专题1 集合与常用逻辑用语、不等式-数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1讲 集合与常用逻辑用语
1.(2016·课标全国乙)设集合A ={x |x 2-4x +3<0},B ={x |2x -3>0},则A ∩B 等于( ) A.⎝⎛⎭⎫-3,-32 B.⎝⎛⎭⎫-3,3
2 C.⎝⎛⎭⎫1,32 D.⎝⎛⎭⎫32,3
答案 D
解析 由A ={x |x 2-4x +3<0}={x |1 B ={x |2x -3>0}=⎩⎨⎧⎭ ⎬⎫ x ⎪⎪ x >32, 得A ∩B =⎩⎨⎧⎭⎬⎫x ⎪⎪ 32 2 ,3,故选D. 2.(2016·北京)设a ,b 是向量,则“|a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 答案 D 解析 若|a |=|b |成立,则以a ,b 为邻边构成的四边形为菱形,a +b ,a -b 表示该菱形的对角线,而菱形的对角线不一定相等,所以|a +b |=|a -b |不一定成立;反之,若|a +b |=|a -b |成立,则以a ,b 为邻边构成的四边形为矩形,而矩形的邻边不一定相等,所以|a |=|b |不一定成立,所以“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件. 3.(2016·浙江)命题“∀x ∈R ,∃n ∈N *,使得n ≥x 2”的否定形式是( ) A .∀x ∈R ,∃n ∈N *,使得n <x 2 B .∀x ∈R ,∀n ∈N *,使得n <x 2 C .∃x ∈R ,∃n ∈N *,使得n <x 2 D .∃x ∈R ,∀n ∈N *,使得n <x 2 答案 D 解析 原命题是全称命题,条件为∀x ∈R ,结论为∃n ∈N *,使得n ≥x 2,其否定形式为特称命题,条件中改量词,并否定结论,只有D 选项符合. 1.集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年有时也会出现一些集合的新定义问题. 2.高考中考查命题的真假判断或命题的否定,考查充要条件的判断. 热点一 集合的关系及运算 1.集合的运算性质及重要结论 (1)A ∪A =A ,A ∪∅=A ,A ∪B =B ∪A . (2)A ∩A =A ,A ∩∅=∅,A ∩B =B ∩A . (3)A ∩(∁U A )=∅,A ∪(∁U A )=U . (4)A ∩B =A ⇔A ⊆B ,A ∪B =A ⇔B ⊆A . 2.集合运算中的常用方法 (1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用Venn 图求解. 例1 (1)已知集合A ={x |x -1x +2<0},B ={y |y =sin n π 2,n ∈Z },则A ∩B 等于( ) A .{x |-1 B .{-1,0,1} C .{-1,0} D .{0,1} (2)若X 是一个集合,τ是一个以X 的某些子集为元素的集合,且满足:①X 属于τ,空集∅属于τ;②τ中任意多个元素的并集属于τ;③τ中任意多个元素的交集属于τ.则称τ是集合X 上的一个拓扑.已知集合X ={a ,b ,c },对于下面给出的四个集合τ: ①τ={∅,{a },{c },{a ,b ,c }}; ②τ={∅,{b },{c },{b ,c },{a ,b ,c }}; ③τ={∅,{a },{a ,b },{a ,c }}; ④τ={∅,{a ,c },{b ,c },{c },{a ,b ,c }}. 其中是集合X 上的一个拓扑的集合τ的所有序号是__________. 答案 (1)C (2)②④ 解析 (1)因为A ={x |x -1x +2<0}={x |-2 2,n ∈Z }={0,-1,1},所以A ∩B ={-1,0}. (2)①τ={∅,{a },{c },{a ,b ,c }},但是{a }∪{c }={a ,c }∉τ,所以①错;②④都满足集合X 上的一个拓扑的集合τ的三个条件.所以②④正确;③{a ,b }∪{a ,c }={a ,b ,c }∉τ,故③错.所以答案为②④. 思维升华 (1)关于集合的关系及运算问题,要先对集合进行化简,然后再借助Venn 图或数轴求解. (2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证. 跟踪演练1 (1)已知集合A ={y |y =sin x ,x ∈R },集合B ={x |y =lg x },则(∁R A )∩B 为( ) A .(-∞,-1)∪(1,+∞) B .[-1,1] C .(1,+∞) D .[1,+∞) (2)设集合M ={x |m ≤x ≤m +34},N ={x |n -1 3≤x ≤n },且M ,N 都是集合{x |0≤x ≤1}的子集, 如果把b -a 叫做集合{x |a ≤x ≤b }的“长度”,那么集合M ∩N 的“长度”的最小值是( ) A.1 3 B.23 C.112 D.512 答案 (1)C (2)C 解析 (1)因为A ={y |y =sin x ,x ∈R }=[-1,1], B ={x |y =lg x }=(0,+∞). 所以(∁R A )∩B =(1,+∞). 故答案为C. (2)由已知,可得⎩⎪⎨⎪⎧ m ≥0,m +34≤1,即0≤m ≤1 4, ⎩⎪⎨⎪⎧ n -13≥0,n ≤1, 即13 ≤n ≤1, 取m 的最小值0,n 的最大值1, 可得M =⎣⎡⎦⎤0,34,N =⎣⎡⎦⎤2 3,1. 所以M ∩N =⎣⎡⎦⎤0,34∩⎣⎡⎦⎤23,1=⎣⎡⎦ ⎤23,3 4. 此时集合M ∩N 的“长度”的最小值为34-23=1 12. 故选C.