《数列的基本概念》公开课精品课件
数列数列的概念ppt课件
![数列数列的概念ppt课件](https://img.taocdn.com/s3/m/f94403be9a89680203d8ce2f0066f5335b816767.png)
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
(3)∵an+1-an=3n+2,∴an-an-1=3n-1(n≥2), ∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =n3n2+1(n≥2). 当n=1时,a1=12×(3×1+1)=2符合公式, ∴an=32n2+n2.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
第1讲 数列的概念
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
探究二:由 Sn 求 an
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
《数列的概念》PPT课件
![《数列的概念》PPT课件](https://img.taocdn.com/s3/m/d7bef96ea0116c175e0e4842.png)
k N
思考题
写出下列数列的一个通项公式.
(1)2 ,4 ,6 ,8 ,... 3 15 35 63
( 2 ) 1, 3 , 5 ,7 , 9 ,... 2 4 8 16
( 3 )9,99,999,9999 ,...
(4) 3, 3, 1, 52, 1 33, ...
(5)0,1,0,1,0,1,…
请同学们观察上面5 个例子,你能发现它 们有什么共同 的特 点吗?
135,138,124,149,146。
一.数列的有关概念
1定义:按一定的次序排列的一列数叫做数列。
数列中的每一个数叫做这个数列的项。
数列中的各项依次叫做这个数列的
第第第12n项项项(用用或aa首n2表表项示示),,用…a1,表示,
你认为国 王能满足 发明者的 要求吗?
263
引言问题中各个格子里的麦粒数按放置的先后排成一列数:
1,2,22,23,…263.
一八班学生的学号由小到大排成一列数:
1,2,3,4,…67.
-1的1次幂,2次幂,3次幂,4次幂,…排成的一列数:
-1,1,-1,1,-1,1…, 无穷多个2排成的一列数: 2,2,2,2,2,2,… 某个同学五次考试的数学成绩:
(n1)21 n(n2)
an
n1
n1
(1)n an n(n 1)
8 .( 1 )21 , ( 1 )31 , ( 1 )41 , •••
2
2
2
(1)n1 1
an
2
三.数列的分类: (按项数分) 有穷数列、无穷数列
1.项数有限的数列叫做有穷数列。
例如,数列4,5,6,7,8,9,10.
2.项数无限的数列叫做无穷数列。
数列的概念【公开课教学PPT课件】
![数列的概念【公开课教学PPT课件】](https://img.taocdn.com/s3/m/c52e3e38f18583d049645946.png)
问:2015位于A、B、C、D的哪个位置? c
23பைடு நூலகம்14
6 7 10 58 9
BC
… AD
数列的概念
传说古希腊毕达哥拉斯学派的数学家经常在沙
滩上研究数学问题,他们在沙滩上画点或用小石子 来表示数字.
1,
3,
6,
10, .…..
上图中各三角形表示的数排列有规律吗?
由于这些数可以用三角形点阵表示,故称其 为三角形数.
下图中各正方形分别表示哪些数?这些数与相 应正方形的序号有什么关系?
1,
…
5
… 12 …
… 69 … 153 …
n 3(3+4n)
2.下面对数列的理解有四种:
①数列可以看成一个定义在 * 上的函数;
②数列的项数是无限的;
③数列若用图象表示,从图象上看都是一群孤立的点;
④数列的通项公式是唯一的.其中说法正确的序号是( C )
A.①②③ B.②③④
C.①③ D.①②③④
3.如图所示:
无穷数列
4
1, 1,1, 1 5
无穷数列
CCTV-2 中央电视台开心辞典节目中 曾经出现过这样的一道题:
观察以下几个数的特点, 按照其中的规律写出括号里的数.
项 2,5,10,17,26, ( 37 ) , 50 , ... an = n2+1
序号 1 2 3 4 5
通 项 6 7 公... n 式
❖斐波那契数: 1,1,2,3, 5, 8,13L
❖-1的1次幂,2次幂,3次幂,……排列成一列数:
1,1, 1,1L
❖无穷多个1排列成的一列数:
1, 1, 1, 1, L
问题1 这些数有什么共同特点?
《数列的概念》教案1226张PPT北师大版
![《数列的概念》教案1226张PPT北师大版](https://img.taocdn.com/s3/m/2d076fe28bd63186bcebbcec.png)
《数列的概念》教案12(26张PPT)(北师大版必修5)数列天才=1%的灵感+99%的汗水堆放的钢管按照第一层、第二层…排成的一列数正整数的的倒数:1,1.4,1.41,1.414,…,-1的1次幂,2次幂,3次幂,4次幂,…排成的一列数:-1,1,-1,1,-1,1,…无穷多个1排成的一列数:1,1,1,1,1,1,…一数列的定义按一定次序排列的一列数叫做数列。
数列中的每一个数叫做这个数列的项。
数列中的各项依次叫做这个数列的…,…,数列的一般形式可以写成:…,…,简记作:第n项的n叫该项的序号,也叫项数研究项与它的位置序号n之间的关系可以简记为:例如,数列1,2,3,4,5,6,…可以简记为:例如,数列2,4,6,8,10,12,…可以简记为:熟记这3个数列的简记形式熟记这4个数列的简记形式研究项与它的位置序号n之间的关系二通项公式1. 数列 4,5,6,7,8,9,10.的通项公式是:(n≤7)2. 数列 2,4,6,8,…的通项公式是:3. 数列3,5,7,9,11,…数列的图象表示11. 数列 4,5,6,7,8,9,10.的图象1234567891012345678910●●●●●●●0这样的数列称为递增数列数列的图象表示21. 数列的图象1234567891012345678910●●●●●●这样的数列称为递减数列数列的图象表示3(1)数列:4,4,4,4,4,4,4,…●●●●●●●●●●这样的数列称为常数列数列的图象表示4(1)数列:1,-1,1,-1,1,-1,1,…●●●●●●●●●●这样的数列称为摆动数列有穷数列、无穷数列项数有限的数列叫做有穷数列。
项数无限的数列叫做无穷数列。
三数列的表示方法:(1)一般形式“(3)通项公式(4)图象法(5)列表法四数列的例题1数列的例题2例2 写出数列的一个通项公式,使它的前4项分别是下列各数:解(1):解(2):解(3):解(4):(4)的数列就是0,-1,0,-1也可以写为可见数列的通项公式不唯一数列练习11,4,9,16,25.10,20,30,40,50.5,-5,5,-5,5.熟记这个通项公式数列练习2数列练习3练习3 写出数列的一个通项公式,使它的前4项分别是下列各数:(3)9,99,999,…(4)数列练习4练习4 观察下面数列的特点,用适当的数填空,并写出一个通项公式.2,4,(),8,10, (),14.2,4,(),16,32,(),128,()(),4,9,16,25,(),49.(4)1,() ,(),2,() ,(),.612864136256数列小结(1)按一定次序排列的一列数叫做数列。
《数列数列的概念》PPT课件
![《数列数列的概念》PPT课件](https://img.taocdn.com/s3/m/aa17b28d767f5acfa1c7cdc0.png)
ppt课件
18
当n=1时,a1=4符合上式,所以an=2n(n+1)(n∈N*). (3)由an+1=2an+1,得an+1+1=2(an+1). 令bn=an+1,所以{bn}是以2为公比的等比数列. 所以bn=b1·2n-1=(a1+1)·2n-1=2n+1, 所以an=bn-1=2n+1-1(n∈N*).
ppt课件
19
(4)由已知,an>0,在递推关系式两边取对数,有 lgan+1 =2lgan+lg3.
令 bn=lgan,则 bn+1=2bn+lg3. 所以 bn+1+lg3=2(bn+lg3),所以{bn+lg3}是等比数列. 所以 bn+lg3=2n-1·2lg3=2nlg3. 所以 bn=2nlg3-lg3=(2n-1)lg3=lgan.所以 an=32n-1.
有最大项为第 9,10 项.
ppt课件
22
变式 (2011·浙江)若数列{n(n+4)23n}中的最大项是第 k 项,
则 k=__________.
解析:设数列为
a
n
,则an+1-an=(n+1)(n+5)
2 3
n+1-
n(n+4)23n=23n23n2+6n+5-n2-4n=32n+n 1(10-n2),
A.k>0 B.k>-1
C.k>-2 D.k>-3
解析:由 an+1>an,得(n+1)2+k(n+1)+2-n2-kn-2>0, 即 k>-2n-1,当 n=1 时,-2n-1 取最大值-3,故 k>-3, 选 D.
答案:D
ppt课件
25
3.(2013·淄博质检)数列{an},满足 a1=1,a2=12,并且 an(an-
ppt课件
20
《数列的基本知识》课件
![《数列的基本知识》课件](https://img.taocdn.com/s3/m/1a9602855ebfc77da26925c52cc58bd6318693ea.png)
数列的性质
1 有界性
数列可能是有界的,即存 在上界和下界。
2 递增性/递减性
数列可以按顺序递增或递 减。
3 周期性
某些数列可以具有周期性, 其中一组数重复出现。
等差数列
等差数列是一种数列,其中每个后续项与前一项之差都相等。 • 常用于等距离时间间隔或等额递增的问题。 • 通项公式:an = a1 + (n - 1)d • 求和公式:Sn = (n/2)(a1 + an)
数列在实际问题中的应用
数列广泛应用于金融、人口统计、科学研究和工程领域,帮助解决实际问题。 了解数列的性质和应用,可以提升问题解决和分析能力。
《数列的基本知识》PPT 课件
欢迎来到《数列的基本知识》课件。在本课程中,我们将探讨数列的定义、 性质以及常见类型,以及它们在实际问题中的应用。
什么是数列
数列是按一定顺序排列的一组数。它们可以是等差数列、等比数列、幂次数 列、倍数数列或递推数列。
数列的定义
数列是按照一定规律排列的数字序列。它可以是有限的或无限的,每个数字 被称为数列的项。
数列的收敛与发散
数列可能会趋于某个有限值(收敛),或者无限增加或减少(发散)。 例如,格里高利级数和调和级数就是两个发散的数列。
数列的重要定理与应用
数列的重要定理包括数列极限定理、子数列收敛定理等,这些定理在数学分析和实际应用中具有重要意义。
数列的图形表示
数列可以使用直线图、折线图或散点图来显示其项和规律。 图形表示可以更直观地展示数列的性质和变化。
金融与投资
数列可以用于计算复利、投资回报率等金融问题。
人口和经济学
数列可以帮助预测人口增长、GDP增长等。
科学研究
4.1数列的概念课件(人教版)
![4.1数列的概念课件(人教版)](https://img.taocdn.com/s3/m/271f95d468dc5022aaea998fcc22bcd127ff4218.png)
2n2
30n
2(n2
15n)
2 n
15 2
2
225 2
,
因为 n N* ,所以当 n 7 或 n 8 时, Sn 取最小值.
(2)当 n 1 时, a1 S1 2 30 28 .
当 n 2 时, an Sn Sn1 2n2 30n [2(n 1)230(n 1)] 4n 32 .
, Sn1
n ,n
1 2
.
例 6 已知数列an 的前 n 项和公式为 Sn n2 n ,求an 的通项公式.
解:因为 a1 S1 2 , an Sn Sn1 n2 n [(n 1)2 (n 1)] 2n(n 2) , 并且当 n 1 时, a1 21 2 依然成立.
所以an 的通项公式是 an 2n .
特别地,各项都相等的数列叫做常数列.
如果数列{an} 的第 n 项 an 与它的序号 n 之间的对应关系可以用一个式子来 表示,那么这个式子叫做这个数列的通项公式.
通项公式就是数列的函数解析式,根据通项公式可以写出数列的各项.
例 l 根据下列数列{an} 的通项公式,写出数列的前 5 项,并画出它们的图象.
解析:因为 Sn 3n 2 ,所以 Sn1 3n1 2(n 1) ,则 an 3n 3n1 23n1 . 1,n 1
当 n 1 时, a1 S1 3 2 1,不符合上式,所以 an 2 3n1 ,n 2 .
-4 7.数列an 中, a1 1, a2 5 , an2 an1 an (nN*) ,则a2022 __________.
验证得当 n 1 时, a1 28 满足上式,所以 an 4n 32 .
1.数列的相关概念及分类 2.数列的符号表示 3.从函数角度看数列 4.数列的通项公式 5.数列的递推公式 6.数列的前n项和
4.1.1数列的概念PPT课件(人教版)
![4.1.1数列的概念PPT课件(人教版)](https://img.taocdn.com/s3/m/642352ecd1d233d4b14e852458fb770bf68a3b4a.png)
【变式练习】
根据下面的通项公式,分别写出数列的前5项.
;
.
解:(1)在通项公式中依次取n =1,2,3,4,5,得到数列
的前5项为
(2)在通项公式中依次取n =1,2,3,4,5,得到数列
的前5项为 -1,2,-3,4,-5.
(3)这个数列的前4项可以写成10-1,100-1,1 0001, 10 000-1,所以它的一个通项公式为
(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴 含着“从特殊到一般”的思想.
6.已知数列{an}的通项公式 an=(2(n--11)n)((n2+n+1)1).
(1)写出它的第 10 项; (2)判断 2 是不是该数列中的项.
33
【解析】 (1) a10=(-119)×10×2111=31919.
解:(1)视察知,这个数列的前4项都是序号的 2倍加1,所以它的一个通项公式为
(2)这个数列的前4项可以写成20,21,22,23, 所以它的一个通项公式为
三、典例解析 例 1 根据下列数列 { an }的通项公式,写出数列的前 5 项, 并画出它们的图象.
1 an
n2 2
n;2 anຫໍສະໝຸດ ncos1 .
3,4,5,6,7,8,9.
①
(2)GDP为国内生产总值.分析各年GDP数据,找出
增长规律,是国家制定国民经济发展计划的重要根
据.根据中华人民共和国2002年国民经济和社会发
展统计公报,我国(1998~2002年)这五年GDP值
(亿元)依次排列如下:
78 345,82 067,89 442,95 933,102 398.
【解析】(1)各数都是偶数,且最小为 4,所以通项公式 an=2(n+1)(n∈N+). (2)这个数列的前 4 项的绝对值都等于序号与序号加 1 的积的倒数,且奇数项为负,
数列的概念(中职数学)ppt课件
![数列的概念(中职数学)ppt课件](https://img.taocdn.com/s3/m/0afead7e11661ed9ad51f01dc281e53a59025149.png)
等差数列的求和公式
公式
Sn=n/2*[2a1+(n-1)d],其中Sn为前n项和,a1为首项,d为 公差,n为项数。
应用
通过求和公式可以快速求出等差数列前n项的和,解决与等差 数列和相关的问题。
03
等比数列
等比数列的定义与性质
定义
等比数列是指从第二项起,每一项与它 的前一项的比值等于同一个常数的一种 数列。
数列的极限与收敛性
数列极限的定义与性质
数列极限的定义
对于数列{an},如果存在 常数A,对于任意给定的 正数ε(不论它多么小) ,总存在正整数N,使得 当n>N时,不等式|anA|<ε都成立,那么称常数 A是数列{an}的极限。
唯一性
如果数列{an}收敛,那么 它的极限唯一。
有界性
如果数列{an}收敛,那么 数列{an}一定有界。
等比数列的求和公式
求和公式
Sₙ=a₁(1-q^n)/(1-q)(q≠1),其中Sₙ是前n项和,a₁是首项,q是公比,n是项数。
推导过程
根据等比数列的通项公式,可以得到Sₙ=a₁+a₁×q+a₁×q²+...+a₁×q^(n-1),通过错位相减法可以得到求和公式 。当q=1时,Sₙ=n×a₁。
04
极限的加法运算法则
lim(an+bn)=lim an+lim bn。
极限的减法运算法则
lim(an-bn)=lim an-lim bn。
极限的乘法运算法则
lim(an×bn)=lim an×lim bn。
极限的除法运算法则
lim(an/bn)=lim an/lim bn( bn的极限不等于0)。