=3x2-1是偶函数,q:函数f(x)=3x2-1的图象关于y轴对称.解析:(1)p∧q:8∈({x|x2-8x≤0}∩{2,8}).p∨q:8∈({x|x2-8x≤0}∪{2,8}).綈p:8∉{x|x2-8x≤0}.(2)p∧q:函数f(x)=3x2-1是偶函数并且它的图象关于y轴对称.p∨q:函数f(x)=3x2-1是偶函数或它的图象关于y轴对称.綈p:函数f(x)=3x2-1不是偶函数.8.写出下列命题的否定,然后判断其真假:(1)p:方程x2-x+1=0有实根;(2)p:函数y=tan x是周期函数;(3)p:∅⊆A;(4)p:不等式x2+3x+5<0的解集是∅.解析:∅ A尖子生题库 ☆☆☆9.(10分)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0,命题q :实数x 满足⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.(1)若a =1,且p ∧q 为真,求实数x 的取值范围; (2)綈p 是綈q 的充分不必要条件,求实数a 的取值范围.解析: (1)由x 2-4ax +3a 2<0得(x -3a )(x -a )<0. 又a >0,所以a <x <3a , 当a =1时,1<x <3,即p 为真命题时实数x 的取值范围是1<x <3.由⎩⎪⎨⎪⎧x 2-x -6≤0,x 2+2x -8>0.解得⎩⎪⎨⎪⎧-2≤x ≤3,x <-4或x >2.即2<x ≤3.所以q 为真时实数x 的取值范围是2<x ≤3.若p ∧q 为真,则⎩⎪⎨⎪⎧1<x <3,2<x ≤3⇔2<x <3,所以实数x 的取值范围是(2,3).(2)綈p 是綈q 的充分不必要条件,即綈p ⇒綈q 且綈q ⇒/ 綈p .设A ={x |x ≤a 或x ≥3a },B ={x |x ≤2或x >3},则A B . 所以0<a ≤2且3a >3,即1<a ≤2. 所以实数a 的取值范围是(1,2].第1章1.4.1、2一、选择题(每小题5分,共20分) 1.下列命题中的假命题是( ) A .∃x ∈R ,lg x =0 B .∃x ∈R ,tan x =1 C .∀x ∈R ,x 2>0D .∀x ∈R,2x>0解析: A 中当x =1时,lg x =0,是真命题.B 中当x =π4+k π时,tan x =1,是真命题.C 中当x =0时,x 2=0不大于0,是假命题. D 中∀x ∈R,2x>0是真命题. 答案: C2.下列命题中,真命题是( )A .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是偶函数 B .∃m ∈R ,使函数f (x )=x 2+mx (x ∈R )是奇函数 C .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是偶函数 D .∀m ∈R ,使函数f (x )=x 2+mx (x ∈R )都是奇函数 解析: ∵当m =0时,f (x )=x 2(x ∈R ). ∴f (x )是偶函数又∵当m =1时,f (x )=x 2+x (x ∈R ) ∴f (x )既不是奇函数也不是偶函数. ∴A 对,B 、C 、D 错.故选A. 答案: A 3.下列4个命题:p 1:∃x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x <⎝ ⎛⎭⎪⎫13x ;p 2:∃x ∈(0,1),log 12x >log 13x ; p 3:∀x ∈(0,+∞),⎝ ⎛⎭⎪⎫12x >log 12x ; p 4:∀x ∈⎝⎛⎭⎪⎫0,13,⎝ ⎛⎭⎪⎫12x <log 13x .其中的真命题是( ) A .p 1,p 3 B .p 1,p 4 C .p 2,p 3D .p 2,p 4解析: 对于命题p 1,当x ∈(0,+∞)时,总有⎝ ⎛⎭⎪⎫12x >⎝ ⎛⎭⎪⎫13x成立.所以p 1是假命题,排除A 、B ;对于命题p 3,在平面直角坐标系中作出函数y =⎝ ⎛⎭⎪⎫12x与函数y =log 12x 的图象,可知在(0,+∞)上,函数y =⎝ ⎛⎭⎪⎫12x 的图象并不是始终在函数y =log 12x图象的上方,所以p 3是假命题,排除C.故选D.答案: D4.若命题p :∀x ∈R ,ax 2+4x +a ≥-2x 2+1是真命题,则实数a 的取值范围是( ) A .a ≤-3或a >2 B .a ≥2 C .a >-2D .-2<a <2解析: 依题意:ax 2+4x +a ≥-2x 2+1恒成立, 即(a +2)x 2+4x +a -1≥0恒成立,所以有:⎩⎪⎨⎪⎧a +2>0,16-4 a +2 a -1 ≤0⇔⎩⎪⎨⎪⎧a >-2,a 2+a -6≥0⇔a ≥2.答案: B二、填空题(每小题5分,共10分)5.命题“有些负数满足不等式(1+x )(1-9x )>0”用“∃”或“∀”可表述为________. 答案: ∃x 0<0,使(1+x 0)(1-9x 0)>06.已知命题p :∃x 0∈R ,tan x 0=3;命题q :∀x ∈R ,x 2-x +1>0,则命题“p 且q ”是________命题.(填“真”或“假”)解析: 当x 0=π3时,tan x 0=3,∴命题p 为真命题;x 2-x +1=⎝⎛⎭⎪⎫x -122+34>0恒成立,∴命题q 为真命题, ∴“p 且q ”为真命题. 答案: 真三、解答题(每小题10分,共20分)7.指出下列命题中哪些是全称命题,哪些是特称命题,并判断真假: (1)若a >0,且a ≠1,则对任意实数x ,a x>0. (2)对任意实数x 1,x 2,若x 1<x 2,则tan x 1<tan x 2. (3)∃T 0∈R ,使|sin(x +T 0)|=|sin x |. (4)∃x 0∈R ,使x 20+1<0.解析: (1)(2)是全称命题,(3)(4)是特称命题. (1)∵a x>0(a >0且a ≠1)恒成立,∴命题(1)是真命题. (2)存在x 1=0,x 2=π,x 1<x 2,但tan 0=tan π,∴命题(2)是假命题.(3)y =|sin x |是周期函数,π就是它的一个周期, ∴命题(3)是真命题. (4)对任意x 0∈R ,x 20+1>0.∴命题(4)是假命题.8.选择合适的量词(∀、∃),加在p(x)的前面,使其成为一个真命题:(1)x>2;(2)x2≥0;(3)x是偶数;(4)若x是无理数,则x2是无理数;(5)a2+b2=c2(这是含有三个变量的语句,则p(a,b,c)表示)解析:(1)∃x∈R,x>2.(2)∀x∈R,x2≥0;∃x∈R,x2≥0都是真命题.(3)∃x∈Z,x是偶数.(4)存在实数x,若x是无理数,则x2是无理数.(如42)(5)∃a,b,c∈R,有a2+b2=c2.尖子生题库 ☆☆☆9.(10分)若∀x∈R,函数f(x)=mx2+x-m-a的图象和x轴恒有公共点,求实数a的取值范围.解析:(1)当m=0时,f(x)=x-a与x轴恒相交,所以a∈R;(2)当m≠0时,二次函数f(x)=mx2+x-m-a的图象和x轴恒有公共点的充要条件是Δ=1+4m(m+a)≥0恒成立,即4m2+4am+1≥0恒成立.又4m2+4am+1≥0是一个关于m的二次不等式,恒成立的充要条件是Δ=(4a)2-16≤0,解得-1≤a≤1.综上所述,当m=0时,a∈R;当m≠0,a∈[-1,1].第1章1.4.3一、选择题(每小题5分,共20分)1.命题:对任意x∈R,x3-x2+1≤0的否定是( )A.不存在x0∈R,x30-x20+1≤0B.存在x0∈R,x30-x20+1≥0C.存在x0∈R,x30-x20+1>0 D.对任意x∈R,x3-x2+1>0解析:由全称命题的否定可知,命题的否定为“存在x0∈R,x30-x20+1>0”.故选C.答案: C2.命题p:∃m0∈R,使方程x2+m0x+1=0有实数根,则“綈p”形式的命题是( )A .∃m 0∈R ,使得方程x 2+m 0x +1=0无实根 B .对∀m ∈R ,方程x 2+mx +1=0无实根 C .对∀m ∈R ,方程x 2+mx +1=0有实根D .至多有一个实数m ,使得方程x 2+mx +1=0有实根解析: 由特称命题的否定可知,命题的否定为“对∀m ∈R ,方程x 2+mx +1=0无实根”.故选B.答案: B3.“∃x 0∉M ,p (x 0)”的否定是( ) A .∀x ∈M ,綈p (x ) B .∀x ∉M ,p (x ) C .∀x ∉M ,綈p (x ) D .∀x ∈M ,p (x )答案: C4.已知命题p :∃x ∈R ,使tan x =1,命题q :x 2-3x +2<0的解集是{x |1<x <2},下列结论:①命题“p ∧q ”是真命题;②命题“p ∧¬q ”是假命题;③命题“¬p ∨q ”是真命题;④命题“¬p ∨¬q ”是假命题,其中正确的是( )A .②③B .①②④C .①③④D .①②③④解析: 当x =π4时,tan x =1,∴命题p 为真命题.由x 2-3x +2<0得1<x <2,∴命题q 为真命题. ∴p ∧q 为真,p ∧¬q 为假,¬p ∨q 为真,¬p ∨¬q 为假. 答案: D二、填空题(每小题5分,共10分)5.命题p :∃x ∈R ,x 2+2x +5<0是________(填“全称命题”或“特称命题”),它是________命题(填“真”或“假”),它的否定命题綈p :________,它是________命题(填“真”或“假”).解析: ∵x 2+2x +5=(x +1)2+4≥0恒成立,所以命题p 是假命题. 答案: 特称命题 假 ∀x ∈R ,x 2+2x +5≥0 真6.(1)命题“对任何x ∈R ,|x -2|+|x -4|>3”的否定是________. (2)命题“存在x ∈R ,使得x 2+2x +5=0”的否定是________. 答案: (1)∃x 0∈R ,|x 0-2|+|x 0-4|≤3 (2)∀x ∈R ,x 2+2x +5≠0 三、解答题(每小题10分)7.写出下列命题的否定并判断其真假. (1)所有正方形都是矩形;(2)∀α,β∈R ,sin(α+β)≠sin α+sin β;(3)∃θ0∈R,函数y=sin(2x+θ0)为偶函数;(4)正数的对数都是正数.解析:(1)命题的否定:有的正方形不是矩形,假命题.(2)命题的否定:∃α,β∈R,sin(α+β)=sin α+sin β,真命题.(3)命题的否定:∀θ∈R,函数y=sin(2x+θ)不是偶函数,假命题.(4)命题的否定:存在一个正数,它的对数不是正数,真命题.8.已知函数f(x)=x2-2x+5.(1)是否存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,并说明理由.(2)若存在一个实数x0,使不等式m-f(x0)>0成立,求实数m的取值范围.解析:(1)不等式m+f(x)>0可化为m>-f(x),即m>-x2+2x-5=-(x-1)2-4.要使m>-(x-1)2-4对于任意x∈R恒成立,只需m>-4即可.故存在实数m,使不等式m+f(x)>0对于任意x∈R恒成立,此时只需m>-4.(2)若m-f(x0)>0,∴m>f(x0).∵f(x0)=x20-2x0+5=(x0-1)2+4≥4.∴m>4.尖子生题库 ☆☆☆9.(10分)写出下列各命题的否命题和命题的否定,并判断真假.(1)∀a,b∈R,若a=b,则a2=ab;(2)若a²c=b²c,则a=b;(3)若b2=ac,则a,b,c是等比数列.解析:(1)否命题:∀a,b∈R,若a≠b,则a2≠ab,假;命题的否定:∃a,b∈R,若a=b,则a2≠ab,假;(2)否命题:若a²c≠b²c,则a≠b.真;命题的否定:∃a,b,c,若a²c=b²c,则a≠b,真;(3)否命题:若b2≠ac,则a,b,c不是等比数列,真.命题的否定:∃a,b,c∈R,若b2=ac,则a,b,c不是等比数列,真.1章整合(考试时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.给出下列语句:①二次函数是偶函数吗?②2>2;③sin π2=1;④x 2-4x +4=0.其中是命题的有( )A .1个B .2个C .3个D .4个解析: 只有②和③是命题,语句①是疑问句,语句④含有变量x ,不能判断真假. 答案: B2.与命题:“若a ∈P ,则b ∉P ”等价的命题是( ) A .若a ∉P ,则b ∉P B .若b ∉P ,则a ∈P C .若a ∉P ,则b ∈P D .若b ∈P ,则a ∉P答案: D3.对命题p :1∈{1},命题q :1∉∅,下列说法正确的是( ) A .p 且q 为假命题 B .p 或q 为假命题 C .非p 为真命题D .非q 为假命题 解析: ∵p 、q 都是真命题,∴綈q 为假命题. 答案: D4.下列四个命题中真命题的个数为( )①若x =1,则x -1=0;②“若ab =0,则b =0”的逆否命题;③“等边三角形的三边相等”的逆命题;④“全等三角形的面积相等”的逆否命题.A .1B .2C .3D .4解析: ①是真命题;②逆否命题为“若b ≠0,则ab ≠0”,是假命题;③“等边三角形的三边相等”改为“若p ,则q ”的形式为“若一个三角形为等边三角形,则这个三角形的三边相等”,其逆命题为“若一个三角形的三边相等,则这个三角形为等边三角形”,是真命题;④“全等三角形的面积相等”改为“若p ,则q ”的形式为“若两个三角形为全等三角形,则这两个三角形的面积相等”,其逆否命题为“若两个三角形的面积不相等,则这两个三角形不是全等三角形”,是真命题.答案: C5.已知命题①若a >b ,则1a <1b,②若-2≤x ≤0,则(x +2)(x -3)≤0,则下列说法正确的是( )A .①的逆命题为真B .②的逆命题为真C .①的逆否命题为真D .②的逆否命题为真解析: 命题①是假命题,其逆命题为1a <1b,则a >b ,是假命题.故A 、C 错误.命题②是真命题,其逆命题为假命题,逆否命题为真命题.故选D.答案: D6.已知a >0,函数f (x )=ax 2+bx +c ,若x 0满足关于x 的方程2ax +b =0,则下列选项的命题中为假命题的是( )A .∃x ∈R ,f (x )≤f (x 0)B .∃x ∈R ,f (x )≥f (x 0)C .∀x ∈R ,f (x )≤f (x 0)D .∀x ∈R ,f (x )≥f (x 0)解析: 函数f (x )=ax 2+bx +c =a ⎝ ⎛⎭⎪⎫x +b 2a 2+4ac -b 24a (a >0),∵2ax 0+b =0,∴x 0=-b2a .当x =x 0时,函数f (x )取得最小值. ∴∀x ∈R ,f (x )≥f (x 0),故选C. 答案: C7.“x <-1”是“x 2-1>0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件解析: x 2-1>0⇒x >1或x <-1,故x <-1⇒x 2-1>0,但x 2-1>0⇒/ x <-1, ∴“x <-1”是“x 2-1>0”的充分而不必要条件. 答案: A8.已知a ,b 是实数,则“a >0且b >0”是“a +b >0且ab >0”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析: 由a >0且b >0可得a +b >0,ab >0,由a +b >0有a ,b 至少一个为正,ab >0可得a 、b 同号, 两者同时成立,则必有a >0,b >0.故选C. 答案: C9.命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是( ) A .不存在x 0∈R ,x 30-x 20+1≤0 B .存在x 0∈R ,使x 30-x 20+1>0 C .存在x 0∈R ,使x 30-x 20+1≤0D .对任意的x ∈R ,x 3-x 2+1>0解析: 由于已知命题是全称命题,其否定应为特称命题,并且对原命题的结论进行否定,由此可知B 正确.答案: B10.对∀x ∈R ,kx 2-kx -1<0是真命题,则k 的取值范围是( ) A .-4≤k ≤0 B .-4≤k <0 C .-4<k ≤0D .-4<k <0解析: 依题意,有k =0或⎩⎪⎨⎪⎧k <0,k 2+4k <0.解得-4<k ≤0.答案: C二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 11.“若x 2=y 2,则x =-y ”的逆命题是________命题,否命题是________命题.(填“真”或“假”)解析: 若x 2=y 2,则x =-y 的逆命题为:若x =-y ,则x 2=y 2,是真命题;否命题为:若x 2≠y 2,则x ≠-y ,是真命题.答案: 真 真12.对于非零向量a ,b ,“a +b =0”是“a ∥b ”的________条件.解析: 由a +b =0得a =-b ,即a ∥b ,但a ∥b 不一定有a =-b ,所以“a +b =0”是“a ∥b ”的充分不必要条件.答案: 充分不必要 13.下列命题:①∀x ∈R ,不等式x 2+2x >4x -3成立; ②若log 2x +log x 2≥2,则x >1;③命题“若a >b >0且c <0,则c a >c b”的逆否命题;④若命题p :∀x ∈R ,x 2+1≥1.命题q :∃x 0∈R ,x 20-2x 0-1≤0,则命题p ∧綈q 是真命题.其中真命题有________.(填序号)解析: ①中不等式x 2+2x >4x -3⇔x 2-2x +3>0⇔x ∈R . ∴对∀x ∈R ,x 2+2x >4x -3成立.①是真命题.②中log 2x +log x 2≥2⇔ log 22x -2log 2x +1log 2x ≥0⇔log 2x >0或log 2x =1⇔x >1.∴②是真命题.③中⎭⎪⎬⎪⎫a >b >0⇒1a <1b c <0⇒c a >c b ,原命题为真命题,逆否命题为真命题,∴③是真命题. ④中p 为真命题,q 为真命题,命题p ∧綈q 是假命题.答案: ①②③14.令p (x ):ax 2+2x +1>0,若对∀x ∈R ,p (x )是真命题,则实数a 的取值范围是________. 解析: 对∀x ∈R ,p (x )是真命题,就是不等式ax 2+2x +1>0对一切x ∈R 恒成立. (1)若a =0,不等式化为2x +1>0,不能恒成立;(2)若⎩⎪⎨⎪⎧a >0,Δ=4-4a <0,解得a >1;(3)若a <0,不等式显然不能恒成立. 综上所述,实数a 的取值范围是a >1. 答案: a >1三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)写出下列命题的“若p ,则q ”形式,并写出它的逆命题、否命题与逆否命题,并判断它们的真假.(1)全等三角形的对应边相等; (2)四条边相等的四边形是正方形.解析: (1)“若p ,则q ”的形式:若两个三角形全等,则这两个三角形的对应边相等;是真命题.逆命题:若两个三角形的对应边相等,则这两个三角形全等;是真命题. 否命题:若两个三角形不全等,则这两个三角形的对应边不全相等;是真命题. 逆否命题:若两个三角形的对应边不全相等,则这两个三角形不全等;是真命题. (2)“若p ,则q ”的形式:若一个四边形的四条边相等,则它是正方形;是假命题. 逆命题:若一个四边形是正方形,则它的四条边相等;是真命题. 否命题:若一个四边形的四条边不全相等,则它不是正方形;是真命题. 逆否命题:若一个四边形不是正方形,则它的四条边不全相等;是假命题.16.(本小题满分12分)写出由下列各组命题构成的“p 或q ”“p 且q ”以及“非p ”形式的命题,并判断它们的真假:(1)p :3是质数,q :3是偶数;(2)p :x =-2是方程x 2+x -2=0的解,q :x =1是方程x 2+x -2=0的解. 解析: (1)p 或q :3是质数或3是偶数;p 且q :3是质数且3是偶数;非p :3不是质数.因为p 真,q 假,所以“p 或q ”为真命题,“p 且q ”为假命题,“非p ”为假命题. (2)p 或q :x =-2是方程x 2+x -2=0的解或x =1是方程x 2+x -2=0的解;p 且q :x =-2是方程x 2+x -2=0的解且x =1是方程x 2+x -2=0的解;非p :x =-2不是方程x 2+x -2=0的解.因为p 真,q 真,所以“p 或q ”为真命题,“p 且q ”为真命题,“非p ”为假命题. 17.(本小题满分12分)是否存在实数p ,使4x +p <0是x 2-x -2>0的充分条件?如果存在,求出p 的取值范围;否则,说明理由.解析: 由x 2-x -2>0,解得x >2或x <-1, 令A ={x |x >2或x <-1},由4x +p <0,得B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-p4, 当B ⊆A 时,即-p4≤-1,即p ≥4,此时x <-p4≤-1⇒x 2-x -2>0,∴当p ≥4时,4x +p <0是x 2-x -2>0的充分条件.18.(本小题满分14分)已知命题p :函数y =x 2+2(a 2-a )x +a 4-2a 3在[-2,+∞)上单调递增.q :关于x 的不等式ax 2-ax +1>0解集为R .若p ∧q 假,p ∨q 真,求实数a 的取值范围.解析: ∵函数y =x 2+2(a 2-a )x +a 4-2a 3=[x +(a 2-a )]2-a 2,在[-2,+∞)上单调递增, ∴-(a 2-a )≤-2,即a 2-a -2≥0,解得a ≤-1或a ≥2. 即p :a ≤-1或a ≥2由不等式ax 2-ax +1>0的解集为R 得⎩⎪⎨⎪⎧a ≥0Δ<0,即⎩⎪⎨⎪⎧a ≥0-a 2-4a <0解得0≤a <4 ∴q :0≤a <4. ∵p ∧q 假,p ∨q 真. ∴p 与q 一真一假. ∴p 真q 假或p 假q 真, 即⎩⎪⎨⎪⎧a ≤-1或a ≥2a <0或a ≥4或⎩⎪⎨⎪⎧-1≤a <2,0≤a <4.∴a ≤-1或a ≥4或0≤a <2.所以实数a 的取值范围是(-∞,-1]∪[0,2)∪[4,+∞).第2章2.1.1一、选择题(每小题5分,共20分)1.曲线C 的方程为y =x (1≤x ≤5),则下列四点中在曲线C 上的是( ) A .(0,0) B.⎝ ⎛⎭⎪⎫15,15 C .(1,5)D .(4,4)解析: 代入每个点逐一验证,D 正确. 答案: D2.已知坐标满足方程f (x ,y )=0的点都在曲线C 上,那么( ) A .曲线C 上的点的坐标都适合方程f (x ,y )=0 B .凡坐标不适合f (x ,y )=0的点都不在C 上 C .不在C 上的点的坐标必不适合f (x ,y )=0D .不在C 上的点的坐标有些适合f (x ,y )=0,有些不适合f (x ,y )=0 答案: C3.方程(3x -4y -12)[log 2(x +2y )-3]=0的图象经过点A (0,-3),B (0,4),C (4,0),D ⎝ ⎛⎭⎪⎫53,-74中的( )A .0个B .1个C .2个D .3个解析: 由方程x +2y >0,可知A ,D 两点不符合题意;对于点B (0,4),x +2y =8=23,则有log 2(x +2y )-3=0;对于点C (4,0),3x -4y -12=0.故选C.答案: C4.方程y =|x |x2表示的曲线为图中的( )解析: y =|x |x2,x ≠0,为偶函数,图象关于y 轴对称,故排除A ,B.又因为当x >0时,y =1x>0;当x <0时,y =-1x>0,所以排除D.答案: C二、填空题(每小题5分,共10分)5.已知0≤α<2π,点P (cos α,sin α)在曲线(x -2)2+y 2=3上,则α的值为________. 解析: 由(cos α-2)2+sin 2α=3,得cos α=12.又因为0≤α<2π, 所以α=π3或α=53π.答案:π3或5π36.曲线y =-1-x 2与曲线y +|ax |=0(a ∈R)的交点有______个. 解析: 利用数形结合的思想方法,如图所示:答案: 2三、解答题(每小题10分,共20分) 7.判断下列命题是否正确.(1)过点P (0,3)的直线l 与x 轴平行,则直线l 的方程为|y |=3. (2)以坐标原点为圆心,半径为r 的圆的方程是y =r 2-x 2. (3)方程(x +y -1)²x 2+y 2-4=0表示的曲线是圆或直线.(4)点A (-4,3),B (-32,-4),C (5,25)都在方程x 2+y 2=25(x ≤0)所表示的曲线上.解析: (1)不对,过点P (0,3)的直线l 与x 轴平行,则直线l 的方程为y =3,而不是|y |=3.(2)不对.设(x 0,y 0)是方程y =r 2-x 2的解, 则y 0=r 2-x 20,即x 20+y 20=r 2. 两边开平方取算术根,得x 20+y 20=r .即点(x 0,y 0)到原点的距离等于r ,点(x 0,y 0)是这个圆上的点.因此满足以方程的解为坐标的点都是曲线上的点.但是,以原点为圆心、半径为r 的圆上的一点如点⎝ ⎛⎭⎪⎫r2,-32r 在圆上,却不是y =r 2-x 2的解,这就不满足曲线上的点的坐标都是方程的解.所以,以原点为圆心,半径为r 的圆的方程不是y =r 2-x 2,而应是y =±r 2-x 2. (3)不对.由(x +y -1)²x 2+y 2-4=0得⎩⎪⎨⎪⎧x +y -1=0或x 2+y 2-4=0x 2+y 2-4≥0所以表示的是圆和两条射线. (4)不对.把点A (-4,3)的坐标代入方程x 2+y 2=25,满足方程,且A 点的横坐标满足x ≤0, 则点A 在方程x 2+y 2=25(x ≤0)所表示的曲线上. 把点B (-32,-4)的坐标代入方程x 2+y 2=25, ∵(-32)2+(-4)2=34≠25,∴点B 不在方程所表示的曲线上.尽管C 点坐标满足方程,但 ∵横坐标5不满足小于或等于0的条件, ∴点C 不在曲线x 2+y 2=25(x ≤0)上.8.已知曲线C 的方程为x =9-y 2,说明曲线C 是什么样的曲线,并求该曲线与y 轴围成的图形的面积.解析: 由x =9-y 2,得x 2+y 2=9.又x ≥0,∴方程x =9-y 2表示的曲线是以原点为圆心,3为半径的右半圆,从而该曲线C 与y 轴围成的图形是半圆,其面积S =12π²9=92π.所以所求图形的面积为92π.尖子生题库 ☆☆☆9.(10分)已知方程(x +1)2+ny 2=1的曲线经过点A (-1,1),B (m ,-1).求m ,n 的值. 解析: ∵方程(x +1)2+ny 2=1的曲线经过点A (-1,1),B (m ,-1),∴⎩⎪⎨⎪⎧-1+1 2+n =1, m +1 2+n =1,解得⎩⎪⎨⎪⎧n =1,m =-1.∴m =-1,n =1为所求.第2章2.1.2一、选择题(每小题5分,共20分)1.与点A (-1,0)和点B (1,0)连线的斜率之和为-1的动点P 的轨迹方程是( ) A .x 2+y 2=3 B .x 2+2xy =1(x ≠±1) C .y =1-x 2D .x 2+y 2=9(x ≠0)解析: 设P (x ,y ),∵k PA +k PB =-1, ∴y -0x - -1 +y -0x -1=-1,整理得x 2+2xy =1(x ≠±1).答案: B2.已知两点M (-2,0)、N (2,0),点P 为坐标平面内的动点,满足|M N →|²|M P →|+M N →²N P →=0,则动点P (x ,y )的轨迹方程为( )A .y 2=-8x B .y 2=8x C .y 2=4xD .y 2=-4x解析: 由|M N →|²|M P →|+M N →²N P →,得4³[x - -2 ]2+ y -0 2+(4,0)²(x -2,y -0)=0, ∴y 2=-8x . 答案: A3.已知两定点A (-2,0),B (1,0),如果动点P 满足|PA |=2|PB |,则点P 的轨迹所包围的图形的面积等于( )A .πB .4πC .8πD .9π解析: 设P (x ,y ),由|PA |=2|PB |得 x +2 2+y 2=2 x -1 2+y 2, 整理得x 2-4x +y 2=0 即(x -2)2+y 2=4.所以点P 的轨迹是以(2,0)为圆心,以2为半径的圆, 故S =4π. 答案: B4.已知A (-1,0),B (1,0),且MA →²M B →=0,则动点M 的轨迹方程是( ) A .x 2+y 2=1 B .x 2+y 2=2C .x 2+y 2=1(x ≠±1)D .x 2+y 2=2(x ≠±2)解析: 设动点M (x ,y ),则MA →=(-1-x ,-y ),M B →=(1-x ,-y ).由MA →²M B →=0,得(-1-x )(1-x )+(-y )2=0, 即x 2+y 2=1.故选A. 答案: A二、填空题(每小题5分,共10分)5.已知点A (0,-1),当点B 在曲线y =2x 2+1上运动时,线段AB 的中点M 的轨迹方程是________.解析: 设点B (x 0,y 0),则y 0=2x 20+1.①设线段AB 中点为M (x ,y ),则x =x 02,y =y 0-12,即x 0=2x ,y 0=2y +1,代入①式,得 2y +1=2²(2x )2+1.即y =4x 2为线段AB 中点的轨迹方程. 答案: y =4x 26.已知动圆P 与定圆C :(x +2)2+y 2=1相外切,又与定直线l :x =1相切,那么动圆的圆心P 的轨迹方程是________.解析: 设P (x ,y ),动圆P 在直线x =1的左侧, 其半径等于1-x ,则|PC |=1-x +1, 即 x +2 2+y 2=2-x , 整理得y 2=-8x . 答案: y 2=-8x三、解答题(每小题10分,共20分)7.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A ,B 两点,点Q 与点P 关于y 轴对称,O 为坐标原点,若B P →=2P A →,且O Q →²A B →=1.求P 点的轨迹方程.解析: 由B P →=2P A →,P (x ,y )可得B (0,3y ),A ⎝ ⎛⎭⎪⎫32x ,0,∴A B →=⎝ ⎛⎭⎪⎫-32x ,3y .∵Q 与P 关于y 轴对称, ∴Q (-x ,y ),且OQ →=(-x ,y ).由O Q →²A B →=1得32x 2+3y 2=1(x >0,y >0).8.过点P 1(1,5)作一条直线交x 轴于点A ,过点P 2(2,7)作直线P 1A 的垂线,交y 轴于点B ,点M 在线段AB 上,且BM ∶MA =1∶2,求动点M 的轨迹方程.解析: 如图所示,设过P 2的直线方程为y -7=k (x -2)(k ≠0),则过P 1的直线方程为y -5=-1k(x -1),所以A (5k +1,0),B (0,-2k +7).① 设M (x ,y ),则由BM ∶MA =1∶2, 得⎩⎪⎨⎪⎧x =5k +13,y =-4k +143,②消去k ,整理得12x +15y -74=0. 故点M 的轨迹方程为12x +15y -74=0.③尖子生题库 ☆☆☆9.(10分)已知圆C :x 2+(y -3)2=9,过原点作圆C 的弦OP ,求OP 中点Q 的轨迹方程.(分别用直接法、定义法、代入法求解)解析: 方法一(直接法):如图,因为Q 是OP 的中点, 所以∠OQC =90°.设Q (x ,y ),由题意,得|OQ |2+|QC |2=|OC |2, 即x 2+y 2+[x 2+(y -3)2]=9,所以x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).方法二(定义法):如图所示,因为Q 是OP 的中点,所以∠OQC =90°,则Q 在以OC 为直径的圆上,故Q 点的轨迹方程为x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).方法三(代入法):设P (x 1,y 1),Q (x ,y ),由题意,得⎩⎪⎨⎪⎧x =x 12y =y12,即⎩⎪⎨⎪⎧x 1=2x y 1=2y,又因为x 21+(y 1-3)2=9,所以4x 2+4⎝ ⎛⎭⎪⎫y -322=9,即x 2+⎝ ⎛⎭⎪⎫y -322=94(去掉原点).第2章2.2.1一、选择题(每小题5分,共20分)1.若方程x 225-m +y 2m +9=1表示焦点在y 轴上的椭圆,则实数m 的取值范围是( )A .-9<m <25B .8<m <25C .16<m <25D .m >8解析: 依题意有⎩⎪⎨⎪⎧25-m >0m +9>0m +9>25-m,解得8<m <25,即实数m 的取值范围是8<m <25,故选B. 答案:B2.已知椭圆的焦点为(-1,0)和(1,0),点P (2,0)在椭圆上,则椭圆的方程为( ) A.x 24+y 23=1 B.x 24+y 2=1 C.y 24+x 23=1 D.y 24+x 2=1 解析: c =1,a =2,∴b 2=a 2-c 2=3. ∴椭圆的方程为x 24+y 23=1.答案: A3.已知(0,-4)是椭圆3kx 2+ky 2=1的一个焦点,则实数k 的值是( ) A .6 B.16 C .24D.124解析: ∵3kx 2+ky 2=1, ∴x 213k +y 21k=1. 又∵(0,-4)是椭圆的一个焦点,∴a 2=1k ,b 2=13k ,c 2=a 2-b 2=1k -13k =23k =16,∴k =124.答案: D4.椭圆x 225+y 29=1的焦点为F 1,F 2,P 为椭圆上的一点,已知PF 1→²PF 2→=0,则△F 1PF 2的面积为( )A .12B .10C .9D .8解析: ∵PF 1→²PF 2→=0,∴PF 1⊥PF 2. ∴|PF 1|2+|PF 2|2=|F 1F 2|2且|PF 1|+|PF 2|=2a . 又a =5,b =3,∴c =4,∴⎩⎪⎨⎪⎧|PF 1|2+|PF 2|2=64 ①|PF 1|+|PF 2|=10 ②②2-①,得2|PF 1|²|PF 2|=102-64, ∴|PF 1|²|PF 2|=18, ∴△F 1PF 2的面积为9. 答案: C二、填空题(每小题5分,共10分)5.椭圆x 29+y 22=1的焦点为F 1,F 2,点P 在椭圆上,若|PF 1|=4,则|PF 2|=________;∠F 1PF 2的大小为________.解析: 由椭圆标准方程得a =3,b =2, 则c =a 2-b 2=7,|F 1F 2|=2c =27. 由椭圆的定义得|PF 2|=2a -|PF 1|=2. 在△F 1PF 2中,由余弦定理得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22|PF 1|²|PF 2|=42+22- 27 22³4³2=-12,所以∠F 1PF 2=120°. 答案: 2 120°6.若点O 和点F 分别为椭圆x 24+y 23=1的中心和左焦点,点P 为椭圆上的任意一点,则OP →²FP→的最大值为________.解析: 椭圆的左焦点F 为(-1,0),设P (x ,y ), 则x 24+y 23=1, OP →²FP →=(x ,y )²(x +1,y )=x (x +1)+y 2 =14x 2+x +3 =14(x +2)2+2 ∵-2≤x ≤2,∴当x =2时,OP →²FP →有最大值6. 答案: 6三、解答题(每小题10分,共20分) 7.求适合下列条件的椭圆的标准方程: (1)焦点在x 轴上,且经过点(2,0)和点(0,1);(2)焦点在y 轴上,与y 轴的一个交点为P (0,-10),P 到它较近的一个焦点的距离等于2.解析: (1)因为椭圆的焦点在x 轴上,所以可设它的标准方程为x 2a +y 2b=1(a >b >0),。

高中数学选修21课后习题答案[人教版].pdf

高中数学选修21课后习题答案[人教版].pdf

练习(P8)
证明:若 a − b = 1,则 a2 − b2 + 2a − 4b − 3
= (a + b)(a − b) + 2(a − b) − 2b − 3 = a + b + 2 − 2b − 3 = a −b −1= 0 所以,原命题的逆否命题是真命题,从而原命题也是真命题.
习题 1.1 A 组(P8) 1、(1)是; (2)是; (3)不是; (4)不是.
2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题. 否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题. 逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题.
3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题. 否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题. 逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题.
学海无涯
第二章 圆锥曲线与方程
2.1 曲线与方程
练习(P37)
1、是. 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x = 0. 2、 a = 32 ,b = 18 .
25 25
3、解:设点 A, M 的坐标分别为 (t,0) , (x, y) .
(1)当 t 2 时,直线 CA 斜率
迹方程为 x2 + y2 = 4.
4、解法一:设圆 x2 + y2 − 6x + 5 = 0 的圆心为 C ,则点 C 的坐标是 (3,0) . 由题意,得 CM ⊥ AB ,则有 kCM kAB = −1 .
学海无涯
所以, y y = −1 (x 3, x 0) x−3 x

2020秋高中数学人教版2-1课堂达标:1.1.1命题含解析

2020秋高中数学人教版2-1课堂达标:1.1.1命题含解析

2020秋高中数学人教A版选修2-1课堂达标:1.1.1命题含解析第一章1。

1 1.1.11.下列语句中是命题的是(B)A.周期函数的和是周期函数吗B.sin45°=1C.x2+2x-1〉0D.梯形是不是平面图形呢[解析]选项A、D为疑问句,选项C为不等式,只有选项B 能判断真假,故选B.2.下列命题正确的是(D)A.三点确定一个平面B.两条直线确定一个平面C.四边形确定一个平面D.不共面的四点可以确定四个平面[解析]对于A,不共线三点确定一个平面,故A不正确;对于B,两条直线有可能异面,故B不正确;对于C,四边形可以成为一个空间立体图形,故C不正确,故选D.3.下列命题中的假命题是(B)A.若log2x<2,则0〈x〈4B.若a与b共线,则a与b的夹角为0°-2a n=0,则该数列C.已知各项都不为零的数列{a n}满足a n+1为等比数列D.点(π,0)是函数y=sin x图象上一点[解析]a与b共线,则a与b的夹角为0°,还可能为180°,故B为假命题,故选B.4.下列语句中命题的个数是(D)①2〈1;②x〈1;③若x〈2,则x≤1;④函数f(x)=x2是R上的偶函数.A.0B.1C.2D.3[解析]②不能判断真假,①③④能判断真假,故选D.5.下列命题是真命题的是(D)A.有两个面互相平行,其余各面都是平行四边形的多面体是棱柱B.过点P(x0,y0)的所有直线的方程都可表示为y-y0=k(x -x0)C.已知点A(x0,y0)是圆C:x2+y2=1内一点,则直线x0x+y0y-1=0与圆C相交D.圆柱的俯视图可能为矩形[解析]当圆柱横卧时,其俯视图为矩形,故选D.攀上山峰,见识险峰,你的人生中,也许你就会有苍松不惧风吹和不惧雨打的大无畏精神,也许就会有腊梅的凌寒独自开的气魄,也许就会有春天的百花争艳的画卷,也许就会有钢铁般的意志。

人教版A版高中数学选修2-1课后习题解答

人教版A版高中数学选修2-1课后习题解答

高中数学选修2-1 课后习题答案 [ 人教版 ]高中数学选修2-1 课后习题答案第一章常用逻辑用语1.1命题及其关系练习( P4)1、例:(1)若x2x 2 0,则 x 1;(2) 若x 1,则x2x 20 .2、(1)真;(2)假;(3)真;(4)真.3、(1)若一个三角形是等腰三角形,则这个三角形两边上的中线相等. 这是真命题 .(2)若一个函数是偶函数,则这个函数的图象关于y 轴对称 . 这是真命题 .(3)若两个平面垂直于同一个平面,则这两个平面平行. 这是假命题 .练习( P6)1、逆命题:若一个整数能被 5 整除,则这个整数的末位数字是0. 这是假命题 .否命题:若一个整数的末位数字不是0,则这个整数不能被 5 整除 . 这是假命题 .逆否命题:若一个整数不能被 5 整除,则这个整数的末位数字不是0. 这是真命题 .2、逆命题:若一个三角形有两个角相等,则这个三角形有两条边相等. 这是真命题 .否命题:若一个三角形有两条边不相等,这个三角形有两个角也不相等. 这是真命题 .逆否命题:若一个三角形有两个角不相等,则这个三角形有两条边也不相等.这是真命题 .3、逆命题:图象关于原点对称的函数是奇函数. 这是真命题 .否命题:不是奇函数的函数的图象不关于原点对称. 这是真命题 .逆否命题:图象不关于原点对称的函数不是奇函数. 这是真命题 .练习( P8)证明:证明:命题的逆否命题是:若 a b 1,则 a2b22a 4b 3a2b22a 4b 3 (a b) (a b) 2 (a b )2b当 a b 1时原式 a b 2 2 b 3 a b 10所以,原命题的逆否命题是真命题,从而原命题也是真命题.习题 1.1 A组(P8)1、(1)是;(2)是;(3)不是;(4)不是.2、(1)逆命题:若两个整数 a 与b的和a b 是偶数,则 a,b 都是偶数 . 这是假命题 .否命题:若两个整数a,b 不都是偶数,则 a b 不是偶数 . 这是假命题 .逆否命题:若两个整数 a 与b的和a b 不是偶数,则a, b 不都是偶数 . 这是真命题 .高中数学选修2-1 课后习题答案 [ 人教版 ] ( 2)逆命题:若方程x2x m 0 有实数根,则 m 0 . 这是假命题 .否命题:若 m 0 ,则方程 x2x m 0 没有实数根 . 这是假命题 .逆否命题:若方程x2x m 0 没有实数根,则m 0 . 这是真命题 .3、(1)命题可以改写成:若一个点在线段的垂直平分线上,则这个点到线段的两个端点的距离相等 .逆命题:若一个点到线段的两个端点的距离相等,则这个点在线段的垂直平分线上.这是真命题 .否命题:若一个点到不在线段的垂直平分线上,则这个点到线段的两个端点的距离不相等 .这是真命题.逆否命题:若一个点到线段的两个端点的距离不相等,则这个点不在线段的垂直平分线上 .这是真命题.( 2)命题可以改写成:若一个四边形是矩形,则四边形的对角线相等.逆命题:若四边形的对角线相等,则这个四边形是矩形. 这是假命题 .否命题:若一个四边形不是矩形,则四边形的对角线不相等. 这是假命题 .逆否命题:若四边形的对角线不相等,则这个四边形不是矩形. 这是真命题 .4、证明:如果一个三角形的两边所对的角相等,根据等腰三角形的判定定理,这个三角形是等腰三角形,且这两条边是等腰三角形,也就是说这两条边相等. 这就证明了原命题的逆否命题,表明原命题的逆否命题为真命题. 所以,原命题也是真命题.习题 1.1 B组(P8)证明:要证的命题可以改写成“若p ,则 q ”的形式:若圆的两条弦不是直径,则它们不能互相平分 .此命题的逆否命题是:若圆的两条相交弦互相平分,则这两条相交弦是圆的两条直径.可以先证明此逆否命题:设AB,CD 是O 的两条互相平分的相交弦,交点是E,若 E和圆心 O 重合,则 AB,CD 是经过圆心 O 的弦, AB,CD 是两条直径 . 若 E 和圆心O 不重合,连结AO, BO ,CO 和DO,则OE是等腰AOB,COD的底边上中线,所以,OE AB OE CD.,AB 和 CD 都经过点 E ,且与 OE 垂直,这是不可能的 . 所以, E 和 O 必然重合 . 即 AB 和 CD 是圆的两条直径 .原命题的逆否命题得证,由互为逆否命题的相同真假性,知原命题是真命题.1.2充分条件与必要条件练习( P10)1、(1);(2);(3);(4).2、(1). 3(1).4、(1)真;(2)真;(3)假;(4)真 .练习( P12)1、(1)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(2)原命题和它的逆命题都是真命题,p 是 q 的充要条件;(3)原命题是假命题,逆命题是真命题,p 是 q 的必要条件 .2、(1) p 是 q 的必要条件;(2)p是q的充分条件;( 3) p 是 q 的充要条件;(4)p是q的充要条件.习题 1.2 A组(P12)1、略 .2、( 1)假;(2)真;(3)真.3、(1)充分条件,或充分不必要条件;(2)充要条件;(3)既不是充分条件,也不是必要条件;(4)充分条件,或充分不必要条件.4、充要条件是 a2b2r 2 .习题 1.2 B组(P13)1、(1)充分条件;(2)必要条件;(3)充要条件.2、证明:( 1)充分性:如果 a2b2c2ab ac bc ,那么 a2b2c2ab ac bc0 .所以 (a b)2(a c)2(b c)20所以, a b 0 , a c 0 , b c0 .即 a b c ,所以,ABC 是等边三角形 .( 2)必要性:如果ABC 是等边三角形,那么 a b c所以 (a b)2 (a c)2 (b c)2 0所以 a2 b2 c2 ab ac bc 0所以 a2 b2 c2 ab ac bc1.3简单的逻辑联结词练习( P18)1、(1)真;(2)假.2、(1)真;(2)假.3、(1) 2 2 5 ,真命题;(2)3不是方程x290 的根,假命题;(3) ( 1)21,真命题 .习题 1.3 A组(P18)1、(1) 4 {2,3} 或 2 {2,3} ,真命题;(2)4{2,3} 且 2 {2,3} ,假命题;(3)2 是偶数或 3 不是素数,真命题;(4)2是偶数且3不是素数,假命题.2、(1)真命题;(2)真命题;(3)假命题.3、(1) 2 不是有理数,真命题;(2)5是15的约数,真命题;(3) 2 3 ,假命题;(4)8715 ,真命题;(5)空集不是任何集合的真子集,真命题.习题 1.3 B组(P18)(1)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(2)真命题 . 因为 p 为真命题, q 为真命题,所以 p q 为真命题;(3)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题;(4)假命题 . 因为 p 为假命题, q 为假命题,所以 p q 为假命题 .1.4全称量词与存在量词练习( P23)1、(1)真命题;(2)假命题;(3)假命题.2、(1)真命题;(2)真命题;(3)真命题.练习( P26)1、(1)n0Z, n0Q ;(2)存在一个素数,它不是奇数;( 3)存在一个指数函数,它不是单调函数.2、(1)所有三角形都不是直角三角形;(2)每个梯形都不是等腰梯形;(3)所有实数的绝对值都是正数.习题 1.4 A组(P26)1、(1)真命题;(2)真命题;(3)真命题;(4)假命题.2、(1)真命题;(2)真命题;(3)真命题.3、(1)x0N , x03x02;(2)存在一个可以被 5 整除的整数,末位数字不是0;(3)x R, x2x 1 0 ;(4)所有四边形的对角线不互相垂直.习题 1.4 B组(P27)( 1)假命题 . 存在一条直线,它在y 轴上没有截距;( 2)假命题 . 存在一个二次函数,它的图象与x轴不相交;( 3)假命题 . 每个三角形的内角和不小于 180 ;( 4)真命题 . 每个四边形都有外接圆 .第一章复习参考题 A 组( P30)1、原命题可以写为:若一个三角形是等边三角形,则此三角形的三个内角相等.逆命题:若一个三角形的三个内角相等,则此三角形是等边三角形. 是真命题;否命题:若一个三角形不是等边三角形,则此三角形的三个内角不全相等. 是真命题;逆否命题:若一个三角形的三个内角不全相等,则此三角形不是等边三角形. 是真命题 .2、略 .3、( 1)假;(2)假;(3)假;(4)假.4、(1)真;(2)真;(3)假;(4)真;(5)真.5、(1)n N ,n2 0 ;(2)P { P P 在圆 x2 y2 r 2上}, OP r (O 为圆心);(3)( x, y) {( x, y) x, y是整数 } , 2x 4y 3 ;( 4)x0 { x x 是无理数}, x03 { q q 是有理数} .6、(1) 3 2 ,真命题;(2) 5 4 ,假命题;( 3)x0 R, x0 0 ,真命题;(4)存在一个正方形,它不是平行四边形,假命题.第一章复习参考题 B 组( P31)1、(1) p q;(2) ( p) ( q) ,或( p q) .2、(1)Rt ABC , C 90,A, B, C 的对边分别是 a, b, c ,则 c2 a2 b2;(2)ABC ,A, B, C 的对边分别是a b c a, b, c ,则.sin A sin B sin C第二章 圆锥曲线与方程2.1曲线与方程练习( P37)1、是 . 容易求出等腰三角形 ABC 的边 BC 上的中线 AO 所在直线的方程是 x 0 .2、 a 32 , b 18 .25 253、解:设点 A, M 的坐标分别为 (t,0) , ( x, y) .(1)当 t 2 时,直线 CA 斜率 k CA2 0 22 t2 t1 t 2所以, k CB2kCA由直线的点斜式方程,得直线 CB 的方程为 y2 t 2 ( x 2) .2令 x 0 ,得 y 4 t ,即点 B 的坐标为 (0,4 t) .由于点 M 是线段 AB 的中点,由中点坐标公式得xt, y 4 t .t4 t ,22由 x得 t 2x ,代入 y2 2得 y42x,即 x y 20 ⋯⋯①2( 2)当 t 2 时,可得点 A, B 的坐标分别为 (2,0) , (0,2)此时点 M 的坐标为 (1,1) ,它仍然适合方程①由( 1)( 2)可知,方程①是点 M 的轨迹方程,它表示一条直线.习题 2.1 A组( P37)1、解:点 A(1, 2) 、 C (3,10) 在方程 x 2xy 2 y 1 0 表示的曲线上;点 B(2, 3) 不在此曲线上2、解:当 c 0 时,轨迹方程为 xc 1;当 c 0 时,轨迹为整个坐标平面 .23、以两定点所在直线为 x 轴,线段 AB 垂直平分线为 y 轴,建立直角坐标系,得点 M 的轨迹方程为 x 2y 24.4、解法一:设圆 x 2 y 2 6x 5 0 的圆心为 C ,则点 C 的坐标是 (3,0) .由题意,得 CMAB ,则有 k CM k AB1 .高中数学选修 2-1 课后习题答案 [ 人教版 ]所以,yy 1 (x 3, x0)x 3x化简得 x 2y 2 3x 0 (x 3, x 0)当 x 3 时, y0 ,点 (3,0) 适合题意;当 x 0 时, y0 ,点 (0,0) 不合题意 .解方程组x 2 y 2 3x 0, 得 x5, y2 5x 2y 26x 5 033所以,点 M 的轨迹方程是 x2y 2 3x0 ,5x 3.OCM 是直角三角形,3解法二:注意到利用勾股定理,得 x 2 y 2 ( x 3)2 y 2 9 ,即 x 2 y 2 3x0 . 其他同解法一 .习题 2.1 B 组( P37)1、解:由题意,设经过点P 的直线 l 的方程为 xy 1 .a b因为直线 l 经过点 P(3,4) ,所以34 1 因此, ab 4a 3ba b由已知点 M 的坐标为 (a,b) ,所以点 M 的轨迹方程为 xy4x 3y 0 .2、解:如图,设动圆圆心 M 的坐标为 (x, y) .y由于动圆截直线 3x y 0 和 3x y 0 所得弦分别为BAB , CD ,所以, AB8 , CD4 .过点M 分别CMF E作直线 3xy 0 和 3x y 0 的垂线,垂足分别为 E ,DF ,则 AE4, CF 2 . A3x y3x yME, MF10 .10Ox连接 MA , MC ,因为 MAMC ,(第 2题)22CF 22 则有, AE MEMF所以, 16 (3 x y)24 (3 x y) 2 ,化简得, xy 10 .10 10因此,动圆圆心的轨迹方程是xy 10 .高中数学选修2-1 课后习题答案 [ 人教版 ]2.2椭圆练习( P42)1、 14. 提示:根据椭圆的定义,PF1 PF2 20 ,因为 PF1 6 ,所以 PF22、(1)x2y2 1;(2) y2 x2 1;(3) x2 y2 1,或 y2 x2 16 16 36 16 36 163、解:由已知, a 5 , b 4 ,所以c a2 b2 3.(1)AF1 B 的周长 AF1 AF2 BF1 BF2.由椭圆的定义,得 AF1 AF2 2a , BF1 BF2 2a .所以,AF1B 的周长4a20 .(2)如果 AB 不垂直于x轴,AF1B的周长不变化 .这是因为①②两式仍然成立,AF1B 的周长20,这是定值.4、解:设点 M 的坐标为 ( x, y) ,由已知,得直线 AM 的斜率y(x 1) ;kAMx 1直线 BM 的斜率y(x 1) ;kBMx 1由题意,得kAM2 ,所以y 2 y (x 1, y 0) k BM x 1 x 1化简,得 x 3 ( y 0)因此,点 M 的轨迹是直线 x 3 ,并去掉点 ( 3,0) .练习( P48)yB2 1、以点B2(或B1)为圆心,以线段OA2 (或 OA1)为半径画圆,圆与 x 轴的两个交点分别为 F1 , F2. A 1 F1O点 F1 , F2就是椭圆的两个焦点.B 1 这是因为,在 Rt B2OF2中, OB2 b , B2 F2 OA2 a ,(第 1题)所以, OF2 c . 同样有 OF1 c .2、(1)焦点坐标为( 8,0) , (8,0) ;14 .1.F2A2x( 2)焦点坐标为 (0,2) , (0, 2) .3、(1)x 2 y 21;( 2) y2x 2 1 .36 3225 164、(1)x 2y21( 2) x2y21 ,或 y 2x 2 1. 94100 64100645、(1)椭圆 9x2y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是 1 ,316 12 2因为221,所以,椭圆x 2y 2 1 更圆,椭圆 9x 2y 2 36 更扁;3216 12(2)椭圆 x29 y236 的离心率是22 ,椭圆 x 2y 2 1 的离心率是10 ,36105 因为2210,所以,椭圆x 2y 2 1 更圆,椭圆 x 2 9 y 2 36更扁 .356106、(1) (3, 8) ; (2) (0,2) ; (3) ( 48 , 70) .7、82 . 5 3737 7习题 2.2 A组( P49)1、解:由点 M (x, y) 满足的关系式x 2 ( y 3)2 x 2 ( y 3) 2 10 以及椭圆的定义得,点 M 的轨迹是以 F 1(0, 3) , F 2 (0,3) 为焦点,长轴长为 10 的椭圆 .它的方程是y 2x 2 1.25 162、(1)x 2y 21; ( 2)y 2x 21 ;(3) x2y 21 ,或 y 2x 21.36 3225 9494049403、(1)不等式 2 x 2 , 4 y 4 表示的区域的公共部分;(2)不等式 25 x2 5 , 10 y10表示的区域的公共部分 .图略 .334、(1)长轴长 2a8,短轴长 2b 4 ,离心率 e 3 ,2焦点坐标分别是 ( 2 3,0) , (2 3,0) ,顶点坐标分别为 ( 4,0) , (4,0) , (0, 2) , (0,2) ;(2)长轴长 2a18 ,短轴长 2b6 ,离心率 e2 2 ,3焦点坐标分别是 (0, 6 2) , (0,6 2) ,顶点坐标分别为 (0, 9) ,(0,9) , ( 3,0) , (3,0) .5、(1)x2y2 1 ;(2) x2 y2 1,或 y2 x2 1 ;8 5 9 81 9(3) x2 y2 1,或 y 2 x2 1 .25 9 25 96、解:由已知,椭圆的焦距F1F2 2.因为PF1F2的面积等于1,所以,1F1F2 y P 1,解得y P1. 2代入椭圆的方程,得x2 1 1 ,解得 x 15 .P5 4 215 l所以,点 P 的坐标是1) ,共有 4 个 .( ,2 QA 7、解:如图,连接 QA . 由已知,得 QA QP . O所以, QO QA QO QP OP r .又因为点 A 在圆内,所以OA OP(第 7题)根据椭圆的定义,点 Q 的轨迹是以 O, A 为焦点,r为长轴长的椭圆 .8、解:设这组平行线的方程为y 3 x m .2把 y 3 x2 y21 ,得 9x2 6mx 2 18 0.x m 代入椭圆方程92m2 4这个方程根的判别式36m2 36(2m2 18)( 1)由0 ,得 3 2 m 3 2 .当这组直线在 y 轴上的截距的取值范围是( 3 2,3 2) 时,直线与椭圆相交. ( 2)设直线与椭圆相交得到线段AB ,并设线段 AB 的中点为 M (x, y) .则 x x1 x2 m .2 3因为点 M 在直线 y 3 x m 上,与 x m联立,消去 m ,得3x 2y 0 .2 3这说明点 M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上 .高中数学选修2-1 课后习题答案 [ 人教版 ]x2y29、3.5252 2.87521.10、地球到太阳的最大距离为 1.5288 108 km,最下距离为 1.4712108 km. 习题 2.2 B 组( P50)1、解:设点 M 的坐标为 ( x, y) ,点 P 的坐标为( x0, y0),则 x x0,y 3y0 . 所以 x0 x ,y0 2 y ⋯⋯① .2 3因为点 P(x0 , y0 ) 在圆上,所以 x02 y02 4 ⋯⋯②.将①代入②,得点 M 的轨迹方程为 x2 4 y2 4,即 x2 y2 19 4 9所以,点 M 的轨迹是一个椭圆与例 2 相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为P( x, y) ,半径为 R ,两已知圆的圆心分别为 O1, O2.分别将两已知圆的方程x 2 y2 6x 5 0 , x2 y2 6x 91 0配方,得(x 3)2 y 2 4 , ( x 3)2 y2 100当 P 与O1: ( x 3)2 y2 4 外切时,有O1P R 2 ⋯⋯①当P 与O2:( x 3)2y2100内切时,有O2P 10 R⋯⋯②①②两式的两边分别相加,得 O1P O2 P 12即, ( x 3)2 y2 (x 3) 2 y2 12 ⋯⋯③化简方程③ .先移项,再两边分别平方,并整理,得 2 (x 3)2 y2 12 x ⋯⋯④将④两边分别平方,并整理,得3x2 4 y2 108 0 ⋯⋯⑤将常数项移至方程的右边,两边分别除以108,得x2y2 1 ⋯⋯⑥36 27由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,6 3 . 解法二:同解法一,得方程( x 3)2 y2 ( x 3)2 y2 12 ⋯⋯①由方程①可知,动圆圆心P(x, y) 到点O1( 3,0)和点O2(3,0) 距离的和是常数12,第11页共38页。

2021-2022学年人教A版高中数学选修2-1习题:第一章1.1-1.1.1命题 Word版含答案

2021-2022学年人教A版高中数学选修2-1习题:第一章1.1-1.1.1命题 Word版含答案

第一章常用规律用语1.1 命题及其关系1.1.1 命题A级基础巩固一、选择题1.下列语句是命题的是( )①三角形的内角和等于180°;②2>3;③偶数是自然数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤解析:①②③是命题,④中x>2无法推断真假,⑤是感叹句,所以④⑤不是命题.答案:A2.下列命题中,是真命题的是( )A.a>b,c>d⇒ac>bdB.a<b⇒a2<b2C.1a<1b⇒a>bD.a>b,c<d⇒a-c>b-d解析:可以通过举反例的方法说明A,B,C为假命题.答案:D3.下列命题中真命题的个数为( )①若x2=1,则x=1;②若x=y,则x=y;③若a>b,则a+c>b+c;④梯形的对角线肯定不垂直.A.1 B.2 C.3 D.4解析:只有③正确.答案:A4.给出下列命题:①四个非零实数a,b,c,d满足ad=bc,则a,b,c,d成等比数列;②若整数a能被2整除,则a是偶数;③在△ABC中,若A>30°,则sin A>12.其中为假命题的序号是( )A.② B.①② C.②③ D.①③解析:①中,若a=-1,b=52,c=2,d=-5满足ad=bc,但a,b,c,d不成等比数列,故是假命题;③中,若150°<A<180°,则sin A<12,故是假命题.答案:D5.下列命题中,是真命题的是( )A.若a3+b3=0,则a2+b2=0B.若a>b,则ac>bcC.若M∩N=M,则N⊆MD.若M⊆N,则M∩N=M解析:A.取a=1,b=-1,推不出a2+b2=0,A不成立;B.c≤0时,不成立;C.M∩N=M⇒M⊆N,C不成立;D成立.答案:D二、填空题6.命题“末位数字是4的整数肯定能被2整除”,写成“若p,则q”的形式为________.解析:条件是整数的末位数字是4,结论是它肯定能被2整除.答案:若一个整数的末位数字是4,则它肯定能被2整除7.已知下列命题:①面积相等的三角形是全等三角形;②若xy=0,则|x|+|y|=0;③若a>b,则ac2>bc2;④矩形的对角线相互垂直.其中假命题的个数是________.解析:①②③④全为假命题.答案:48.给出下列三个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同始终线的两条直线相互平行.其中,是真命题的是________(填序号).答案:②三、解答题9.推断下列命题的真假.(1)二次函数y=ax2+bx+c (a≠0)有最大值;(2)正项等差数列的公差大于零;(3)函数y=1x的图象关于原点对称.解:(1)假命题.当a>0时,抛物线开口向上,有最小值.(2)假命题.反例:若此数列为递减数列,如数列20,17,14,11,8,5,2,它的公差是-3.(3)真命题.y=1x是奇函数,所以其图象关于(0,0)对称.10.把下列命题改写成“若p,则q”的形式,并推断真假,且指出p和q分别指什么.(1)乘积为1的两个实数互为倒数;(2)奇函数的图象关于原点对称;(3)与同始终线平行的两个平面平行.解:(1)“若两个实数乘积为1,则这两个实数互为倒数”,它是真命题.p:两个实数乘积为1;q:两个实数互为倒数.(2)“若一个函数为奇函数,则它的图象关于原点对称”.它是真命题.p:一个函数为奇函数;q:函数的图象关于原点对称.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.p:两个平面与同一条直线平行;q:两个平面平行.B级力量提升1.已知a、b为两条不同的直线,α、β为两个不同的平面,且a⊥α,b⊥β,则下列命题中的假命题是( )A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a、b相交,则α、β相交D.若α、β相交,则a、b相交解析:易知选项A、B、C都正确,对于D,α、β相交时,a、b肯定不平行,但不肯定相交,有可能异面,故D为假命题.答案:D2.给定下列命题:①若k>0,则方程x2+2x-k=0有实数根;②若a>b>0,c>d>0,则ac>bd;③对角线相等的四边形是矩形;④若xy=0,则x、y中至少有一个为0.其中真命题的序号是________.解析:易知①②④正确,对于③,对角线相等且平分时的四边形是矩形,只满足相等不是矩形.故③错误.答案:①②④3.推断“函数f(x)=2x-x2有三个零点”是否为命题.若是命题,是真命题还是假命题?说明理由.解:这是一个可以推断真假的陈述句,所以是命题,且是真命题.函数f(x)=2x-x2的零点即方程2x-x2=0的实数根,也就是方程2x=x2的实数根,即函数y=2x,y =x2的图象的交点的横坐标,易知指数函数y=2x的图象与抛物线y=x2有三个交点,所以函数f(x)=2x-x2有三个零点.。

高中数学人教A版选修2-1优化练习:第一章 1.1 1.1.1 命 题 Word版含解析

高中数学人教A版选修2-1优化练习:第一章 1.1 1.1.1 命 题 Word版含解析

[课时作业][A组基础巩固]1.以下语句中①{0}∈N;②x2+y2=0;③x2>x;④{x|x2+1=0}命题的个数是()A.0B.1C.2D.3解析:①是命题,且是假命题;②、③不能判断真假不是命题;④不是陈述句,不是命题.答案:B2.下列说法正确的是()A.命题“直角相等”的条件和结论分别是“直角”和“相等”B.语句“最高气温30 ℃时我就开空调”不是命题C.命题“对角线互相垂直的四边形是菱形”是真命题D.语句“当a>4时,方程x2-4x+a=0有实根”是假命题解析:A应写成“若p则q”的形式,B是命题,C是假命题,当a>4时,方程x2-4x+a=0无实根,所以D项是假命题,故选D.答案:D3.已知a,b为两条不同的直线,α,β为两个不同的平面,且a⊥α,b⊥β,则下列命题中,假命题是()A.若a∥b,则α∥βB.若α⊥β,则a⊥bC.若a,b相交,则α,β相交D.若α,β相交,则a,b相交解析:由已知a⊥α,b⊥β,若α,β相交,a,b有可能异面.答案:D4.给出命题“方程x2+ax+1=0没有实数根”,则使该命题为真命题的a的一个值可以是()A.4 B.2 C.0 D.-3解析:方程无实根,应满足Δ=a2-4<0,故a=0时适合条件.答案:C5.“若x2-2x-8<0,则p”为真命题,那么p是()A.{x|-2<x<4}B.{x|2<x<4}C.{x|x>4或x<-2} D.{x|x>4或x<2}解析:由x2-2x-8<0易得-2<x<4,故选A.答案:A6.命题“若a>0,则二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包括边界)”的条件p:________,结论q:________________.它是______命题(填“真”或“假”).解析:a>0时,设a=1,把(0,0)代入x+y-1≥0得-1≥0不成立,∴x+y-1≥0表示直线的右上方区域,∴命题为真命题.答案:a>0二元一次不等式x+ay-1≥0表示直线x+ay-1=0的右上方区域(包含边界)真7.把命题“已知a,b为正数,当a>b时,有log2a>log2b”写成“若p,则q”的形式:__________________________________________________________. 解析:“已知a,b是正数”是一个大前提.答案:已知a,b为正数,若a>b,则log2a>log2b8.下列命题中,真命题是________.①若a2=b2,则|a|=|b|;②若M∪N=N,则M⊆N;③函数y=sin x,x∈[0,2π]是周期函数;④若直线l与m异面,m与n异面,则l与n异面.解析:①中a2=|a|2,b2=|b|2,故①正确;②正确;③x∈[0,2π]时不符合周期函数的定义,不是周期函数;④l与n有可能共面.答案:①②9.把下列命题改写成“若p,则q”的形式,并判断真假.(1)当1a>1b时,a<b;(2)垂直于同一条直线的两个平面互相平行;(3)同弧所对的圆周角不相等.解析:(1)若1a>1b,则a<b,假命题;(2)若两个平面垂直于同一条直线,则这两个平面平行,真命题;(3)若两个角为同弧所对的圆周角,则它们不相等,假命题.10.已知A :5x -1>a ,B :x >1,请选择适当的实数a ,使得利用A ,B 构造的命题“若p ,则q ”为真命题.解析:若视A 为p ,则命题“若p ,则q ”为“若x >1+a 5,则x >1”.由命题为真命题可知1+a 5≥1,解得a ≥4;若视B 为p ,则命题“若p ,则q ”为“若x >1,则x >1+a 5”.由命题为真命题可知1+a 5≤1,解得a ≤4.故a 取任一实数均可利用A ,B 构造出一个真命题,比如这里取a =1,则有真命题“若x >1,则x >25”.[B 组 能力提升]1.已知集合A ={x |x 2<2},若a ∈A 是真命题,则a 的取值范围是( )A .a < 2B .a >- 2C .-2<a < 2D .a <-2或a > 2 解析:∵a ∈A 是真命题,故a 2<2. ∴-2<a < 2.答案:C2.已知下列三个命题:①若一个球的半径缩小到原来的12,则其体积缩小到原来的18;②若两组数据的平均数相等,则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切.其中真命题的序号为( )A .①②③B .①②C .①③D .②③解析:对于命题①,设球的半径为R ,则43π⎝ ⎛⎭⎪⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.答案:C3.命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:∵ax 2-2ax -3>0不成立,∴ax 2-2ax -3≤0恒成立,∴当a =0时,-3≤0恒成立,当a ≠0时,⎩⎨⎧ a <0Δ≤0,∴-3≤a <0.综上-3≤a ≤0. 答案:[-3,0]4.将下列命题改写成“如果p ,那么q ”的形式,并判断命题的真假.(1)两条直线相交有且只有一个交点;(2)到线段两个端点的距离相等的点在线段的垂直平分线上;(3)全等的两个三角形面积相等.解析:(1)如果两条直线相交,那么它们有且只有一个交点,是真命题.(2)如果一个点到线段两个端点的距离相等,那么这个点在线段的垂直平分线上,是真命题.(3)如果两个三角形全等,那么它们的面积相等,是真命题.5.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围. 解析:若命题p 为真命题,则可知m ≤1;若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真,即⎩⎨⎧ m ≤1m ≥2或⎩⎨⎧m >1,m <2.故m的取值范围是1<m<2.。

【三维设计】人教版高中数学必修2练习:1.1.1棱柱、棱锥、棱台的结构特征(含答案解析)

【三维设计】人教版高中数学必修2练习:1.1.1棱柱、棱锥、棱台的结构特征(含答案解析)

第一章1.1第一课时一、选择题1.以下图形中,不是三棱柱的睁开图的是()答案: C2.如右图所示,在三棱台ABC-A′ B′C′中,截去三棱锥A′ -ABC,则节余部分是 ()A.三棱锥C.三棱柱B .四棱锥D .组合体答案: B3.以下说法正确的选项是()①棱锥的各个侧面都是三角形;②三棱柱的侧面为三角形;③四周体的任何一个面都能够作为棱锥的底面;④棱锥的各侧棱长都相等.A.①② B .①③C.②③ D .②④答案: B4.正五棱柱中,不一样在任何侧面且不一样在任何底面的两极点的连线称为它的对角线,那么一个正五棱柱对角线的条数共有()A. 20B.15C. 12D.10答案: D5.以下命题正确的选项是()A.用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台B.棱柱中两个相互平行的面必定是棱柱的底面C.棱台的底面是两个相像的正方形D.棱台的侧棱延伸后必交于一点答案: D二、填空题6.面数最少的棱柱为________棱柱,共有 ________个面围成.答案:三57.如右图所示, M 是棱长为 2 cm 的正方体 ABCD -A1B1C1D 1的棱 CC1的中点,沿正方体表面从点 A 到点 M 的最短行程是 ________ cm.答案:138.侧棱垂直于底面的棱柱叫做直棱柱.侧棱不垂直于底面的棱柱叫做斜棱柱.底面是正多边形的直棱柱叫做正棱柱.底面是平行四边形的四棱柱叫做平行六面体.侧棱与底面垂直的平行六面体叫做直平行六面体.底面是矩形的直平行六面体叫做长方体.棱长都相等的长方体叫做正方体.请依据上述定义,回答下边的问题:(1)直四棱柱 ________是长方体;(2)正四棱柱 ________是正方体.(填“必定”“不必定”或“必定不”)答案: (1) 不必定(2)不必定三、解答题9.如右图所示,长方体ABCD -A1B1C1D 1.(1)这个长方体是棱柱吗?假如是,是几棱柱?为何?(2)用平面 BCNM 把这个长方体分红两部分,各部分形成的几何体仍是棱柱吗?假如是,是几棱柱,并用符号表示;假如不是,请说明原因.解:(1)是棱柱,而且是四棱柱,由于长方体相对的两个面是相互平行的四边形(作底面 ),其他各面都是矩形(作侧面 ),且相邻侧面的公共边相互平行,切合棱柱的定义.(2)截面 BCNM 的上方部分是三棱柱BB1M-CC1N,下方部分是四棱柱ABMA 1-DCND 1.10.给出两块正三角形纸片 ( 如下图 ),要求将此中一块剪拼成一个底面为正三角形的三棱分别锥模型,另一块剪拼成一个底面是正三角形的三棱柱模型,请设计一种剪拼方案,用虚线标示在图中,并作简要说明.解:如图①所示,沿正三角形三边中点连线折起,可拼得一个底面为正三角形的三棱锥.如图②所示,正三角形三个角上剪出三个同样的四边形,其较长的一组邻边边长为三角1形边长的4,有一组对角为直角,余下部分按虚线折成,可成为一个缺上底的底面为正三角形的三棱柱,而剪出的三个同样的四边形恰巧拼成这个底面为正三角形的棱柱的上底.。

高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案

高中数学(人教版A版选修2-1)配套课时作业:第一章 常用逻辑用语 1.1.1 Word版含答案

第一章常用逻辑用语§ 1.1命题及其关系1.1.1命题【课时目标】 1.了解命题的概念,会判断一个命题的真假.2.会将一个命题改写成“若p,则q”的形式.1.一般地,我们把用语言、符号或式子表达的,可以判断________的__________叫做命题.其中判断为______的语句叫做真命题,判断为______的语句叫做假命题.2.在数学中,“若p,则q”是命题的常见形式,其中p叫做命题的________,q叫做命题的________.一、选择题1.下列语句中是命题的是()A.周期函数的和是周期函数吗?B.sin 45°=1C.x2+2x-1>0D.梯形是不是平面图形呢?2.下列语句是命题的是()①三角形内角和等于180°;②2>3;③一个数不是正数就是负数;④x>2;⑤这座山真险啊!A.①②③B.①③④C.①②⑤D.②③⑤3.下列命题中,是真命题的是()A.{x∈R|x2+1=0}不是空集B.若x2=1,则x=1C.空集是任何集合的真子集D.x2-5x=0的根是自然数4.已知命题“非空集合M的元素都是集合P的元素”是假命题,那么下列命题:①M的元素都不是P的元素;②M中有不属于P的元素;③M中有P的元素;④M中元素不都是P的元素.其中真命题的个数为()A.1 B.2 C.3 D.45.命题“6的倍数既能被2整除,也能被3整除”的结论是()A.这个数能被2整除B.这个数能被3整除C.这个数既能被2整除,也能被3整除D.这个数是6的倍数6.在空间中,下列命题正确的是()A.平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .二、填空题7.下列命题:①若xy =1,则x ,y 互为倒数;②四条边相等的四边形是正方形;③平行四边形是梯形;④若ac 2>bc 2,则a >b .其中真命题的序号是________.8.命题“奇函数的图象关于原点对称”的条件p 是____________________,结论q 是_ _______________________________________________________________________.9.下列语句是命题的是________.①求证3是无理数;②x 2+4x +4≥0;③你是高一的学生吗?④一个正数不是素数就是合数;⑤若x ∈R ,则x 2+4x +7>0.三、解答题10.判断下列命题的真假:(1)已知a ,b ,c ,d ∈R ,若a ≠c ,b ≠d ,则a +b ≠c +d ;(2)对任意的x ∈N ,都有x 3>x 2成立;(3)若m >1,则方程x 2-2x +m =0无实数根;(4)存在一个三角形没有外接圆.11.把下列命题改写成“若p ,则q ”的形式,并判断真假.(1)偶数能被2整除.(2)当m >14时,mx 2-x +1=0无实根.12.设有两个命题:p :x 2-2x +2≥m 的解集为R ;q :函数f (x )=-(7-3m )x 是减函数,若这两个命题中有且只有一个是真命题,求实数m 的取值范围.【能力提升】13.设非空集合S ={x |m ≤x ≤l }满足:当x ∈S 时,有x 2∈S .给出如下三个命题:①若m =1,则S ={1};②若m =-12,则14≤l ≤1; ③若l =12,则-22≤m ≤0. 其中正确命题的个数是( )A .0B .1C .2D .314.设α,β,γ为两两不重合的平面,l ,m ,n 为两两不重合的直线,给出下列四个命题: ①若α⊥γ,β⊥γ,则α∥β;②若m ⊂α,n ⊂α,m ∥β,n ∥β,则α∥β;③若α∥β,l ⊂α,则l ∥β;④若α∩β=l ,β∩γ=m ,γ∩α=n ,l ∥γ,则m ∥n .其中真命题的个数是( )A .1B .2C .3D .41.判断一个语句是否为命题的关键是能否判断真假,只有能判断真假的语句才是命题.2.真命题是可以经过推理证明正确的命题,假命题只需举一反例说明即可.3.在判断命题的条件和结论时,可以先将命题改写成“若p 则q ”的形式,改法不一定唯一.课时作业答案解析第一章 常用逻辑用语§1.1 命题及其关系1.1.1 命题知识梳理1.真假 陈述句 真 假2.条件 结论作业设计1.B [A 、D 是疑问句,不是命题,C 中语句不能判断真假.]2.A [④中语句不能判断真假,⑤中语句为感叹句,不能作为命题.]3.D [A 中方程在实数范围内无解,故是假命题;B 中若x 2=1,则x =±1,故B 是假命题;因空集是任何非空集合的真子集,故C 是假命题;所以选D.]4.B [命题②④为真命题.]5.C [命题可改写为:如果一个数是6的倍数,那么这个数既能被2整除,也能被3整除.]6.D7.①④解析 ①④是真命题,②四条边相等的四边形也可以是菱形,③平行四边形不是梯形.8.若一个函数是奇函数 这个函数的图象关于原点对称9.②④⑤解析 ①③不是命题,①是祈使句,③是疑问句.而②④⑤是命题,其中④是假命题,如正数12既不是素数也不是合数,②⑤是真命题,x 2+4x +4=(x +2)2≥0恒成立,x 2+4x +7=(x +2)2+3>0恒成立.10.解 (1)假命题.反例:1≠4,5≠2,而1+5=4+2.(2)假命题.反例:当x =0时,x 3>x 2不成立.(3)真命题.∵m >1⇒Δ=4-4m <0,∴方程x 2-2x +m =0无实数根.(4)假命题.因为不共线的三点确定一个圆. 11.解 (1)若一个数是偶数,则这个数能被2整除,真命题.(2)若m >14,则mx 2-x +1=0无实数根,真命题. 12.解 若命题p 为真命题,则根据绝对值的几何意义可知m ≤1;若命题q 为真命题,则7-3m >1,即m <2.所以命题p 和q 中有且只有一个是真命题时,有p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧ m ≤1,m ≥2或⎩⎪⎨⎪⎧m >1,m <2. 故m 的取值范围是1<m <2.13.D [①m =1时,l ≥m =1且x 2≥1,∴l =1,故①正确.②m =-12时,m 2=14,故l ≥14.又l ≤1,∴②正确. ③l =12时,m 2≤12且m ≤0,则-22≤m ≤0,∴③正确.] 14.B [①由面面垂直知,不正确;②由线面平行判定定理知,缺少m、n相交于一点这一条件,故不正确;③由线面平行判定定理知,正确;④由线面相交、及线面、线线平行分析知,正确.综上所述知,③,④正确.]高中数学学习技巧:在学习的过程中逐步做到:提出问题,实验探究,展开讨论,形成新知,应用反思。

人教A版高中数学选修2-1第1章1.1.1同步练习习题(含解析)

人教A版高中数学选修2-1第1章1.1.1同步练习习题(含解析)

高中数学人教A版选2-1 同步练习1.下列语句是命题的是()A.是一个大数B.若两直线平行,则这两条直线没有公共点C.对数函数是增函数吗D.a≤15解析:选B.A、D不能判断真假,不是命题;B能够判断真假而且是陈述句,是命题;C是疑问句,不是命题.2.下列命题中的真命题是()A.互余的两个角不相等B.相等的两个角是同位角C.若a2=b2,则|a|=|b|D.三角形的一个外角等于和它不相邻的一个内角解析:选C.由平面几何知识可知A、B、D三项都是错误的.3.命题“函数y=2x+1是增函数”的条件是__________,结论是__________.答案:函数为y=2x+1该函数是增函数4.( ·临沂质检)下列命题:①y=x2+3为偶函数;②0不是自然数;③{x∈N|0<x<12}是无限集;④如果a·b=0,那么a=0,或b=0. 其中是真命题的是__________(写出所有真命题的序号).解析:①为真命题;②③④为假命题.答案:①[A级基础达标]1.下列语句不是命题的有()①2<1;②x<1;③若x<2,则x<1;④函数f(x)=x2是R上的偶函数.A.0个B.1个C.2个D.3个解析:选C.①④可以判断真假,是命题;②③不能判断真假,所以不是命题.2.下列命题是真命题的是()A.{∅}是空集x∈N||x-1|<3是无限集B.{}C.π是有理数D .x 2-5x =0的根是自然数解析:选D.x 2-5x =0的根为x 1=0,x 2=5,均为自然数.3.下列命题中真命题的个数为( )①面积相等的两个三角形是全等三角形;②若xy =0,则|x |+|y |=0;③若a >b ,则a +c >b +c ;④矩形的对角线互相垂直.A .1B .2C .3D .4解析:选A.①错;②错,若xy =0,则x ,y 至少有一个为0,而未必|x |+|y |=0;③对,不等式两边同时加上同一个常数,不等号开口方向不变;④错.4.( ·莱芜调研)命题“末位数字是0或5的整数,能被5整除”,条件p :__________;结论q :__________;是__________命题.(填“真”或“假”)解析:“末位数字是0或5的整数,能被5整除”改写成“若p ,则q ”的形式为:若一个整数的末位数是0或5,则这个数能被5整除,为真命题.答案:末位数字是0或5的整数 能被5整除 真5.命题“偶函数的图象关于y 轴对称”写成“若p ,则q ”形式为__________.答案:若一个函数是偶函数,则这个函数的图象关于y 轴对称6.判断下列命题的真假.(1)二次函数y =ax 2+bx +c (a ≠0)有最大值;(2)正项等差数列的公差大于零;(3)函数y =1x的图象关于原点对称. 解:(1)假命题.当a >0时,抛物线开口向上,有最小值.(2)假命题.反例:若此数列为递减数列,如数列20,17,14,11,8,5,2,它的公差是-3.(3)真命题.y =1x是奇函数,所以其图象关于(0,0)对称. [B 级 能力提升]7.下列命题,是真命题的是( )A .若ab =0,则a 2+b 2=0B .若a >b ,则ac >bcC .若M ∩N =M ,则N ⊆MD .若M ⊆N ,则M ∩N =M解析:选D.A 中,a =0,b ≠0时,a 2+b 2=0不成立;B 中,c ≤0时不成立;C 中,M ∩N =M 说明M ⊆N .故A 、B 、C 皆错误.8.(2011·高考四川卷)l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( )A .l 1⊥l 2,l 2⊥l 3⇒l 1∥l 3B .l 1⊥l 2,l 2∥l 3⇒l 1⊥l 3C .l 1∥l 2∥l 3⇒l 1,l 2,l 3共面D .l 1,l 2,l 3共点⇒l 1,l 2,l 3共面解析:选B.在空间中,垂直于同一直线的两条直线不一定平行,故A 错;两条平行直线中的一条垂直于第三条直线,则另一条也垂直于第三条直线,B 正确;相互平行的三条直线不一定共面,如三棱柱的三条侧棱,故C 错;共点的三条直线不一定共面,如三棱锥的三条侧棱,故D 错.9.给定下列命题:①“若k >0,则方程x 2+2x -k =0”有实数根;②若a >b ,则a -c >b -c ;③对角线相等的四边形是矩形.其中真命题的序号是__________.解析:①中Δ=4-4(-k )=4+4k >0,故为真命题;②显然为真命题;③也可能是等腰梯形.答案:①②10.把下列命题改写成“若p ,则q ”的形式,并判断命题的真假.(1)当ac >bc 时,a >b ;(2)当m >14时,mx 2-x +1=0无实根; (3)当ab =0时,a =0或b =0.解:(1)若ac >bc ,则a >b .∵ac >bc ,c <0时,a <b ,∴是假命题.(2)若m >14, 则mx 2-x +1=0无实根.∵Δ=1-4m <0,∴是真命题.(3)若ab =0,则a =0或b =0,真命题.11.(创新题)已知A :5x -1>a ,B :x >1,请选择适当的实数a ,使得利用A ,B 构造的命题“若p ,则q ”为真命题.解:若视A 为p ,则命题“若p ,则q ”为“若x >1+a 5,则x >1”,由命题为真命题可知1+a 5≥1,解得a ≥4; 若视B 为p ,则命题“若p ,则q ”为“若x >1,则x >1+a 5”,由命题为真命题可知1+a 5≤1,解得a ≤4. 故a 取任一实数均可利用A ,B 构造出一个真命题,比如这里取a =1,则有真命题“若x >1,则x >25”.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课时跟踪检测(一) 命 题层级一 学业水平达标1.下列语句不是命题的有( )①若a>b ,b>c ,则a>c ;②x>2;③3<4;④函数y =a x (a>0,且a≠1)在R 上是增函数.A .0个B .1个C .2个D .3个 解析:选C ①③是可以判断真假的陈述句,是命题;②④不能判断真假,不是命题.2.(陕西高考)设z 是复数, 则下列命题中的假命题是( )A .若z 2≥0,则z 是实数B .若z 2<0,则z 是虚数C .若z 是虚数,则z 2≥0D .若z 是纯虚数,则z 2<0解析:选C 实数可以比较大小,而虚数不能比较大小,设z =a +bi(a ,b ∈R),则z 2=a 2-b 2+2abi ,由z 2≥0,得⎩⎪⎨⎪⎧ab =0,a 2-b 2≥0,则b =0,故选项A 为真,同理选项B 为真;而选项C 为假,选项D 为真.3.已知a ,b 为两条不同的直线,α,β为两个不同的平面,且a ⊥α,b ⊥β,则下列命题中,假命题是( )A .若a ∥b ,则α∥βB .若α⊥β,则a ⊥bC .若a ,b 相交,则α,β相交D .若α,β相交,则a ,b 相交解析:选D 由已知a ⊥α,b ⊥β,若α,β相交,a ,b 有可能异面.4.给出命题“方程x 2+ax +1=0没有实数根”,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .0D .-3解析:选C 方程无实根时,应满足Δ=a 2-4<0.故a =0时适合条件.5.已知下列三个命题:①若一个球的半径缩小到原来的12, 则其体积缩小到原来的18; ②若两组数据的平均数相等, 则它们的标准差也相等;③直线x +y +1=0与圆x 2+y 2=12相切. 其中真命题的序号为( )A .①②③B .①②C .①③D .②③解析:选C 对于命题①,设球的半径为R ,则43π⎝⎛⎭⎫R 23=18·43πR 3,故体积缩小到原来的18,命题正确;对于命题②,若两组数据的平均数相同,则它们的标准差不一定相同,例如数据:1,3,5和3,3,3的平均数相同,但标准差不同,命题不正确;对于命题③,圆x 2+y 2=12的圆心(0,0)到直线x +y +1=0的距离d =12=22,等于圆的半径,所以直线与圆相切,命题正确.6.下列语句中是命题的有________(写出序号),其中是真命题的有________(写出序号). ①垂直于同一条直线的两条直线必平行吗?②一个数不是正数就是负数;③大角所对的边大于小角所对的边;④△ABC 中,若∠A =∠B ,则sin A =sin B ;⑤求证方程x 2+x +1=0无实根.解析:①疑问句.没有对垂直于同一条直线的两条直线是否平行作出判断,不是命题; ②是假命题,0既不是正数也不是负数;③是假命题,没有考虑在同一个三角形内;④是真命题;⑤祈使句,不是命题.答案:②③④ ④7.给出下面三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图象一定过原点;③若a>b>1,则0<log a b<1.其中是真命题的是________.(填序号)解析:①是假命题,反例:x =2π+π6和x =π4,tan ⎝⎛⎭⎫2π+π6=33,tan π4=1,2π+π6>π4,但tan2π+π6<tan π4. ②是假命题,反例:y =1x是奇函数,但其图象不过原点. ③是真命题,由对数函数的图象及单调性可知是真命题.答案:③8.若命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________. 解析:∵ax 2-2ax -3>0不成立,∴ax 2-2ax -3≤0恒成立.当a =0时,-3≤0恒成立;当a≠0时,则有⎩⎪⎨⎪⎧a<0,Δ=4a 2+12a≤0, 解得-3≤a<0.综上,-3≤a≤0.答案:[-3,0]9.把下列命题改写成“若p ,则q”的形式,并判断真假,且指出p 和q 分别指什么.(1)乘积为1的两个实数互为倒数;(2)奇函数的图象关于原点对称;(3)与同一直线平行的两个平面平行.解:(1)“若两个实数乘积为1,则这两个实数互为倒数”.它是真命题.p :两个实数乘积为1;q :两个实数互为倒数.(2)“若一个函数为奇函数,则它的图象关于原点对称”.它是真命题.p :一个函数为奇函数;q :函数的图象关于原点对称.(3)“若两个平面与同一条直线平行,则这两个平面平行”.它是假命题,这两个平面也可能相交.p :两个平面与同一条直线平行;q :两个平面平行.10.已知A :5x -1>a ,B :x>1,请选择适当的实数a ,使得利用A ,B 构造的命题“若p ,则q”为真命题.解:若视A 为p ,则命题“若p ,则q”为“若x>1+a 5,则x>1”.由命题为真命题可知1+a 5≥1,解得a≥4;若视B 为p ,则命题“若p ,则q”为“若x>1,则x>1+a 5”.由命题为真命题可知1+a 5≤1,解得a≤4.故a 取任一实数均可利用A ,B 构造出一个真命题,比如这里取a =1,则有真命题“若x>1,则x>25”. 层级二 应试能力达标1.在空间中,下列命题正确的是( )A .平行直线的平行投影重合B .平行于同一平面的两条直线平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行解析:选D A 中当两平行直线确定的平面不垂直于投影面时,两平行直线的平行投影不重合.B 中两直线也可以相交或异面.C 中两平面可以相交.D 正确.故选D.2.下面的命题中是真命题的是( )A .y =sin 2x 的最小正周期为2πB .若方程ax 2+bx +c =0(a≠0)的两根同号,则c a>0 C .如果M ⊆N ,那么M ∪N =MD .在△ABC 中,若AB ·BC >0,则B 为锐角解析:选B y =sin 2x =1-cos 2x 2,T =2π2=π,故A 为假命题;当M ⊆N 时,M ∪N =N ,故C 为假命题;在三角形ABC 中,当AB ·BC >0时,向量AB 与BC 的夹角为锐角,B 应为钝角,故D 为假命题.故选B.3.下列命题为真命题的是( )A .若1x =1y,则x =y B .若x 2=1,则x =1C .若x =y ,则x =yD .若x<y ,则x 2<y 2解析:选A 很明显A 正确;B 中,由x 2=1,得x =±1,所以B 是假命题;C 中,当x =y<0时,结论不成立,所以C 是假命题;D 中,当x =-1,y =1时,结论不成立,所以D 是假命题.故选A.4.命题“平行四边形的对角线既互相平分,也互相垂直”的结论是( )A .这个四边形的对角线互相平分B .这个四边形的对角线互相垂直C .这个四边形的对角线既互相平分,也互相垂直D .这个四边形是平行四边形解析:选C 命题可改为“若一个四边形是平行四边形,则这个四边形的对角线既互相平分,也互相垂直.”故选C.5.命题“若a>0,则二元一次不等式x +ay -1≥0表示直线x +ay -1=0的右上方区域(包括边界)”条件p :________,结论q :________________________________.它是____________命题(填“真”或“假”).解析:a>0时,设a =1,把(0,0)代入x +y -1≥0得-1≥0不成立,∴x +y -1≥0表示直线的右上方区域(包括边界),∴命题为真命题.答案:a>0 二元一次不等式x +ay -1≥0表示直线x +ay -1=0的右上方区域(包含边界) 真6.定义“正对数”:ln +x =⎩⎪⎨⎪⎧0,0<x<1,ln x ,x≥1.现有四个命题: ①若a>0,b>0,则ln +(a b )=bln +a ; ②若a>0,b>0,则ln +(ab)=ln +a +ln +b ;③若a>0,b>0,则ln +⎝⎛⎭⎫a b ≥ln +a -ln +b ; ④若a>0,b>0,则ln +(a +b)≤ln +a +ln +b +ln 2.其中的真命题有________.(写出所有真命题的编号)解析:对于①,当a≥1时,a b ≥1,则ln +(a b )=ln a b =bln a =bln +a ;当0<a<1时,0<a b <1,则ln +(a b )=0,bln +a =0,即ln +(a b )=bln +a ,故①为真命题. 同理讨论a ,b 在(0,+∞)内的不同取值,可知③④为真命题.对于②,可取特殊值a =e ,b =1e,则ln +(ab)=0,ln +a +ln +b =1+0=1,故②为假命题. 综上可知,真命题有①③④.答案:①③④7.已知p :x 2-2x +2≥m 的解集为R ;q :函数f(x)=-(7-3m)x 是减函数.若这两个命题中有且只有一个是真命题,求实数m 的取值范围.解:若命题p 为真命题,由x 2-2x +2=(x -1)2+1≥m ,可知m≤1;若命题q 为真命题,则7-3m>1,即m<2.命题p 和q 中有且只有一个是真命题,则p 真q 假或p 假q 真,即⎩⎪⎨⎪⎧ m≤1,m≥2或⎩⎪⎨⎪⎧m>1,m<2,所以1<m<2. 故实数m 的取值范围是(1,2).8.试探究命题“方程ax 2+bx +1=0有实数解”为真命题时,a ,b 满足的条件.解:方程ax 2+bx +1=0有实数解,要考虑方程为一元一次方程和一元二次方程两种情况:当a =0时,方程ax 2+bx +1=0为bx +1=0,只有当b≠0时,方程有实数解x =-1b; 当a≠0时,方程ax 2+bx +1=0为一元二次方程,方程有实数解的条件为Δ=b 2-4a≥0. 综上知,当a =0,b≠0或a≠0,b 2-4a≥0时,方程ax 2+bx +1=0有实数解.。

相关文档
最新文档