硕士研究生入学考试《数学分析》考试大纲
华中农业大学-2019年-硕士研究生入学考试大纲-628《数学分析》
华中农业大学硕士研究生入学考试
数学分析(628 )大纲
试卷满分及考试时间
试卷满分为150分,考试时间为180分钟.
答题方式
答题方式为闭卷、笔试.
试卷题型结构
单选题与填空题约50分
解答题(包括证明题)约100分
第一部分:实数集与函数,极限,连续
考试内容:
1.实数集的性质,实数集的上(下)确界。
2.实数完备性的基本定理。
3.函数的定义,函数的各种表示方法,基本初等函数的定义、
性质及图像,复合函数、反函数、有界函数、周期函数、
奇函数和偶函数、单调函数、初等函数的定义。
2024年硕士研究生招生数学考试大纲
2024年硕士研究生招生数学考试大纲一、考试目的与基本要求2024年硕士研究生招生数学考试是为了选拔优秀的数学专业研究生而设立的。
考试旨在评估考生在数学领域的基础知识和能力,以及对数学应用和解决问题的能力。
考试要求考生能够熟练掌握数学的基本概念、定理和推理方法,具备独立思考和解决数学问题的能力。
二、考试内容与形式2024年硕士研究生招生数学考试的内容包括数学分析、线性代数、概率论与数理统计三个主要领域。
考试形式为笔试,分为两个部分:选择题和解答题。
1. 数学分析:主要内容包括实数与数列、函数与极限、连续与导数、积分与微分方程等。
考生需熟练掌握实数的基本性质和数列的收敛性,能够应用极限的定义和性质解决极限问题。
此外,考生还需具备基本的导数和积分计算能力,能够理解函数的连续性和导数的几何意义,并能运用微分方程解决相关问题。
2. 线性代数:主要内容包括向量空间与矩阵、线性方程组、特征值与特征向量、二次型等。
考生需熟悉向量空间的基本定义和性质,能够应用矩阵进行线性变换和线性方程组的求解。
此外,考生还应理解特征值和特征向量的概念以及它们在线性变换中的应用,能够掌握二次型的基本理论和应用方法。
3. 概率论与数理统计:主要内容包括概率基础、随机变量、随机过程、统计推断等。
考生需了解概率空间和概率的基本概念,能够掌握随机变量的概率分布、矩、生成函数等基本性质,并能运用随机变量解决概率统计问题。
此外,考生还需具备统计推断的基本知识和方法,能够进行点估计、区间估计和假设检验等统计推断问题的分析和计算。
三、考试评分标准与要求2024年硕士研究生招生数学考试将根据考生在各个领域的掌握程度和解题能力进行评分。
考试中选择题占总分的50%,解答题占总分的50%。
对于选择题,考生应根据题目要求选择正确答案,并将答案填涂在答题卡上。
每题4个选项中只有一个正确答案,每题得分为1分。
若答案错误或未选择答案,不得分。
对于解答题,考生应根据题目要求给出完整的解题过程和答案,并写清楚各个步骤和推理过程,以便评分人员准确判断和评分。
《数学分析》(604)考研大纲
《数学分析》(604)考研大纲(一)实数与函数考试内容绝对值与不等式,确界原理,函数及性质。
考试要求理解和掌握邻域,有界集,上、下确界,函数,复合函数,反函数,有界函数,单调函数,奇、偶函数,周期函数等概念。
(二)极限与连续考试内容数列极限定义,收敛数列的性质,单调有界原理,柯西准则,函数极限定义(趋于无穷大时的极限,趋于某一定数时的极限),函数极限性质,归结原理,柯西准则,两个重要极限,无穷小量,无穷大量概念,无穷小量阶的比较,连续性概念,连续函数的局部性质,闭区间上连续函数的性质,反函数连续函数,一致连续性,指数函数的连续性,初等函数连续性,实数完备性定理:区间套定理,柯西准则,聚点定理,有限覆盖定理等。
考试要求理解和掌握:数列极限的定义及计算,数列极限性质的原理及推导,单调有界原理,柯西准则及应用,函数极限的定义及计算,函数极限存在的归结原理,两个重要极限的计算,无穷小量,无穷大量概念,无穷小量阶的比较及应用,一致连续性及应用,连续性的定义及其证明,间断点及其分类,连续函数的局部性质,闭区间上连续函数的性质,区间套定理,柯西准则,聚点定理,有限覆盖定理原理及证明,闭区间上的连续函数性质的原理及证明及应用。
(三)导数与微分考试内容导数概念,导函数,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。
考试要求理解和掌握:导数概念,导数的四则运算,反函数的导数,复合函数的导数,求导法则与公式,微分概念,微分的运算法则,高阶导数与高阶微分,参数方程的一阶及二阶导数。
(四)微积分基本定理,不定式极限,导数研究函数考试内容中值定理,洛必达法则,不定式极限,泰勒公式,皮亚诺余项泰勒公式,函数的单调性与极值,函数的凸性,拐点,函数的图象讨论渐进线,作图。
考试要求理解和掌握:费马定理,中值定理的原理及应用。
熟练计算不定式极限,熟练掌握泰勒公式,皮亚诺余项泰勒公式原理及应用,函数的单调性与极值,函数的凸性,拐点。
湖南师范大学数学分析考研大纲
湖南师范大学硕士研究生入学考试自命题考试大纲考试科目代码:723 考试科目名称:数学分析一、试卷结构1) 试卷成绩及考试时间本试卷满分为150分,考试时间为180分钟。
2)答题方式:闭卷、笔试3)试卷内容结构数学分析4)题型结构a: 填空题,10小题,每小题7分,共70分b: 讨论题,3小题,每小题10分,共30分c: 解答题(包括证明题),5小题,每小题10 分,共50分二、考试内容与考试要求1、极限论考试内容①各种极限的计算;②单调有界收敛原理、致密性定理、确界原理、Cauchy收敛原理等实数基本理论的灵活应用;③连续函数特别是闭区间上连续函数性质的运用;④极限定义的熟练掌握等.考试要求(1)能熟练计算各种极限,包括单变量和多变量情形.(2)能熟练利用六个实数基本定理尤其是单调有界收敛原理、致密性定理、确界原理、Cauchy收敛原理进行各种理论证明.(3)能熟练掌握单变量连续函数特别是闭区间上连续函数的各种性质,并能利用这些性质进行计算和证明;掌握多变量连续函数的性质尤其是有界闭域上连续函数的性质,能利用这些性质进行计算和证明.(4)熟练掌握各种极限的定义,并能用逻辑术语进行理论证明.2、单变量微分学考试内容①微分中值定理(包括Roll定理、Lagrange中值定理、Cauchy中值定理等)的灵活运用(包括单调性讨论、极值的求取、凸凹性问题、等式和不等式的证明等);②Talor公式的灵活运用(包括用Lagrange余项形式证不等式、用Peano余项形式估计阶以及求极限等);③各种形式导数的计算;④导数的定义和运用等.考试要求(1)熟练掌握微分中值定理,包括Roll定理、Lagrange中值定理、Cauchy 中值定理的条件和结论,能熟练利用这些定理进行理论证明或计算,包括函数单调性讨论、极值的求取、凸凹性问题的讨论、等式和不等式的证明等.(2)熟练掌握Talor公式的条件和结论,并能做到灵活运用,尤其是利用Lagrange余项形式证不等式、Peano余项形式估计阶以及求极限等.(3)熟练掌握复合函数导数的计算和高阶导数的计算.(4)熟练掌握导数的定义和性质,能用逻辑语言进行理论证明,熟练掌握利用导数定义进行证明或计算.3、单变量积分学考试内容①各种不定积分和定积分的熟练计算,尤其是计算中的处理技巧;②广义积分的计算和敛散性判别;③定积分的定义和性质的灵活运用等.考试要求(1)熟练计算各种不定积分、定积分,熟练掌握凑微分法、换元法、分部积分法以及常用的计算技巧,熟练掌握奇偶函数、周期函数的积分特点.(2)熟练掌握广义积分的计算,熟练掌握区间无限型、函数无界型以及混合型广义积分的敛散性判别,并能进行理论证明.(3)熟练掌握定积分的定义,能利用定积分的定义进行极限的计算,熟练掌握定积分的性质,并能利用这些性质进行理论证明,掌握常用可积函数类.4、级数论考试内容①各种数项级数尤其是正项级数的敛散性判别;②数项级数的性质③函数列和函数项级数的一致收敛性判别,给定函数Fourier级数的展开和特殊点的收敛性;④函数列和函数项级数一致收敛性质的灵活运用;⑤幂级数的收敛性和展开等知识的熟练掌握.考试要求(1)熟练掌握级数的敛散性判别,尤其是正项级数和交错级数敛散性判别.(2)掌握数项级数的一些常用性质,尤其是绝对收敛级数与条件收敛结束的常规性质.(3)熟练掌握函数列和函数项级数一致收敛性的判别,尤其是用定义、优级数判别法、Abel判别法、Dirichlet判别法判别函数项级数的一致收敛性,熟练掌握给定函数的Fourier展开,能给出Fourier级数在特殊点的收敛性.(4)熟练掌握函数列和函数项级数一致收敛性的性质运用,包括连续性、可积性和可微性,能利用这些性质进行理论证明.(5)熟练掌握幂级数收敛区间的求法,熟练掌握常规函数的幂级数展开,并掌握一些特殊幂级数和函数的求法.5、多变量微分学和参变量积分考试内容①可微的定义;②求复合函数以及隐函数的偏导数;③多元函数极值理论;④参变量积分的一致收敛性判别;⑤参变量积分的计算;⑥参变量积分一致收敛性质的运用等.考试要求(1)掌握多元函数可微的定义,能熟练利用定义证明某些常规函数的可微性,掌握多元函数可微、连续、可求偏导之间的关系.(2)熟练掌握多元函数复合函数求偏导数尤其是高阶偏导数,掌握方程或方程组确定的隐函数偏导的计算.(3)熟练掌握多元函数极值的计算,并能计算有界闭域上连续函数的最值..(4)熟练掌握含参变量广义积分一致收敛性的判别.(5)熟练掌握含参变量常义积分和广义积分的计算.(6)熟练掌握含参变量常义积分和广义积分的连续性、可积性和可导性,并能利用这些性质进行计算和证明..6、多元积分学考试内容①二重积分、三重积分的计算;②格林公式、高斯公式的灵活运用;③两类曲线积分、两类曲面积分的计算;④各种积分之间的相互关系等考试要求(1)熟练掌握二重积分、三重积分的计算,熟练掌握降维、换元法,尤其是极坐标、球坐标变换.(2)熟练掌握Gree公式、Gauss公式的条件和结论.(3)熟练掌握第一类和第二类曲线积分和曲面积分的计算.(4)掌握平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,熟练掌握利用Gree公式求第二类曲线积分、利用Gauss公式求第二类曲面积分、利用Stokes公式求空间第二类曲线积分..三、参考书目[1]复旦大学数学系编. 数学分析. 高等教育出版社, 1979[2]华东师范大学数学系编. 数学分析高等教育出版社, 2001[3] 张学军、王仙桃等编. 数学分析选讲. 湖南师范大学出版社,2012。
618数学分析
Word-可编辑2023年年全国硕士研究生统一入学考试数学分析科目考试大纲一、考查目标要求考生控制数学分析课程的基本概念、基本定理和基本主意,能够运用数学分析的理论分析、解决相关问题。
二、考试形式和试卷结构1、试卷满分及考试时光本试卷满分150分,考试时光为180分钟。
2、答题方式答题方式为闭卷、笔试3、试卷题型结构全卷普通由十个大题组成,详细分布为计算题:5~6小题,每题10分,约50~60分分析论述题(包括证实、研究、综合计算):5~6大题,每题15~20分,约75~100分三、考查范围本课程考核内容包括实数理论和延续函数、一元微积分学、级数、多元微积分学等等。
第一章实数集与函数1.了解邻域,上确界、下确界的概念和确界原理。
2.控制函数复合、基本初等函数、初等函数及常用特性。
(单调性、周期性、奇偶性、有界性等)3.控制基本初等不等式及应用。
第二章数列极限1.熟练控制数列极限的ε-N定义。
2.控制收敛数列的常用性质。
3.熟练控制数列收敛的判别条件(单调有界原理、迫敛性定理、Cauchy准则、压缩映射原理、Stolz变换等)。
4.能够熟练求解各类数列的极限。
第三章函数极限千里之行,始于足下1.深刻领略函数极限的“ε-δ”定义及其它变式。
2.熟练控制函数极限存在的条件及判别。
(归结原则,柯西准则,左、右极限、单调有界等)。
3.熟练应用两个重要极限求解较复杂的函数极限。
4.理解无穷小量、无穷大量的概念;会应用等价无穷小求极限;认识等价无穷小、同阶无穷小、高阶无穷小及其性质。
第四章函数延续性1.控制函数在某点及在区间上延续的几种等价定义,尤其是ε-δ定义。
2.认识函数间断点及类型。
3.熟练控制闭区间上延续函数的三大性质及其应用。
4.熟练控制区间上一致延续函数的定义、判断和应用。
5.知道初等函数的延续性。
第五章导数和微分1.控制导数的定义、几何意义,领略其思想内涵;认识单边导数概念及应用。
2.控制求导四则运算法则、熟记基本初等函数的导数。
硕士研究生入学考试大纲-601数学分析
全国硕士研究生入学统一考试数学专业《数学分析》考试大纲I 考查目标全国硕士研究生入学统一考试数学专业《数学分析》考试是为我校招收数学硕士生设置的具有选拔性质的考试科目。
其目的是科学、公平、有效地测试考生是否具备攻读数学专业硕士所必须的基本素质、一般能力和培养潜能,以利于选拔具有发展潜力的优秀人才入学,为数学学科及社会的发展培养具有良好职业道德、法制观念和国际视野、具有较强分析与解决问题能力的高层次、应用型、复合型的数学专业人才。
考试要求是测试考生掌握分析、表达与解决问题的一些基本能力和技能。
具体来说就是:要求考生理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。
二、答题方式答题方式为闭卷、笔试。
不得使用带有公式和文本存储功能的计算器。
三、试卷内容与题型结构一元函数微积分约占 60%,多元函数微积分约占 25%,无穷级数约占 20有以下三种题型:填空题或选择题(20%)、计算题(30%)、综合题(50%)III 考查内容1、极限和函数的连续性(1)熟练掌握数列极限与函数极限的概念;理解无穷小量、无穷大量的概念及基本性质。
(2)掌握极限的性质及四则运算法则,能够熟练运用迫敛性定理和两个重要极限。
(3)熟练掌握:区间套定理,确界存在定理,单调有界原理,聚点定理,有限覆盖定理,Cauchy收敛准则;并理解其相互关系。
(4)熟练掌握函数连续性的概念及相关的不连续点类型。
能够熟练地运用函数连续的四则运算与复合运算性质。
(5)熟练掌握闭区间上连续函数的基本性质:有界性定理、最值定理、介值定理,一致连续性。
(6)熟练掌握实数基本理论和性质,会用实数理论及性质表达和证明相关命题。
2、一元函数微分学(1)理解导数和微分的概念及其相互关系,理解导数的几何意义,理解函数可导性与连续性之间的关系。
西南石油大学-硕士研究生招生考试大纲-602_数学分析
602数学分析考试科目大纲
一、考试性质
数学分析是硕士研究生入学考试科目之一,是硕士研究生招生院校自行命题的选拔性考试。
本考试大纲的制定力求反映招生类型的特点,科学、公平、准确、规范地测评考生的相关基础知识掌握水平,考生分析问题和解决问题及综合知识运用能力。
应考人员应根据本大纲的内容和要求自行组织学习内容和掌握有关知识。
本大纲主要由一元函数微分学和积分学、无穷级数、多元函数微分学和积分学、实数理论等部分组成。
考生应掌握数学分析的基本概念,理解数学分析的基本理论,熟练掌握数学分析的各种运算,理解数学分析的基本思想和方法。
二、评价目标
(1)要求考生理解和掌握数学分析的基本概念、基本理论和基本方法。
(2)要求考生具有较好的抽象思维能力、逻辑推理能力和运算能力。
(3)要求考生具有综合运用所学知识分析问题和解决问题的能力。
三、考试内容
(一)函数、极限与连续
1、考试范围
实数及其性质,确界及确界原理,函数的概念及有界性、单调性、周期性和奇偶性;数列极限与函数极限的定义、性质及存在的条件,两个重要极限,无穷小量和无穷大量的概念及其关系,无穷小量阶的比较,曲线的渐近线;一元函数连续和一致连续的概念,函数间断点及其分类,连续函数的性质,初等函数的连续性。
1。
华南理工大学623数学分析2021年考研专业课
华南理工大学2021年硕士研究生入学《数学分析(623)》考试大纲
判别法。
连续性、可积性与可微性,Gamma函数。
19.曲线积分
第一型和第二型曲线积分概念与计算,两类曲线积分的联系。
20.重积分
二重积分定义与存在性,二重积分性质,二重积分计算(化为累次积分)。
格林(Green)公式,曲线积分与路径无关条件。
二重积分的换元法(极坐标与一般变换)。
三重积分定义与计算,三重积分的换元法(柱坐标、球坐标与一般变换)。
重积分应用(体积,曲面面积,重心、转动惯量、引力等)。
无界区域上的收敛性概念。
无界函数反常二重积分。
在一般条件下重积分变量变换公式。
21.曲面积分
曲面的侧。
第一型和第二型曲面积分概念与计算,高斯公式。
斯托克斯公式。
场论初步(梯度场、散度场、旋度场)。
备注
选读书目
【1】《数学分析》(上、下册),复旦大学数学系编,高等教育出版社;
【2】《数学分析》(上、下册),华东师范大学数学系编,高等教育出版社;
【3】《数学分析》(上、下册),刘正荣、杨启贵、刘深泉、洪毅编,科学出版社。
数学分析考研大纲
《数学分析》考试大纲本《数学分析》考试大纲适用于宁波大学数学相关专业硕士研究生入学考试。
一、本考试科目简介:《数学分析》是数学专业最重要的基础课之一,是数学专业的学生继续学习后继课程的基础,它的理论方法和内容既涉及到几百年来分析数学的严谨性和逻辑性,又与现代数学的各个领域有着密切的联系。
是从事数学理论及其应用工作的必备知识。
本大纲制定的的依据是①根据教育部颁发《数学分析》教学大纲的基本要求。
②根据我国一些国优教材所讲到基本内容和知识点。
要求考生比较系统地理解数学分析的基本概念基本理论,掌握研究分析领域的基本方法,基本上掌握数学分析的论证方法,具备较熟练的演算技能和初步的应用能力及逻辑推理能力。
二、考试内容及具体要求:第1章实数集与函数(1)了解实数域及性质(2)掌握几种主要不等式及应用。
(3)熟练掌握领域,上确界,下确界,确界原理。
(4)牢固掌握函数复合、基本初等涵数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。
第2章数列极限(1)熟练掌握数列极限的定义。
(2)掌握收敛数列的若干性质(惟一性、保序性等)。
(3)掌握数列收敛的条件(单调有界原理、迫敛法则、柯西准则等)。
第3章函数极限(1)熟练掌握使用“ε-δ”语言,叙述各类型函数极限。
(2)掌握函数极限的若干性质。
(3)掌握函数极限存在的条件(归结原则,柯西准则,左、右极限、单调有界)。
(4)熟练应用两个特殊极限求函数的极限。
(5)牢固掌握无穷小(大)的定义、性质、阶的比较。
第4章函数连续性(1)熟练掌握在X0点连续的定义及其等价定义。
(2)掌握间断点定以及分类。
(3)了解在区间上连续的定义,能使用左右极限的方法求极限。
(4)掌握在一点连续性质及在区间上连续性质。
(5)了解初等函数的连续性。
第5章导数与微分(1)熟练掌握导数的定义,几何、物理意义。
(2)牢固记住求导法则、求导公式。
(3)会求各类的导数(复合、参量、隐函数、幂指函数、高阶导数(莱布尼兹公式))。
数学分析610研究生入学考试大纲
《数学分析》(610)研究生入学考试大纲一、参考书目:1.《数学分析》第四版(上、下册)华东师范大学数学系编(高等教育出版社)。
2.《数学分析》(上、下册)盛炎平等编(机械工业出版社)。
二、考试大纲:(第一章~第二十二章,所有带*号的部分不用看)第一章实数集与函数数集的确界,确界原理.第二章数列极限极限定义,收敛数列性质,单调有界原理,重要极限.第三章函数极限函数极限定义,函数极限性质,两个重要极限,无穷大量与无穷小量,渐近线.第四章函数连续性函数连续概念,间断点分类,连续函数的性质,一致连续的概念.第五章导数与微分导数概念,导数几何意义,求导法则,基本求导公式,参变量函数求导,高阶导数,微分的概念,几何意义.第六章微分中值定理及其应用罗尔定理,拉格朗日定理,函数单调性的判定,柯西中值定理,不定式极限的罗必达法则,泰勒公式,,函数极值的判定,最值问题,函数凹凸性的判定.第七章实数的完备性了解刻画实数完备性定理的内容.第八章不定积分原函数与不定积分概念,基本积分公式,换元法与分部积分法.第九章定积分定积分概念,定积分性质,牛顿-莱布尼兹公式,变限积分和原函数存在定理,积分中值定理,计算积分的换元法与分部积分法.第十章定积分应用计算平面图形面积,立体体积,曲线弧长,旋转曲面面积.第十一章反常积分无穷积分和瑕积分的概念和性质,非负无穷积分和瑕积分的比较判别法,一般无穷积分和瑕积分的狄立克莱判别法和阿贝尔判别法.第十二章数项级数级数收敛的定义,级数的性质,正项级数的比较、根值、比值判别法,一般项级数的阿贝尔判别法和狄立克雷判别法.第十三章函数列与函数项级数函数列的一致收敛性,一致收敛的柯西准则及充要条件,一致收敛函数列的极限函数的性质,函数项级数一致收敛概念,判别法,一致收敛函数项级数的性质.第十四章幂级数幂级数的收敛半径、收敛区间、收敛域,收敛半径的计算,幂级数的性质,泰勒级数,初等函数的幂级数展开.第十五章傅立叶级数三角级数,正交系,收敛定理,周期函数的傅里叶展开,偶函数与奇函数的傅里叶级数与展开.第十六章多元函数的极限与连续二元函数的极限与连续.第十七章多元函数微分学偏导数的概念,全微分的概念,偏导数的几何意义,复合函数的求导法则,方向导数与梯度的概念,多元函数的极值问题.第十八章隐函数定理及其应用了解隐函数定理,会隐函数求导,曲线的切线,曲面的切平面与法线,条件极值问题.第十九章含参积分该章不考察.第二十章曲线积分第一型曲线积分定义与计算,第二型曲线积分的定义与计算,两类积分的联系.第二十一章重积分二重积分的概念、性质,直角坐标计算,极坐标计算,格林公式,曲线积分与路径的无关性,三重积分的定义,性质,利用直角坐标计算,柱坐标计算,球坐标计算.第二十二章曲面积分第一型曲面积分定义与计算,第二型曲面积分的定义与计算,高斯公式与斯托克斯公式三、试卷结构:1.概念简答题;2.计算题;3.证明题.。
2024年全国硕士研究生招生考试大纲 数学二
2024年全国硕士研究生(数学二)招生考试大纲主要包括以下内容:
一、数学分析:
1. 数列的极限及其性质;
2. 函数的极限与连续性;
3. 导数与微分;
4. 高阶微分方程;
5. 定积分与定积分的应用;
6. 二重积分与三重积分;
7. 曲线的切线与法线;
8. 空间曲面的方程与投影;
9. 复数与复变函数。
二、线性代数:
1.向量与空间;
2.行列式;
3.矩阵;
4.线性方程组;
5.二次型与二次齐次式;
6.特征值与特征向量;
7.线性变换;
8.内积与正交补。
三、概率论与数理统计:
1.随机事件与概率;
2.随机变量及其分布;
3.多维随机变量及其分布函数;
4.数字特征;
5.大数定律与中心极限定理;
6.抽样分布;
7.参数估计;
8.假设检验。
请注意,这只是一个大致的框架,具体的内容可能会根据每年的考试大纲有所不同,建议您查阅最新的考研数学二考试指南以获取准确的考试信息。
江苏大学数学分析考试大纲
全国硕士研究生入学统一考试数学专业《数学分析》考试大纲I 考查目标全国硕士研究生入学统一考试数学专业《数学分析》考试是为我校招收数学硕士生设置的具有选拔性质的考试科目。
其目的是科学、公平、有效地测试考生是否具备攻读数学专业硕士所必须的基本素质、一般能力和培养潜能,以利于选拔具有发展潜力的优秀人才入学,为数学学科及社会的发展培养具有良好职业道德、法制观念和国际视野、具有较强分析与解决问题能力的高层次、应用型、复合型的数学专业人才。
考试要求是测试考生掌握分析、表达与解决问题的一些基本能力和技能。
具体来说就是:要求考生理解数学分析的基本概念和基本理论,掌握数学分析的基本思想和方法具有抽象思维能力、逻辑推理能力、运算能力和综合运用所学的知识分析问题和解决问题的能力。
II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。
二、答题方式答题方式为闭卷、笔试。
不得使用带有公式和文本存储功能的计算器。
三、试卷内容与题型结构一元函数微积分约占 60%,多元函数微积分约占 25%,无穷级数约占 20有以下三种题型:填空题或选择题(20%)、计算题(30%)、综合题(50%)III 考查内容1、极限和函数的连续性(1)熟练掌握数列极限与函数极限的概念;理解无穷小量、无穷大量的概念及基本性质。
(2)掌握极限的性质及四则运算法则,能够熟练运用迫敛性定理和两个重要极限。
(3)熟练掌握:区间套定理,确界存在定理,单调有界原理,聚点定理,有限覆盖定理,Cauchy收敛准则;并理解其相互关系。
(4)熟练掌握函数连续性的概念及相关的不连续点类型。
能够熟练地运用函数连续的四则运算与复合运算性质。
(5)熟练掌握闭区间上连续函数的基本性质:有界性定理、最值定理、介值定理,一致连续性。
(6)熟练掌握实数基本理论和性质,会用实数理论及性质表达和证明相关命题。
2、一元函数微分学(1)理解导数和微分的概念及其相互关系,理解导数的几何意义,理解函数可导性与连续性之间的关系。
考研《数学分析(学术学位)》考试大纲
4、多元函掌握重极限与累次极限的定义、联系与区别,能熟练讨论这些极限的存在性和不存在性。
(2)偏导数、微分和方向导数
掌握偏导数、微分和方向导数的概念、求法,特别是复合函数高阶偏导的求法,隐函数偏导的求法。熟悉可微性条件、几何意义与应用。能熟练讨论多元函数连续、可微、偏导连续之间的关系,能举出具有其中几种性质而不具有其余性质的多元函数例子。
3、一元函数积分学
(1)不定积分
掌握原函数和不定积分概念,熟练掌握求不定积分的方法。
(2)定积分
熟悉定积分的定义、可积的必要条件和充分条件、常用可积函数类、定积分的性质、定积分的计算。熟练掌握微积分学基本定理,会求积分变限函数的极限、导数。掌握无穷积分和瑕积分的收敛判别法、绝对收敛判别法,明确定积分与反常积分性质方面的异同。
能利用偏导数求平面曲线的切线与法线,空间曲线的切线与法平面,空间曲面的切平面与法线。熟练掌握条件极值的求法,有界闭区域上函数的最大最小值求法。
5、多元函数积分学
(1)重积分
熟悉重积分的定义和可积性条件,熟练掌握重积分的计算、交换积分次序方法,会利用重积分计算面积、体积。
(2)曲线积分和曲面积分
掌握第一类曲线积分、第二类曲线积分、第一类曲面积分、第二类曲面积分的定义、计算方法,两类曲线积分的关系,两类曲面积分的关系,曲线积分与二重积分的关系(格林公式),曲面积分与三重积分的关系(高斯公式),曲面积分与曲线积分的关系(斯托克斯公式)。
(3)函数极限
熟悉各种极限定义,可用 语言证明函数极限的存在性,熟悉函数极限的性质和存在条件,掌握无穷小量和无穷大量阶的比较,会求给定函数的极限。
(4)实数集和实数完备性
华中师范大学硕士研究生入学《数学分析》考试大纲
适用专业:基础数学,应用数学,概率论与数理统计,运筹学与控制论
参考书:华东师范大学数学系,《数学分析》(上、下册),高等教育出版社
题型:计算题,讨论题,证明题
总分:150分
考查范围
1、数列和(一元,多元)函数极限:极限的概念;极限存在的条件和存在的各种判定方法;求极限的各种方法.
2、(一元,多元)函数连续:连续的概念,性质(局部性质和整体性质)及应用.
3、一元函数微分学:求导的各种方法(包括高阶导数);一元函数的微分中值定理(Rolle定理,Lagrange 中值定理,Cauchy中值定理,Taytor公式)及应用.
4、一元函数积分学:不定积分的各种计算方法;定积分的各种计算方法;函数可积的条件;定积分的各种性质及应用;反常积分值的计算和反常积分收敛性判别的各种方法.
5、多元函数微分学:函数可微的讨论;微分、偏导数和高阶偏导数的各种计算方法;多元函数的微分中值公式和泰勒公式;隐函数的存在性和可微性的讨论,隐函数导数或偏导数的计算;方向导数和梯度;几何应用和极值问题(包括条件极值问题).
6、多元函数积分学:重积分计算的各种方法和重积分的性质(包括二、三重积分和简单的n重积分);第一型曲线(曲面)积分的各种计算方法;第二型曲线(曲面)积分的各种计算方法;第一型曲线(曲面)积分与第二型曲线(曲面)积分的关系;Green公式及应用;Gauss定理和Stokes定理及应用.
7、数项级数的各种收敛的判别法;数项级数的求和方法.
8、函数列和函数项级数收敛和一致收敛的各种判别法;极限函数与和函数的解析性(连续、可微和可积性)的讨论;含参量积分(包括含参量正常积分和含参量反常积分)及其应用.
9、幂级数和Fourier分析及其应用.
10、实数的完备性定理及其应用.。
《数学分析》研究生考试大纲
硕士《数学分析》考试大纲课程名称:数学分析科目代码:661适用专业:数学与应用数学专业参考书目:1、《数学分析》(上下册)第一版,陈纪修,於崇华,金路;高等教育出版社1999.92、《数学分析》(上下册)第二版,陈纪修,於崇华,金路;高等教育出版社2004.103、《数学分析》(上下册),卓里奇;高等教育出版社2006.124、《数学分析》(上下册),华东师范大学,高等教育出版社2010.7一、数列极限1、充分认识实数系的连续性;理解并掌握确界存在定理及相关知识。
2、充分理解数列极限的定义,熟练掌握用数列极限的定义证明有关极限问题,以及数列极限的各种性质及其运算。
3、掌握无穷大量的概念及其相关知识;熟练掌握Stolz定理的内容及其结论及应用。
4、理解单调有界数列收敛定理的内容及其结论,并能熟练解决相关的极限问题。
5、充分理解区间套定理、致密性定理、完备性定理各自的内容和结论;进一步认识实数系的连续性与实数系的完备性的关系;明确有关收敛准则中的各定理之间逻辑关系。
二、函数极限与连续函数1、充分理解函数极限的定义,熟练掌握用函数极限的定义证明有关极限问题;以及函数极限的各种性质及其运算。
2、明确数列极限与函数极限的关系;熟练掌握单侧极限以及各种极限过程的极限。
3、充分理解连续函数的概念,熟练掌握用连续函数的定义和运算解决有关函数连续性问题。
明确不连续点的类型;掌握反函数、复合函数的连续性。
4、熟练掌握无穷小(大)量的概念以及自身的比较,并能熟练应用于极限问题当中。
5、充分掌握闭区间上连续函数的各种性质;充分理解函数的一致连续性及相关定理。
三、微分1、充分理解微分的概念、导数的概念,以及可微、可导、连续三者的关系。
2、熟练掌握导数的运算、反函数、复合函数的求导法则,做到得心应手。
3、理解高阶导数和高阶微分的概念,熟练掌握高阶导数的运算法则。
四、微分中值定理及其应用1、充分理解以Lagrange中值定理为核心的各微分中值定理的内容和结论;掌握应用微分中值定理揭示函数自身的特征和函数之间的关系。
602_数学分析
附件2:602数学分析考试科目大纲一、考试性质数学分析是硕士研究生入学考试科目之一,是硕士研究生招生院校自行命题的选拔性考试。
本考试大纲的制定力求反映招生类型的特点,科学、公平、准确、规范地测评考生的相关基础知识掌握水平,考生分析问题和解决问题及综合知识运用能力。
应考人员应根据本大纲的内容和要求自行组织学习内容和掌握有关知识。
本大纲主要由一元函数微分学和积分学、无穷级数、多元函数微分学和积分学、实数理论等部分组成。
考生应掌握数学分析的基本概念,理解数学分析的基本理论,熟练掌握数学分析的各种运算,理解数学分析的基本思想和方法。
二、评价目标(1)要求考生理解和掌握数学分析的基本概念、基本理论和基本方法。
(2)要求考生具有较好的抽象思维能力、逻辑推理能力和运算能力。
(3)要求考生具有综合运用所学知识分析问题和解决问题的能力。
三、考试内容(一)函数、极限与连续1、考试范围实数及其性质,确界及确界原理,函数的概念及有界性、单调性、周期性和奇偶性;数列极限与函数极限的定义、性质及存在的条件,两个重要极限,无穷小量和无穷大量的概念及其关系,无穷小量阶的比较,曲线的渐近线;一元函数连续和一致连续的概念,函数间断点及其分类,连续函数的性质,初等函数的连续性。
2、基本要求(1)了解实数的概念,理解确界概念、确界原理;理解函数、复合函数、分段函数和初等函数的概念;了解有界函数、单调函数、奇(偶)函数、周期函数。
(2)理解数列极限概念,掌握收敛数列的性质及数列极限存在的条件。
(3)理解函数极限的概念,掌握函数极限的性质;熟练掌握函数极限的存在条件和两个重要极限;理解无穷小量的概念,熟练掌握等价无穷小量求极限的方法;了解曲线的渐近线。
(4)理解和掌握一元函数连续和一致连续的概念及其证明;熟练掌握函数间断点及其分类和闭区间上连续函数的性质;了解反函数的连续性,理解复合函数的连续性,初等函数的连续性。
(二)一元函数微分学1、考试范围导数和微分的概念,导数的几何意义,函数的可导性与连续性之间的关系,平面曲线的切线和法线;导数和微分的四则运算,基本初等函数的导数,复合函数、反函数以及参数方程所确定的函数的微分法,高阶导数;微分中值定理,洛必达法则,泰勒公式,函数单调性的判别,函数的极值,函数图形的凹凸性、拐点及渐近线,函数的最大值与最小值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学分析》考试大纲
Ⅰ考试形式和试卷结构
一、试卷满分及考试时间
本试卷满分为150分,考试时间为3小时。
二、答题方式
答题方式为闭卷、笔试。
三、试卷题型结构
1、填空题40 分
2、计算题40 分
3、证明题70分
II 考试范围
第一章实数集与函数
1.运用实数的有序性、稠密性及封闭性论证有关问题,邻域概念的理解及应用;
2.实数绝对值的有关性质及几个常见不等式的应用;
3.实数集确界的概念及确界原理在有关问题中的正确运用;
4.函数的概念及复合函数、反函数、有界函数、单调函数和初等函数等概念理解和运用;
5.基本初等函数定义、性质及图象的识记,会求初等函数定义域,分析初等函数的复合关系。
第二章数列极限
1.会用ε—N定义证明数列极限有关问题,并会用ε—N语言正确表述数列不以某数为极限;
2.理解收敛数列的性质,极限的唯一性、保号性及不等式性质;
3.会用极限的四则运算法则,迫敛性定理以及单调有界定理求收敛数列的极限;
4.理解柯西准则在极限理论中的重要意义,能用该准则判定某些简单数列的敛散性。
第三章函数极限
1.能运用函数极限定义证明与函数极限有关的某些命题,会给出函数不以某定数为极限的相应表述;
2.掌握函数极限基本性质:唯一性、局部保号性、不等式性质及有理运算性质;
3.理解Heine定理及Cauchy准则,初步掌握运用它们证明函数极限存在的基本思路;
4.识记两个重要极限,能灵活运用其求一些相关函数极限;
5.理解无穷小(大)量及其阶的概念,会用无穷小量求某些函数的极限,无穷小(大)量阶的比较。
第四章函数的连续性
1.明确函数在一点连续定义的几种等价叙述;
2.会熟练准确地求出一般初等函数或分段函数的间断点并判别其类型;
3.理解连续函数的性质,并能在相关问题的讨论中正确运用这些重要性质;
4.深刻理解初等函数的连续性,应用连续性求极限;
5.掌握闭区间上连续函数的性质,理解其几何意义,并能在各种有关具体问题中加以运用;
6.理解一致连续的概念,能认识到函数在区间上连续与一致连续两者之间的联系与区别。
第五章导数与微分
1.利用定义法求函数在一点的导数;导数与导函数的联系与区别,可导的充要条件,可导与连续的关系,求曲线上一点处的切线方程,用导数概念解决相关变化率的实际应用问题;
2.熟记各类基本初等函数导数公式,综合运用求导的法则和方法熟练计算初等函数的导数;
3.理解函数微分的概念,用定义求简单函数的微分,运用基本公式和微分法则求初等函数的微分;
4.导数与微分的联系,增量与微分的关系,用微分作近似计算;
5.理解高阶导数与高阶微分概念,明确二者的联系,会求高阶导数与高阶微分,理解一阶微分形式的不变性并用其求复合函数的微分。
第六章微分中值定理及应用
1.利用中值定理证明有关函数微分学的命题;
2.用洛比塔法则求不定式的极限;
3.讨论函数及曲线性态,用导数作函数图象;
4.求解有关最大(小)值的应用问题;
5.用中值定理及单调性证明不等式,方程根的存在个数及分布讨论。
第七章实数的完备性
1.区间套、聚点、确界、覆盖、子列及一致连续等概念的理解;求点集的聚点、确界;
2.对实数基本定理的理解和准确表述,明确其等价性;
3.应用闭区间上连续函数的性质讨论函数的有界性、最值性、证明方程根的存在性;
4.函数一致连续性的判别及有关问题的证明。
第八章不定积分
1.原函数与不定积分的关系及其几何意义;积分与微分的关系;
2.熟记基本积分公式,用线性运算法则求不定积分;
3.用换元积分法和分部积分法或综合运用这几种方法求不定积分;
4.有理函数的积分法,用适当变换求三角函数有理式、简单无理函数的积分;
5.明确初等函数在定义区间存在原函数,但其原函数不一定是初等函数的结论。
第九章定积分
1.理解并掌握定积分的思想(分割、近似求和、取极限)的基础上会用定义求简单函数的定积分;
2.明确可积的必要条件、充要条件及可积函数类;
3.熟练地应用定积分的性质进行积分的计算,积分值的大小比较、求平均值及有关证明;
4.用微积分学基本定理及牛顿——莱布尼兹公式进行有关积分的证明和计算;变限积分的求导法则及应用;
5.用换元积分法和分布积分法计算定积分。
第十章定积分的应用
1.用定积分解决某些几何应用问题:平面图形面积、平面曲线的弧长、一些特殊立体的体积、旋转曲面的面积等的计算;
2.用微元法的思想及定积分计算一些物理上的应用问题:液体静压力、引力及功和平均功率。
第十一章反常积分
1.用比较法、Cauchy法判别无穷限积分的收敛性;
2.瑕积分中瑕点的确定及收敛性判别;
3.收敛的反常积分的计算。
第十二章数项级数
1.级数敛散性的概念及收敛级数性质的理解和运用;
2.用定义、性质及收敛的必要条件判别级数的敛散性;
3.用比较法、比式法、根式法、积分法判别正项级数敛散性;
4.用莱布尼兹判别法判断交错级数的敛散性;
5.用Abel及Dirichlet判别法判断某些级数的敛散性。
第十三章函数列与函数项级数
1.函数列或函数项级数一致收敛的概念和性质的理解与掌握;
2.函数项级数一致收敛性的判别;
3.掌握一致收敛的函数列与函数项级数表示的函数的连续性、可积性、可微性,并用这些性质去解决有关问题。
第十四章幂级数
1.求幂级数的收敛半径、收敛区间及收敛域;
2.熟记几个常用初等函数的幂级数展开式,并利用其将某些初等函数展开成幂级数;
3.用幂级数的性质及逐项求导和逐项积分求某些幂级数的和函数;
4.明确函数幂级数展开的条件及求函数幂级数展开式的一般步骤。
第十五章傅里叶级数
1.熟练地将以2π为周期的函数展成Fourier级数,并应用收敛定理求级数在指定点的和;
2.将2π为周期的函数展成Fourier级数,会求函数的正弦级数和余弦级数;
3.准确表述收敛性定理,知道其证明主要思路。
第十六章多元函数的极限与连续
1.理解平面点集的有关概念,求函数的定义域并绘图表示;
2.理解并掌握二元函数极限概念,明确重极限与累次极限的关系,能借助累次极限解决极限有关问题;说明二元函数极限不存在的常用方法的应用;
3.理解二元函数连续的概念,会利用连续性求初等函数的极限,掌握有界闭域上连续函数的性质。
第十七章多元函数微分学
1.深刻理解全微分和偏导数的概念及联系,用定义讨论函数的可微性;
2.用定义求函数在指定点的偏导数;
3.熟练运用复合函数求导法则计算各阶偏导数;
4.函数的可微、连续、偏导存在与偏导数连续之间关系;
5.求空间曲线的切线和法平面;曲面的切平面和法线;
6.能写出简单二元函数的Taylor公式或Maclaurin公式;
7.求二元函数的极值及一些简单的最大(小)值应用问题。
第十八章隐函数定理及应用
1.求隐函数及隐函数组的导数;
2.明确隐函数及隐函数组存在唯一性及可微性条件;
3.隐函数理论在几何上的应用,求曲线切线、法线(法平面)、求曲面的切平面和法线;
4.用Lagrange乘数法求条件极值。
第十九章含参量积分
1.分析、论证含参量积分定义的函数的连续性,可微性或可积性;
2.判别含参量反常积分一致收敛性;
3.用对参量的积分、微分、极限等运算求定积分或反常积分;
4.Γ函数及B函数的定义、关系及递推公式的应用。
第二十章曲线积分
1.熟练运用两类曲线积分的计算法求曲线积分;
2.用曲线积分的几何意义及物理意义解决有关应用问题。
第二十一章重积分
1.直角坐标系下计算二重积分及二次积分交换顺序;
2.利用变量替换公式简化二重积分计算,特别是利用极坐标变换计算二重积分;
3.应用Green公式计算第二型曲线积分,及用第二型曲线积分计算平面图形面积;用曲线积分法求全微分式的原函数;
4.化三重积分为累次积分,用柱面坐标和球面坐标计算三重积分;
5.应用重积分计算曲面面积,重心、转动惯量及引力等几何和物理量。
第二十二章曲面积分
1.第一、二型曲面积分的计算;
2.应用Gauss公式和stokes公式计算曲面积分及空间曲线积分;
3.应用曲面积分解决有关几何及物理应用问题;
4.空间曲线积分与路线无关的条件,用曲线积分法求全微分式的原函数。