《数列的基本概念》公开课精品课件

合集下载

数列数列的概念ppt课件

数列数列的概念ppt课件
当n=1时,a1=4符合上式,所以an=2n(n+1)(n∈N*). (3)由an+1=2an+1,得an+1+1=2(an+1). 令bn=an+1,所以{bn}是以2为公比的等比数列. 所以bn=b1·2n-1=(a1+1)·2n-1=2n+1, 所以an=bn-1=2n+1-1(n∈N*).
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
(3)∵an+1-an=3n+2,∴an-an-1=3n-1(n≥2), ∴an=(an-an-1)+(an-1-an-2)+…+(a2-a1)+a1 =n3n2+1(n≥2). 当n=1时,a1=12×(3×1+1)=2符合公式, ∴an=32n2+n2.
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
第1讲 数列的概念
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值
探究二:由 Sn 求 an
资金是运动的价值,资金的价值是随 时间变 化而变 化的, 是时间 的函数 ,随时 间的推 移而增 值,其 增值的 这部分 资金就 是原有 资金的 时间价 值

《数列的概念》PPT课件

《数列的概念》PPT课件

k N
思考题
写出下列数列的一个通项公式.
(1)2 ,4 ,6 ,8 ,... 3 15 35 63
( 2 ) 1, 3 , 5 ,7 , 9 ,... 2 4 8 16
( 3 )9,99,999,9999 ,...
(4) 3, 3, 1, 52, 1 33, ...
(5)0,1,0,1,0,1,…
请同学们观察上面5 个例子,你能发现它 们有什么共同 的特 点吗?
135,138,124,149,146。
一.数列的有关概念
1定义:按一定的次序排列的一列数叫做数列。
数列中的每一个数叫做这个数列的项。
数列中的各项依次叫做这个数列的
第第第12n项项项(用用或aa首n2表表项示示),,用…a1,表示,
你认为国 王能满足 发明者的 要求吗?
263
引言问题中各个格子里的麦粒数按放置的先后排成一列数:
1,2,22,23,…263.
一八班学生的学号由小到大排成一列数:
1,2,3,4,…67.
-1的1次幂,2次幂,3次幂,4次幂,…排成的一列数:
-1,1,-1,1,-1,1…, 无穷多个2排成的一列数: 2,2,2,2,2,2,… 某个同学五次考试的数学成绩:
(n1)21 n(n2)
an
n1
n1
(1)n an n(n 1)
8 .( 1 )21 , ( 1 )31 , ( 1 )41 , •••
2
2
2
(1)n1 1
an
2
三.数列的分类: (按项数分) 有穷数列、无穷数列
1.项数有限的数列叫做有穷数列。
例如,数列4,5,6,7,8,9,10.
2.项数无限的数列叫做无穷数列。

数列的概念【公开课教学PPT课件】

数列的概念【公开课教学PPT课件】

问:2015位于A、B、C、D的哪个位置? c
23பைடு நூலகம்14
6 7 10 58 9
BC
… AD
数列的概念
传说古希腊毕达哥拉斯学派的数学家经常在沙
滩上研究数学问题,他们在沙滩上画点或用小石子 来表示数字.
1,
3,
6,
10, .…..
上图中各三角形表示的数排列有规律吗?
由于这些数可以用三角形点阵表示,故称其 为三角形数.
下图中各正方形分别表示哪些数?这些数与相 应正方形的序号有什么关系?
1,

5
… 12 …
… 69 … 153 …
n 3(3+4n)
2.下面对数列的理解有四种:
①数列可以看成一个定义在 * 上的函数;
②数列的项数是无限的;
③数列若用图象表示,从图象上看都是一群孤立的点;
④数列的通项公式是唯一的.其中说法正确的序号是( C )
A.①②③ B.②③④
C.①③ D.①②③④
3.如图所示:
无穷数列
4
1, 1,1, 1 5
无穷数列
CCTV-2 中央电视台开心辞典节目中 曾经出现过这样的一道题:
观察以下几个数的特点, 按照其中的规律写出括号里的数.
项 2,5,10,17,26, ( 37 ) , 50 , ... an = n2+1
序号 1 2 3 4 5
通 项 6 7 公... n 式
❖斐波那契数: 1,1,2,3, 5, 8,13L
❖-1的1次幂,2次幂,3次幂,……排列成一列数:
1,1, 1,1L
❖无穷多个1排列成的一列数:
1, 1, 1, 1, L
问题1 这些数有什么共同特点?

《数列的概念》教案1226张PPT北师大版

《数列的概念》教案1226张PPT北师大版

《数列的概念》教案12(26张PPT)(北师大版必修5)数列天才=1%的灵感+99%的汗水堆放的钢管按照第一层、第二层…排成的一列数正整数的的倒数:1,1.4,1.41,1.414,…,-1的1次幂,2次幂,3次幂,4次幂,…排成的一列数:-1,1,-1,1,-1,1,…无穷多个1排成的一列数:1,1,1,1,1,1,…一数列的定义按一定次序排列的一列数叫做数列。

数列中的每一个数叫做这个数列的项。

数列中的各项依次叫做这个数列的…,…,数列的一般形式可以写成:…,…,简记作:第n项的n叫该项的序号,也叫项数研究项与它的位置序号n之间的关系可以简记为:例如,数列1,2,3,4,5,6,…可以简记为:例如,数列2,4,6,8,10,12,…可以简记为:熟记这3个数列的简记形式熟记这4个数列的简记形式研究项与它的位置序号n之间的关系二通项公式1. 数列 4,5,6,7,8,9,10.的通项公式是:(n≤7)2. 数列 2,4,6,8,…的通项公式是:3. 数列3,5,7,9,11,…数列的图象表示11. 数列 4,5,6,7,8,9,10.的图象1234567891012345678910●●●●●●●0这样的数列称为递增数列数列的图象表示21. 数列的图象1234567891012345678910●●●●●●这样的数列称为递减数列数列的图象表示3(1)数列:4,4,4,4,4,4,4,…●●●●●●●●●●这样的数列称为常数列数列的图象表示4(1)数列:1,-1,1,-1,1,-1,1,…●●●●●●●●●●这样的数列称为摆动数列有穷数列、无穷数列项数有限的数列叫做有穷数列。

项数无限的数列叫做无穷数列。

三数列的表示方法:(1)一般形式“(3)通项公式(4)图象法(5)列表法四数列的例题1数列的例题2例2 写出数列的一个通项公式,使它的前4项分别是下列各数:解(1):解(2):解(3):解(4):(4)的数列就是0,-1,0,-1也可以写为可见数列的通项公式不唯一数列练习11,4,9,16,25.10,20,30,40,50.5,-5,5,-5,5.熟记这个通项公式数列练习2数列练习3练习3 写出数列的一个通项公式,使它的前4项分别是下列各数:(3)9,99,999,…(4)数列练习4练习4 观察下面数列的特点,用适当的数填空,并写出一个通项公式.2,4,(),8,10, (),14.2,4,(),16,32,(),128,()(),4,9,16,25,(),49.(4)1,() ,(),2,() ,(),.612864136256数列小结(1)按一定次序排列的一列数叫做数列。

《数列数列的概念》PPT课件

《数列数列的概念》PPT课件

ppt课件
18
当n=1时,a1=4符合上式,所以an=2n(n+1)(n∈N*). (3)由an+1=2an+1,得an+1+1=2(an+1). 令bn=an+1,所以{bn}是以2为公比的等比数列. 所以bn=b1·2n-1=(a1+1)·2n-1=2n+1, 所以an=bn-1=2n+1-1(n∈N*).
ppt课件
19
(4)由已知,an>0,在递推关系式两边取对数,有 lgan+1 =2lgan+lg3.
令 bn=lgan,则 bn+1=2bn+lg3. 所以 bn+1+lg3=2(bn+lg3),所以{bn+lg3}是等比数列. 所以 bn+lg3=2n-1·2lg3=2nlg3. 所以 bn=2nlg3-lg3=(2n-1)lg3=lgan.所以 an=32n-1.
有最大项为第 9,10 项.
ppt课件
22
变式 (2011·浙江)若数列{n(n+4)23n}中的最大项是第 k 项,
则 k=__________.
解析:设数列为
a
n
,则an+1-an=(n+1)(n+5)
2 3
n+1-
n(n+4)23n=23n23n2+6n+5-n2-4n=32n+n 1(10-n2),
A.k>0 B.k>-1
C.k>-2 D.k>-3
解析:由 an+1>an,得(n+1)2+k(n+1)+2-n2-kn-2>0, 即 k>-2n-1,当 n=1 时,-2n-1 取最大值-3,故 k>-3, 选 D.
答案:D
ppt课件
25
3.(2013·淄博质检)数列{an},满足 a1=1,a2=12,并且 an(an-
ppt课件
20

《数列的基本知识》课件

《数列的基本知识》课件

数列的性质
1 有界性
数列可能是有界的,即存 在上界和下界。
2 递增性/递减性
数列可以按顺序递增或递 减。
3 周期性
某些数列可以具有周期性, 其中一组数重复出现。
等差数列
等差数列是一种数列,其中每个后续项与前一项之差都相等。 • 常用于等距离时间间隔或等额递增的问题。 • 通项公式:an = a1 + (n - 1)d • 求和公式:Sn = (n/2)(a1 + an)
数列在实际问题中的应用
数列广泛应用于金融、人口统计、科学研究和工程领域,帮助解决实际问题。 了解数列的性质和应用,可以提升问题解决和分析能力。
《数列的基本知识》PPT 课件
欢迎来到《数列的基本知识》课件。在本课程中,我们将探讨数列的定义、 性质以及常见类型,以及它们在实际问题中的应用。
什么是数列
数列是按一定顺序排列的一组数。它们可以是等差数列、等比数列、幂次数 列、倍数数列或递推数列。
数列的定义
数列是按照一定规律排列的数字序列。它可以是有限的或无限的,每个数字 被称为数列的项。
数列的收敛与发散
数列可能会趋于某个有限值(收敛),或者无限增加或减少(发散)。 例如,格里高利级数和调和级数就是两个发散的数列。
数列的重要定理与应用
数列的重要定理包括数列极限定理、子数列收敛定理等,这些定理在数学分析和实际应用中具有重要意义。
数列的图形表示
数列可以使用直线图、折线图或散点图来显示其项和规律。 图形表示可以更直观地展示数列的性质和变化。
金融与投资
数列可以用于计算复利、投资回报率等金融问题。
人口和经济学
数列可以帮助预测人口增长、GDP增长等。
科学研究

4.1数列的概念课件(人教版)

4.1数列的概念课件(人教版)

2n2
30n
2(n2
15n)
2 n
15 2
2
225 2

因为 n N* ,所以当 n 7 或 n 8 时, Sn 取最小值.
(2)当 n 1 时, a1 S1 2 30 28 .
当 n 2 时, an Sn Sn1 2n2 30n [2(n 1)230(n 1)] 4n 32 .
, Sn1
n ,n
1 2
.
例 6 已知数列an 的前 n 项和公式为 Sn n2 n ,求an 的通项公式.
解:因为 a1 S1 2 , an Sn Sn1 n2 n [(n 1)2 (n 1)] 2n(n 2) , 并且当 n 1 时, a1 21 2 依然成立.
所以an 的通项公式是 an 2n .
特别地,各项都相等的数列叫做常数列.
如果数列{an} 的第 n 项 an 与它的序号 n 之间的对应关系可以用一个式子来 表示,那么这个式子叫做这个数列的通项公式.
通项公式就是数列的函数解析式,根据通项公式可以写出数列的各项.
例 l 根据下列数列{an} 的通项公式,写出数列的前 5 项,并画出它们的图象.
解析:因为 Sn 3n 2 ,所以 Sn1 3n1 2(n 1) ,则 an 3n 3n1 23n1 . 1,n 1
当 n 1 时, a1 S1 3 2 1,不符合上式,所以 an 2 3n1 ,n 2 .
-4 7.数列an 中, a1 1, a2 5 , an2 an1 an (nN*) ,则a2022 __________.
验证得当 n 1 时, a1 28 满足上式,所以 an 4n 32 .
1.数列的相关概念及分类 2.数列的符号表示 3.从函数角度看数列 4.数列的通项公式 5.数列的递推公式 6.数列的前n项和

4.1.1数列的概念PPT课件(人教版)

4.1.1数列的概念PPT课件(人教版)
的前5项为
【变式练习】
根据下面的通项公式,分别写出数列的前5项.

.
解:(1)在通项公式中依次取n =1,2,3,4,5,得到数列
的前5项为
(2)在通项公式中依次取n =1,2,3,4,5,得到数列
的前5项为 -1,2,-3,4,-5.
(3)这个数列的前4项可以写成10-1,100-1,1 0001, 10 000-1,所以它的一个通项公式为
(2)根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴 含着“从特殊到一般”的思想.
6.已知数列{an}的通项公式 an=(2(n--11)n)((n2+n+1)1).
(1)写出它的第 10 项; (2)判断 2 是不是该数列中的项.
33
【解析】 (1) a10=(-119)×10×2111=31919.
解:(1)视察知,这个数列的前4项都是序号的 2倍加1,所以它的一个通项公式为
(2)这个数列的前4项可以写成20,21,22,23, 所以它的一个通项公式为
三、典例解析 例 1 根据下列数列 { an }的通项公式,写出数列的前 5 项, 并画出它们的图象.
1 an
n2 2
n;2 anຫໍສະໝຸດ ncos1 .
3,4,5,6,7,8,9.

(2)GDP为国内生产总值.分析各年GDP数据,找出
增长规律,是国家制定国民经济发展计划的重要根
据.根据中华人民共和国2002年国民经济和社会发
展统计公报,我国(1998~2002年)这五年GDP值
(亿元)依次排列如下:
78 345,82 067,89 442,95 933,102 398.
【解析】(1)各数都是偶数,且最小为 4,所以通项公式 an=2(n+1)(n∈N+). (2)这个数列的前 4 项的绝对值都等于序号与序号加 1 的积的倒数,且奇数项为负,

数列的概念(中职数学)ppt课件

数列的概念(中职数学)ppt课件
通过通项公式可以快速求出等差数列 中任意一项的值。
等差数列的求和公式
公式
Sn=n/2*[2a1+(n-1)d],其中Sn为前n项和,a1为首项,d为 公差,n为项数。
应用
通过求和公式可以快速求出等差数列前n项的和,解决与等差 数列和相关的问题。
03
等比数列
等比数列的定义与性质
定义
等比数列是指从第二项起,每一项与它 的前一项的比值等于同一个常数的一种 数列。
数列的极限与收敛性
数列极限的定义与性质
数列极限的定义
对于数列{an},如果存在 常数A,对于任意给定的 正数ε(不论它多么小) ,总存在正整数N,使得 当n>N时,不等式|anA|<ε都成立,那么称常数 A是数列{an}的极限。
唯一性
如果数列{an}收敛,那么 它的极限唯一。
有界性
如果数列{an}收敛,那么 数列{an}一定有界。
等比数列的求和公式
求和公式
Sₙ=a₁(1-q^n)/(1-q)(q≠1),其中Sₙ是前n项和,a₁是首项,q是公比,n是项数。
推导过程
根据等比数列的通项公式,可以得到Sₙ=a₁+a₁×q+a₁×q²+...+a₁×q^(n-1),通过错位相减法可以得到求和公式 。当q=1时,Sₙ=n×a₁。
04
极限的加法运算法则
lim(an+bn)=lim an+lim bn。
极限的减法运算法则
lim(an-bn)=lim an-lim bn。
极限的乘法运算法则
lim(an×bn)=lim an×lim bn。
极限的除法运算法则
lim(an/bn)=lim an/lim bn( bn的极限不等于0)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档