cci最小流量阀样本
CCI最小流量阀说明书-英文
![CCI最小流量阀说明书-英文](https://img.taocdn.com/s3/m/3cf449cc9ec3d5bbfd0a74f9.png)
®T H E V A L V E D O C T O R®S O L U T I O NThe World Leader in Severe Service Control Valves CCI designed, built and patented the fi rst DRAG ® control valve in 1967, answering the need for a valve capable of handling high-pressure liquids and gases such as water, oil, steam, natural gas, petroleum products and chemicals. DRAG ® technology is considered one of the landmark innovations in the history of the severe service control valve industry. Following that invention, CCI has continued to develop and introduce advanced product technology that has revolutionized the I’s industry leadership is the result of a proven record that focuses on performance. The knowledge gained from solving customer control valve performance problems generates high standards for quality that infl uence every step of the production process and extend into lifetime support of the valves installed in your plant.Many valve manufacturers claim to offer control valves for all service conditions, but few can provide the complete performance compatibility needed for severe service applications. CCI DRAG ® control valves are designed specifi cally to meet your individual application needs. Whatever your severe service application, there is only one intelligent choice: CCI’s DRAG ® control I’s Proven Experience CCI DRAG ® control valves have been used for more than 40 years to solve severe service control problems, continually serving the needs of the fossil power, nuclear power, oil and gas, petrochemical, combined heat and power, and pulp and paper industries.The Valve Doctor ® Approach CCI’s dedicated team of technology specialists focuses on solving control valve problems around the globe. CCI’s expertise extends beyond control valve design to actuation, noise reduction, system piping and system operation. The Valve Doctor ® utilizes his expertise to provide comprehensive solutions that enhance plant operation and result in signifi cant operational and maintenance savings. DRAG ® technology continues to play a pivotal role in providing these solutions!D R A G ®CCI severe service control valves featurepremium DRAG ® velocity control for precise, measurable performance.Since 1961, CCI has provided a uniquecombination of engineering experience andglobal resources with one goal: to exceedcustomer expectations.A typical CCI DRAG ® disk stack featuresvarying numbers of pressure-reducing stagesto ensure superior control.Improved plant performance Increased MW output and reduce leakage costs Higher reliability Lower noise.Better control.Longer intervals between maintenance Decreased maintenance costsReduced system costs DRAG®Improved plant performancencreased MW output and reduced leakag Increased MW output and reduced leakage afer plant operating conditions.Safer plant operating conditions.Safer plant operating co r plant operating conditions.ns.Safer plant operating conditions.Higher reliabHigher reliability Lower noise. control.Better control.intervals between mainten Longer intervals between maintenance Decreased maintenance costs Reduced system costs.Lower cost of ownership Lower cost of owne ower cost of ownership er co wer c Lower cost of ownership Improved plant performanceIncreased MW output and reduced leakage costs Safer plant operating conditions Higher reliability Lower noiseBetter control Longer intervals between maintenance Decreased maintenance costs Reduced system costs Lower cost of ownershipOil, Gas and Petrochemical Production, transmission and processing, including LNG and petrochemicals: Production chokes Separator-level control Gas lift/injection Injection pump recycle Overboard dump Gas regulator Surge relief Gas injection/withdrawal Metering stations (active/monitor) Compressor recycle/anti-surge Hot gas bypass Emergency depressuring/gas to fl are Amine letdown Expander bypass (JT valve) Vent to atmoshphere Feedwater regulator Feedwater pump recirculation Spraywater Steam header pressure controlPower GenerationFossil and nuclear power plants, cogeneration(CHP) facilities and other industries handling high-pressure water or steam:Reheat and superheat attemperator sprayMain and booster feedpump recirculationStartup and main feedwater regulationDeaerator-level controlCondensate booster pump recirculationAtmospheric steam dump and steam ventingTurbine bypassTurbine bypass spraySootblower controlOnce-through boiler startup (base-loaded and cycling units)System startup: B&W, CE, FW and licenseesAuxiliary steamTurbine seal pressure controlHigh-level heater drainsHP coolant injection (HPCI)Reactor core isolation cooling (RCIC)Core sprayResidual heat removal (RHR)Steam generator blowdownPressurizer PORVCVCS letdownSamplingPump test loopsThe Choice is SimpleWhen you need a complete solution to thedemanding conditions of severe service control,there’s only one choice: a custom-engineeredDRAG ® application I DRAG ® valves have been used in severe service applications worldwide. Years of research and experience in numerous applications have proven the superiority of the DRAG ® valve in critical applications.D R A G®The Need for Velocity Control High fl uid velocity through valve trim is a principal source of system control problems. System control is lost due to valves damaged by the effects of cavitation, erosion, abrasion and vibration, which can quickly destroy a valve and disrupt system operation.Even before damaging the valve, excessive noise, severe vibration, poor process control and product degradation can limit a facility’s ability to operate at maximum capacity and thereby reduce I has pioneered the effort to develop and apply the velocity control principle in control valves to offer total system control solutions for many different applications. Thousands of satisfi ed customers worldwide have benefi ted from CCI’s solutions. Velocity control criteria as published by ISA has become the industry standard in solving control valve problems.Since all plants must start up and shut down, good plant control must be available for a wide range of plant loads. CCI provides control over a full range of valve capacity by ensuring that velocity control features are in place for the entire valve travel. By designing DRAG ® disks throughout the travel to meet the unique requirements imposed by the plant transients, CCI’s solutions allow the automatic control systems to function without manual control stops to work around sensitive plantconditions.A single-stage pressure drop valve with poorcontrol presents problems like cavitation,erosion, noise and vibration.The velocity control principle: multi-stagepressure drop provides control andeliminates cavitation, erosion, noise andvibration problems. DRAG®D R A G ®The Velocity Control Challenge Until CCI introduced the DRAG ® valve, the design of control valves for handling high pressure drop liquids, gases or steam had changed little.Even today, despite other makers’ widespread attempts to copy the CCI DRAG ® solution in their modifi ed trim valves, process fl uids still fl ow through some version of a single orifi ce or multiple area orifi ces. Fluid velocity through each orifi ce is a function of the valve pressure drop or required process differential head.Fluid in the valve reaches its maximum velocity just slightly downstream of the valve trim’s orifi ce in the vena contracta or minimum fl owing area (see Figure 1). These high velocities produce cavitation, erosion and abrasion, which can quickly destroy the valve. Even before damaging the valve, excessive noise, severe vibration, poor process control and product degradation are observed in many applications without velocity control. Interestingly, these high velocities are unwanted side effects of pressure reduction through the valve and are not treated as a design criteria by other valve manufacturers until it’s too late. Many attempts to resolve the side effects simply treat the symptoms rather than the real cause of the problem.In general, poor valve performance in severe service applications is primarily due to excessive fl uid velocity. Even using harder materials in the valves to offset erosion from cavitation, or using pipe-lagging or downstream diffusers, can only marginally offset valve failure from uncontrolled velocity. Velocity must be controlled at all valve settings to maintain valve performance and reliability. Problems resulting from high velocity affect plant performance and output, resulting in effi ciency loss, unit load limitations, unscheduled plant shutdowns anddamage to other equipment.2V 1V 2V 2V 1=2gh>Figure 1: Single-stage pressure drop The evidence: high-velocity erosion damageon a single- stage cage and valve internals isobvious.DRAG ®Solution to High Velocities DRAG ® velocity control valves from CCI addressed the problems created by high velocity a generation ago. DRAG ® valves prevent the development of high fl uid velocities at all valve settings. At the same time, they satisfy the true purpose of a fi nal control element: to effectively control system pressure and fl ow rate over the valve’s full stroke. Here’s how the DRAG ® valve accomplishes what the others can only approach:The DRAG ® trim divides fl ow into many streams to minimize the mass and energy levels (Figure 2). Each fl ow passage consists of a specifi c number of right-angle turns to form a tortuous path (Figure 3) in which each turn reduces the pressure of the fl owing medium by more than one velocity head.The number of turns, N, needed to dissipate the maximum expected differential head across the trim, as illustrated in Figure 4, is found by changing the equation from:V 2 (orifi ce) = to a new equation:V 2 (DRAG ®) element = The number of turns, N, is selected to ensure a specifi c fl uid energy level exiting the channel. Applying this principle to the DRAG ® valve’s disk stack and plug is shown in Figure 5. The disk has several fl ow channels, each channel comprising multiple right-angle turns (Figure 6). Thus DRAG ® technology fully controls velocity in each passage on every disk in the stack, and the valve can operate at a controlled, predetermined velocity over its full service range.To achieve enough capacity for the valve, CCI’s solutions add disks to provide the necessary fl ow cross-section. This technology is in stark contrast to valves using multiple-orifi ce-modifi ed trims. Each orifi ce converts potential energy to kinetic energy, but with a startling increase in velocity. Therefore, multiple-orifi ce solutions do not provide the protection that the DRAG ®-type trim provides.In the DRAG ® trim, the resistance, number and area of the individual fl ow passages are custom matched to your specifi c application, and exit velocities are managed to eliminate cavitation and erosion in liquid service and vibration and noise in gas service. DRAG®V 1V 2=V 1V 2V 2=2gh/NV 1V 2=V 1V 1V 2=V 1VV2=2ghFigure 2: Multi-path pressure reductionFigure 3: Right-angle tortuous pathFigure 4: Multi-stage pressure reductionFigure 6: Multi-path, multi-stage DRAG ® disk Figure 5: DRAG ® disk stack and plug2gh 2gh/NThe Cavitation ChallengeWhen liquid pressure is reduced to its vapor pressure or lower, fl ashing and bubble formation occur. In most control valves (Figure 7), fl uid enters at pressure P 1 and velocity V 1. As the fl uid moves through the reduced area of the valve trim, it accelerates to velocity V VC as its static pressure drops suddenly to P VC – a level at or below the liquid’s vapor pressure P V . At this point, the liquid boils. Any valve using a single or multiple-orifi ce trim will cause this problem because of its uncontrolled velocities in the areas of each “vena contracta,” the narrowest central fl ow region of a jet of fl uid fl ow.As the fl uid moves out of the throat of the valve, pressure recovery begins, converting kinetic energy back to potential energy. Full recovery to downstream pressure is indicated at P 2 and velocity V 2. When the recovery pressure exceeds the fl uid’s vapor pressure P V , collapse or implosion of the just-formed bubbles takes place, resulting in cavitation. The energy thus released causes local surface stresses greater than 200,000 psi (1400 MPa), which can consume even hardened trim rapidly.Symptoms of Cavitation n Noise when liquid-handling valves modulate or shut off n Valve components showing “pitting” damage n Poor process control with the valve Cavitation is the formation and subsequentcollapse of microscopic vapor bubbles thatcan destroy trim.D R A G®Figure 7: Inter-stage cavitation damage frominsuffi cient stagingSeat ring damage caused by cavitationresults in leakage that can harm downstreamequipment.The DRAG ® Solution to CavitationThe DRAG ® valve eliminates the destructive effects brought about by uncontrolled fl uids in today’s processes. DRAG ® technology does this by fi rst splitting the fl ow into many small channels so that, if a gas bubble is formed, it is very small and does not have the energy necessary to cause stresses that would result in material failure. Secondly, DRAG ® maintains the fl uid velocity at minimum levels so that local pressures are unlikely to drop below the vapor pressure of the fl uid. Thus none of the adverse effects of bubble collapse can harm the valve as in other valve designs. In addition to many years of successfully applying the DRAG ® design principles to control valve cavitation, CCI has conducted independent tests in accordance with ISA 75.23 and verifi ed the practice. In every possible combination of test conditions, the testing confi rmed the DRAG ® design principles and the technology’s ability to solve the most diffi cult industry problems of fl uid fl ow control.In general, the damaging effects of cavitation are a typical signal that fl uid velocities are not being controlled. As previously mentioned, using harder materials, pipe-lagging or downstream orifi ces can only marginally offset valve failure from cavitation damage. High fl uid velocity and insuffi cient staging (shown in Figure 7) will result in inter-stage cavitation damage, reducing the effectiveness of the valve as a fl ow modulating device and exposing the trim to damage, which leads to a leaking valve. The solution to cavitation, therefore, is the DRAG ® velocity control valve, as illustrated in Figure 8.Fluid velocity requirements, based on the vapor pressure of the fl uid (at design temperature), is governed by the following equation: English MetricDRAG®CCI’s multi-path, multi-stage trim designsare characterized to provide optimal valveperformance at all fl ow conditions across thefull stroke of the valve plug.V = 4637 (P 2 - Pv )/ or V = 1000 (P2 - P v )/Table 1: Recommendation for Fluid Velocity to Control Cavitation*Figure 8: The DRAG ® solution eliminatescavitation.* Based on information presented in the publication “Control Valves - Practical Guides for Measurement and Control” edited by Guy Broden , Jr. and Paul G. Friedman, 1998 edition, published by ISA and other sources.A competitor’s body and trim that failed towithstand severe service conditions show signsof damage that result in poor performance andcontrol.D R A G®With the expertise of a CCI Valve Doctor ®,our DRAG ® valves are designed to yourperformance specifi cations and offer theultimate solution to noise and vibrationproblems in severe service applications.The Noise and Vibration Challenge Modern plants are subject to many complex and strict regulations dictating the allowable noise level for either the worker or for the plant neighbors. Occasionally, a system will experience signifi cant piping vibration that may eventually lead to a failure. Such vibration can also cause component damage and, in many cases, the vibration is a safety concern for both plant personnel and expensive equipment essential to plant operation. Frequently, the cause of vibration is a valve that has not been properly selected for the application. The excessive fl uid velocities and energy levels force uncontrolled pipe motion, which results in failure of pipes and supports and damage to downstream components. Noise and vibration are pervasive in applications involving throttling or venting of compressible gases. For applications where noise is signifi cant, sonic vibrations not only create hazardous health areas, but may also pose a threat to the reliability of equipment and system operation. Even if lagging, dampening or enclosing the noisy valve successfully controls audible noise leaks, the potential for costly damage and valve failure still exists. A plant may meet hearing safety requirements by insulating the valve; however, unless the source of the noise is eliminated, the risk of signifi cant damage to the valve and process remains. In addition, noise propagates through the process piping and often contributes to problems with other components in the system. Eliminating the source and mechanism of noise is the only way to mitigate these risks.Even more signifi cant than audible noise are the problems associated with high vibration levels. Signifi cant vibration in a valve can quickly lead to failure of the valve components (cage, plug, stem and accessories) and process components, the eventual failure of pipes andsupports, and damage to downstream equipment. In extreme cases, many control valves with signifi cant vibration problems often cause system trips and result in costly effi ciency and production losses.The DRAG ® Solution to Noise and Vibration In an effort to eliminate the sources of system vibration, CCI encourages the process industries to adhere to ISA guidelines for valve trim exit kinetic energy levels. The right-angle tortuous path trim approach used in the DRAG ® technology achieves the required low energy levels. The right-angle turns drop the fl uid velocity to levels that provide the expected control. Figure 9 illustrates actual fi eld results of DRAG ® technology. This fi gure shows vibration before and after application of the DRAG ® design. There is usually a 90% reduction in the peak vibration level of the valve or piping component with the application of DRAG ®. CCI can provide control valve systems that will ensure the noise levels remain below the specifi ed requirements. The DRAG ® valve approach is to prevent the creation of noise as opposed to trying to muffl e it once it is produced. CCI uses the prediction technology that forms the basis of the IEC and ISA noise prediction standards. Noise is controlled by making sure that the trim exit jets leaving the disk stack do not induce excessive acoustic levels inside the pipe. Subsequently, the noise passing through the pipe wall and sensed in the vicinity of the valve is lower than the specifi ed levels. DRAG ® technology mitigates the excessive sonic vibrations created within the valve by controlling the source of the noise, as demonstrated in the following formula:DRAG ® valves like this 28-inch (700 mm) multi-stage, pneumatic-controlled device have beeninstalled in over 2,000 plants around the worldto solve vibration and noise problems. DRAG®W= sound power = fl uid density d = characteristic dimension U = fl uid velocity C = velocity of sound fi eld d 2 U 6 C 3W Figure 9: Stem vibration velocity for aconventional valve before retrofi t (blue line)and after retrofi t with DRAG ® trim (red line)*Table 2: Recommendation for Fluid Kinetic Energy (Velocity Head) at trim Exit **S temV i b ra ti o n V elocity(mm/s,-pk )Hertz50403020100100200300400500Conventional valveCCI DRAGvalvefull open* “Multi-Stage Valve Trim Retrofi ts Eliminate Damaging Vibration”, J. R. Arnold, H.L. Miller, and R. E. Katz, Power-Gen 96 International, Orlando, Florida, Book IV, pg. 102-110, PennWell Conferences & Exhibitions, Houston, Texas, December, 1996. ** Based on information presented in the publication “Control Valves - Practical Guides for Measurement and Control” edited by Guy Broden , Jr. and Paul G. Friedman, 1998 edition, published by ISA and other sources.Note:KE =V 22g CThe Erosion ChallengeErosion of the valve trim can be caused by the washing action of a fl uid or abrasion from particles entrained in the fl uid. The erosion effect is most severe at high pressures and high concentrations of entrained material. Even very pure water can be extremely erosive.While clean dry gases usually are not a cause for concern, throttling even clean superheated steam can cause severe problems, as illustrated in Figure 10. Consider the following example: superheated steam at P 1 (inlet pressure) of 600 psia (4 MPa) and T 1 of 600°F (300°C) entering a conventional or modifi ed-trim valve is let down to 50 psia (0.3 MPa). The low pressure and high velocity inherent in fl ow through these valve trims allow the steam to expand isentropically or polytropically to point P 2. At this point, with velocity at its peak, the steam develops a moisture content between 12% and 20%. The resulting water droplets, traveling at maximum velocity, will rapidly erode the trim and damage the valve body. Pressure recovery is completed in the outlet and the temperature reaches equilibrium, resulting in superheated steam leaving the valve at P 3 (outlet pressure) of 50 psia (0.3 MPa) and T 3 of 515°F (270°C). However, while the valve has achieved its pressure drop, continuous formation of wet, high-velocity steam will soon result in severe trim damage. The same holds true in a gas handling service where hydrate (ice crystals) formed under similar circumstances can clog the conventional trim in a short time.Erosion by solids/sand is particularly tough on control valves. Materials that are readily available are quickly consumed by the sand-blasting effect of entrained solids. Controlling the velocity and the use of erosion-resistant materials adds signifi cantly to the life of the valve components handling these fl uids.As trim erodes, the valve’s C V changes and fl ow becomes diffi cult to control, inducing other symptoms like increased vibration and related high noise levels. Any time control is compromised, the risks soar. Lack of control results in a shortened life for the valve that threatens plant performance and reliability. Moreover, it means increased expense forthe plant operator.Erosion by a fl uid can alter the landscape ofvalve components over time, affecting thequality of operation.Erosion damage to a competitor’s valve plugcaused by high fl uid velocity results in poorshutoff.D R A G®One damaged part can shut a plantdown; a CCI DRAG ® valve can prevent thisunnecessary downtime and give you peaceof mind.The DRAG ® Solution to ErosionThe traditional approach to problems such as erosion include continual maintenance, brute force or both. The brute force strategy involves using harder materials where erosion is a problem, which covers up the symptoms without addressing the root cause. The rate of erosion varies as a third to fi fth-power function of fl uid velocity (V 3 to V 5). For example, if the fl uid velocity can be reduced by a factor of two, then the erosion rate will be reduced by a factor ranging between 8 and 32. To eliminate erosion, it is essential that the fl uid velocity be maintained at manageable levels. The DRAG ® design controls velocities throughout the disk so that pressure recovery does not take place. For erosion problems that result from abrasion, the DRAG ® trim operates at a controlled velocity. The inlet/outlet and trim velocities are low, so the steam expansion through the valve is isenthalpic – going from point P 1-T 1 directly to point P 3-T 3 (see Figure 10). Steam through the DRAG ® valve never has a chance to develop destructive moisture. In gas applications, controlled velocity minimizes the formation of hydrate, thus preventing the trim from clogging. CCI combines the velocity control principle and higher erosion-resistant material to solve erosion resulting from solids like sand. Choke valve applications use a multi-stage DRAG ® disk stack produced from tungsten carbide for substantially longer life compared to traditional solutions.DRAG®Figure 10: The low pressures and highfl uid velocities inherent in conventionalvalve trim (single-stage and multi-stage)result in erosion by abrasion, even in cleansuperheated steam, as water droplets areallowed to form.E n t h a l p yDRAG RTungsten carbide DRAG ® disks provide provenerosion prevention.The Leakage ChallengeLeakage through control valves can signifi cantly reduce plant effi ciency and result in higher overall operational and maintenance costs. This frequently means that millions of dollars are lost every year. This issue is overlooked by many operators who do not realize that a valve may still offer acceptable control while allowing signifi cant leakage when fully closed. In reality, the leakage past most control valves results in lost fuel, heat or system capacity, which directly impacts the economic viability of the process. In fact, the cost of leakage in a severe service control valve is always far greater than the price of the valve. In extreme cases, an entire plant may be shut down because of a single leaking valve. The costs of leakage through a control valve are signifi cant and are often manifested in the following ways:n Unscheduled plant shutdowns n Increased maintenance schedules to replace damaged valve and system components n System effi ciency losses resulting in increased fuel and power consumption n Heat rate losses and unit load limitations n Control system oscillations or outright loss of control Symptoms of Leakage n High temperature in the downstream pipe for a normally closed valve n Loss of process control, even when valve is fully closed n Steam or gas leaks through vents n Inability to hold the pressure inside the condenser nNoise produced by valve even when closed In the extreme case, a power plant shutdownmay be unavoidable because of a singleleaking valve.D R A G®Plant managers and engineers rely on CCI’sDRAG ® technology for reliable performanceto keep their facilities running trouble-free.The DRAG ® Solution to LeakageControlling leakage through a severe service control valve requires a combination of technologies and a dynamic understanding of the behavior of the fl uid as it passes through the valve. CCI customers place a premium on tight shutoff because it translates directly into operational cost savings. CCI engineers realize that tight valve shutoff is not only a function of operational closing forces, but also requires control of fl uid velocities through the valve seating area. DRAG ® technology limits the velocity of the fl uid as it enters the seating area and minimizes the erosive forces that would otherwise compromise the valve’s ability to effectively control leakage. In addition to controlling destructive fl uid velocities, CCI utilizes both high actuation forces and uniquely designed seals and seat to maintain repeatable tight shutoff. By combining the advantages of DRAG ® with CCI’s advanced actuation, sealing and seating technology, CCI severe service control valves provide repeatable tight shutoff and reliable operation to assure customers that the costs associated with system leakage are truly being controlled.Exceptional Shutoff — Repeatable Class V (or better)DRAG ® severe service control valves offer exceptional shutoff performance to withstand long periods of closure at high pressure differentials. CCI uses a uniquely designed seat that, when combined with CCI’s high actuator force, delivers tight shutoff each and every time. The high actuator force coins (leaves a circumferential impression into) the valve seat ring. The coining erases micro scratches caused by fi ne debris in the fl uid, providing reliable and repeatable long-term shutoff. In applications that need tight shutoff, CCI provides Class V or MSS-SP-61 (equivalent to a block valve) closure.DRAG®Table 3: Recommendation for Seat Load Requirements in Control Valves ** Based on information presented in the publication “Control Valves - Practical Guides for Measurement and Control” edited by Guy Broden , Jr. and Paul G. Friedman, 1998 edition, published by ISA and other sources.To ensure absolutely tight shutoff, CCIprovides a DRAG ® valve with pressurized seating as illustrated above.InletA CCI DRAG ® valve equipped withRHP ™seating technology establishes ahigher standard of valves for critical gasapplications.。
最小流量阀结构形式对比分析
![最小流量阀结构形式对比分析](https://img.taocdn.com/s3/m/b75e985d83d049649a665822.png)
最小流量阀结构形式对比分析作者:邢影郑伟来源:《中国包装工业(下半月)》2016年第03期【摘要】目前国内外最小流量阀产品结构形式多样,每种结构都有其最佳适用范围。
本文介绍几种主要最小流量阀的结构形式、工作原理,对比分析各自的优缺点,供用户和设计单位有关人员参考。
【关键词】最小流量阀节流串转阀1 概述离心泵启动和小工艺流量时会因输送介质温度升高破坏密封及其他旋转零部件,同时会产生介质的内部循环形成气穴导致泵的损坏,因此离心泵需要最小流量保护设施。
如图1所示,三通式最小流量阀具有止回、敏感工艺流量、防止介质倒流、多级减压、有效防止“水锤”[1]、汽蚀等特点,安装于离心泵出口,通过旁路回流保证泵的最小连续流量,提高泵的效率,减少泵的故障,保证泵更经济有效地正常工作,是离心泵的重要安全保护附件。
最小流量阀替代了泵的传统最小流量保护方式控制循环系统中孔板、流量计、旁路控制阀等7个元器件[2],不但简化了系统,更增加了可靠性。
最小流量阀广泛应用于核电、火电、石油、化工、冶金等行业的锅炉给水、冷却水设备、海上石油平台,煤化工净化装置贫甲醇、富甲醇泵出口,合成氨装置泵出口,储运装车泵出口等方面。
最小流量阀是再循环系统中最主要、工作条件最恶劣的阀,安装于离心泵出口,对泵起到保护作用。
在旁路处于开启状态时,将高压水通过逐级减压后排至回流管或其他装置,并且在减压过程中不会发生气蚀;而当其处于关闭状态时,能承受高达42MPa甚至更高的静压差,并做到关闭紧密。
同时,保证在再循环系统处于开启状态时,高压水经过减压使阀出口压力与其他装置内压力接近,而不致造成压力振荡和发生汽蚀。
目前国内外最小流量阀产品结构形式多样,每种结构都有其最佳适用范围,很多客户对其结构特点及适用范围不甚了解,容易对最小流量阀产生误解,下面就几个典型结构适用范围及限制进行介绍。
2 套筒式(1)结构形式。
套筒式最小流量阀结构如图2所示,阀芯主要以主路止回阀为主,止回阀在主路调整流量的同时控制旁路孔板的高度,以控制旁路流量及减压。
美国CCI减温减压业绩和产品样本
![美国CCI减温减压业绩和产品样本](https://img.taocdn.com/s3/m/278e487f1711cc7931b7169b.png)
最终用户数量阀型流量t/h执行机构入/出压力(barA)入/出温度('C)投入/交货时间工艺位置行业四川维尼伦厂2VST-225/VST-125120P40/11460/3001974减温减压O&G 四川维尼伦热电厂1VLB-112BTC240E90/40540/4352002双速电机O&G 锦西天然气化工有限公司1VST-72R28P37/4.5348/1571990减温减压O&G1VST-56RR30P126/37515/1431990O&G1VST-72 100P126/37515/1431990O&G1VSGT-112P1990O&G 华能上安2X350MW4VLB-320T590H31/7538/1791988液压旁路4VLB-100T320H175/33538/3051988华能南通2X350MW4VLB-320T590H31/7538/1791988液压旁路4VLB-100T320H175/33538/3051988蒲城电厂2X330MW4VB-140710H192/53.5540/5331995液压旁路4VLR-90261H150/342/19819954VLR-250228H20/2.9540/53319954VLBS-280294H20.4/2540/12019954Dump tube351H2/Cond1995辽河盘锦集团公司动力分公司1VLB-90166P115/45535/4001995气动旁路O&G1VLB-5662P115/4.5535/2001995O&G 珠海电厂2x700MW2VLB-160TC920H176/16541/Sat1999液压旁路4VLB-400TC590H15.6/Sat568/Sat1999岳阳石化热电厂50MW1VLB-90RBT100P39.2/11450/2801995减温减压O&G 南宁发电厂100MW1VS-11237H184101996液压旁路1VLB-11237H15.4/1.5408/1201996镇海发电厂2x100MW2VLB-160TC170P66/7503/1651996气动旁路国华北京第一热电厂200MW2VLB-100BTC200E100/10540/2401999减温减压2VLB-280BTC200E10/2240/1201999华丰纸厂1VST-125BSE10P5/2.6240/1401998减温减压O&G 辽阳一化工(乙烯装置)2MDA-14 9.9P120395/3551998减温器O&G1OP2025/50VSG137P124432/4081999减温器O&G1OP2830/50VSG138P123522/3801999减温器O&G1VDA36/4/BD10P125/163201999汽包连排O&G 抚顺石化石油二厂热电厂50MW1VLB-112BT206P98.1/38.2540/4351999减温减压O&G1VLB-90BT140P98.1/9.8540/3001999减温减压O&G 广州人民纸厂1VST-100BSE38.2E38.3/7450/1721999减温减压O&G1VST-56BSE16E38.2/15459/2061999减温减压O&G1VSGT-50T4E15/13206/1921999减温减压O&G1VSGT-125B20E7/4.5172/Sat1999减温减压O&G 齐鲁石化热电厂50MW2VLB-112BT-SE230E91/11540/3001998减温减压O&G2VDA-18/4水閥36E151/141581998水调节阀O&G1VST-100BSE120E90/40540/4352000减温减压O&G1VD-10R/310E165/401582000水调节阀O&G最终用户数量阀型流量t/h执行机构入/出压力(barA)入/出温度('C)投入/交货时间工艺位置行业茂名石化硫磺回收2150VSGT-72T8P10/3.5250/1481999减温减压O&G2200VSGC-140T32P10.3.5250/1481999O&G 燕山石化炼油厂1VST-160SE100P46/8430/2501998减温减压O&G1VST-140SE150P40/10450/3001998减温减压O&G140VSGT-20T 1.5P34/12400/1962000减温减压O&G120V30-6T0.3P22/121042000水调节阀O&G 齐鲁石化炼油厂1VST-160SE150P40/10450/2501999减温减压O&G1VDA-25/5水26P150/131581999水调节阀O&G 天津石化大芳烃1150VSGT-90B25P37/27440/2292000减温减压O&G1DA9030P39460/4102000减温器O&G 镇海炼化化肥厂1VD-8/3S0.4P135/101401998水调节阀O&G 乌鲁木齐石化炼油厂1VLB-90BT60P40/10420/2601998减温减压O&G 上海高桥石化热电厂1VST-90SE90E92/45540/4451999减温减压O&G1VD-12/39E147/451601999水调节阀O&G1DAO-206040E45445/3201999减温器O&G1VST-100BSE150E98/11540/2902000减温减压O&G1VDA-18R/425E150/111502000水调节阀O&G 乌鲁木齐石化化肥厂1VST-90SE100P126/39525/3501999减温减压O&G1VD-12/313P150/401651999水调节阀O&G1VD-8R/3 4.3P120/401402001水调节阀O&G1VDA-18/325P120/441402001水调节阀O&G1VD-12/26P120/1022702001水调节阀O&G 华北油田第一炼油厂1VST-100BSE45E40/9460/2601999减温减压O&G1VD-12/27E60/101041999水调节阀O&G1VST-100BSE63E40/9450/2602000减温减压O&G1VD-12/210E60/101042000水调节阀O&G 珠海宏塔造纸厂1VLB-160T70E14/7196/1651999减温减压O&G 福建湄洲湾2x350MW2VS-160T921H1785402000旁路隔离阀2VLB-180T921H167/47538/3302000旁路4VS-180T275H445402000低旁隔离阀4VLB-200T275H41/8.6539/1912000低旁塔里本石化发电厂2VLR-100BT56.6P49/104751997旁路O&G 兰州炼油厂1150VSGT-90T8.6P8/3230/1432000减温减压O&G 乌鲁木齐石化热电厂1VDA-25/4BD6E123/103202000汽包连排阀O&G3VLR-56BC60E985402000点火排放阀O&G 云南黎明造纸厂1DA4-D 6P 1.8320/1252000减温器O&G1DA4-A 5P5400/2002000减温器O&G 抚顺芳烃厂1150VSGT-72B25P36/23400/2302000减温减压O&G 抚顺石化电厂1200VSGT-90B30P35/11450/3302000减温减压O&G 抚顺发电厂200MW2VDA-50/4S190P171/81751998最小流量O&G最终用户数量阀型流量t/h执行机构入/出压力(barA)入/出温度('C)投入/交货时间工艺位置行业唐山陡河电厂125MW高旁1VLB-72RBC120E146/20558/2702000双速电动旁路1VDA-18/427E176/201702000水调节阀1VLB-72RBC120E146/20558/2702001双速电动旁路1VDA-18/427E176/201702001水调节阀兰化304烯烃厂1VST-56BSE45P103/16510/3102000减温减压O&G1VD-8/24P70/161302000水调节阀O&G1150VSG1-72T10P17/63402001蒸汽减压阀O&G180VSGR-40T6P42/34252002蒸汽减压阀O&G 兰州炼油厂1VST-112BSE75E39/10450/3002001减温减压O&G1VD-12/3 8E64/101102001水调节阀O&G1VST-125BSE150P64/10430/2502002减温减压O&G1VD-12/219P90/101302002减温减压O&G2DA90-50180P64500/4252002减温器O&G 金华胜纸业有限公司热电厂1VLB-56P126/16540/2201998减温减压O&G1P126/7540/1801998O&G1P126/7540/801998O&G 大连石化热电厂50MW2VST-125BSE188P98/10540/3002001减温减压O&G2VDA-25/332P60/101042001水调节阀O&G2VLB-200BSE83P10/3290/1832001减温减压O&G2VD-10/37P60/31042001水调节阀O&G 沧州炼油热电厂25MW1150VSGC-125BSE75E40/10450/2802000减温减压O&G1VSG210E60/101102000水调节阀O&G 辽阳化纤热电厂50MW1VLB-112B220E90/10535/2802000减温减压O&G1VDA-18/426E160/101502000水调节阀O&G2VLB-100B150E90/40540/2802001减温减压O&G2VD-12R/312E150/401582001水调节阀O&G 南京化肥厂1DAO-206012/ 5.5241/1552000减温器O&G1MDAV-C10/90515/3452000减温器O&G1MDAV-A3/41410/2502000减温器O&G1MDAV-A2/12265/1852000减温器O&G1DAO-4010120/42491/4102000减温器O&G1DAO-4030110/13385/2352000减温器O&G 金陵石化热电厂50MW1VST-125BSE220P100/41545/4352001减温减压O&G1VD-12/3 17P168/421582001水调节阀O&G 上海石化热电厂1VST-90BSE113E98/38540/4002001减温减压O&G1VD-12R/313E145/381662001水调节阀O&G1VLB-100BSE175E98/15540/3202001减温减压O&G1VDA-18R/430E145/151662001水调节阀O&G 抚顺石油机械厂2DAO-2025/25VSG1-525P302/253412001减温器O&G280VSG1-2025P13253/422001锅炉主给水O&G最终用户数量阀型流量t/h执行机构入/出压力(barA)入/出温度('C)投入/交货时间工艺位置行业哈尔滨炼油厂1DA4-A13P43460/4262001减温器O&G150VSG1-14/MO138P60/431302001减温水调阀O&G1100VSGT-72B6P8/3.5175/1442001减温减压O&G120V30-4T P10/3.5402001减温水调阀O&G 湄州湾电厂2VLB-180T77P16/14.8300/2322001旁路阀2VLB-72TSE12P47/15352/23220012VLR-140BT163P30/153502001阜新电厂2VLB-72BTC120E95/10540/2802001减温减压100MW机组供热减温减压2VDA-18R/420E160/101602001水调节阀2VFR-50190E170/101702002最小流量沈阳水泵厂1VFA-40THP120P170/81702001最小流量乌鲁木齐乙烯厂1DAO-2025/DA-8RR/319P39480/4252002减温器O&G 云南塔斯糖厂1100VSGC-50T15P39/4450/1502002减温减压O&G11'VSG23P46/41002002水调节阀O&G 安徽淮北电厂3#4#机125MW1VLB-72BTC140E132/25540/3102002双速电动旁路1VDA-18R/422E170/251602002水调节阀1VLB-72BTC140E132/25540/3102004双速电动旁路1VDA-18R/422E170/251602004水调节阀独山子乙烯1VST-90BSE130P120/42525/3902002减温减压O&G140VSG2-1412P55/421472002水调节阀O&G 锦州石化三催化1DA4-C88P39421/3812002减温器O&G 山东恒通化工股份有限公司1VLB-112BTC240P98/41540/4502002旁路O&G 热电厂60MW机旁路1VD-12/315P148/411582002水调节阀O&G 上海江桥垃圾电厂1VLB-90BT55P40/cond397/120.32002事故旁路1VD-12/313P70/31302002水调节阀1VLB-56BTC33P40/cond397/120.32002启动旁路1VD-12/38P70/31302002水调节阀1150VSGC-90B32P40/16397/3102002减温减压1VD-8RR/32P70/161302002水调节阀1150VSGC-90B20P16/4310/1802002减温减压1VD-8RR/32P70/41302002水调节阀盘锦辽河化工集团有限公司1VST-200B220P108/1055202002减温减压O&G1VD-10R/36P167/1052622002水调节阀O&G1150VSGC-100B60P45/9395/2802002减温减压O&G1VD-10R/35P61/91582002水调节阀O&G 大连石化350万吨二催化1VST-140BSE120P39/10450/3002002减温减压O&G1VDA-18RR/314P61/101702002水调节阀O&G 石家庄石化炼油厂1VST-112BSE80E40/10450/2602002减温减压O&G125VSG1-1410E25/101042002水调节阀O&G 深圳福华德电厂1VLB-112BTC225H80/cond520/sat2002旁路阀80MW联合循环机组1VLB-180BTC56H6/cond240/sat2002旁路阀最终用户数量阀型流量t/h执行机构入/出压力(barA)入/出温度('C)投入/交货时间工艺位置行业上海外高桥发电厂1VST-100BSE50E35/13350/2502002减温减压125VSG1-73E25/13402002水调节阀海南南山电厂2VLB-90BTC70E40/cond430/Sat2002旁路阀16MW联合循环机组2200VSGC-18017E 3.5/Cond140/sat2002旁路阀天津石化1DAO-205022P40529/3382002减温器O&G125VSG1-10 2.5P47/401042002O&G180VSG1-4020P44/422242002主给水O&G 云南景真糖厂1DA4-C58P5250/1452002O&G 海南洋埔电厂80MW联合循环1VLB-112BTC230P80/6540/1602003180VSG1-4060P15/64020031200VSGR-18047P7/42522003武汉青山热电厂1VLB-56RBT40E90/16535/3002003减温减压1VD-8R/37E160/161302003水调节阀东莞天明发电2VLB-90BTC70P39/6450/1702003250VSG1-2816P10/6402003CMEC-KUCHING2VLB-72BTC主汽90P88/5545/1582003双速2X50MW 旁路2VDA-18/4水调31P168/51582003双速250VSG2-28水隔35P1681582003隔离阀四川江油2X250MW联合循环旁路2VLB-72BTC主汽47E40/6450/1602003双速电动旁路2VD-12/2水调12E60/61332003双速电动旁路250VSG1-28水截止阀15E601332003电动抚顺石油一厂1150VSGC-112B60P38/10450/3002003减温减压O&G1VD-12/38P50/101042003水调节阀O&G 泸天化尿素改造1DAO2003减温器O&G 安庆电厂2X300MW2VLB-90BTC主汽311E175/38540/3252004双速电动旁路2VDA-25/4水调48E223/3817320042VLB-225BTC主汽360E35/6.6538/16320042100VSG1-56水调50E18/6352004彭城2x300MW2VLB-100BTC主汽360E167/36538/34620042VDA-25/4水调260/36E260/3617220042VS-28T水隔离阀60E26017220042VLB-225BTC主汽416E36/7538/16520042150VSG1-56水调阀157E30/7402004中宁2X300MW旁路2VLB-100BTC主汽334E167/40540/32620042VDA-25/4水调55E210/4018020042VS-28T水隔离阀55E21018020042VLB-225BTC主汽388E37/7540/17020042100VSG1-40调节阀113E29/73320042100VSG1-40隔离阀113E29332004最终用户数量阀型流量t/h执行机构入/出压力(barA)入/出温度('C)投入/交货时间工艺位置行业南京第二热电厂1112VST-112BSE180E95/10535/31020041VE-28R29E150/101502004南海石化2VLB-140BTC502P115/45510/4002004减温减压O&G2VLB-200BTC410P45/19420/3002004减温减压O&G2VLB-200BTC214P21/7300/2502004减温减压O&G 天津双港垃圾电厂1VLB-90BTC69P40/6400/16520041VD-12/314P68/61402004海南洋埔电厂80MW联合循环1VLB-112BTC主汽230P80/6540/1602004双速180VSG1-40水调60P15/6402004双速1200VSGR-180主汽47P7/42522004双速晨鸣纸业1100VSGT-90T主汽阀9.5P14/12316/1932004主汽O&G125VSG1-5 1.1P18/12932004水阀O&G1840LLP-350121P8/5290/1602004主汽O&G140VSG1-20R14P18/5922004水阀O&G180VSGT-50T 4.5P14/8316/1762004主汽O&G1VSG2L-6R0.5P18/8922004水阀O&G 玉门油田80万吨/年重油催化改置1VLB-90BTC P2004主汽O&G1VD-12R/2P2004水阀O&G 泸天化40万吨甲醇2VLB-72RBTC P2004主汽O&G2VD-8R2P2004水阀O&G 锦州石化1VDA-18R/3P2004水阀O&G1VFK-20P2004水阀O&G1VFK-20P2004水阀O&G1VFK-20P2004水阀O&G 独山子炼油厂1VST-56RBS P2004主汽O&G125VSG1-7P2004水阀O&G 辽宁电厂2x300MW 旁路2VLB-72BTC175E166/40546/3262005主汽2VE-2830E217/401782005水阀2VLB-180BTC-Z205E36/6538/1652005主汽250VSG1-2060E34/6332005水阀广州李坑垃圾电厂1VLB-90BTC100P62/1.2445/1042005主汽杭汽轮厂总承150VSG1-28R22P7/1.21252005水阀1VST-28SE MIN8P62/4.3445/1612005主汽125VSG1-10R2P8/4.31252005水阀哈尔滨电站工程公司2VLB-56BTC71P98/6540/1902005主汽2VD-12/321P150/61602005水阀2VSG2-2821P1501602005水阀辽河热电厂1VLB-90BTC170P116/47540/4102005主汽O&G1VSG2-14RC14P81/471402005水阀O&G 甘肃庆阳炼油厂1DAO-2025/25VSG150P41397/3282005减温器O&G125VSG17P50/40972005主给水O&G最终用户数量阀型流量t/h执行机构入/出压力(barA)入/出温度('C)投入/交货时间工艺位置行业新疆阿克苏华锦化肥厂1VLB-56RRBT60P113/40490/3902005主汽O&G1VD-8RR/33P116/401162005水阀O&G 新埔化学(泰兴)有限公司1VLB-90BTC120P88/37540/4262005主汽O&G1VD-10/310P143/371582005水阀O&G1VLB-72BTC75P88/13540/3132005主汽O&G1VD-12/313P143/131582005水阀O&G 东山百年电力200MW5#机高旁1VLB-90BTC200E127/27‘540/3182005双速主汽鞍钢第一发电厂2VLB-100BTC主汽220P98/32540/4202005主汽O&G2VD-12/318P144/321582005水阀O&G 淮北电厂三通水旁路阀1VHB3-125T700E2202602005水旁路1VHBS2-125T700E2202602005水旁路宁夏大坝电厂吹灰阀1VLB-56BTC20P36/19540/3502005汽阀1VD-8R/33P70/191702005水阀辽宁阜新电厂水调节阀225VSG2-14C14P178/1372492005水阀北京三热电厂减温减压阀1VLB-56RBTC40E101/11540/3102005汽阀1VD-8/36E156/111592005水阀蒸汽减温器1DA4-C35E 3.5310/1702005减温器1DA4-C40E10400/2302005减温器东海热电有限公司最小流量4VFA-50T SPEC150E178/101852005ON/OFF 式上海高桥石化炼油厂1VLB-90BTC50P35/10400/2502005汽阀O&G1VD-10R/36P50/101042005水阀O&G 哈尔滨减温器2MDAV2005减温器O&G 金川减温器6MDAV2005减温器O&G 邯郸,双鸭山减温器6MDAV2005减温器O&G 四川天华BDO1VLB-72BTC2005减温减压O&G 宁夏石化厂1VLR-90BTC2005减温减压O&G 阜新金山热电厂4X150MW4VLB-72BTC168E/H132/30540/3302006电液旁路4VLB-180BTC195E/H27/6540/1652006电液旁路南京第二热电厂1VLR-100BTC30E12.5/1.53002005汽阀上海高桥石化热电厂1VST-90BSE90E92/45540/44520061VD-8/36E150/4516020061VLB-56BTC60E92/22540/35020061VD-10/38E140/221502006北京高安屯垃圾电厂1VLB-100BTC 90P40/6400/19020061VD-12/216P70/61402006武汉钢铁公司1VLB-112BTC250P98/38540/4502006O&G1VD-12R/313P147/401582006O&G1VLB-72BTC120P98/13540/3202006O&G1VD-12R/317P147/131582006O&G最终用户数量阀型流量t/h执行机构入/出压力(barA)入/出温度('C)投入/交货时间工艺位置行业宁夏大坝电厂吹灰阀1VLB-56BTC20P37/19540/35020061VD-8R/33P70/191702006兖矿国泰化工公司1VLB-90BTC150P98/38540/4502006O&G1VD-10R/38P150/381582006O&G1VLB-56BTC80P98/12540/2002006O&G1VSG2-14C19P150/121582006O&G 海南富岛化工1DA4-D150P108513/4502006减温器O&G 延安炼油厂2DAO-2025+840H2-1354P40480/4202006减温器O&G2DAO-2830+840H1-20120P42380/3002006减温器O&G 燕山石化炼油厂1VLB-100BC80P36/11450/112006O&G1840H1-169P19/111022006O&G 神华宁煤集团21万吨/年二甲醚装置1VLB - 56RRBT36P100/25535/2302007O&G 江苏利士德化工有限公司二期改扩建工程苯乙烯装置1AB510030P44470/2722007减温器O&G PTTPE聚乙烯公司乙烯裂解装置(泰国)1AB560012040375/2562008减温器O&G 普光气田天然气净化厂2VLB-140BT120P40/5.5425/1802008减温减压器O&G 乌鲁木齐石化化肥厂125VSG1-10R P2008水阀天津石化100万吨乙烯1VLB-90RBT150P123/43540/4352008高/中压减温减压器O&G 热电厂2VLB-90BT25P126/13540/2802008高/低压减温减压器O&G1VLB-56BT8P126/13540/2802008锅炉启动O&G 天津石化100万吨乙烯1VLB-125BTC300P111/38510/3752008减温减压器O&G 乙烯装置1VLB-140BTC150P36/12375/2702008减温减压器O&G1VLB-250BTCS150P11/5270/2002008减温减压器O&G1DAM-2060/4705200/1562008减温器O&G1DAM 2060/3405200/1572008减温器O&G1VD-8R/3P2008水阀O&G 天津石化100万吨乙烯-UOP项目1DAM-4010/37321420/2222009上半年交货减温器O&G 天津石化100万吨乙烯-EOEG项目1DAM-2830/311117320/2052009上半年交货减温器O&G 天津石化100万吨乙烯-炼油厂公用工程1DAO-283011013370/2702009上半年交货减温器O&G 天津石化100万吨乙烯-炼油厂1VST-100TCSE45P36/11420/2702009下半年交货减温减压器O&G 天津大沽化工厂50万吨/年苯乙烯项目1VFK-100.7P43/12009下半年交货水阀O&G1VFK-100.7M43/12009下半年交货水阀O&G 镇海炼化100万吨乙烯1VLB-56RBT51P120/17535/3052008高/低压减温减压器O&G 热电厂1VLB-160BT186P45/17405/3052008中/低压减温减压器O&G2VLB-100BTC230P120/45535/4052008高/中压减温减压器O&G 镇海炼化100万吨乙烯1VLB-160BTC200P43/17385/2852009上半年交货减温减压器O&G 乙烯装置1VLB-112BTC110P43/17385/2852009上半年交货减温减压器O&G1VLB-180BTC110P17/5285/2002009上半年交货减温减压器O&G1DAM-2025/41005200/1552009上半年交货减温器O&G1DAM-2025/3405200/1552009上半年交货减温器O&G 镇海炼化100万吨乙烯裂解装置15AB57002009上半年交货减温器O&G最终用户数量阀型流量t/h执行机构入/出压力(barA)入/出温度('C)投入/交货时间工艺位置行业镇海炼化100万吨乙烯公用工程1VLB-112BTC212P114/43510/3902009上半年交货减温减压器O&G1VLB-90BTC111P114/43510/3902009上半年交货减温减压器O&G1VLB-90BTC46P43/17390/2852009上半年交货减温减压器O&G1VLB-125BTC93P43/17390/2852009上半年交货减温减压器O&G2VLB-125BTC56P17/5285/2002009上半年交货减温减压器O&G1VST-100BCSE80P45/8420/3002009下半年交货减温减压器O&G 镇海炼化100万吨乙烯-POSM 项目1DAM-2830/314544378/2652009下半年交货减温器O&G1DAM-2060/422021360/2352009下半年交货减温器O&G1DAM-2025/41154200/1552009下半年交货减温器O&G1DAM-2025/37522305/2352009下半年交货减温器O&G1DAM-2025/310423316/2352009下半年交货减温器O&G1DAM-2025/2205235/1662009下半年交货减温器O&G1DAM-2025/41125255/1662009下半年交货减温器O&G1DAM-2025/3264171/1552009下半年交货减温器O&G1DAM-2025/2204239/1552009下半年交货减温器O&G 大庆中兰石化苯乙烯2VLB-72BTC60P54/36450/4002008减温减压器O&G 热电厂2VLB-72BTC60P54/15450/2902008减温减压器O&G2VLB-72BTC40P54/26450/3602008减温减压器O&G1DA90-OP-102008减温器O&G2AB5100P2008减温器O&G 普光气田天然气净化厂41DAO - 20252008减温减压器O&G12MDAV - B2008减温器O&G2MDAV - A2008减温器O&G 烟台万华MDI2VLB-120BTC21P11/6410/1702008减温减压器O&G 辽河盘锦集团公司15万吨苯乙烯6AB56002008减温器O&G 神华天然气制氢项目1VLB-90BTC157P101/39420/3502008减温减压器O&G2DAO-20606 3.6350/2002008减温器O&G 神华829项目1VST-56RRBCSE30P93/63535/3502009上半年交货减温减压器O&G1DAO-2025409250/2002009上半年交货减温器O&G1DAO-28305037390/2802009上半年交货减温器O&G1MDAV-A615250/2002009上半年交货减温器O&G1MDAV-A0.615250/2002009上半年交货减温器O&G 神华包头煤制烯烃项目1VLB-160BTC200P42/18420/3002009下半年交货减温减压器O&G1VLB-112BTC100P42/18420/3002009下半年交货减温减压器O&G 鞍山钢铁集团热电厂2VST-125BCSE240P99/33540/4102008减温减压器O&G 武汉钢铁集团CCPP项目2VLB - 125BTC19P71/6483/1642009上半年交货减温减压器O&G 茂名石化热电厂1VLB-112BTC116P99/40540/4252008减温减压器O&G1VLB-100BTC178P99/10540/3052008减温减压器O&G 云南沾化50万吨合成氨项目1VST-20SE Mini5P96/42535/4102008减温减压器O&G2VLB-72BTC140P96/42535/4102008减温减压器O&G1VLB-90BTC167P96/43535/4352008减温减压器O&G1VLB-56BTC51P96/42535/4102008减温减压器O&G最终用户数量阀型流量t/h执行机构入/出压力(barA)入/出温度('C)投入/交货时间工艺位置行业1VD-8R/3P2008水阀O&G 天津大沽50万吨苯乙烯1DAM-2830/213743380/2622009上半年交货减温器O&G1DAM-4010/51555193/1622009上半年交货减温器O&G1DAO-20251211207/1922009上半年交货减温器O&G1DAO-2025143152/1422009上半年交货减温器O&G1VLR-125BTC171P43/53802009上半年交货减压阀O&G 辽河盘锦集团公司60万吨乙烯1VST-140TCSE323P106/42510/3852009上半年交货减温减压器O&G 乙烯装置1VST-225TCSE326P43/15420/2702009上半年交货减温减压器O&G1VST-140TCSE56P15/4280/1802009上半年交货减温减压器O&G1DAO-202510 4.5195/1542009上半年交货减温器O&G5DAM-2830/26612519/3242009上半年交货减温器O&G 建峰化工总厂日产1500吨合成氨项目1VLB-100BTC192P119/47509/3872009上半年交货减温减压器O&G1VLB-40RT9P46/4387/2002009上半年交货减温减压器O&G1VLB-28RT5P119/47509/3872009上半年交货减温减压器O&G1VLB-100BTC187P119/47509/3872009上半年交货减温减压器O&G1VLB-90BTC57P46/23387/3102009上半年交货减温减压器O&G1VLB-40T20P125/36515/3502009上半年交货减温减压器O&G 新疆独山子石化1VLB-90BTC120E89/14540/3002009下半年交货减温减压器O&G1DA90-OP-418014450/3502009下半年交货减温器O&G 河南煤化工集团鹤壁化工厂年产60万吨甲醇项目3VLRO-100T110P103/65402009下半年交货蒸汽放空O&G1VLRO-112T100P49/74202009下半年交货蒸汽放空O&G 山东三维石化公司1AB5600-8B-15064250/1502009下半年交货减温器O&G1MDAV-A941450/4202009下半年交货减温器O&G©CCI 20041PS573.02/4en608enVLBSteam conditioning valveApplicationsThe BTG valve type VLB has been designed as a steam conditioning valve for high pressure and/or low pressure net with integrated cooling function , or as a process valve.The K v /C v -value of the valve depends on the pressure ratio p 1/p 2 and must – for each valve – be calculated in the valve sizing program, where all throttling points in the valve are taken into consideration. Certified dimensional drawing will be supplied by CCI.Main applications – high pressure system•Pressure control/turbine bypass.•Controlled pressure build-up in the boiler.•Protection against exceeding the design pressure. Note! For safety open function, the VLBO-valve should be used.Main applications – low pressure system•Controlled pressure build-up in the reheater.•Pressure control/bypass of the intermediate and low pressure section of the turbine. This will assist in avoiding release of the safety valves, and consequently helps to prevent large condensate losses.•Protection of the condenser in case of disturbances.Fig 1 Turbine bypass valve type VLBMain applications – process industry•Controlled pressure and temperature in steam pipes to the process – in parallel with the back pressure turbine.•Fast take-over of the whole steam flow to process when the turbine stops/trips.•Provides the process with steam flow during start-up of the turbine.•Suitable with large quantities of cooling water.z Allows controlled start-up and shut-down of different loops in the power plant with a mini-mum of heat losseszHandles abnormal conditions such as load rejection, turbine, pump or fan trips etc. – in a manner to return the system to normal opera-tion with minimum delayz Keeps the steam in balance with load require-ments in e.g. process industrieszCustomized for each specific applicationPS573.02/4en 2©CCI 2004608enDesignRequirementsDuring normal operation of the steam generating unit, the bypass valves shall remain closed. On a turbine trip or load rejection, they must open quickly, resulting in very fast heat-up of the valve body and corresponding high thermal stresses. The temperature difference between steam and spraywater can often be as high as 450°C (840°F), a potential source for thermal fatigue problems.An important demand is that the valve body must be shaped for minimum thermal stress. The spraywater atomization must be good over the entire range of operation, and the spraywater must not hit heavy metal walls or other compo-nents sensitive to thermal shock. Normally only upstream pipe preheating is needed, but for severe operating conditions with large temperature variations, we recommend continuous preheating of the valve inlet side.DesignThe BTG bypass valves type VLB have been furnished with a valve body designed to withstand rapid temperaturechanges. The body shape is of a ”smooth” design with a con-stant material thickness. All valve body penetrations are cir-cular to prevent asymmetrical stress patterns.Material A182 F12 C1.2. Inside parts made of A-182 F91.VLB type valves are combined pressure reducing valves with cooling system. The steam flow passes trough the extended drilled bonnet before becomes throttled trough a cage type plug with multiple drilled holes, which provide optimum characteristics for control of the steam pressure.The extended bonnet prevents possible rotation forces occurred by the steam flow and works also as an extra pressure reducing stage to achieve lower vibrations and . Additionally the extended bonnet works also as a strainer to protect the valve seat and bonnet from damages.The plug slides in a hard-faced seat body, thus uncovering a greater or smaller number of the throttling holes. In its closed position the plug seats on the hard-faced seat. The facing is made of a tough material with excellent sealing properties and good resistance against corrosion, erosion and thermal fatigue. All internal parts of the valve can be removed with-out the valve having to be dismantled from the pipe. The seat body is designed for field replacement.The plug connects to its actuator via a straight stem. Plug and stem are made of heat and corrosion resistant material, hard-ened in a unique process. The stem is sealed with a conven-tional stuffing box.The pressure reduction continues in the outlet that is fur-nished with pressure reducing steps. The spraywater isinjected into the steam where steam velocity and turbulence are at their highest, which gives quick and efficient cooling. The number and design of the atomizing nozzles on the low pressure section of the valve are determined by the cooling demand for the current installation. The cooling of the steam requires very finely atomized cooling water, which isachieved by multiple spray nozzles. This concept allows theuse of condensate from the condenser branched off down-stream of the condensate pump. To obtain good temperature control it may be advisable to operate the nozzles in split-range.Noise abatementVLB-valves are equipped with features to avoid supersonic velocities in the final pressure reducing step. This is of impor-tance as supersonic velocities may cause shock cells, possible sources of noise and vibration. The valve outlet is therefore furnished with a multitube perforated diffuser package. By this the number of expansion stages is increased, and simul-taneously the steam flow is broken up into a great number of partial fluid jets. This helps the rapid dissipation of kinetic energy in the steam, and results in a substantially reduced emission of noise and vibration.As a special customer service, CCI can on request supply noise level predictions for each valve supplied, and make spe-cific recommendations regarding insulation, installation etc.Valve configurationsVLB-BTCBalanced, tight design. Selected when leakage tightness according to ANSI B16.104. class V is required and pneumatic actuators preferred. Excellent selection also together with hydraulic and electric actuators. The pilot plug design makes it possible to reduce the actuating force and in same time reach a leakage tightness class V . See fig 1VLB-TCUnbalanced, tight design. Selected mostly together with hydraulic actuators. Leakage tightness according to ANSI B16.104 class V . See fig 2VLB-BCBalanced design. Selected together with pneu-matic, hydraulic or electric actuators where the leakage tightness according to ANSI B16.104 class III or IV is acceptable. See fig 3Valve designation guideType of valve Plug diameter BalancedType of plug Extended bonnet,strainer VLB-72BTCFig 2 Example of modified linear valve characteris-tics which is standard; other plug characteris-tics on requestvalve stroke100% K V (C V )15%5%©CCI 20043PS573.02/4en 608enConfigurationsFig 3 Valve type VLB-BTCFig 4 VLB-TCFig 5 VLB-BCCCI reserves the right to make technical improvements.For sales contacts, please refer toPS573.02/4en 4 © CCI 2004608enFig 7 Typical installation of steam conditioning valvetype VLB in a power station Example:Combined cycle, triple pressure.Fig 8 Typical installation of steam conditioningvalve type VLB in the process industry Example:Combined cycle.This sheet covers general information only. For detailed technical specifications we refer you to the outprint from the valve calculation program BIS-CV, that you will receive with our quotation.。
CCI KK 用户手册
![CCI KK 用户手册](https://img.taocdn.com/s3/m/9a3954a043323968001c9264.png)
指导手册AB300型控制阀AB300型阀指导手册索引编号. 目录页1. 控制阀的安装 (1)1.1 与安装有关的一般注意事项 (1)1.2 阀的安装(焊接到管路上) (1)1.3 管路的清洗 (1)2. 阀体的检修 (2)2.1 阀体与阀帽的拆卸 (2)2.2 阀帽的检修过程 (2)2.3 阀帽的安装过程 (2)3. 内部阀的检查过程 (3)4. 内阀的检测与维护过程 (3)4.1 内阀间隙的控制 (3)5. 安装内阀的过程 (4)5.1 压盖填料的安装过程 (4)6. 排除故障的措施 (5)7. 控制阀的操作 (6)1. 控制阀的安装在安装之前,请通读本安装手册。
1.1 与安装有关的一般注意事项(1) 安装阀的管路应该足够大,足以承受阀中产生的较高的压力损耗。
(2) 阀应垂直朝上安装,且应在阀的入口和出口处加以支撑,以承受阀和管路的重量。
(3) 不要固定执行机构如隔膜片、盖等。
(4) 在将阀安装到管路上之前,首先应通过阀体上雕刻的印记或铸造印记确定液体流动方向,然后才将阀安装到管路上。
1.2 阀的安装(焊接到管路上)就焊接热或焊后热处理而言,在实施这种作业时应该注意下列事项。
·如果要进行焊后热处理作业,则只在阀体的入口和出口处使用隔热材料,而不要对整个阀体进行隔热。
1.3 管路的清洗(1) 内阀的阀塞和阀笼之间的间隙是很小的,所以阀中夹杂非常小的杂质都会引发故障。
因此,应仔细清洗管道。
(2) 由于阀体的底部是空的,因此杂质容易聚集于此。
应充分地冲洗管道。
(3) 冲洗一般在阀完全打开的情况下进行,然而,最好的清洗方法是在卸下内阀后再进行清洗。
如果在卸下内阀后再进行清洗,则应遵循以下措施。
要非常小心地进行这种作业,不要损坏阀笼和阀体之间的接触面。
2. 阀体的检修2.1 阀体与阀帽的拆卸(1) 在拆卸阀帽之前,应先拆卸掉固定压盖填料的螺母。
同时,还应拆卸掉密封压盖随动件以及填料函。
(2) 用填料夹具将压盖填料拆下。
给水泵最小流量阀自动控制方案(蔺伟)
![给水泵最小流量阀自动控制方案(蔺伟)](https://img.taocdn.com/s3/m/9271c292f121dd36a32d8287.png)
四. 改进的控制方法
• 控制的基本原则 由于再循环阀的波动直接会影响给水泵出口流 量,所以对于大型机组,再循环阀控制的目的 不仅要保证给水泵进口流量大于给水泵要求的 最小流量,而且要考虑再循环阀的调节对出口 流量的影响最小。在流量发生波动时必须防止 调节阀振荡回调而恶化出口流量。
单一曲线函数增大死区控制方法
给水泵最小流量阀控制方法及应用
一.给水泵最小流量阀的作用
• 当给水泵低于最小流量运行时,通过再循 环系统增加给水泵的入口给水流量,保证 给水泵的安全运行。 • 当给水泵流量大于最小流量并有一定余量 时,关闭再循环阀,以提高经济性 。
除氧器 再循环后 手动阀 再循环阀 再循环前 手动阀 前置泵 入口门 前置泵 流量孔板 给水泵 给水泵 出口门 图1 给水泵再循环系统
三.再循环阀控制方法
• 开关式控制。 • 连续式控制 。
常规的再循环阀连续控制方法 •PID控制 •单一曲线函数控制
PID调节控制
给最小流量 FT 给最小流量设定 SP
K
S
I
I
A
T
ZT 图3 最小流量阀PID调节逻辑图
PID调节控制缺点 • 再循环阀的阀位容易随着流量信号的波动而 振荡,严重时会造成总给水流量控制失衡, 影响机组正常运行。
谢
谢!
单一曲线函数控制
最小流量阀开度指令/% 100
F(x)
0 图4
210 390 -1 给水泵入口流量/t∙h 单一函数F(x)设置
单一曲线函数控制缺点
• 采用该控制方法在机组运行过程中阀门动作 频繁,幅度较大,在阀门的开关瞬间会引起 给水流量的大幅波动,而流量的波动又影响 阀门的动作,既不利于给水泵的安全经济运 行,也会使整个给水系统震荡。
CCI阀门操作手册
![CCI阀门操作手册](https://img.taocdn.com/s3/m/5fcba852a6c30c2258019e2c.png)
阀门尺寸图中显示了允许的管段模具指标。
若因某种原因,管道的管段模具指标比阀门喷嘴高,必须通知我们出现的外力和力矩。 我们将根据这些指标检查阀体。若结果不可接受,应将重新调整管道系统。
5
对于阀门,我们建议在阀门上面和四周留有足够的空间以便于
拆卸
两个管绝不能连接成T-接头,防止对流(例如180°角)
阀门出口和接点之间的管长度必须不同。可避免导致回声。
4
温度测量点应尽量远离阀门,最小距离为4米。测量点不能离出口管接头和冷再加热器管太近,必须保证,当阀门关闭时,测量点的温度应比冷再热管的温度低(设置值)。
必须小心布置温度测量点,不要接触到水(阀门下游肘处的凝结水或水积聚,或未蒸发、离心的个别水)。
高旁阀紧紧固定在座上,因此上游不再需要隔离阀。若仍然装配了一个隔离阀(例如为了维护)必须保证高旁阀适当预热,并为运转做好准备(为运转做准备,隔离阀必须全开)。对具备安全功能的高旁阀(例如,所有TRD421)不允许有上游隔离阀。
入口管必须确保凝结水能流回流通蒸汽管,从而避免由于凝结水的形成导致的热震动。必须避免能出现水袋的管段。若做不到,管段必须装备具备充分能力和压差的恒动作排水设施。
瑞士,温特图尔,邮箱.Im Link 11.CH–8404,CCI
电话0041 52 26497 08.电传0041 52 264 97 10
第1章:使用说明
第2章:安装说明
第3章:主要部件说明
第4章:电子、电动-液压设备
第5章:通用维护说明
第6章:通用安装说明
第7章:拆卸与组装
第7章:液压油站
第8章:电子设备
6
在伺服阀和液压泵之间的泄露管中不允许有静态压力,否则会加重伺服阀的压力。
CV最小流量阀
![CV最小流量阀](https://img.taocdn.com/s3/m/80bb800be87101f69f31950f.png)
全开状态
阀芯行程演示
Team work for Technical Excellence 集体智慧创造完美科技
多级HUSH与双阀塞软阀座配合
多级HUSH实现逐级 降压减噪:噪声 <85dB 双阀塞双阀座
内阀塞和金属阀座: 关断流体 外阀塞和软阀座:实 现常期运行的零泄漏
Team work for Technical Excellence 集体智慧创造完美科技
给水泵再循环阀的运行工况
压差大
– 给水泵出口压力:约300 多公斤 – 除氧器或凝汽器热井 压 力几公斤 – 可能是电厂热力系统中 压差最大的地方
常关阀
– 90%以上的时间处于关闭 状态
必须能满足系统要求
– 适应锅炉负荷要求 – 适应给水泵保护要求
Team work for Technical Excellence 集体智慧创造完美科技
最小流量阀必须克服问题
大压差导致的恶劣工况 – 闪蒸/Flashing – 汽蚀/Cavitation 常关阀门长期零泄漏的 要求
Team work for Technical Excellence 集体智慧创造完美科技
闪蒸-Flashing
闪蒸的发生
– 给水压力迅速降到饱和压力 以下,导致大量气泡产生, 在阀门中形成气液两相流
双阀塞双阀座实现长期安全的零泄漏
Team work for Technical Excellence 集体智慧创造完美科技
消除汽蚀和 闪蒸的完美 之作—— HUSH 套筒
Team work for Technical Excellence 集体智慧创造完美科技
CCI840系列常规调节阀
![CCI840系列常规调节阀](https://img.taocdn.com/s3/m/cb8c8c1d10a6f524ccbf8569.png)
4
附件 可根据用户需 要定制
故障模式 标 准 模式为失气关 可选失气开 可提供薄膜式、活塞 式气动执行机构; 电动和液动执行机构
快速更换阀芯设计 所有内部组件易于更换 无任何焊接,螺钉连接
840系列调节阀特性
多弹簧设计 多弹簧设计 使得滞后和死区非常小
气动薄膜执行机构
成熟的阀芯设计
0.1
0.1
0.1
0.4
5/32 0.2
0.2
0.2
0.2
1/4 0.8
0.8
0.8
0.8
3/8
3.0
3.0
3.0
3.0
3.0
3.0
1
1/2 5.2
5.2
5.2
5.2
5.2
5.2
0.8
5/8 7.0
7.0
7.0
7.0
7.0
7.0
3/4
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
9.0
Single P-port, multistep, V-notch type cage
CCI Control Valves for General Applications
阀门性能特性曲线 (% Cv vs. % 行程) 可按用户要求定制,可调范围很宽
线性 修正等百分比 等百分比
ANSI Class
ANSI Class
(Inches)
#150~300
#400~600
#900~1500 #150~300
#400~600 #900~1500
Body Size
最小流量阀——精选推荐
![最小流量阀——精选推荐](https://img.taocdn.com/s3/m/a79f134676232f60ddccda38376baf1ffd4fe35f.png)
最小流量阀一、概述最小流量阀又称锅炉给水泵再循环阀。
在电厂它安装在给水泵出口处,连接至除氧器。
锅炉给水泵把水从除氧器里吸出送往锅炉。
为防止给水泵过热以及防止产生汽蚀,给水泵的流量在任何情况下都必须不小于某一个规定的安全流量,也就是最小流量。
当锅炉给水需要流量很小时,比如汽机跳闸时,需及时打开最小流量阀,把一部分高压水由泵出口处回流到除氧器,以保证给水泵的安全运行。
该阀所在的系统称为再循环系统。
二、最小流量阀的运行工况该阀在正常情况下是关闭的,在汽机跳闸时需要自动打开。
它需要按系统要求调节流量。
该阀的运行参数为:阀前:压力17.5~38.7Mpa 温度141~232℃ 阀后:压力0~0.07MPa 温度41~109℃这就意味着该阀必须承受高压差,防止汽蚀,降低冲刷和噪音,实际工况十分恶劣。
三、性能杰出的专利产品 为了适应这种恶劣工况,苏州德兰能源科技有限公司开发了自主的专利产品。
该阀采用循环对流原理,加工环形沟槽盘片并用盘片叠加成套筒式节流套作为阀门内件,有效降低流体压力,控制流体速度,避免了汽蚀和冲刷,降低了噪音,延长了阀门的使用寿命,是专门适用于再循环系统的特殊阀门。
四、经过实践检验的理想产品该阀于2004年获得国家发明专利,经数年来十多家用户的使用,获得了满意的效果,深得用户好评,是目前最小流量阀产品中的理想产品。
苏州德兰能源科技有限公司。
联系电话联系电话::*************,传真传真::*************。
吴先生189****5893地址地址::苏州市相城区澄阳路60号脱颖科技创业园号脱颖科技创业园。
网址网址::最小流量循环阀是发电厂锅炉给水泵配套的关键设备,由于此阀门应用于极端恶劣的环境下,阀门会产生严重汽蚀和冲刷而产生损坏,亦会产生很大的噪音和振动,是长期以来困扰全世界阀门专家的难题。
如图1。
图1:图2:我公司资深阀门专家,史道兴高级工程师经过多年潜心研究,发明了环流式最小流量循环阀,一举攻克了最小流量阀长期存在的汽蚀严重,漏流量大,噪音超标,寿命短等诸多问题,为电厂锅炉给水泵的安全运行提供了可靠保证。
CCI 迷宫阀 CCI 调节阀
![CCI 迷宫阀 CCI 调节阀](https://img.taocdn.com/s3/m/6b9dc610866fb84ae45c8dea.png)
[Import Tax] ($k)
[VAT]($k)
addinational TAXs ($k)
[onsite service & training]($k)
[payment risk] ($k)
Total Mark Agent Net Agent Net Ups ($k) Mark-up ($k) Mark-up (%)
Downstream diffusers
• 噪音隔离
Acoustic lagging
• 消音器
Silencers
• 围住阀门
Housing around valve
• 附加的管道结构支撑
Added piping structural support
• 持续维修
Continuous repair
© 2006. CCI – Control Components Inc. All rights reserved.
Trading company Shandong Fenghui Logistics Trade Co. Ltd H&H Engineering Limited Shanghai C&D CO.,LTD. 中文名称
Sunergy Technology Co., Ltd.
Chokeflo Controls Ltd. Shanghai Resup E.M.E Co., Ltd BSI(H.K) HOLDING LTD
Compressor anti-surge
• 工艺气体降压 Process gas depressurizing • 工艺气体放空/燃料气放火炬 Gas to vent / flare • 自备电厂用阀门 Auxiliary power unit valves • 高压差(△P>80Bar) HP Application
CCI K.K. 用户手册
![CCI K.K. 用户手册](https://img.taocdn.com/s3/m/2c4c8df319e8b8f67c1cb9e7.png)
指导手册AB300型控制阀AB300型阀指导手册索引编号. 目录页1. 控制阀的安装 (1)1.1 与安装有关的一般注意事项 (1)1.2 阀的安装(焊接到管路上) (1)1.3 管路的清洗 (1)2. 阀体的检修 (2)2.1 阀体与阀帽的拆卸 (2)2.2 阀帽的检修过程 (2)2.3 阀帽的安装过程 (2)3. 内部阀的检查过程 (3)4. 内阀的检测与维护过程 (3)4.1 内阀间隙的控制 (3)5. 安装内阀的过程 (4)5.1 压盖填料的安装过程 (4)6. 排除故障的措施 (5)7. 控制阀的操作 (6)1. 控制阀的安装在安装之前,请通读本安装手册。
1.1 与安装有关的一般注意事项(1) 安装阀的管路应该足够大,足以承受阀中产生的较高的压力损耗。
(2) 阀应垂直朝上安装,且应在阀的入口和出口处加以支撑,以承受阀和管路的重量。
(3) 不要固定执行机构如隔膜片、盖等。
(4) 在将阀安装到管路上之前,首先应通过阀体上雕刻的印记或铸造印记确定液体流动方向,然后才将阀安装到管路上。
1.2 阀的安装(焊接到管路上)就焊接热或焊后热处理而言,在实施这种作业时应该注意下列事项。
·如果要进行焊后热处理作业,则只在阀体的入口和出口处使用隔热材料,而不要对整个阀体进行隔热。
1.3 管路的清洗(1) 内阀的阀塞和阀笼之间的间隙是很小的,所以阀中夹杂非常小的杂质都会引发故障。
因此,应仔细清洗管道。
(2) 由于阀体的底部是空的,因此杂质容易聚集于此。
应充分地冲洗管道。
(3) 冲洗一般在阀完全打开的情况下进行,然而,最好的清洗方法是在卸下内阀后再进行清洗。
如果在卸下内阀后再进行清洗,则应遵循以下措施。
要非常小心地进行这种作业,不要损坏阀笼和阀体之间的接触面。
2. 阀体的检修2.1 阀体与阀帽的拆卸(1) 在拆卸阀帽之前,应先拆卸掉固定压盖填料的螺母。
同时,还应拆卸掉密封压盖随动件以及填料函。
(2) 用填料夹具将压盖填料拆下。
CCI放空调节阀教材
![CCI放空调节阀教材](https://img.taocdn.com/s3/m/6627023d0722192e4536f64e.png)
CCI放空调节阀1、概述1.1描述克拉作业区中央处理厂PV-22103~22603,型号为DRAG-100D-8”气动活塞执行机构6只;PV-2101/PV-2115型号为DRAG-100D-12”/16”气动活塞执行机构 2 只。
DRAG-100D 定制的严峻工况运行控制阀,以迫使过程流体经若干直角转弯的曲折流道通过阀芯(独立多流道多级减压)的方式,抑制住了具有破坏性的流速问题,克服了噪音、冲蚀、汽化、闪蒸以及振动等。
1.2放空调节阀工艺要求:限制由于高流量下高压差所引起的噪音和振动;可将噪音限制在95dBA 以下;严密关断保证最小的泄漏,泄漏等级可达到严密切断阀Class V 标准。
在系统启动时帮助建立可靠的气体流动;在系统关闭、改变运行条件或系统升压时,防止超压,快速行程调节保护系统的安全运行,全行程调节时间小于8 秒;阀芯出口动能小于480kpa 满足ISA Guideline 要求;由于采用DRAG盘片叠加设计和长行程可获得非常高的可调比和调节精度;由于采用速率控制设计技术可提高调节阀运行的可靠性迷宫式阀芯设计在以下方面具有明显的优点:(1)流动路径DRAG迷宫阀芯的整齐设计,其盘片流道采用EDM(放电加工)技术,流道表明光滑,无毛刺,使流体流动路径是连续的和清晰的。
因此为多种流动工况提供了很好的控制。
利用降低阀芯出口动能的概念,减少阀芯的损坏,阀芯盘片降压级可以按照特定工况及用户需求定制。
盘片间采用高温烧结,防止内部盘片腐蚀。
(2)压力下降DRAG专利设计,压力下降是通过盘片上的多个直角转弯级而逐渐降低的,压降值逐渐被DRAG 阀芯堆叠组件所吸收。
可以有效防止流体在通过阀门阀芯的可能形成的噪音、闪蒸、气蚀、振动等。
(3)阀座设计DRAG阀座设计是快速更换类型–没有任何组件是通过螺丝或着焊接连接到阀内件上。
这明显地减少阀芯/阀座更换的问题,使维护变得更加容易,而且,这样的设计,也减少了潜在的维护费用。
CCI放空调节阀教材
![CCI放空调节阀教材](https://img.taocdn.com/s3/m/6627023d0722192e4536f64e.png)
CCI放空调节阀1、概述1.1描述克拉作业区中央处理厂PV-22103~22603,型号为DRAG-100D-8”气动活塞执行机构6只;PV-2101/PV-2115型号为DRAG-100D-12”/16”气动活塞执行机构 2 只。
DRAG-100D 定制的严峻工况运行控制阀,以迫使过程流体经若干直角转弯的曲折流道通过阀芯(独立多流道多级减压)的方式,抑制住了具有破坏性的流速问题,克服了噪音、冲蚀、汽化、闪蒸以及振动等。
1.2放空调节阀工艺要求:限制由于高流量下高压差所引起的噪音和振动;可将噪音限制在95dBA 以下;严密关断保证最小的泄漏,泄漏等级可达到严密切断阀Class V 标准。
在系统启动时帮助建立可靠的气体流动;在系统关闭、改变运行条件或系统升压时,防止超压,快速行程调节保护系统的安全运行,全行程调节时间小于8 秒;阀芯出口动能小于480kpa 满足ISA Guideline 要求;由于采用DRAG盘片叠加设计和长行程可获得非常高的可调比和调节精度;由于采用速率控制设计技术可提高调节阀运行的可靠性迷宫式阀芯设计在以下方面具有明显的优点:(1)流动路径DRAG迷宫阀芯的整齐设计,其盘片流道采用EDM(放电加工)技术,流道表明光滑,无毛刺,使流体流动路径是连续的和清晰的。
因此为多种流动工况提供了很好的控制。
利用降低阀芯出口动能的概念,减少阀芯的损坏,阀芯盘片降压级可以按照特定工况及用户需求定制。
盘片间采用高温烧结,防止内部盘片腐蚀。
(2)压力下降DRAG专利设计,压力下降是通过盘片上的多个直角转弯级而逐渐降低的,压降值逐渐被DRAG 阀芯堆叠组件所吸收。
可以有效防止流体在通过阀门阀芯的可能形成的噪音、闪蒸、气蚀、振动等。
(3)阀座设计DRAG阀座设计是快速更换类型–没有任何组件是通过螺丝或着焊接连接到阀内件上。
这明显地减少阀芯/阀座更换的问题,使维护变得更加容易,而且,这样的设计,也减少了潜在的维护费用。
CCI 阀门手册2
![CCI 阀门手册2](https://img.taocdn.com/s3/m/b603741cfc4ffe473368ab69.png)
反应正常。参考第 14 项
执行器泄漏 执行器密封泄漏
22 参考第 17 项
行程过慢 执行器供汽压力有问题
23 参考第 4 项
盘根法兰力矩不正确
24 参考第 1 项
控制元件调设不对或有故障 25 参考第 18 项
过大的过调量 执行器供汽压力有问题
26 参考第 4 项
或振荡
定位器刻度不准确
27 参考第 5 项
42
图 6.1 阀塞、阀座及阀杆表面的损伤
43
图 6.2 阀芯表面损伤
44
6-5 修理步骤 CCI 阀门及气动执行器不需要特殊的维修。CCI 阀门保养不需要特殊工具。关于 阀门的解体、组装、提升步骤、及阀芯调正步骤,见第Ⅳ。在第Ⅳ节中列出了所 需工具。 注意 如果水平安装阀门则有特殊工具要求。 以下的修理步骤针对阀门及气动执行器部件。如果部件不能按此步骤修复则需更 换。如果安装的是电动或液压执行器请参考第Ⅴ和第Ⅶ节。 a. 解体阀门,参考第Ⅳ节。 b. 加深螺纹深度。 c. 用 400GRIT 砂布清除密封面的毛面及锈迹。 注意 过多的磨切会加大阀笼口径并盖变控制的特性。 d. 如果阀笼内径有擦伤,必须用自动磨切装置磨切。只有当突出的颗粒可以磨掉 时才能磨切阀笼内径。 e. 如果阀塞的加硬表面材料有凹痕、擦伤或老化,更换阀塞。 f. 按 6-7 及 6-8 节,清洁所有修复的部件。 g. 重新组装阀门,具体步骤按第Ⅳ节要求。 h. 重新组装的阀门不要求特殊测试。为保证运行正常,阀门应开关数次。详细要 求见第Ⅳ部分。 i. 安装、调试阀门执行器及控制系统应由 CCI 技术人员完成。关于执行器和控制 系统请参考第Ⅴ和第Ⅶ部分。 j. 保养及维修应有完整记录。CCI 提供了一供安装及维修记录表(见表 6-2)。
CCI调节阀样本中文
![CCI调节阀样本中文](https://img.taocdn.com/s3/m/ab09c0649b6648d7c1c746dc.png)
■ 高性能 ■ 动态响应 ■ 高速度 ■ 低死区,滞后
面积 50 113 200 313 400
行程 6” -12” -18” -24” -24”
产品摘要:阀门辅件
13
定位器
空气ห้องสมุดไป่ตู้作部件
电-气定位器(E/P)
输入:420mA 直流,交流低于 24V 附件:Exdm Ⅱ B(c)T6
Control Valve for General Application
2
CCI 的 840G/840H 系列调节阀拥有优良的控制性能和高可靠性
840 系列笼式调节阀采用了当前非常专业和先进的技术,广 泛应用于高压差下的较为清洁的流体和气体环境。调节阀适 合于水蒸气、流体和气体多种介质,阀芯成流开或流关两种 形式。其中流关适合于流体,流开适合于水蒸气和气体。
–30C ~300C
–196C ~230C
–196C ~565C
泄露 等级 Ⅵ Ⅳ,Ⅴ Ⅵ Ⅳ,Ⅴ
840 系列调节阀的分类 一级
阀体
840
球形
860
角形
830
三通
800
切断球形
二级
阀芯
G
笼式
H
钻孔套筒
T
三通(分流、合流)
D
标准的 DRAG
TBS
到
CCI Control Valves for General Applications
附件 多种规格适用
于不同需要
故障方式 标准类型是气关式, 也可以选择气开式, 也适用于膜片式,活 塞,液动及电动执行 机构
易改变的阀芯 所有阀内组件便 于检查和更换
多弹簧 多弹簧的设计提供了 非常小的滞后和死区
仪表规格书 微小流量调节阀规格书
![仪表规格书 微小流量调节阀规格书](https://img.taocdn.com/s3/m/fb77e3f6aeaad1f346933fb9.png)
Model / Manufacturer
33 弹簧范围/作用
Spring Range / Action
34 气/电源故障时阀门位置Air Fail Position
FC
FC
35 气动连接/手轮和位置 Air Conn./Handle Post
36 型式/型号
Type / Model
智能定位器
SVI2 AP
硬密封 气动薄膜执行机构
FC
FC
智能定位器
SVI2 AP
4-20mADC+HART 0.02~0.1MPa
正作用
1/2"NPT(F) IP65 带
厂家标准 Exia Ⅱ CT4
230-FN-4001-7D
1
IP65
Ex d ⅡCT4
24V DC
1/2〃NPT(F)
定位器
Positioner
电磁阀
Sol.valve
Line Sched./Mat. Line Size / Quantity Fluid Name / State
6G73
316SS
1E21
A106-B
1/8" 改良剂注入
1 气体
3/4" 氮气
1 气体
最大(Max) 正常(Nor) 最小(Min) 最大(Max) 正常(Nor) 最小(Min)
Operation
0.033 2.98 2.41 30
0.032 2.98 2.065 -22.2
0.018 1
15 3.241 2.586 55 3.792 37 28 1.46
11.1 3.281 2.344 40
0.5 3.315 2.138 20
小流量阀资料
![小流量阀资料](https://img.taocdn.com/s3/m/bc30363f43323968011c92d0.png)
最小流量阀在电厂的应用最小流量循环阀(主要用于启动、备用的功能)最小流量循环阀是发电厂锅炉给水泵配套的关键设备,由于此阀门应用于极端恶劣的环境下,阀门会产生严重汽蚀和冲刷而产生损坏,亦会产生很大的噪音和振动,是长期以来困扰全世界阀门专家的难题。
最小流量阀又称锅炉给水泵再循环阀,在电厂它安装在给水泵的出口处,连接除氧器。
锅炉给水泵把水从除氧器里吸出送往锅炉。
为了防止给水泵过热以及防止产生汽蚀,给水泵的流量在任何情况下都必须不小于某一规定的安全流量,也就是最小流量。
当锅炉给水需要的流量很小时,比如汽机跳闸时,需要及时打开最小流量阀,把一部分高压水由泵出口处回流到除氧器,以保证给水泵的安全运行。
该阀所在的系统称为再循环系统。
最小流量阀的运行工况:该阀在正常情况下是关闭的,在汽机跳闸时需要自动打开。
它需要按系统要求调解流量。
该阀运行的参数如下:阀前:压力17.5-38.7MPa 温度:141-232度阀后:压力 0-0.07MPa 温度:41-109度因为调节阀而造成电厂生产能力降低的泄漏问题,在一些电厂中仍然存在,这一问题曾长期困扰世界电力工业界,有些电厂由此损失高达10%的发电能力。
比较典型的例子是锅炉给水泵最小流量阀,这种阀门需要在约95%的运行时间内承受高达5000psig(350Kg.f/cm)的压差。
一旦产生泄漏,其损失将非常可观。
美国DeZURIKCopes-Vulcan公司独创的非金属阀座HUSH组合结构最终解决了在恶劣工况下运行的阀门的泄漏问题。
其结构设计即经济又合理,不仅解决了大压差下调节阀的泄漏问题,提高了电厂的生产效益,同时也降低了调节阀的维修成本。
这种阀门的特点是采用双阀塞双阀座结构,主阀塞与非金属阀座之间配合,功能是保证阀门在使用期间的零泄漏,内阀塞与金属阀座配合,功能为节流及保护非金属阀座。
另外,这种阀芯结构与DeZURIKCopes-Vulcan公司的HUSH套筒结构相组合,又消除了气蚀对阀芯所产生的破坏作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
INTRODUCTIONIn a power plant the boiler water is circulated in a closed loop by a feedpump driven either by an electrical motor or a steam turbine.The pump takes the water from the deaerator or high pressure heaters and boosts the pressure as high as 5500 psi (387kg/cmz) in supercritical, once-thru boilers. These pumps require a certain mini-mum amount of flow to avoid overheating and cavitation problems.In order to protect the pump when the boiler feed flow require-ment is less than the minimum permissible flow through the feed-pump, a recirculation system is used to return a portion of the high pressure flow back to the condenser or deaerator and from there to the pump. See Figure 1 for a system schematic.Figure 1 - Schematic of typical once-thru,universal pressure, steam-generating plant,showing location of boiler feedpump recircu-lation valve.DEAERATORSUPERHEATERECONOMIZER-P TURBINEL-P TURBINECONDENSERHEATER PUMP9w;g;TERCCI DRAG@ valve of globeconfiguration is shown located near pump discharge with flow to deaerator. An angle CCI DRAG valve is also available, should piping configuration dictate. System s dis-charging to the condenser normally use angle valves.Figure 3 - Actuator control schematicshown is for 3-15 psi modulation signal, with increasing signal tending to close valve.The actuator is fitted with a spring for fail open on loss of air signal. A snap-acting relay is provided to ensure the valve is seated at maximum signal. Th e snap-acting relay is set as shown so the valve modulates between 10% and 100% open.SIGNAL INLET HIGH SELECTOR RELAYPOSITIONERSNAP ACTING RELAY (10% OFF SEAT)REGULATORSETSUPPLY INLET80 PSI MIN / 150 PSI MAXVACTUATOR (FAIL OPEN)rI tem 11819202122232425262728b 293oc 31Description Material/ComponentBodySeat Ring Gasket Seat Ring Disk Stack Guide Bushing Balance Seal Plug Assembly Bonnet/Pressure Bleed Metal Seal Bonnet Flange Bonnet Stud Bonnet Nut Packing Spacer PackingPacking Follower Actuator YokePositioner, Pneumatic Limit Switches (not shown)Packing Stud Yoke Clamp Packing Flange Stem Connector Stem Connector Bolting Filter RegulatorFilter Regulator (not shown)High Pressure Select Relay I/P Transducer Solenoid Valve Snap Acting Relay Actuator Fittings/TubingModulatingStdOptOn-Off StdOpt400 Series SS TFE & 300 Series SS 400 Series SS/17-4 PHX X X X X XNotes:a Recommended spare parts.b Required for applications where the modulation signal is 4-20 mA.c The snap acting relay is used to prevent the valve from throttling less than 10% off the seat The snap acting relay assures 100% actuator loading in the closed position.O P E R A T I O NIdeally the recirculation system would meter the flow in re-sponse to the pump’s requirements. This indicates the need for a modulating control valve, which normally would be closed, but opens automatically on turbine trip. The valve would need to handle water with thermodynamic conditions at the inlet of 2500-5500 psi (175-387kg/cm2) pressure and 300°-500°F (141°-246°C)temperature and, at the outlet, saturation conditions in the rangeof 1 IO°-240°F (41°- 109(387kg/cm2) toatmospheric or vacuum pressure and simultaneously neutralize the effects of-trim erosion due to flashing;-cavitation; and,-mechanical vibration and noise.2. Remain leak tight for long periods of time.3. Modulate automatically and open in case of failure of power to the valve operator.A NEW CCI DRAG@ VALVE HAS BEEN DESIGNED T O M E E T T H E S E S T R I N G E N T R E Q U I R E M E N T S Information required for sizing procedure:l Maximum flow ratel Maximum pressure dropl Pressure drop at maximum flow rate l Vapor pressure of fluid (Figure 4)l Specific gravity at flowing temperature or water temperature (Figure 5)l Inlet pressure and outlet pressureFigure 4TEMPERATURE (°F)Determine:C v = flow coefficient based on pressure drop at Qmax Q m i n = minimum controllable flow (GPM))Procedure:where: P o== Flow (GPM)pounds per sauare inch (psi).1.0100 200 300 400 500WATER TEMPERATURE °FFigure 5These valves are designed for critical pressure steam plants, with pump discharge pressures of 2500 to 5500 psi (175 to 387kg/cm2)and fluid temperatures of 300” to 500°F (141° to 246°C). Thepatented CCI D R A G disk stack in these valves has a special, com-plex pattern disk specifically designed for this service. The only consideration required for sizing is to determine C v required or flow required in GPM. Select the valve from Table 1 which meets or exceeds the required C v or flow.For end connections, refer to Buttweld Ends, Figures 6 thru 9.P R E S S U R I Z E D S E A T P L U GThe pressurized seat plug design is a special form of the balanced plug that is balanced during modulation, but unbalanced when shut off.While the unbalanced and balanced plugs may be applied in either over-the-plug (flow-to-close) or under-the-plug (flow-to-open)configurations, the pressurized seat plug is applied only in aflow-to-close configuration When the valve is completely shut off,the balance hole is closed by the valve stem.When the valve is shut, a tiny bleed path through the bonnet lets pressure build up on top of the valve plug, creating very high seat loading for superior shutoff with a metal-seated valve. This seat loading is in addition to the actuator loading applied to the seat.Once the stem is lifted to uncover the balancing hole, the main valve plug can be opened as easily as any other balanced plugconfiguration. This feature provides superior shutoff (MSS-SP-61).Buttweld EndsANSI B 16.256"31ADIIAFIGURE 7.. . .Include a sketch ot desiredweld end with the order.Control Components Inc.We Solve Control V a l v e Problems.22591 Avenida Empresa l Rancho Santa Margarita l California 92688 USATel.: (714) 858,1877 Fax: (714) 858-1878Sales。