6031高一数学下学期期中试题

合集下载

2023-2024学年合肥市一中高一数学(下)期中考试卷附答案解析

2023-2024学年合肥市一中高一数学(下)期中考试卷附答案解析

2023-2024学年合肥市一中高一数学(下)期中考试卷(考试时间:150分钟满分:120分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 满足()2i i z -=(i 是虚数单位),则在复平面内z 对应的点位于()A .第一象限B .第二象限C .第三象限D .第四象限2.在ABC 中,sin :sin :sin 2:3:4A B C =,则cos C =()A .23-B .14-C .13-D .143.非零向量a ,b 满足2a b a b +=- ,若a b = ,则a ,b 的夹角为()A .π6B .π3C .2π3D .5π64.以边长为2的正三角形的一边所在直线为旋转轴,将该正三角形旋转一周所得几何体的侧面积为()A .B .4πC .D .8π5.圆台上底面半径为2cm ,下底面半径为4cm ,母线8cm AB =,A 在上底面上,B 在下底面上,从AB 中点M 拉一条绳子,绕圆台侧面一周到B 点,则绳子最短距离为()cm A .10B .12C .16D .206.安徽省肥西县紫蓬山风景秀丽,紫蓬山山顶有座塔.某同学为了测量塔高,他在地面C 处时测得塔底B 在东偏北45︒的方向上,向正东方向行走50米后到达D 处,测得塔底B 在东偏北75︒的方向上,此时测得塔顶A 的仰角为45︒,则塔顶A 离地面的高度AB 为()A .米B .50米C .25+米D .50米7.已知直角ABC 中,3AB =,4AC =,5BC =,I 是ABC 的内心,P 是IBC 内部(不含边界)的动点,若(),AP AB AC λμλμ=+∈R,则λμ+的取值范围为()A .11,42⎛⎫ ⎪⎝⎭B .17,212⎛⎫⎪⎝⎭C .7,112⎛⎫⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭8.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图所示,将正方体沿交同一顶点的三条棱的中点截去一个三棱锥,共可截去八个三棱锥,得到八个面为正三角形、六个面为正方形的一种阿基米德多面体.已知1AB =,则关于图中的半正多面体,下列说法正确的有()A B .该半正多面体过A ,B ,C 三点的截面面积为334C .该半正多面体外接球的表面积为8πD .该半正多面体的表面积为6+二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.如图,A B C ''' 是水平放置的ABC 的斜二测直观图,其中2O C O A O B ''''''==,2O B ''=.则以下正确的有()A .4OA =B .ABC 是等腰直角三角形C .4OB =D .ABC 的面积为810.已知平面向量()2,3a =-r,()2,1b = ,则()A .()2a b b⊥-B .a 与b可作为一组基底向量C .a 与bD .a 在b方向上的投影向量的坐标为21,33⎛⎫ ⎪⎝⎭11.已知a ,b ,c 分别是ABC 的三个内角A ,B ,C 的对边,其中正确的命题有()A .已知60A ∠=︒,4b =,2c =,则ABC 有两解B .若90A ∠=︒,3b =,4c =,ABC 内有一点P 使得PA ,PB ,PC两两夹角为120︒,则22230PA PB PC ++= C .若90A ∠=︒,1b =,c =ABC 内有一点P 使得PA 与PB 夹角为90︒,PA 与PC夹角为120︒,则3tan 4PAC ∠=D .已知60A ∠=︒,4b =,设a t =,若ABC 是钝角三角形,则t 的取值范围是()()4+∞ 三、填空题:本题共3小题,每小题5分,共15分.12.已知某圆锥的侧面展开图是一个半径为r 的半圆,且该圆锥的体积为3π,则r =.13.甲船在B 岛的正南方向A 处,10AB =千米,甲船以4千米/小时的速度向正北方向航行,同时,乙船自B 岛出发以6千米/小时的速度向北偏东60︒的方向驶去,航行时间不超过2.5小时,则当甲、乙两船相距最近时,它们航行的时间是小时.14.如图,某公园内有一块边长为2个单位的正方形区域ABCD 市民健身用地,为提高安全性,拟在点A 处安装一个可转动的大型探照灯,其照射角PAQ ∠始终为45︒(其中P ,Q 分别在边BC ,CD 上),则AP AQ ⋅的取值范围.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.如图所示,底面边长为P ABCD -被平行于其底面的平面所截,截去一个底面边长为,高为4的正四棱锥1111P A B C D -.(1)求棱台1111A B C D ABCD -的体积;(2)求棱台1111A B C D ABCD -的表面积.16.如图,在ABC 中,已知2,4,60AB AC BAC ==∠=︒,M 是BC 的中点,N 是AC 上的点,且,,AN xAC AM BN=uuu r uuu r 相交于点P .设,AB a AC b ==.(1)若13x =,试用向量,a b表示,AM PN uuu r uuu r ;(2)若AM PN ⊥,求实数x 的值.17.在ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,且sin C C a =,b =(1)求角B ;(2)若2a c +=,求边AC 上的角平分线BD 长;(3)求边AC 上的中线BE 的取值范围.18.在ABC 中,内角,,A B C 所对的边分别是a ,b ,c ,已知sin sin cos sin cos sin sin a A a C B b C A b B c A ++=+.(1)若2a =,且ABC 为锐角三角形,求ABC 的周长的取值范围;(2)若2b ac =,且外接圆半径为2,圆心为O ,P 为圆O 上的一动点,试求PA PB ⋅的取值范围.19.现定义“n 维形态复数n z ”:cos isin n z n n θθ=+,其中i 为虚数单位,*n ∈N ,0θ≠.(1)当π4θ=时,证明:“2维形态复数”与“1维形态复数”之间存在平方关系;(2)若“2维形态复数”与“3维形态复数”相等,求πsin 4θ⎛⎫+ ⎪⎝⎭的值;(3)若正整数m ,()1,2n m n >>,满足1m z z =,2n m z z =,证明:存在有理数q ,使得12m q n q =⋅+-.1.B【分析】利用复数代数形式的乘除运算化简复数z ,求出复数z 在复平面内对应的点的坐标即可.【详解】由()2i i z -=,得()()()i 2i i 12i 2i 2i 2i 55z +===-+--+,∴复数z 在复平面内对应的点的坐标为12,55⎛⎫- ⎪⎝⎭,位于第二象限.故选:B .2.B【分析】根据正弦定理及余弦定理求解.【详解】由正弦定理可知,::2:3:4a b c =,设2,3,4a k b k c k ===,则22222213161cos 2124a b c k k C ab k +--===-.故选:B 3.B【分析】由题意利用求向量的模的方法,求得22a b b ⋅= ,从而利用向量的夹角公式求解即可.【详解】∵非零向量a ,b满足2a b a b +=- ,且a b = ,设a ,b的夹角为θ,则2222244a a b b a a b b +⋅+=-⋅+ ,且22a b = ,所以22a b b ⋅= .∴22112cos 2b a b a b bθ⋅===⋅ .∵[]0,πθ∈,∴π3θ=.故选:B .4.C【分析】根据正三角形绕一边所在直线为旋转轴旋转一周,得到几何体是两个同底的全等圆锥,根据圆锥的侧面积公式求解.【详解】如图,正三角形ABC 绕AB 所在直线为旋转轴旋转一周,得到几何体是两个同底的全等圆锥,底面半径3r =母线长2l =,由圆锥的侧面积公式可得该几何体的侧面积为2π3243π⨯=.故选:C.5.D【分析】由题意需先画出圆台的侧面展开图,并还原成圆锥展开的扇形,则所求的最短距离是平面图形两点连线,根据条件求出扇形的圆心角以及半径长,再求出最短的距离.【详解】画出圆台的侧面展开图,并还原成圆锥展开的扇形,且设扇形的圆心为O ,由图得:所求的最短距离是MB ',设OA R =,圆心角是α,则由题意知,4πR α=①,()8π8R α=+②,由①②解得,π,82R α==,∴12,16OM OB '==,则22121620cm MB '=+=.则则绳子最短距离为20cm .故选:D .6.A【分析】设塔高为h 米,利用仰角的正切表示出BD h =,在BCD △中利用正弦定理列方程求得h 的值.【详解】设雷锋塔AB 的高度为h 米,在地面C 处时测得塔顶A 在东偏北45︒的方向上,45BCD ∠=︒,测得塔顶A 在东偏北75︒的方向上,仰角为45︒,在Rt △ABD 中,45ADB ∠=︒,tan 45hBD h ==︒,在BCD △中,754530CBD ∠=︒-︒=︒,由正弦定理得,sin 30sin 45CD BD=︒︒,即5012=h =.故选:A.7.C【分析】由题意得AB AC ⊥,以A 为坐标原点,,AB AC 所在的直线分别为,x y 轴建立平面直角坐标系,利用等面积法先求出I 的位置,设(),P x y ,根据AP AI IP =+ ,可得1134IP AB AC λμ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭,故,34x yλμ==,34x y λμ+=+,根据线性规划即可求解.【详解】因为3AB =,4AC =,5BC =,所以222AB AC BC +=,即AB AC ⊥.如图建立平面直角坐标系:设内切圆的半径为r ,则()()()0,0,3,0,0,4A B C .∵ABC ABI BCI ACI S S S S =++V V V V ,∴2222AB AC AB r BC r AC r⋅⋅⋅⋅=++,即3434562222r r r r ⨯=++=,解得1r =,所以()1,1I ,∴1134AI AB AC =+ .∴1134AP AI IP AB AC IP =+=++ ,即1134AB AC AB AC IP λμ+=++ ,可得1134IP AB AC λμ⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭.设(),P x y ,则()()()()111,13,00,431,4134x y λμλμ⎛⎫⎛⎫--=-+-=-- ⎪ ⎪⎝⎭⎝⎭,∴3,4x y λμ==,即,34x yλμ==,∴34x y λμ+=+.∵()()3,0,0,4B C ,∴直线BC 的方程为134x y+=.设34x y z λμ=+=+,表示与134x y+=平行的直线,平移34x y z =+,当34x y z =+经过点I 时,1173412z =+=;当34x y z =+与134x y +=重合时,134x y z =+=.因为P 是IBC 内部(不含边界)的动点,所以7,112z ⎛⎫∈ ⎪⎝⎭,即7,112λμ⎛⎫+∈ ⎪⎝⎭.故答案为:7,112⎛⎫⎪⎝⎭.【点睛】关键点睛:设(),P x y ,求出34x yλμ+=+,根据线性规划求解λμ+的范围.8.D【分析】先将该半正多面体补形为正方体,利用正方体与棱锥的体积公式判断A ,利用该半正多面体的对称性,得到截面为正六边形与外接球的球心位置,从而判断BC ,利用正三角形与正方体的面积公式判断D.【详解】A :如图,因为1AB =,的正方体沿各棱中点截去8个三棱锥所得到的,所以该半正多面体的体积为:2311832223V ⎛⎫=-⨯⨯⨯⨯= ⎪ ⎪⎝⎭,故A 错误;B :根据该半正多面体的对称性可知,过,,A B C 三点的截面为正六边形ABCFED ,又1AB =,所以正六边形面积为261S ==,故B 错误;C :根据该半正多面体的对称性可知,该半正多面体的外接球的球心为正方体的中心,即正六边形ABCFED 的中心,故半径为1AB =,所以该半正多面体外接球的表面积为224π4π14πS R ==⨯=,故C 错误;D :因为该半正多面体的八个面为正三角形、六个面为正方形,棱长皆为1,所以其表面积为2281616+⨯=+,故D 正确.故选:D.【点睛】关键点点睛:本题解决的关键有二,一是将该半正多面体补形为正方体,二是充分利用该半正多面体的对称性,从而得解.9.ABC【分析】根据直观图画出原图,进而判断出正确答案.【详解】画出原图如下图所示,根据斜二测画法的知识可知:4OC OA OB ===,三角形ABC 是等腰直角三角形,面积为()1444162⨯+⨯=.所以ABC 选项正确,D 选项错误.故选:ABC10.BC【分析】对A :计算()2a b b -⋅即可得;对B :借助基底向量的定义即可得;对C :借助平面向量夹角公式计算即可得;对D :借助投影向量定义计算即可得.【详解】对A :()22,5a b -=--,则()()222519a b b +⋅-=-⨯-⨯=- ,故A 错误;对B :易得a 与b 为不共线的向量,故a 与b可作为一组基底向量,故B 正确;对C :cos ,a b a b a b ====⋅C 正确;对D:121,555a bb b bb⋅⎛⎫⋅== ⎪⎝⎭ ,故D 错误.故选:BC.11.CD【分析】对A :由余弦定理可计算出a 有唯一解;对B :借助余弦定理与等面积法计算即可得;对C :设PAC θ∠=,由余弦定理可得sin sin AP ACACP APC=∠∠,代入数据计算即可得解;对D :分B ∠为钝角及C ∠为钝角,结合直角的临界状态计算即可得.【详解】对A:a ==ABC 有唯一解,故A 错误;对B :在PBC 、PAC △、PAB 中,分别有2222342cos120PB PC PB PC +=+-⋅︒,即2225PB PC PB PC =++⋅,22232cos120PA PC PA PC =+-⋅︒,即229PA PC PA PC =++⋅,22242cos120PA PB PA PB =+-⋅︒,即2216PA PB PA PB =++⋅,即有()222259162PA PB PC PA PB PB PC PA PC ++=+++⋅+⋅+⋅,即()222502PA PB PB PC PA PC PA PB PC -⋅+⋅+⋅++=,又13462ABC PBC PAC PAB S S S S =++=⨯⨯= ,即()1sin12062PA PB PB PC PA PC ⋅+⋅+⋅︒=,即PA PB PB PC PA PC ⋅+⋅+⋅=,即有22225PA PB PC ++=-,故B错误;对C :设PAC θ∠=,则在直角三角形PAB 中,APB θ∠=,PA θ=,在PAC △中,有sin sin AP ACACP APC=∠∠1sin120=︒,313222=4sin θθ=,即3tan 4θ=,故C 正确;对D :若B ∠为钝角,如图,作CD AB ⊥于点D ,有CD BC AC <<,即sin b A a b ⋅<<,即234t <<,若C ∠为钝角,如图,作CD AC ⊥于点C ,有BC CD >,即tan a b A >⋅,即43t >综上所述,t 的取值范围是()()23,43,∞⋃+,故D 正确.故选:CD.【点睛】关键点点睛:D 选项中关键点在于分B ∠为钝角及C ∠为钝角,分别找出直角的临界情况求出范围.12.23【分析】设圆锥的底面圆的半径为R ,高为h ,则母线长为r 且2R r =,根据勾股定理求得32h r =,结合圆锥的体积公式计算即可求解.【详解】由题意知,设圆锥的底面圆的半径为R ,高为h ,则圆锥的母线长为r ,且12π2π2R r =⨯,得2R r =,所以2232h r R r -=,又圆锥的体积为3π,所以211π33V Sh R h ==,即2133ππ()322r r =⨯,解得23r =.故答案为:13.514【分析】设经过x 小时距离最近,分别表示出甲乙距离B 岛的距离,由余弦定理表示出两船的距离,根据二次函数求最值的方法得到答案.【详解】设经过x 小时两船之间的距离为s 千米,甲船由A 点到达C 点,乙船由B 点到达D 点,则4,104,6AC x BC x BD x ==-=,11820060CBD ∠︒=︒-.由余弦定理可得()()()2222110462104628201002s x x x x x x ⎛⎫=-+--⋅⋅-=-+ ⎪⎝⎭,当205 2.522814x ==<⨯时,2s 最小,则两船之间的距离最小,此时它们航行的时间为514小时.故答案为:514.14.8,4⎡⎤⎣⎦【分析】设,tan PAB t θθ∠==,可得2tan 2BP t θ==,()[]21,0,11t DQ t t-=∈+,以点A 为坐标原点,,AB AD 所在直线分别为,x y 轴建立坐标系,然后求出,AP AQ 的坐标,结合数量积的运算和对勾函数的性质求解.【详解】设,tan PAB t θθ∠==,则2tan 2BP t θ==,()()[]21tan 21π2tan ,0,141tan 1t DQ t t θθθ--⎛⎫=-=∈ ⎪++⎝⎭.以点A 为坐标原点,,AB AD 所在直线分别为,x y 轴建立坐标系,则()()()210,0,2,2,,21t A P t Q t ⎛⎫- ⎪+⎝⎭,()()212,2,,21t AP t AQ t ⎛⎫-== ⎪+⎝⎭,所以()412441211t AP AQ t t t t -⎛⎫⋅=+=++- ⎪++⎝⎭ .令1u t =+,[]1,2u ∈,则242AP AQ u u ⎛⎫⋅=+- ⎪⎝⎭ ,[]1,2u ∈.由对勾函数的性质可得()2f u u u =+在(上单调递减,在)2上单调递增,所以()min f u f ==又()()13,23f f ==,所以()2f u u u =+在[]1,2u ∈上的值域为⎡⎤⎣⎦,所以2428,4AP AQ u u ⎛⎫⎡⎤⋅=+-∈- ⎪⎣⎦⎝⎭ .故答案为:8,4⎡⎤⎣⎦.15.(1)2243(2)112【分析】(1)借助正四棱锥于棱台的性质可得棱台的高,结合棱台体积公式计算即可得;(2)求出棱台各个面的面积后相加即可得.【详解】(1)过点P 作PO ⊥底面ABCD 于点O ,PO 交平面1111D C B A 于点1O ,由正四棱锥及棱台的性质可知,O 为底面ABCD 的中心,则111114O O PO PO PO PO PO =--==,即棱台1111A B C D ABCD -的高4h =,(1111111113A B C D ABCD ABCD A B C D V S S h-=⨯+⨯((22112244564333⎡=⨯+⨯=⨯⨯=⎢⎣,(2)连接OA,则22422AO AB ==,则112AA AP ===作1A M AB ⊥于点M ,则1A M =故1111114ABCD A B C DA ABB S S S S=++表正方形正方形梯形(((22142=++⨯⨯32872112=++=.16.(1)1122AM a b =+ ,11412PN a b =-+uuu r r r (2)25【分析】(1)根据向量的加法运算即可求得AM ;设()PN tBN t AN AB ==-uuu r uuu r uuu r uu u r ,利用向量的线性运算结合图形关系可得1(1)3AP t b ta =-+uu u r r r ,再由向量共线的性质得到14t =,最后表示出所求向量即可;(2)利用向量垂直的性质和数量积的定义式计算可得.【详解】(1)111()222AM AB AC a b =+=+uuu r uu u r uuu r r r ,设()PN tBN t AN AB ==-uuu r uuu r uuu r uu u r ,因为13AN AC = ,所以1()(1)(1)3AP AN NP AN t AN AB t AN t AB t AC t AB =+=--=-+=-+uu u r uuu r uu u r uuu r uuu r uu u r uuu r uu u r uuu r uu u r,即1(1)3AP t b ta =-+uu u r r r ,由,AP AM uu u r uuu r 共线得:1(1)3t t -=,解得:14t =,所以1111()124124PN t BN t AN AB AC AB b a ==-=-=-uuu r uuu r uuu r uu u r uuu r uu u r r r ,所以1111,22412AM a b PN a b =+=-+ .(2)BN BA AN AB x AC a xb =+=-+=-+uuu r uu r uuu r uu u r uuu r r r ,因为AM PN ⊥,由于,BN PN uuu r uuu r 共线,故AM BN ⊥ ,所以1111()28402222AM BN a b a xb x x ⎛⎫⎛⎫⋅=+⋅-+=-++-= ⎪ ⎪⎝⎭⎝⎭ ,解25x =.17.(1)π3(2)6(3)33,22⎤⎥⎝⎦【分析】(1)根据正弦定理结合两角和的正弦公式化简求值即可;(2)依据余弦定理及已知得13ac =,然后利用面积分割法列方程求解即可;(3)利用向量的加法运算及数量积模的运算得()1324BE ca =+ ,利用正弦定理得π2sin 216ac A ⎛⎫=-+ ⎪⎝⎭,然后利用正弦函数的性质求解范围即可.【详解】(1)因为sin C C a +=,根据正弦定理sin sin sin b A C C B=,即()sin sin cos sin B C B C b A B C =+,即sin sin sin B C B C =,又sin 0C ≠,所以tan B =,因为()0,πB ∈,所以π3B =.(2)由π3B =及余弦定理得22π32cos 3c a ac =+-,即()22233c a ac a c ac =+-=+-,又因为2a c +=,所以13ac =,所以111sin sin sin 22222ABC ABD BCD B B S S S c BD a BD ac B =+=⋅⋅+⋅⋅= ,所以()ππsin sin 63BD a c ac ⋅+⋅=,即132122BD =⨯(3)因为E 是AC 的中点,所以()12BE BA BC =+ ,则()()2222211322444ca BE BA BA BC BC c a ac +=+⋅+=++= ,由正弦定理得,2sin 4sin sin 4sin sin πsin sin 3b b ac A C A C A A B B ⎛⎫=⋅==- ⎪⎝⎭即2πcos 2sin sin 2cos 212sin 216ac A A A A A A ⎛⎫=+-+=-+ ⎪⎝⎭,因为()()20,π,π0,π3A C A ∈=-∈,所以20,π3A ⎛⎫∈ ⎪⎝⎭,所以π172π,π666A ⎛⎫-∈- ⎪⎝⎭,所以π1sin 2,162A ⎛⎫⎛⎤-∈- ⎪ ⎥⎝⎭⎝⎦,所以(]π2sin 210,36ac A ⎛⎫=-+∈ ⎪⎝⎭,所以23239,444ca BE +⎛⎤=∈ ⎥⎝⎦,所以322BE ⎛⎤∈ ⎥ ⎝⎦,即边AC 上的中线BE 的取值范围为3322⎛⎤ ⎥ ⎝⎦.18.(1)(3++;(2)[]2,6-.【分析】(1)直接利用正余弦定理即可求出角B ,利用正弦定理将周长转化为关于角A 的三角函数,利用三角函数的值域即可求解;(2)易得ABC 为等边三角形,取AB 中点M ,可得2223PA PB PM MA PM ⋅=-=- ,由P 为圆O 上的一动点,可得[]1,3PM ∈,进而可求PA PB ⋅ 的取值范围.【详解】(1)因为sin sin cos sin cos sin sin a A a C B b C A b B c A ++=+,所以由正弦定理可得22cos cos a ac B bc A b ac ++=+,由余弦定理可得2222222222a c b b c a a b ac +-+-++=+,即222a c b ac +=+,所以2221cos 222a cb ac B ac ac +-===.因为0πB <<,所以π3B =;由ABC 为锐角三角形,π3B =,所以π022ππ032A C A ⎧<<⎪⎪⎨⎪<=-<⎪⎩,可得ππ,62A ⎛⎫∈ ⎪⎝⎭.由正弦定理sin sin sin a bcA B C ==,得22πsin sin 32cA A ==⎛⎫- ⎪⎝⎭,则2π2sin 31sin A b c A ⎛⎫- ⎪⎝⎭====则ABC的周长为22cos cos 12333sin 2sin cos tan 222AA a b c A A A A +++==+=+.由ππ,62A ⎛⎫∈ ⎪⎝⎭,则ππ,2124A ⎛⎫∈ ⎪⎝⎭.因为2π2tanππ12tan tan 2π6121tan 12⎛⎫=⨯== ⎪⎝⎭-整理得2ππtan 101212+-=,解得πtan 212=πtan 212=-(舍),所以()tan 22A ∈,所以(33tan 2A ++,即ABC的周长的取值范围为(3+.(2)由正弦定理2sin bR B =(R 为ABC的外接圆半径),则212b ac b ===.由222a c b ac +=+,可得2224a c +=,则a c ==ABC 为等边三角形.取AB 中点M,如图所示:则()()PA PB PM MA PM MB ⋅=+⋅+ ()2PM PM MA MB MA MB =+⋅++⋅ 2223PM MA PM =--= .由2,1OP OM ==,则[]1,3PM ∈,则[]2,6PA PB ⋅∈- .19.(1)证明见解析;(3)证明见解析.【分析】(1)当π4θ=时,ππcos isin 44n z n n =+,)11i z =+,2i z =,由221z z =,即可证明“2维形态复数”与“1维形态复数”之间存在平方关系;(2)由“2维形态复数”与“3维形态复数”相等,可得cos 2i sin 2cos3i sin 3θθθθ+=+,利用复数相等的条件得到()2πk k θ=∈Z ,即可求πsin 4θ⎛⎫+ ⎪⎝⎭;(3)由1m z z =得cos i sin cos i sin m m θθθθ+=+,利用复数相等的条件得到()112π1k k m θ=∈-Z 和()222π2k k n θ=∈-Z ,则()12122π2π,12k k k k m n =∈--Z ,则()11221,2k m k k n k -=∈-Z ,进一步得()()111122222211,k k k m n n k k k k k =-+=⋅+-∈Z ,即可证明存在有理数12k q k =,使得12m q n q =⋅+-.【详解】(1)当π4θ=时,ππcos isin 44n z n n =+,则)1ππcos isin 1i 44z =++,2ππcos isin 2i 2z +==.因为)()2221211i 12i i i 22z z ⎤=+=++==⎥⎣⎦,故“2维形态复数”与“1维形态复数”之间存在平方关系.(2)因为“2维形态复数”与“3维形态复数”相等,所以cos 2i sin 2cos3i sin 3θθθθ+=+,因此cos 2cos3sin 2sin 3θθθθ=⎧⎨=⎩,解cos 2cos3θθ=,得()322πk k θθ=+∈Z 或()322πk k θθ+=∈Z ,解sin 2sin 3θθ=,得()322πk k θθ=+∈Z 或()322ππk k θθ+=+∈Z ,由于两个方程同时成立,故只能有()322πk k θθ=+∈Z ,即()2πk k θ=∈Z .所以πππsin sin 2πsin 444k θ⎛⎫⎛⎫+=+== ⎪ ⎪⎝⎭⎝⎭(3)由1m z z =,得cos i sin cos i sin m m θθθθ+=+,由(2)同理可得()112πm k k θθ=+∈Z ,即()()1112πm k k θ-=∈Z .因为1m >,所以()112π1k k m θ=∈-Z .因为221n m z z z ==,由(1)知221z z =,所以2n z z =.由(2)同理可得()2222πn k k θθ=+∈Z ,即()()2222πn k k θ-=∈Z .因为2n >,所以()222π2k k n θ=∈-Z ,所以()12122π2π,12k k k k m n =∈--Z ,又因为0θ≠,所以120k k ≠,所以()11221,2k m k k n k -=∈-Z ,即()()111122222211,kk km n n k k k k k =-+=⋅+-∈Z ,所以存在有理数12kq k =,使得12m q n q=⋅+-.【点睛】关键点点睛:利用复数相等求出参数然后求解.。

高一数学第二学期期中考试试卷含答案(共5套)

高一数学第二学期期中考试试卷含答案(共5套)

高一下学期期中考试数学试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分,考试时间120分钟。

第Ⅰ卷(选择题 共60分)一、选择题(本大题共12小题,每小题5分,共60分)1.某质检人员从编号为1~100这100件产品中,依次抽出号码为3,13,23,…,93的产品进行检验,则这样的抽样方法是( )A .简单随机抽样B .系统抽样C .分层抽样D .以上都不对 2.将八进制数135(8)化为二进制数为( ) A .1 110 101(2) B .1 010 101(2) C .1 111 001(2)D .1 011 101(2)3.某产品在某零售摊位上的零售价x (元)与每天的销售量y (个)统计如下表:据上表可得回归直线方程a ˆx b ˆy ˆ+=中的b ˆ=-4,据此模型预计零售价定为16元时,销售量为( )A .48B .45C .50D .514.一组数据的平均数是4.8,方差是3.6,若将这组数据中的每一个数据都加上60,得到一组新数据,则所得新数据的平均数和方差分别是( )A .55.2,3.6B .55.2,56.4C .64.8,63.6D .64.8,3.65.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( )A .8B .11C .16D .106.如图是一算法的程序框图,若输出结果为S =720,则在判断框中应填入的条件是( )A .k ≤6B .k ≤7C .k ≤8D .k ≤97.两人的各科成绩如茎叶图所示,则下列说法不正确的是( )A .甲、乙两人的各科平均分相同B .甲的中位数是83,乙的中位数是85C .甲各科成绩比乙各科成绩稳定D .甲的众数是89,乙的众数为878.sin 2(π+α)-cos(π+α)cos(-α)+1的值为( ) A .1 B .2sin 2α C .0 D .29.利用秦九韶算法求f (x )=x 5+x 3+x 2+x +1当x =3时的值为( ) A .121 B .283 C .321 D .23910.如图,矩形长为8,宽为3,在矩形内随机地撒300颗黄豆,数得落在椭圆外的黄豆为96颗,以此试验数据为依据可以估计椭圆的面积为( ) A .7.68 B .8.68 C .16.32D .17.3211.甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b ∈{1,2,3,4,5,6},若|a-b|≤1,就称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为( )A. 91B. 92C. 187D.9412.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=21(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为32π,弦长为m 340的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3≈π,73.13≈) A . 15 B . 16 C . 17 D . 18第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x 的回归方程:y ∧=0.234x +0.521.由回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元. 14.已知sin(π4+α)=32,则sin(3π4-α)的值为________. 15.在抛掷一颗骰子的试验中,事件A 表示“不大于4的偶数点出现”,事件B 表示“小于5的点数出现”,则事件B A Y 发生的概率为________.(B 表示B 的对立事件)16.设函数y =f (x )在区间[0,1]上的图像是连续不断的一条曲线,且恒有0≤f (x )≤1,可以用随机模拟方法近似计算由曲线y =f (x )及直线x =0,x =1,y =0所围成部分的面积S .先产生两组(每组N 个)区间[0,1]上的均匀随机数x 1,x 2,…,x N 和y 1,y 2,…,y N ,由此得到N 个点(x i ,y i )(i =1,2,…N ).再数出其中满足y i ≤f (x i )(i =1,2,…,N )的点数N 1,那么由随机模拟方法可得到S 的近似值为________. 二、解答题(17题10分,其余均12分)17.(10分) 已知|x|≤2,|y|≤2,点P 的坐标为(x ,y),求当x ,y ∈R 时,P 满足(x -2)2+(y -2)2≤4的概率.18.(12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程a ˆx b ˆyˆ+= (3)试预测加工10个零件需要多少小时?(注:b ∧=∑ni =1x i y i -n x - y -∑n i =1x i 2-n x -2,a ∧=y --b ∧ x -)零件的个数x(个)2345加工的时间y(小时) 2.5 3 4 4.519.(12分)已知α是第三象限角,f (α)=()()()α-π-•α-π-α-•α-π•α-πsin tan tan )2cos()sin((1)化简f (α);(2)若⎪⎭⎫ ⎝⎛π-α23cos =15,求f (α)的值;20.(12分)某校为了解高三年级学生的数学学习情况,在一次数学考试后随机抽取n 名学生的数学成绩,制成如下所示的频率分布表.(1)求a ,b ,n 的值;(2)若从第三、四、五组中用分层抽样的方法抽取6名学生,并在这6名学生中随机抽取2名与老师面谈,求第三组中至少有1名学生被抽到与老师面谈的概率.21.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4.(1)从袋中随机取两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m,将球放回袋中,然后再从袋中随机取一个球,求n≥m+2的概率.22.(12分)在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图;(2)求这两个班参赛的学生人数是多少?(3)求这两个班参赛学生的成绩的中位数.高一下期期中考试数学试题答案一、选择题B D B D A B D D BCD B二、填空题13. 0.234 14.3215.32 16.N1N三、解答题(17题10分,其余均12分)17.解:如图,点P所在的区域为正方形ABCD的内部(含边界),满足(x-2)2+(y-2)2≤9的点的区域为以(2,2)为圆心,2为半径的圆面(含边界).∴所求的概率P1=14π×224×4=π16.18.解:(1)散点图如图.(2)由表中数据得∑4i=1x i y i=52.5,x -=3.5,y -=3.5,∑4i =1x i 2=54. ∴b ∧=0.7,∴a ∧=1.05. ∴y ∧=0.7x +1.05.(3)将x =10代入回归直线方程,得y ∧=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.19.解:(1)f (α)==-sin α·cos α·tan α-tan α·sin α=cos α.(2)∵cos ⎝ ⎛⎭⎪⎫α-32π=cos ⎝ ⎛⎭⎪⎫32π-α=-sin α,又cos ⎝⎛⎭⎪⎫α-32π=15,∴sin α=-15.又α是第三象限角,∴cos α=-1-sin 2α=-265,∴f (α)=-265.20.解:(1)由表中数据,得5n =0.05,a n =0.35,20n=b ,解得n =100,a =35,b=0.20.(2)由题意,得第三、四、五组分别抽取的学生人数为3060×6=3,2060×6=2,1060×6=1.第三组的3名学生记为a 1,a 2,a 3,第四组的2名学生记为b 1,b 2,第五组的1名学生记为c ,则从6名学生中随机抽取2名,共有15种不同情况,分别为{a 1,a 2},{a 1,a 3},{a 1,b 1},{a 1,b 2},{a 1,c },{a 2,a 3},{a 2,b 1},{a 2,b 2},{a 2,c },{a 3,b 1},{a 3,b 2},{a 3,c },{b 1,b 2},{b 1,c },{b 2,c }.其中第三组的3名学生均未被抽到的情况共有3种,分别为{b 1,b 2},{b 1,c },{b 2,c }. 故第三组中至少有1名学生被抽到与老师面谈的概率为1-315=45.21解:(1)p=3162(2)先从袋中随机取一个球,记下编号m,放回后,再从袋中随机取一个球,记下编号n,可能的结果为(1,1)(1,2)(1,3)(1,4)(2,1)(2,2)(2,3)(2,4)(3,1)(3,2)(3,3)(3,4)(4,1)(4,2)(4,3)(4,4)共16个,满足条件的事件为(1,3)(1,4)(2,4)共3个所以n ≥m+2的概率为p=16322.解:(1)各小组的频率之和为 1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05.∴第二小组的频率为:1.00-(0.30+0.15+0.10+0.05)=0.40. ∴落在59.5~69.5的第二小组的小长方形的高=频率组距=0.4010=0.04.则补全的直方图如图所示.(2)设九年级两个班参赛的学生人数为x 人.∵第二小组的频数为40人,频率为0.40,∴40x=0.40,解得x=100(人).所以九年级两个班参赛的学生人数为100人.(3)∵(0.03+0.04)×10>0.5所以九年级两个班参赛学生的成绩的中位数应落在第二小组内.设中位数为x则0.03×10+(x-59.5)×0.04=0.5得x=64.5高一下学期期中数学考试试卷(时间:120分钟满分:150分)第Ⅰ卷 (选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合,,则( )A. B. C. D.2.( )A.0 B.1 C.2 D.43.若,则下列结论正确的是( )A. B.C. D.4.下列函数中,既不是奇函数,也不是偶函数的是( )A.B.C.D.5.函数的定义域是( )A. B. C. D.6.函数过定点( )A. B. C. D.7.已知,,,则=( )A. B. C. D.8.已知函数为幂函数,则实数的值为( )A.或 B.或 C. D.9.已知函数,若,则实数等于( )A .2 B. 45 C .12 D .910.若,则函数与的图象可能是下列四个选项中的( )11.已知是定义在上的奇函数,当时,,则当时,( )AB .C .D .12.若函数是定义在上的偶函数,在上是增函数,且,则使得的的取值范围是( ) A .B . C. D .第Ⅱ卷 (非选择题 共90分)二、填空题(本大题共4个小题,每小题5分,共20分,请把正确答案填在题中横线上) 13.设集合,集合,若,则实数14.若,则=15.如果函数,的增减性相同,则的取值范围是.16.已知是方程的两个根,则的值是.三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤) 17.(本小题满分10分)计算下列各式的值(式中字母都是正数): (1);(2)已知,求的值.18.(本小题满分12分)已知集合,.(1)若,求;(2)⊆,求的取值范围.19.(本小题满分12分)已知函数+2.(1)求在区间上的最大值和最小值;(2)若在上是单调函数,求的取值范围.20.(本小题满分12分)已知函数是R上的奇函数,(1)求的值;(2)先判断的单调性,再证明.21.(本小题满分12分)已知函数,.(1)求函数的定义域;(2)讨论不等式中的取值范围.22.(本小题满分12分)若二次函数满足且. (1)求的解析式;(2)若在区间上不等式恒成立,求实数的取值范围.高一下学期期中考试试卷数学时量:120分钟 总分:150分一、选择题(本大题共12个小题,每小题5分,共60分)1.3x cos y =是( )A .周期为π6的奇函数B .周期为3π的奇函数C .周期为π6的偶函数D .周期为3π的偶函数2.已知sin α=41,则cos 2α的值为( )A .21B .87- C.21- D.873.已知平面向量()()3,2,4,1==→→b a ,则向量=+→→b a 5251( )A .()1,2B .()5,3 C.()3,5 D.()2,14.已知平面向量a =(2,4),b =(-4,m ),且a ⊥b ,则m =( )A .4B .2C .-4D .-25.为得到函数⎪⎭⎫ ⎝⎛+=33sin πx y 的图象,只需将函数y =sin 3x 的图象( )A .向左平移9π个长度单位B .向右平移9π个长度单位C .向左平移3π个长度单位D .向右平移3π个长度单位6.设a =(8,-2),b =(-3,4),c =(2,3),则(a +2b )·c 等于( )A .(4,18)B .22C .-6 D.(18,4)7.已知a ·b =122,|a |=4,a 与b 的夹角为45°,则|b |为( )A .12 A .3 C .6 D .98.若-π2<α<0,则点P (sin α,cos α)位于( )A .第一象限B .第二象限C .第三象限D .第四象限9.已知α∠的终边经过点()31P ,,则=αsin ( )A .21 B .10103C .31D .3310.若=)(x f ⎪⎩⎪⎨⎧>⎪⎭⎫ ⎝⎛-≤≤⎪⎭⎫ ⎝⎛+2,32032sin ππππx x f x x ,,求)32(πf =( ) A.0 B.23C.21 D.1 11.已知2tan -=α,则αααα22cos sin cos sin 3-的值是( ) A .2- B . 3 C .2 D .3- 12.在Rt △ABC 中,∠C =90°,AC =3,则AB →·AC→等于( )A .-3B .-6C .9D .6 二、填空题(本大题共4小题,每小题5分,共20分)13.已知AB →=(2,7),AC →=(-5,8),则BC →=__________________.14.函数()()()R x x x x f ∈-=cos sin 2的最小正周期为________,最大值为________. 15.设a =(5,-2),b =(6,2),则2|a |2-12a ·b =______________.16.已知tan α=-2,tan(α+β)=5,则tan β的值为________. 三、解答题(本大题共6小题,共70分)17.(10分)已知()ππθθ2,,53cos ∈=,求⎪⎭⎫ ⎝⎛+6sin πθ以及⎪⎭⎫ ⎝⎛-4tan πθ的值.18.(10分)设函数()⎪⎭⎫ ⎝⎛+=6sin 2πωx x f ,0>ω,最小正周期为2π. (1)求()0f .(2)求()x f 的解析式.(3)求()x f 的单调递增区间.19.(12分)已知向量a =(3,2),b =(-1,3),c =(5,2).(1)求6a +b -2c ;(2)求满足a =m b +n c 的实数m ,n ; (3)若(a +k c )//(2b -a ),求实数k . 20. (12分)已知23παπ<<,211-tan tan -=αα.(1)求αtan 的值。

高一数学下学期期中试卷含答案(共3套)

高一数学下学期期中试卷含答案(共3套)

高一数学第二学期期中考试试卷试题分值 150分 时间 120分钟一、选择题1、集合}{01032<-+=x x x A ,}{410<+<=x x B ,则)(B C A R ⋂=( )A 、}{21<<-x x B 、}{3215≤<-≤≤-x x x 或C 、}{15-≤<-x xD 、}{15-≤≤-x x2、已知135sin =α,α是第一象限角,则cos(π)α-的值为( ) A.513-B.513C.1213-3、在等差数列{}n a 中,已知112n a n =-,则使前n 项和n S 最大的n 值为( ) A.4 B.5 C.6 D.74、在ABC ∆中,内角C B A 、、所对的边为c b a 、、, 60B =,4a =,其面积S =c =( )A.15B.16C.20D.5、已知平面向量→a , →b 满足|→a |=1,|→b |=2,且(→a +→b )⊥→a ,则→a ,→b 的夹角为A 、23π B 、2π C 、3π D 、6π6、在ABC ∆中,内角C B A 、、所对的边为c b a 、、, 4,30a b A ===,则B =( )A.60°B.60°或120°C.30°D.30°或150° 7、等比数列{}n a 的前m 项和为4,前2m 项和为12,则它的前3m 项和是( ) A.28 B.48 C.36 D.52 8、已知等差数列}{n a 的前15项之和为154π,则789tan()a a a ++=( ) A. 33B. 3C. 1-D. 19、在△ABC 中,2,1AB AC AM AM +==,点P 在AM 上且满足2AP PM =, 则()PA PB PC ⋅+等于( ) A .94 B.34 C.-34 D.-9410、已知))()(()(b a b x a x x f >--=其中,若)(x f 的图象如右图所示:则b a x g x +=)(的图象是( )ABCD11、在△ABC 中,内角C B A 、、所对的边为c b a 、、,若222c a b ab ≤+-,则C 的取值范围为( ) A.(0,]3πB.[,)6ππC.[,)3ππD.(0,]6π12、已知等差数列{}n a 满足公差(1,0)d ∈-,当且仅当9n =时,数列{}n a 的前n 项和n S 取得最大值,则该数列首项1a 的取值范围为( )A.43(,)32ππ B.43,32ππ⎡⎤⎢⎥⎣⎦C.74(,)63ππD.74,63ππ⎡⎤⎢⎥⎣⎦ 二、填空题13、若3sin 5x =,则cos 2x =__________. 14、已知正实数,,a b m ,满足a b <则b a 与 b ma m++的大小关系是15、在矩形ABCD 中,AB=2BC ,M 、N 分别是AB 和CD 的中点,在以A 、B 、C 、D 、M 、N 为起点和终点的所有向量中,相等的非零向量共有 对.16.对于实数b a ,,定义运算⎩⎨⎧>-≤-=⊗⊗11:""b a b b a a b a ,设函数)()2()(22x x x x f -⊗-=,若函数c x f y -=)(的图象与x 轴恰有两个公共点,则实数c 的取值范围是________.三、解答题17. (本小题满分10分)已知等差数列{}n a 满足:3710,26a a ==. (1)求数列{}n a 的通项公式;(2)请问88是数列{}n a 中的项吗?若是,请指出它是哪一项;若不是,请说明理由.18. (本小题满分10分)叙述并证明余弦定理19. (本小题满分12分) 已知向量(cos ,1)2x m =-u r ,2,cos )22x x n =r ,设函数1()2f x m n =⋅+u r r .(1)求函数()f x 的最小正周期;(2)求函数()f x 的单调区间.20. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,递增的等比数列{}n b 满足:142318,32b b b b +=⋅=.(1)求数列{}{}n n a b 、的通项公式;(2)若*,N n n n c a b n =⋅∈,求数列{}n c 的前n 项和n T .21、(12分)要将两种大小不同的钢板截成A B C 、、三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:今需要A B C 、、三种规格的成品分别15,18,27块,各截这两种钢板多少张可得所需A B C 、、三种规格的成品,且使所用钢板张数最少?213112C 规格B 规格A 规格第一种钢板第二种钢板规格类型钢板类型22、(本小题满分12分) 已知函数)(Z ∈=++-m x x f m m322)(为偶函数,且)5()3(f f <. (1)求m 的值,并确定)(x f 的解析式.(2)若)1,0]()([log ≠>-=a a ax x f y a 且在区间[]3,2上为增函数,求实数a 的取 值范围 .第二学期期中考试 高一文科数学试题试题分值 150分 时间 120分钟 命题教师 侯思超一、选择题1、C2、C.3、B4、C5、A6、B7、A.8、C.9、D10、A 11、A.12、A二、填空题13、725 14、b a >b m a m++15、2416. )43,1(]2,(----∞ 三、解答题 17.解:(1)依题意知73416,4d a a d =-=∴=【3分】()3342n a a n d n ∴=+-=-【5分】(2)令*454588,4288,,N .22n a n n =-==∉Q 即所以 所以88不是数列{}n a 中的项.【10分】 18. 叙述并证明余弦定理解:余弦定理:三角形任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍【2分】即2222cos a b c bc A =+-2222cos b a c ac B =+-2222cos c a b ab C =+-【4分】证明:如图,设,,CB a CA b AB c ===,那么c a b =-,()()2c c c a b a b =⋅=-⋅- 2a a b b a b =⋅+⋅-⋅222cos a b ab C =+-即2222cos c a b ab C =+-同理2222cos b a c ac B =+-,2222cos a b c bc A =+-【12分】C19.解析:(1)依题意得()sin()6f x x π=-,【4分】()2f x T π∴=最小正周期为【6分】(2)由22262k x k πππππ-≤-≤+解得22233k x k ππππ-≤≤+, 从而可得函数()f x 的单调递增区间是:2[2,2],33k k k Z ππππ-+∈【9分】 由322262k x k πππππ+≤-≤+解得252233k x k ππππ+≤≤+,从而可得函数()f x 的单调递减区间是:25[2,2],33k k k Z ππππ++∈【12分】 20. (本小题满分12分)已知数列{}n a 的前n 项和为n S ,且23122n S n n =+,递增的等比数列{}n b 满足:142318,32b b b b +=⋅=.(1)求数列{}{}n n a b 、的通项公式;(2)若*,N n n n c a b n =⋅∈,求数列{}n c 的前n 项和n T . 解析 :(1)当2n ≥时,()()221313111312222n n n a S S n n n n n -⎡⎤=-=+--+-=-⎢⎥⎣⎦111,2n a S ===Q 又时符合,所以31n a n =-【3分】2314b b b b =Q ,14,b b ∴方程218320x x -+=的两根, 41b b >Q 又,所以解得142,16b b ==34182b q q b ∴==∴=112n n n b b q -∴=⋅=【6分】(2)31,2n n n a n b =-=Q ,则n (31)2n C n =-⋅1234225282112(31)2n n T n ∴=⋅+⋅+⋅+⋅++-⋅L 234512225282112(31)2n n T n +=⋅+⋅+⋅+⋅++-⋅L将两式相减得:12341=22+32+2+2+2)(31)2-------------------------------------------8nn n T n +⋅--⋅L -(分2112(12)43(31)212n n n -+⎡⎤-=+--⋅⎢⎥-⎣⎦1(34)28n n +=-+⋅-【10分】所以1=(34)28n n T n +-⋅+.【12分】 21、解:设所需第一种钢板x 张,第一种钢板y 张,共需截这两种钢板z 张,则目标函数为z x y =+约束条件为21521832700x y x y x y x y +≥⎧⎪+≥⎪⎪+≥⎨⎪≥⎪≥⎪⎩ 【3分】可行域如下图【5分】把z x y =+变形为v ,得到斜率为1-,在y 轴上截距为z 的一组平行直线,由上图可知,当直线z x y=+经过可行域上的点M 时,截距z 最小,解方程组327215x y x y +=⎧⎨+=⎩得点1839,55M ⎛⎫⎪⎝⎭,由于1839,55都不是整数,而此问题中最优解(),x y 中,,x y 必须都是整数,所以点1839,55M ⎛⎫⎪⎝⎭不是最优解。

2023-2024学年济宁市高一数学(下)期中考试卷附答案解析

2023-2024学年济宁市高一数学(下)期中考试卷附答案解析

2023-2024学年济宁市高一数学(下)期中考试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=i+i2(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)函数的最小正周期为()A.πB.C.2D.43.(5分)如图,一个水平放置的平面图形的斜二测直观图是直角梯形O′A′B′C′,且O′A′∥B′C′,O′A′=2B′C′=4,A′B′=2,则该平面图形的高为()A.B.2C.D.4.(5分)我们学过度量角有角度制与弧度制,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种用面度作为单位来度量角的单位制,叫做面度制.在面度制下,角θ的面度数为,则角θ的正弦值为()A.B.C.D.5.(5分)四等分切割如图所示的圆柱,再将其重新组合成一个新的几何体,若新几何体的表面积比原圆柱的表面积增加了10,则圆柱的侧面积是()A.10πB.20πC.10D.206.(5分)已知向量,满足||=2||=2,且|2﹣|=,则|﹣|=()A.1B.2C.D.7.(5分)如图所示,O为线段A0A2025外一点,若A0,A1,A2,A3,⋯,A2025中任意相邻两点间的距离相等,,则用,表示,其结果为()A.B.C.D.8.(5分)在△ABC中,角A、B、C的对边分别为a、b、c,且△ABC的面积,,则=()A.B.C.2D.﹣2二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.(多选)9.(6分)已知复数z1,z2满足z1=1+,z2=﹣1+i,则下列说法正确的是()A.z1•z2=2i B.|z1|=|z2|C.z1﹣的虚部为2D.(多选)10.(6分)软木锅垫的正、反面可加置印刷公司log o、图片、产品、广告、联系方式等,表面较强的摩擦力既可以防止玻璃、瓷杯滑落,又可保护桌面不被烫坏.如图②,这是一个边长为20厘米的正六边形的软木锅垫ABCDEF,则下列选项正确的是()A.向量在向量上的投影向量为B.C.D.点P是正六边形内部(包括边界)的动点,的最小值为﹣200(多选)11.(6分)已知函数f(x)=A cos(ωx+φ)(其中A>0,ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是()A.函数f(x)的周期为T=πB.函数f(x)的图象关于对称C.函数f(x)在区间上的最大值为2D.直线y=1与的图像所有交点的横坐标之和为三、填空题:本题共3小题,每小题5分,共15分.12.(5分)如图所示,长方体ABCD﹣A1B1C1D1,M,N分别为棱A1B1,C1D1的中点.用平面BCNM 把这个长方体分成两部分,则左侧几何体是.(填:棱柱、棱锥、棱台其中一个)13.(5分)已知向量,若,则实数x的取值范围是.14.(5分)已知向量,若=﹣2,则sin2α+cos2α=.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知2﹣i是关于x的方程x2+mx+n=0(m,n∈R)的一个根,其中i为虚数单位.(1)求m+2n的值;(2)记复数z=m+ni,求复数的模.16.(15分)已知单位向量满足.(1)求的值;(2)设与的夹角为θ,求cosθ的值.17.(15分)兴隆塔,建于隋朝,位于区博物馆内.某校开展数学建模活动,有建模课题组的学生选择测量兴隆塔的高度,为此,他们设计了测量方案.如图,兴隆塔垂直于水平面,他们选择了与兴隆塔底部D在同一水平面上的A,B两点,测得AB=54米,在A,B两点观察塔顶C点,仰角分别为45°和α,其中cosα=,∠ADB=45°.(1)求兴隆塔的高CD的长;(2)在(1)的条件下求多面体A﹣BCD的表面积;(3)在(1)的条件下求多面体A﹣BCD的内切球的半径;18.(17分)已知向量=(cos x,2sin x),,函数f(x)=.(1)求函数f(x)=在[0,π]上的单调递减区间;(2)若f(x0)=,且,求cos2x0的值;(3)将g(x)图象上所有的点向左平移个单位,然后再向上平移1个单位,最后使所有点的纵坐标变为原来的2倍,得到函数f(x)的图象,当时,方程g(x)=m有一解,求实数m的取值范围.19.(17分)在△ABC中,∠A,∠B,∠C对应的边分别为a,b,c,2sin A sin B sin C=(sin2B﹣cos2C+cos2A).(1)求A;(2)若b=1,c=3,D为线段BC内一点,且BD:DC=1:2,求线段AD的长;(3)法国著名科学家柯西在数学领域有非常高的造诣;很多数学的定理和公式都以他的名字来命名,如对于任意的x1,x2,y1,y2∈R,都有(x1•x2+y1•y2)2≤(+)(+)被称为柯西不等式;在(1)的条件下,若a=2,求:的最小值.参考答案与试题解析一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)复数z=i+i2(i为虚数单位)在复平面内对应的点所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据已知条件,结合复数的乘除法原则和复数的几何意义,即可求解.【解答】解:∵z=i+i2=﹣1+i,∴复数z在复平面内对应的点(﹣1,1)所在象限为第二象限.故选:B.【点评】本题考查了复数的几何意义,以及复数代数形式的乘除法运算,需要学生熟练掌握公式,属于基础题.2.(5分)函数的最小正周期为()A.πB.C.2D.4【分析】根据三角函数的周期公式求解即可.【解答】解:函数的最小正周期为:=2.故选:C.【点评】本题主要考查三角函数的周期,属于基础题.3.(5分)如图,一个水平放置的平面图形的斜二测直观图是直角梯形O′A′B′C′,且O′A′∥B′C′,O′A′=2B′C′=4,A′B′=2,则该平面图形的高为()A.B.2C.D.【分析】根据给定条件,求出O′C′,再作出水平放置的原平面图形作答.【解答】解:在直角梯形O′A′B′C′中,O′A′∥B′C′,O′A′=2B′C′=4,A′B′=2,显然∠A′O′C′=45°,于是,直角梯形O′A′B′C′对应的原平面图形为如图中直角梯形OABC,BC∥OA,OC⊥OA,OA=2BC=4,,所以该平面图形的高为.故选:C.【点评】本题考查了直观图的画法与应用问题,是基础题.4.(5分)我们学过度量角有角度制与弧度制,最近,有学者提出用“面度制”度量角,因为在半径不同的同心圆中,同样的圆心角所对扇形的面积与半径平方之比是常数,从而称这个常数为该角的面度数,这种用面度作为单位来度量角的单位制,叫做面度制.在面度制下,角θ的面度数为,则角θ的正弦值为()A.B.C.D.【分析】结合面度制的定义,以及扇形的面积公式,即可求解.【解答】解:设角θ所在的扇形的半径为r,则=,解得,故.故选:D.【点评】本题主要考查扇形的面积公式,属于基础题.5.(5分)四等分切割如图所示的圆柱,再将其重新组合成一个新的几何体,若新几何体的表面积比原圆柱的表面积增加了10,则圆柱的侧面积是()A.10πB.20πC.10D.20【分析】根据新几何体的表面积比原圆柱的表面积增加了两个长方形的面积,即可求解.【解答】解:如图,设圆柱的母线长为l,底面半径为r,即AB=l,OA=r,则切割以后得侧面积增加了两个长方形的面积,且长方形CDEF的面积为S=rl,因为新几何体的表面积比原圆柱的表面积增加了10,所以2rl=10,即rl=5,所以圆柱的侧面积为2πrl=2π×5=10π.故选:A.【点评】本题考查圆柱侧面积公式的应用,属于基础题.6.(5分)已知向量,满足||=2||=2,且|2﹣|=,则|﹣|=()A.1B.2C.D.【分析】由平面向量数量积的运算,结合平面向量的模的运算求解.【解答】解:已知向量,满足||=2||=2,且|2﹣|=,则,即,则|﹣|==.故选:B.【点评】本题考查了平面向量数量积的运算,重点考查了平面向量的模的运算,属中档题.7.(5分)如图所示,O为线段A0A2025外一点,若A0,A1,A2,A3,⋯,A2025中任意相邻两点间的距离相等,,则用,表示,其结果为()A.B.C.D.【分析】设A0A2025的中点为A,利用三角形中线向量的表示法,化简求和即得.【解答】解:因A0,A1,A2,A3,⋯,A2025中任意相邻两点间的距离相等,不妨设A0A2025的中点为A,则点A也是A1A2024,A2A2023,⋯,A1012A1013的中点,则,同理可得:,则.故选:D.【点评】本题考查平面向量的线性运算,属中档题.8.(5分)在△ABC中,角A、B、C的对边分别为a、b、c,且△ABC的面积,,则=()A.B.C.2D.﹣2【分析】根据已知条件,结合余弦定理,以及三角形的面积公式,即可求解.【解答】解:∵△ABC的面积,∴,,则,由余弦定理可知,a2+c2﹣b2=2ac•cos B,即,化简整理可得,,∵B∈(0,π),∴,sin B=,∴ac=4∴=﹣2.故选:D.【点评】本题主要考查余弦定理的应用,属于基础题.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.(多选)9.(6分)已知复数z1,z2满足z1=1+,z2=﹣1+i,则下列说法正确的是()A.z1•z2=2i B.|z1|=|z2|C.z1﹣的虚部为2D.【分析】根据已知条件,结合复数的四则运算,复数模公式,复数的概念,即可求解.【解答】解:z1=1+=1﹣i,z2=﹣1+i,z1z2=(1﹣i)(﹣1+i)=2i,故A正确;,故B正确;,其虚部为0,故C错误;,则,,故D正确.故选:ABD.【点评】本题主要考查复数的四则运算,复数模公式,复数的概念,属于基础题.(多选)10.(6分)软木锅垫的正、反面可加置印刷公司log o、图片、产品、广告、联系方式等,表面较强的摩擦力既可以防止玻璃、瓷杯滑落,又可保护桌面不被烫坏.如图②,这是一个边长为20厘米的正六边形的软木锅垫ABCDEF,则下列选项正确的是()A.向量在向量上的投影向量为B.C.D.点P是正六边形内部(包括边界)的动点,的最小值为﹣200【分析】以A为原点,以所在直线为x轴,所在直线为y轴,建立平面直角坐标系,利用坐标系法,结合投影向量公式、向量的线性运算、模长公式及数量积公式对各选项逐一分析即可判断.【解答】解:以A为原点,AB所在直线为x轴,AE所在直线为y轴,建立平面直角坐标系,如图所示,对于A,由图可知B(20,0),,,,所以,,向量在上的投影向量为,故A正确;对于B,由图可知A(0,0),,所以,,,所以,故B正确;对于C,,,所以,故C错误;对于D,设P(x,y),则,,所以,因为点P是正六边形内部(包括边界)的动点,所以﹣10≤x≤30,所以当x=﹣10时,•有最小值,最小值为﹣200,故D正确.故选:ABD.【点评】本题考查平面向量的线性运算及数量积运算,属中档题.(多选)11.(6分)已知函数f(x)=A cos(ωx+φ)(其中A>0,ω>0,|φ|<π)的部分图象如图所示,则下列结论正确的是()A.函数f(x)的周期为T=πB.函数f(x)的图象关于对称C.函数f(x)在区间上的最大值为2D.直线y=1与的图像所有交点的横坐标之和为【分析】由最值求A,由周期求ω,然后结合特殊点的坐标可求φ,进而可求函数解析式,然后结合正弦函数的性质检验各选项即可判断.【解答】解:由题意得,A=2,T=4()=π,A正确;故ω=2,f(x)=2sin(2x+φ),又2×=+2kπ,k∈Z,|φ|<π,所以φ=,f(x)=2sin(2x+),当x=﹣时,2×=0,此时f(x)不是取得最值,即x=﹣不是函数的对称轴,B错误;当﹣时,,故﹣1≤sin(2x+)≤1,即函数的最大值为2,C正确;y=1与的图像所有交点共2个,且关于直线x=对称,横坐标之和为,D正确.故选:ACD.【点评】本题主要考查了函数性质在函数y=A sin(ωx+φ)解析式求解中的应用,还考查了正弦函数性质的应用,属于中档题.三、填空题:本题共3小题,每小题5分,共15分.12.(5分)如图所示,长方体ABCD﹣A1B1C1D1,M,N分别为棱A1B1,C1D1的中点.用平面BCNM 把这个长方体分成两部分,则左侧几何体是棱柱.(填:棱柱、棱锥、棱台其中一个)【分析】根据棱柱的定义即可.【解答】解:左侧几何体有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,所以左侧几何体为棱柱.故答案为:棱柱.【点评】本题主要考查棱柱的结构特征,属于基础题.13.(5分)已知向量,若,则实数x的取值范围是{x|x ≠﹣2}.【分析】根据向量夹角的范围即可求解.【解答】解:因为两个向量的夹角θ∈[0,π],而向量,,所以向量与不共线,当向量与共线时,1×4﹣(﹣2)x=0,解得x=﹣2.故实数x的取值范围是{x|x≠﹣2}.故答案为:{x|x≠﹣2}.【点评】本题主要考查向量的坐标运算,属于基础题.14.(5分)已知向量,若=﹣2,则sin2α+cos2α=.【分析】根据数量积的坐标运算求得tanα,然后利用二倍角公式及弦切互化代入计算即可.【解答】解:因为向量,,所以3sinα+(﹣2)×(1﹣cosα)=3sinα+2cosα﹣2=﹣2,所以3sinα=﹣2cosα,所以,所以sin2α+cos2α==.故答案为:.【点评】本题考查了平面向量的数量积运算和三角函数求值问题,是基础题.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知2﹣i是关于x的方程x2+mx+n=0(m,n∈R)的一个根,其中i为虚数单位.(1)求m+2n的值;(2)记复数z=m+ni,求复数的模.【分析】(1)把2﹣i代入方程x2+mx+n=0,整理后利用复数相等的条件列式求解m与n的值,则答案可求;(2)求出z,代入,然后利用商的模等于模的商求解.【解答】解:(1)∵2﹣i是关于x的方程x2+mx+n=0(m,n∈R)的一个根,∴(2﹣i)2+m(2﹣i)+n=0,即4﹣4i+i2+2m﹣mi+n=0,∴3+2m+n﹣(4+m)i=0,则3+2m+n=0,4+m=0,解得:m=﹣4,n=5,得m+2n=6;(2)z=﹣4+5i,,∴,则=.【点评】本题考查复数代数形式的乘除运算,考查复数的基本概念,考查复数模的求法,是基础题.16.(15分)已知单位向量满足.(1)求的值;(2)设与的夹角为θ,求cosθ的值.【分析】(1)根据题目条件得到方程,求出,进而求出,求出模长;(2)先计算出,利用向量夹角余弦公式求出答案.【解答】解:(1)因为为单位向量,所以,所以由,可得,则,则;(2)因为,所以,而,所以cosθ===,即.【点评】本题考查平面向量数量积的运算,考查向量的模长公式及夹角公式,属中档题.17.(15分)兴隆塔,建于隋朝,位于区博物馆内.某校开展数学建模活动,有建模课题组的学生选择测量兴隆塔的高度,为此,他们设计了测量方案.如图,兴隆塔垂直于水平面,他们选择了与兴隆塔底部D在同一水平面上的A,B两点,测得AB=54米,在A,B两点观察塔顶C点,仰角分别为45°和α,其中cosα=,∠ADB=45°.(1)求兴隆塔的高CD的长;(2)在(1)的条件下求多面体A﹣BCD的表面积;(3)在(1)的条件下求多面体A﹣BCD的内切球的半径;【分析】(1)设塔高CD=x,用x表示AD、BD,再利用余弦定理列方程求解即可;(2)利用题意判断四个面均为直角三角形,结合(1)的结果,利用三角形面积公式分别求出四个面的面积,求和即可;(3)根据题意将多面体分为以各面为底,内切球半径为高的四个三棱锥,利用等体积法即可求解.【解答】解:(1)设CD=x米,在△ACD中,∠CDA=90°,∠CAD=45°,则AD=x,在△BCD中,∠CDB=90°,∠CBD=α,且,则,所以,因为∠ADB=45°,所以由余弦定理得,整理得x2=542,解得x=54(米);(2)由(1)知△ABD,△ACD,△BCD均为直角三角形,CD=DA=AB=54,,所以,,所以在△ABC中,满足AB2+AC2=BC2,所以△ABC为直角三角形,=S△ACD=1458,,所以S△ABD所以平方米;(3)设多面体A﹣BCD的内切球的半径为r,根据等体积转换,所以米.【点评】本题考查解三角形的应用以及几何体表面积和内切球体积的计算,属于中档题.18.(17分)已知向量=(cos x,2sin x),,函数f(x)=.(1)求函数f(x)=在[0,π]上的单调递减区间;(2)若f(x0)=,且,求cos2x0的值;(3)将g(x)图象上所有的点向左平移个单位,然后再向上平移1个单位,最后使所有点的纵坐标变为原来的2倍,得到函数f(x)的图象,当时,方程g(x)=m有一解,求实数m的取值范围.【分析】(1)利用平面向量数量积的坐标表示结合二倍角公式、辅助角公式化简f(x),再根据三角函数的性质整体代换计算即可求单调区间;(2)利用同角三角函数的平方关系得,再根据余弦的和角公式计算即可;(3)根据三角函数图象变换得g(x),再根据三角函数的性质计算即可.【解答】解:(1)因为=,所以,即,k∈Z,又因为x∈[0,π],所以函数f(x)在[0,π]上的单调递减区间为;(2)若,则,所以,因为,所以,所以,所以,故;(3)将g(x)图象上所有的点向左平移个单位,然后再向上平移1个单位,最后使所有点的纵坐标变为原来的2倍,得到函数f(x)的图象,则将图象上所有的点的纵坐标变为原来的,再向下平移1个单位,最后再向右平移个单位得到函数g(x)的图象,即,当时,,由方程g(x)=m有一解,可得m的取值范围为[﹣1,0)∪{}.【点评】本题主要考查了和差角公式,二倍角公式,辅助角公式,同角基本关系,还考查了三角函数图象的变换及正弦函数性质的应用,属于中档题.19.(17分)在△ABC中,∠A,∠B,∠C对应的边分别为a,b,c,2sin A sin B sin C=(sin2B﹣cos2C+cos2A).(1)求A;(2)若b=1,c=3,D为线段BC内一点,且BD:DC=1:2,求线段AD的长;(3)法国著名科学家柯西在数学领域有非常高的造诣;很多数学的定理和公式都以他的名字来命名,如对于任意的x1,x2,y1,y2∈R,都有(x1•x2+y1•y2)2≤(+)(+)被称为柯西不等式;在(1)的条件下,若a=2,求:的最小值.【分析】(1)由同角基本关系式及余弦定理可得tan A的值,再由角A的范围,可得角A的大小;(2)由向量的运算性质可得AD的长;(3)由柯西不等式的性质可得所求的代数式的最小值.【解答】解:(1)因为=(sin2B+1﹣cos2C﹣1+cos2A)=(sin2B+sin2C﹣sin2A),所以,由正弦定理,再由余弦定理可得:,即,又因为A∈(0,π),所以;(2)由题意知:,所以,所以=,可得AD=;(3)根据柯西不等式:=,(当且仅当△ABC为正三角形时取等号),即的最小值为48.【点评】本题考查正弦定理,余弦定理的应用,及柯西不等式的应用,属于中档题.。

2021年高一(下)期中数学试卷含解析

2021年高一(下)期中数学试卷含解析

2021年高一(下)期中数学试卷含解析一、选择题1.(5分)(xx春•济南校级期中)角﹣1120°是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角考点:象限角、轴线角.专题:三角函数的求值.分析:把角写成k×360°+α,0°≤α<360°,k∈z 的形式,根据α的终边位置,做出判断.解答:解:∵﹣1120°=﹣4×360°+320°,故﹣1120°与320°终边相同,故角﹣1120°在第四象限.故选:D.点评:本题主要考查终边相同的角的定义和表示方法,象限角、象限界角的定义,属于基础题.2.(5分)(xx春•济南校级期中)要从已编号(1到50)的50名学生中随机抽取5名学生参加问卷调查,用系统抽样方法确定所选取的5名学生的编号可能是()A.5,10,15,20,25 B.3,13,23,33,43C.1,2,3,4,5 D.2,4,8,16,32考点:系统抽样方法.专题:概率与统计.分析:根据系统抽样的定义求出样本间隔即可.解答:解:样本间隔为50÷5=10,则用系统抽样方法确定所选取的5名学生的编号可能是3,13,23,33,43,故选:B点评:本题主要考查系统抽样的应用,求出样本间隔是解决本题的关键.3.(5分)(xx春•衡水校级期中)已知△ABC中,tanA=﹣,那么cosA等于()A.B.C.﹣D.﹣考点:同角三角函数基本关系的运用.专题:三角函数的求值.分析:由tanA的值及A为三角形内角,利用同角三角函数间的基本关系求出cosA的值即可.解答:解:∵在△ABC中,tanA=﹣,∴cosA=﹣=﹣.故选:C.点评:此题考查了同角三角函数基本关系的运用,熟练掌握基本关系是解本题的关键.4.(5分)(xx•长春模拟)如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是()A.161cm B.162cm C.163cm D.164cm考点:众数、中位数、平均数;茎叶图.专题:图表型.分析:由茎叶图可知10位学生身高数据,将它们一一从小到大排列,即可求出中位数.解答:解:由茎叶图可知10位学生身高数据:155,155,157,158,161,163,163,165,171,172.中间两个数的平均数是162.∴这10位同学身高的中位数是162cm.故选B.点评:本题考查读茎叶图的能力和利用统计图获取信息的能力.利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.5.(5分)(xx•山东)在某项体育比赛中,七位裁判为一选手打出的分数如下:90 89 90 95 93 94 93去掉一个最高分和一个最低分后,所剩数的平均值和方差分别为()A.92,2 B.92,2.8 C.93,2 D.93,2.8考点:众数、中位数、平均数;极差、方差与标准差.专题:概率与统计.分析:平均数就将剩余5个数的和除以5即可得到;方差就是将数据代入方差公式s2=[(x1﹣)2+(x2﹣)2+(x3﹣)2+…+(x n﹣)2]即可求得.解答:解:由题意知,所剩数据为90,90,93,94,93,所以其平均值为90+(3+4+3)=92;方差为(22×2+12×2+22)=2.8,故选B.点评:本题考查平均数与方差的求法,属基础题.6.(5分)(xx秋•常德校级期末)已知角α的终边经过点P(﹣b,4)且cosα=﹣,则b的值等于()A.3 B.﹣3 C.±3 D. 5考点:任意角的三角函数的定义.专题:三角函数的求值.分析:根据三角函数的定义建立方程关系即可.解答:解:∵角α的终边经过点P(﹣b,4)且cosα=﹣,∴cosα==﹣,则b>0,平方得,即b2=9,解得b=3或b=﹣3(舍),故选:A点评:本题主要考查三角函数的定义的应用,注意求出的b为正值.7.(5分)(xx春•济南校级期中)tan10°tan20°+=()A.﹣1 B.C. 1 D.﹣考点:两角和与差的正切函数.专题:三角函数的求值.分析:把题中的tan10°+tan20°换成tan30°(1﹣tan10°tan20°),化简可得所给式子的值.解答:解:tan10°tan20°+=tan10°tan20°+•tan30°(1﹣tan10°tan20°)=tan10°tan20°+1﹣tan10°tan20°=1,故选:C.点评:本题主要考查两家和的正切公式的应用,属于基础题.8.(5分)(xx春•济南校级期中)某校1000名学生的高中数学学业水平考试成绩的频率分布直方图如图所示.则不低于60分的人数是()A.800 B.900 C.950 D.990考点:频率分布直方图.专题:概率与统计.分析:利用频率分布直方图中的频率等于纵坐标乘以组据求出频率;再利用频数等于频率乘以样本容量求出不人数.解答:解:由频率分布直方图得,低于60分的频率=0.005×20=0.1,低于60分人数=0.1×1000=100.则不低于60分的人数是:900.故选:B.点评:本题考查频率分布直方图中的频率公式:频率=纵坐标×组据;频数的公式:频数=频率×样本容量.9.(5分)(xx•陆丰市校级模拟)从一批羽毛球产品中任取一个,质量小于4.8g的概率是0.3,质量不小于4.85g的概率是0.32,那么质量在[4.8,4.85)g范围内的概率是()A.0.62 B.0.38 C.0.7 D.0.68考点:二项分布与n次独立重复试验的模型.专题:计算题.分析:本题是一个频率分布问题,根据所给的,质量小于4.8 g的概率是0.3,质量不小于4.85 g的概率是0.32,写出质量在[4.8,4.85)g范围内的概率,用1去减已知的概率,得到结果.解答:解:设一个羽毛球的质量为ξg,则根据概率之和是1可以得到P(ξ<4.8)+P(4.8≤ξ<4.85)+P(ξ≥4.85)=1.∴P(4.8≤ξ<4.85)=1﹣0.3﹣0.32=0.38.故选B.点评:本题是一个频率分布问题,主要应用在一个分布列中,所有的概率之和是1,这是经常出现的一个统计问题,常以选择和填空形式出现.10.(5分)(xx春•济南校级期中)cos15°•cos105°﹣cos75°•sin105°的值为()A.﹣B.C.D.﹣考点:二倍角的余弦;两角和与差的正弦函数.专题:计算题;三角函数的求值.分析:利用诱导公式和两角和的余弦函数公式化简,根据特殊角的三角函数值即可得解.解答:解:cos15°•cos105°﹣cos75°•sin105°=cos15°•cos105°﹣sin15°•sin105°=cos(15°+105°)=cos120°=﹣.故选:A.点评:本题主要考查了诱导公式和两角和的余弦函数公式以及特殊角的三角函数值的应用,属于基础题.11.(5分)(xx春•济南校级期中)如图所示的程序框图,若输出结果是990,则判断框内应填入的条件是()A.i≥10 B.i<10 C.i≥9 D.i<9考点:程序框图.专题:图表型;算法和程序框图.分析:根据程序输出的结果,得到满足条件的i的取值,即可得到结论.解答:解:模拟执行程序框图,可得i=11,S=1满足条件,S=11,i=10满足条件,S=110,i=9满足条件,S=990,i=8由题意,此时应该不满足条件,退出循环,输出S的值为990.故判断框内应填入的条件是i≥9.故选:C.点评:本题主要考查程序框图的识别和判断,根据程序运行的结果判断退出循环的条件是解决本题的关键,属于基础题.12.(5分)(xx•湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x ﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg考点:回归分析的初步应用.专题:阅读型.分析:根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.解答:解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.点评:本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题.13.(5分)(xx•武汉模拟)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.B.C.D.考点:古典概型及其概率计算公式.专题:概率与统计.分析:本题是一个古典概型,试验发生包含的事件数是3×3种结果,满足条件的事件是这两位同学参加同一个兴趣小组有3种结果,根据古典概型概率公式得到结果.解答:解:由题意知本题是一个古典概型,试验发生包含的事件数是3×3=9种结果,满足条件的事件是这两位同学参加同一个兴趣小组,由于共有三个小组,则有3种结果,根据古典概型概率公式得到P=,故选A.点评:本题考查古典概型概率公式,是一个基础题,题目使用列举法来得到试验发生包含的事件数和满足条件的事件数,出现这种问题一定是一个必得分题目.14.(5分)(xx春•济南校级期中)设,则sinβ的值为()A.B.C.D.考点:两角和与差的余弦函数;同角三角函数间的基本关系.专题:计算题;三角函数的求值.分析:根据α、β的取值范围,利用同角三角函数的基本关系算出且cosα=,再进行配方sinβ=sin[α﹣(α﹣β)],利用两角差的正弦公式加以计算,可得答案.解答:解:∵,∴α﹣β∈(﹣,0),又∵,∴.根据α∈(0,)且sinα=,可得cosα==.因此,sinβ=sin[α﹣(α﹣β)]=sinαcos(α﹣β)﹣cosαsin(α﹣β)=×﹣×(﹣)=.故选:C点评:本题给出角α、β满足的条件,求sinβ的值.着重考查了任意角的三角函数、同角三角函数的基本关系、两角差的正弦公式等知识,属于中档题.15.(5分)(xx•江西)已知f(x)=sin2(x+),若a=f(lg5),b=f(lg),则()A.a+b=0 B.a﹣b=0 C.a+b=1 D.a﹣b=1考点:二倍角的余弦;对数的运算性质;余弦函数的定义域和值域.专题:计算题;压轴题.分析:由题意,可先将函数f(x)=sin2(x+)化为f(x)=,再解出a=f(lg5),b=f(lg)两个的值,对照四个选项,验证即可得到答案解答:解:f(x)=sin2(x+)==又a=f(lg5),b=f(lg)=f(﹣lg5),∴a+b=+=1,a﹣b=﹣=sin2lg5故C选项正确故选C点评:本题考查二倍角的余弦及对数的运算性质,解题的关键是对函数的解析式进行化简,数学形式的化简对解题很重要二、填空题16.(5分)(xx•封开县校级模拟)设扇形的周长为8cm,面积为4cm2,则扇形的圆心角的弧度数是2.考点:扇形面积公式.专题:计算题.分析:设扇形的圆心角的弧度数为α,半径为r,弧长为l,面积为S,由面积公式和周长可得到关于l和r的方程组,求出l和r,由弧度的定义求α即可.解答:解:S=(8﹣2r)r=4,r2﹣4r+4=0,r=2,l=4,|α|==2.故答案为:2.点评:本题考查弧度的定义、扇形的面积公式,属基本运算的考查.17.(5分)(xx春•济南校级期中)已知某单位有职工120人,男职工有90人,现采用分层抽样(按男、女分层)抽取一个样本,若已知样本中有27名男职工,则样本容量为36.考点:分层抽样方法.专题:概率与统计.分析:根据分层抽样的定义建立比例关系即可得到结论.解答:解:设样本容量为n,则,解得n=36,故答案为:36.点评:本题主要考查分层抽样的应用,根据条件建立比例关系是解决本题的关键.比较基础.18.(5分)(2011•江西)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为.考点:几何概型.专题:计算题.分析:根据题意,计算可得圆的面积为π,点到圆心的距离大于的面积为,此点到圆心的距离小于的面积为,由几何概型求概率即可.解答:解:圆的面积为π,点到圆心的距离大于的面积为,此点到圆心的距离小于的面积为,由几何概型得小波周末不在家看书的概率为P=故答案为:点评:本题考查几何概型问题,属基础知识的考查.19.(5分)(xx秋•正定县校级期末)已知tanθ=2,则=﹣2.考点:运用诱导公式化简求值;三角函数的化简求值.专题:三角函数的求值.分析:原式利用诱导公式化简,再利用同角三角函数间基本关系变形,把tanθ的值代入计算即可求出值.解答:解:∵tanθ=2,∴原式====﹣2.故答案为:﹣2点评:此题考查了运用诱导公式化简求值,熟练掌握诱导公式是解本题的关键.20.(5分)(xx春•济南校级期中)已知sin(α﹣)=,则cos(+α)=.考点:两角和与差的余弦函数.专题:三角函数的求值.分析:由诱导公式可得cos(+α)=cos[+(α﹣)]=﹣sin(α﹣),结合已知可得.解答:解:∵sin(α﹣)=,∴cos(+α)=cos[+(α﹣)]=﹣sin(α﹣)=﹣,故答案为:.点评:本题考查诱导公式,涉及整体角的思想,属基础题.三、解答题21.(12分)(xx春•济南校级期中)已知函数f(x)=cos2﹣sincos﹣,若f(α)=,求sin2α的值.考点:两角和与差的正弦函数;二倍角的正弦.专题:计算题;三角函数的求值.分析:利用倍角公式化简已知可得f(x)=(cosx﹣sinx),可得cosα﹣sinα=,两边平方利用倍角公式即可得解.解答:解:∵f(x)=cos2﹣sincos﹣==(cosx﹣sinx),∴f(α)=(cosα﹣sinα)=,可得:cosα﹣sinα=,∴两边平方可得:1﹣sin2α=,∴解得:sin2α=.点评:本题主要考查了二倍角的正弦公式,余弦函数公式的应用,属于基础题.22.(12分)(xx春•济南校级期中)已知函数f(x)=Acos(+),x∈R,且f()=.(1)求A的值;(2)设α,β∈[0,],f(4α+π)=﹣,f(4β﹣π)=,求cos(α+β)的值.考点:两角和与差的余弦函数.专题:三角函数的求值.分析:(1)直接利用条件求得A的值.(2)由条件根据f(4α+π)=﹣,求得sinα的值,再利用同角三角函数的基本关系求得cosα的值;由f(4β﹣π)=,求得cosβ的值,再利用同角三角函数的基本关系求得sinβ的值;从而求得cos(α+β)=cosαcosβ﹣sinαsinβ的值.解答:解:(1)对于函数f(x)=Acos(+),x∈R,由f()=Acos=A=,可得A=2.(2)由于α,β∈[0,],f(4α+π)=2cos(+)=2cos(α+)=﹣2sinα=﹣,∴sinα=,∴cosα==.又f(4β﹣π)=2cos(+)=2cosβ=,∴cosβ=,∴sinβ==.∴cos(α+β)=cosαcosβ﹣sinαsinβ=×﹣×=.点评:本题主要考查同角三角函数的基本关系,两角和差的余弦公式的应用,属于基础题.23.(13分)(xx春•济南校级期中)编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录如下:运动员编号A1A2A3A4A5A6A7A8得分15 35 21 28 25 36 18 34运动员编号A9A10A11A12A13A14A15A16得分17 26 25 33 22 12 31 38(Ⅰ)将得分在对应区间内的人数填入相应的空格;区间[10,20)[20,30)[30,40]人数(Ⅱ)从得分在区间[20,30)内的运动员中随机抽取2人,A1,A2,…A16(i)用运动员的编号列出所有可能的抽取结果;(ii)求这2人得分之和大于50的概率.考点:频率分布表;古典概型及其概率计算公式.专题:概率与统计.分析:(I)根据已知中编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录表,我们易得出得分在对应区间内的人数.(II)(i)根据(I)的结论,我们易列出在区间[20,30)内的运动员中随机抽取2人,所有可能的抽取结果;(ii)列出这2人得分之和大于50分的基本事件的个数,代入古典概型公式即可得到这2人得分之和大于50分的概率解答:解:(I)由已知中编号为A1,A2,…,A16的16名篮球运动员在某次训练比赛中的得分记录表易得:得分在区间[10,20)上的共4人,在区间[20,30)上的共6人,在区间[30,40]上的共6人,故答案为4,6,6;(II)(i)得分在区间[20,30)上的共6人,编号为A3,A4,A5,A10,A11,A13,从中随机抽取2人,计为(X,Y),则所有可能的抽取结果有:(A3,A4),(A3,A5),(A3,A10),(A3,A11),(A3,A13),(A4,A5),(A4,A10),(A4,A11),(A4,A13),(A5,A10),(A5,A11),(A5,A13),(A10,A11),(A10,A13),(A11,A13)共15种.(ii)从得分在区间[20,30)内的运动员中随机抽取2人,这2人的得分之和大于50分的基本事件有:(A4,A5),(A4,A10),(A4,A11),(A5,A10),(A10,A11)共5种故这2人得分之和大于50分的概率P==.点评:本题主要考查用列举法计算随机事件所含的基本事件烽、古典概型及其概率计算公式等基础知识,考查数据处理能力及运用概率知识解决简单的实际问题的能力.24.(13分)(xx春•济南校级期中)已知函数f(x)=.(1)求f(x)的定义域;(2)若角α是第四象限角,且cosα=,求f(α).考点:运用诱导公式化简求值;任意角的三角函数的定义.专题:三角函数的求值.分析:(1)由函数的解析式可得sin(x+)≠0,可得x+≠kπ,k∈z,由此求得x的范围,可得函数的定义域.(2)由条件利用同角三角函数的基本关系、二倍角公式求得sin2α和cos2α的值,再利用两角差的余弦公式求得f(α)的值.解答:解:(1)对于函数f(x)=,显然,sin(x+)≠0,∴x+≠kπ,k∈z,求得x≠kπ﹣,k∈z,故函数的定义域为[x|x≠kπ﹣,k∈z }.(2)∵角α是第四象限角,且cosα=,∴sinα=﹣,∴sin2α=2sinαcosα=﹣,cos2α=2cos2α﹣1=﹣,则f(α)=====﹣.点评:本题主要考查利用诱导公式进行化简求值,同角三角函数的基本关系、两角差的余弦公式,属于基础题.F 34677 8775 蝵22260 56F4 围26109 65FD 旽mHRc^23430 5B86 宆39589 9AA5 骥30212 7604 瘄。

人教版高一年级第二学期期中考试数学试卷与答案解析(共五套)

人教版高一年级第二学期期中考试数学试卷与答案解析(共五套)
A. B. C. D.2
8.已知 ,且 ,则 ( )
A.4B.3C. D.
9.在△ 中, 为 边上的中线, 为 的中点,则
A. B.
C. D.
10.△ABC的内角A、B、C的对边分别为 、b、c.已知 , , ,则b=
A. B. C.2D.3
11.已知向量 , 是不平行于 轴的单位向量,且 ,则 ( )
解得 ( 舍去),故选D.
11.已知向量 , 是不平行于 轴的单位向量,且 ,则 ( )
A. B. C. D.
【答案】B
【解析】设 ,其中 ,则 .
由题意得 ,解得 ,即 .
故选:B.
12.若非零向量 满足 ,且 ,则 的夹角为
A. B.
C. D.
【答案】A
【解析】∵ ,所以 ,即 ,
即 ,∴
,又 ,故 ,故选A.
A.3B.2C. D.
【答案】D
【解析】点 是 所在平面上一点,过 作 ,如下图所示:
由 ,
故 ,
所以 与 的面积之比为 ,
故选:D.
7.设复数z满足(1+i)z=2i,则|z|=( )
A. B. C. D.2
【答案】C
【解析】题意, ,所以 .故选:C.
8.已知 ,且 ,则 ( )
A.4B.3C. D.
(2)因为 为三角形内角,
所以 ,

由正弦定理得: ,
又∵ .
,解得 或 (舍).

22.在 中,角 所对的边分别为 ,已知 .
(1)求角 的大小;
(2)若 ,求 的取值范围.
【答案】(1) ;(2)
【解析】(1)∵ ,
∴ ,
即 ,
∵ ,∴ ,∴ .

2021年高一下学期期中考试数学试卷+答案

2021年高一下学期期中考试数学试卷+答案

2020-2021学年度第二学期高一年级期中检测时间:120分钟 总分:150分注意事项:2021.41.答题前,考生先将自己的姓名、准考证号填写在答题卡上并检查试卷.2.选择题答案使用2B 铅笔填涂,如需改动,用橡皮擦干净后,再选涂其他答案标号;非选择题答案使用0.5毫米的黑色中性(签字)笔或碳素笔书写,字体工整,笔迹清楚.3.请按照题号在各题的答题区域(黑色线框)内作答,超出答题区域书写的答案无效.4.保持卡面清洁,不折叠,不破损. 一、单项选择题:本大题共8小题,每小题5分,共40分.1. 设a =log 0.20.3,b =log 20.3,则( )A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b2. 已知实数x ,y 满足⎩⎪⎨⎪⎧ 2x +y -2≥0,x -2y +4≥0,3x -y -3≤0,若y ≥k (x +1)-1恒成立,那么k 的取值范围是( )A. ⎣⎡⎦⎤12,3B. ⎝⎛⎦⎤-∞,43C. [3,+∞)D. ⎝⎛⎦⎤-∞,12 3. 在△ABC 中,A ,B ,C 的对边分别是a ,b ,c .若A =120°,a =1,则2b +3c 的最大值为( )A .3 B. 2213 C .3 2 D. 3524. 素数也叫质数,法国数学家马林·梅森是研究素数的数学家中成就很高的一位,因此后人将“2n -1”形式(n 是素数)的素数称为梅森素数.已知第20个梅森素数为P =24423-1,第19个梅森素数为Q =24253-1,则下列各数中与P Q最接近的数为(参考数据:lg 2≈0.3)( )A .1045B .1051C .1056D .10595. 在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,b cos A =c -12a ,点D 在AC 上,2AD =DC ,BD =2,则△ABC 的面积的最大值为( ) A. 332B. 3 C .4 D .6 6. 欧拉公式e i x =cos x +isin x (i 为虚数单位)是由瑞士著名数学家欧拉发明的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,根据欧拉公式可知,e πie π4i 表示的复数在复平面中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 7. 如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线8. 定义在R 上的偶函数f (x )对任意实数都有f (2-x )=f (x +2),且当x ∈(-1,3]时,f (x )=⎩⎨⎧ 1-x 2,x ∈(-1,1],1-|x -2|,x ∈(1,3],则函数g (x )=5f (x )-|x |的零点个数为( ) A .5 B .6 C .10 D .12二、多项选择题:本大题共4题,每小题5分,共20分.9. 正五角星是一个非常优美的几何图形,且与黄金分割有着密切的联系。

高一数学下学期期中考试试卷含答案(word版)

高一数学下学期期中考试试卷含答案(word版)

高一年级第二学期期中考试试题数学第1卷 选择题(共60分)一、选择题(本大题12题,每小题5分,共60分) 1. 若0a b <<,则下列不等式成立的是( ) A .11a b< B .2ab b < C .||||a b < D .2a ab > 2. 设n S 是等差数列{}n a 的前n 项和,若1356a a a ++=,则5S =( ) A .5 B .7 C .9 D .103. 在ABC ∆中, a =b =o45B =,则A 为( )A .o60或o120 B .o60 C .o30或o150 D .o304. 公差下为0的等差数列{}n a 中, 12a =,且248,,a a a 成等比数列,数列{}n a 的前n 项和为n S ,则8S =( )A .72B .56 C. 36 D .285. 在ABC ∆中, o o 45,60AB A B ===,则BC =( )A .3-B C. 2 D .3+ 6. 不等式组2(2)01x x x +⎧>⎨<⎩的解集为( )A .(2,1)--B .(1,0)- C. (0,1) D .(1,)+∞7. 已知不等式210ax bx --≥的解集是11[,]23--,则不等式20x bx a --<的解集是( ) A .(2,3) B .(,2)(3,)-∞+∞ C. 11(,)32 D .11(,)(,)32-∞+∞ 8. 设{}n a 是由正数组成的等比数列, n S 为其前n 项和,已知241a a =,37S =,则5S 等于( ) A .152 B .314 C. 334 D .1729. 已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,1cos ,7,65A a c ===,则b =( ) A .8B .7 C. 6 D .510. 已知0,0x y >>,且2x y +=,则14x y+的最小值是( ) A .72 B .4 C. 92D .5 11. 设ABC ∆的三内角A B C 、、成等差数列, sin sin sin A B C 、、成等比数列,则这个三角形的形状是( ) A.直角三角形B.钝角三角形C.等腰直角三角形D.等边三角形12. 如图所示,为测一树的高度,在地上选取A B 、两点,从A B 、两点分别测得望树尖的仰角为oo30,45,且A B 、两点之间的距离为60m ,则树的高度为( )A .(30303)m +B .(30153)m + C. (15303)m + D .(1533)m +第Ⅱ卷(非选择题 共90分)二、填空题(本大题4题,每小题5分,共20分) 13. 不等式2340x x --+>的解集为 . 14. ABC ∆中内角,,A B C 的对边分别为,,a b c ,已知,13A b π==,其面积为3,则a = .15. 若对任意1x >,不等式2471x x a x -+≥-恒成立,则实数a 的取值范围是 . 16. 两千多年前,古希腊毕达哥拉斯学派的数学家曾经在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数,按照点或小石子能排列的形状对数进行分类,如图2中的实心点个数1,5,12,22,,被称为五角形数,其中第1个五角形数记作11a =,第2个五角形数记作25a =,第3个五角形数记作312a =,第4个五角形数记作422a =,……,若按此规律继续下去,则n a = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17. 已知等差数列{}n a 满足1210a a +=,432a a +=. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足2337,b a b a ==,问:6b 与数列{}n a 的第几项相等?18.已知ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且32,cos 5a B ==. (1)若4b =,求sin A 的值;(2)若ABC ∆的面积4ABC S ∆=,求,b c 的值.19.设数列{}n a 的前n 项和为n S ,且12n n S a =-+. (I)求{}n a 的通项公式;(Ⅱ)若21log n n b a +=,且数列{}n b 的前n 项和为n T ,求12111nT T T +++. 18. 如图,在ABC ∆中, ACB ∠为钝角, 2,2AB BC ==,6A π=,D 为AC 延长线上一点,且31CD =+.(1)求BCD ∠的大小;(2)求BD 的长及ABC ∆的面积.21. 设数列{}n a 的前n 项和为n S ,已知12323n a a a na ++++*(1)2()n n S n n N =-+∈(1)求23a a ,的值;(2)求证:数列{+2}n S 是等比数列; (3)设814=2n n n b S -+,数列{}n b 的前n 项和为n T ,求满足0n T >的最小自然数n 的值.22.已知函数2()1()f x mx mx m R =--∈ (1)当0m >,解关于x 的不等式()23f x x <-(2)对于[1,3]x ∈,()1f x m x >-+-,恒成立,求m 的取值范围.第二学期高一年级期中考试数学答案第1卷 选择题(共60分)一、选择题(本大题12题,每小题5分,共60分)二、填空题(本大题4题,每小题5分,共20分)13. (4,1)-(,2]-∞ 16. 232n n na -=三、解答题(本大题6题,共70分) 17. 解析:(1)设等差数列{}n a 的公差为d . 因为432a a -=,所以2d =.又因为1210a a +=,所以1210a d +=,故14a =. 所以42(1)22n a n n =+-=+ (1,2,)n =.(2)设等比数列{}n b 的公比为q . 因为238b a ==,3716b a ==, 所以12,4q b ==.所以61642128b -=⨯=.18. 解:(1)3cos 05B =>,且0B π<<, 4sin 5B ∴==.由正弦定理得sin sin a bA B=, 42sin 25sin 45a B A b ⨯∴===. (2) 1sin 42ABC S ac B ∆==,142425c ∴⨯⨯⨯=.5c ∴=.由余弦定理得2222cos b b c ac B =+-,b ∴===19.解:(I)当1n =时, 11112a S a ==-+解得11a = 当2n ≥时, 1n n n a S S -=-=1(12)(12)n n a a --+--+ 整理得,12n n a a -=即12nn a a -= 故数列{}n a 是首项为1,公比为2的等比数列,故通项公式为12n n a -= (Ⅱ) 212log log 2nn n b a n +===,于是前n 项和为12n n T b b b =+++=(1)122n n n ++++=, 从而1222(1)1n T n n n n ==-++ 故121112212n T T T ⎛⎫+++=-+ ⎪⎝⎭2222231n n ⎛⎫⎛⎫-++- ⎪ ⎪+⎝⎭⎝⎭222111n n n =-=++ 20.(1)在ABC ∆中,因为2,,6AB A BC π===由正弦定理可得sin sin ABBCACB A=∠,即21sin sin 62ACB π===∠ 所以sin 2ACB ∠=. 因为ACB ∠为钝角, 所以34ACB π∠=,所以4BCD π∠-; (2)在BCD ∆中,由余弦定理可知222BDCB DC =+2cos CB DC BCD -⋅⋅∠,即2221)BD =---21)cos4π⨯,整理得2BD =.在ABC ∆中,由余弦定理可知2222cos BC AB AC AB AC A =+-⋅⋅,即222222cos6AC AC π=+-⨯⨯⨯,整理得220AC -+=,解得1AC =±。

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京2023—2024学年第二学期期中练习高一数学(答案在最后)2024.04说明:本试卷共4页,共120分.考试时长90分钟.一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.sin120︒的值等于()A.12-B.12C.2D.2【答案】D 【解析】【分析】根据特殊角的三角函数值得到2,从而可求解.【详解】由题意可得sin1202︒=,故D 正确.故选:D.2.若角α的终边过点()4,3,则πsin 2α⎛⎫+= ⎪⎝⎭()A.45B.45-C.35D.35-【答案】A 【解析】【分析】根据余弦函数定义结合诱导公式计算求解即可.【详解】因为角α的终边过点()4,3,所以4cos 5α==,所以π4sin cos 25αα⎛⎫+== ⎪⎝⎭.故选:A3.已知扇形的弧长为4cm ,圆心角为2rad ,则此扇形的面积是()A.22cmB.24cm C.26cm D.28cm 【答案】B【解析】【分析】由条件结合弧长公式l R α=求出圆的半径,然后结合扇形的面积公式12S lR =可得答案.【详解】因为扇形的圆心角2rad α=,它所对的弧长4cm l =,所以根据弧长公式l R α=可得,圆的半径2R =,所以扇形的面积211424cm 22S lR ==⨯⨯=;故选:B .4.向量a ,b ,c在正方形网格中的位置如图所示,若向量c a b λ=+,则实数λ=()A.2-B.1-C.1D.2【答案】D 【解析】【分析】将3个向量的起点归于原点,根据题设得到它们的坐标,从而可求λ的值.【详解】如图,将,,a b c的起点平移到原点,则()()()1,1,0,1,2,1a b c ==-= ,由c a b λ=+可得()()()2,11,10,1λ=+-,解得2λ=,故选:D.5.下列四个函数中以π为最小正周期且为奇函数的是()A.()cos2f x x =B.()tan2x f x =C.()()tan f x x =- D.()sin f x x=【答案】C 【解析】【分析】根据三角函数的周期性和奇偶性对选项逐一分析,由此确定正确选项.【详解】对于A ,函数()cos2f x x =的最小正周期为π,因为()()()cos 2cos 2f x x x f x -=-==,所以()cos2f x x =为偶函数,A 错误,对于B ,函数()tan 2xf x =的最小正周期为2π,因为()()tan tan 22x x f x f x ⎛⎫-=-=-=- ⎪⎝⎭,所以函数()tan 2x f x =为奇函数,B 错误,对于C ,函数()()tan f x x =-的最小正周期为π,因为()()()tan tan f x x x f x -==--=-,所以函数()()tan f x x =-为奇函数,C 正确,对于D ,函数()sin f x x =的图象如下:所以函数()sin f x x =不是周期函数,且函数()sin f x x =为偶函数,D 错误,6.在ABC 中,4AB =,3AC =,且AB AC AB AC +=- ,则AB BC ⋅= ()A.16B.16- C.20D.20-【答案】B 【解析】【分析】将AB AC AB AC +=- 两边平方,即可得到0AB AC ⋅=,再由数量积的运算律计算可得.【详解】因为AB AC AB AC +=- ,所以()()22AB ACAB AC +=-,即222222AB AB AC AC AB AB AC AC +⋅+=-⋅+uu u r uu u r uuu r uuu r uu u r uu u r uuu r uuu r ,所以0AB AC ⋅= ,即AB AC ⊥ ,所以()220416AB BC AB AC AB AB AC AB ⋅=⋅-=⋅-=-=- .故选:B7.函数cos tan y x x =⋅在区间3,22ππ⎛⎫⎪⎝⎭上的图像为()A.B.C.D.【答案】C 【解析】【分析】分别讨论x 在3,,[,)22ππππ⎛⎫⎪⎝⎭上tan x 的符号,然后切化弦将函数化简,作出图像即可.【详解】因为3,22x ππ⎛⎫∈ ⎪⎝⎭,所以sin ,,23sin ,.2x x y x x πππ⎧-<<⎪⎪=⎨⎪≤<⎪⎩故选:C.8.已知函数()sin 24f x x π⎛⎫=+ ⎪⎝⎭,则“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】【分析】首先求出()f x α+、()f x α-的解析式,再根据正弦函数的性质求出使()f x α+是偶函数且()f x α-是奇函数时α的取值,再根据充分条件、必要条件的定义判断即可.【详解】因为()sin 24f x x π⎛⎫=+⎪⎝⎭,则()sin 224f x x ααπ⎛⎫+=++ ⎪⎝⎭,()sin 224f x x ααπ⎛⎫-=-+ ⎪⎝⎭,若()f x α-是奇函数,则112π,Z 4k k απ-+=∈,解得11π,Z 82k k απ=-∈,若()f x α+是偶函数,则222π,Z 42k k αππ+=+∈,解得22π,Z 82k k απ=+∈,所以若()f x α+是偶函数且()f x α-是奇函数,则π,Z 82k k απ=+∈,所以由()ππ8k k α=+∈Z 推得出()f x α+是偶函数,且()f x α-是奇函数,故充分性成立;由()f x α+是偶函数,且()f x α-是奇函数推不出()ππ8k k α=+∈Z ,故必要性不成立,所以“()ππ8k k α=+∈Z ”是“()f x α+是偶函数,且()f x α-是奇函数”的充分不必要条件.故选:A9.已知向量,,a b c 共面,且均为单位向量,0a b ⋅= ,则a b c ++ 的最大值是()A.1+ B.C.D.1-【答案】A 【解析】【分析】根据题意,可设出向量,,a b c 的坐标,由于这三个向量都是单位向量,则向量,,a b c的终点都落在以坐标原点为圆心的单位圆上,作出示意图,由向量的性质可知,只有当c 与a b +同向时,a b c ++ 有最大值,求解即可.【详解】因为向量,,a b c 共面,且均为单位向量,0a b ⋅= ,可设()1,0a =,()0,1b = ,(),c x y = ,如图,所以2a b += ,当c 与a b +同向时,此时a b c ++ 有最大值,为21+.故选:A .10.窗花是贴在窗户玻璃上的贴纸,它是中国古老的传统民间艺术之一在2022年虎年新春来临之际,人们设计了一种由外围四个大小相等的半圆和中间正方形所构成的剪纸窗花(如图1).已知正方形ABCD 的边长为2,中心为O ,四个半圆的圆心均为正方形ABCD 各边的中点(如图2),若P 为 BC 的中点,则()PO PA PB ⋅+=()A .4B.6C.8D.10【答案】C 【解析】【分析】根据平面向量的线性运算将()PO PA PB ⋅+ 化为OA 、OB 、OP表示,再根据平面向量数量积的运算律可求出结果.【详解】依题意得||||2OA OB ==,||2OP =,3π4AOP =Ð,π4BOP =Ð,所以3π2||||cos 22(242OA OP OA OP ⋅=⋅=⨯-=- ,π2||||cos 22242OB OP OB OP ⋅=⋅=⨯= ,所以()PO PA PB ⋅+= ()OP OA OP OB OP -⋅-+- 22||OA OP OB OP OP =-⋅-⋅+ 222228=-+⨯=.故选:C二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上)11.写出一个与向量()3,4a =-共线的单位向量_____________.【答案】34,55⎛⎫- ⎪⎝⎭(答案不唯一)【解析】【分析】先求出a r ,则aa±即为所求.【详解】5a ==所以与向量()3,4a =- 共线的单位向量为34,55⎛⎫- ⎪⎝⎭或34,55⎛⎫- ⎪⎝⎭.故答案为:34,55⎛⎫- ⎪⎝⎭(答案不唯一)12.已知函数()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图,则π3f ⎛⎫= ⎪⎝⎭__________.【解析】【分析】根据图象可得函数()f x 的最大值,最小值,周期,由此可求,A ω,再由5π212f ⎛⎫=⎪⎝⎭求ϕ,由此求得的解析式,然后求得π3f ⎛⎫⎪⎝⎭.【详解】由图可知,函数()f x 的最大值为2,最小值为2-,35ππ3π41234T =+=,当5π12x =时,函数()f x 取最大值2,又()()sin 0,0,2πf x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭所以2A =,32π3π44ω⨯=,所以2ω=,所以()()2sin 2f x x ϕ=+,又5π212f ⎛⎫=⎪⎝⎭,所以5π5π2sin 2126f ϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,由于πππ5π4π,22363ϕϕ-<<<+<,所以5πππ,623ϕϕ+==-,所以()π2sin 23f x x ⎛⎫=- ⎪⎝⎭,ππ2sin 33f ⎛⎫== ⎪⎝⎭.13.已知函数()()πsin 0,2f x x ωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象过点10,2⎛⎫ ⎪⎝⎭,则ϕ=__________.,若将函数()f x 图象仅向左平移π4个单位长度和仅向右平移π2个单位长度都能得到同一个函数的图象,则ω的最小值为__________.【答案】①.π6##1π6②.83##223【解析】【分析】由条件列方程求ϕ,再利用平移变换分别得到变换后的函数解析式,并根据相位差为2π,Z k k ∈求解;【详解】因为函数()()sin f x x ωϕ=+的图象过点10,2⎛⎫ ⎪⎝⎭,所以1sin 2ϕ=,又π2ϕ<,所以π6ϕ=,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向左平移π4个单位长度得到函数ππππsin sin 4646y x x ωωω⎡⎛⎫⎤⎛⎫=++=++ ⎪ ⎢⎥⎝⎭⎦⎝⎭⎣的图象,函数()πsin 6f x x ω⎛⎫=+⎪⎝⎭(0ω>)的图象仅向右平移π2个单位长度得到ππππsin sin 2626y x x ωωω⎡⎤⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象,则ππππ2π4626k ωω⎛⎫⎛⎫+--+=⎪ ⎪⎝⎭⎝⎭(Z k ∈),化简得3π2π4k ω=(Z k ∈),解得83k ω=(Z k ∈),由于0ω>,所以当1k =时,ω取得最小值83,故答案为:π8,63.14.已知边长为2的菱形ABCD 中,π3DAB ∠=,点E 满足3BE EC = ,点F 为线段BD 上一动点,则AF BE ⋅的最大值为______.【答案】3【解析】【分析】建立如图平面直角坐标系,设BF BD λ= ,利用平面向量线性运算与数量积的坐标表示可得AF BE⋅关于λ的表达式,从而得解.【详解】如图,以A为原点建立平面直角坐标系,则(0,0),(2,0),A B C D ,因为3BE EC =,所以(33333,4444BE BC ⎛⎫=== ⎪ ⎪⎝⎭,由题意,设()01BF BD λλ=≤≤,则(()BF λλ=-=- ,则()()()2,02,AF AB BF λλ=+=+-=-,所以()3333324422AF BE λλ⋅=-+=+,因为01λ≤≤,所以当1λ=时,AF BE ⋅的最大值为3.故答案为:3.15.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A t ω=.音有四要素,音调、响度、音长和音色.它们都与函数sin y A t ω=及其参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖锐.我们平时听到的乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音对应的函数是111sin sin 2sin 3sin 4234y x x x x =++++⋯..给出下列四个结论:①函数1111sin sin 2sin 3sin 4sin1023410y x x x x x =++++⋯+不具有奇偶性;②函数()111sin sin2sin3sin4234f x x x x x =+++在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增;③若某声音甲对应的函数近似为()11sin sin 2sin 323g x x x x =++,则声音甲的响度一定比纯音()1sin22h x x =的响度小;④若某声音乙对应的函数近似为()1sin sin 22x x x ϕ=+,则声音乙一定比纯音()1sin22h x x =更低沉.其中所有正确结论的序号是__________.【答案】②④【解析】【分析】对①,结合奇偶性的定义判断即可;对②,利用正弦型函数的单调性作出判断;对③,分别判断()(),g x h x 的振幅大小可得;对④,求出周期,可得频率,即可得出结论.【详解】对于①,令()1111sin sin2sin3sin4sin1023410F x x x x x x =++++⋯+,所以()()()()()()1111sin sin 2sin 3sin 4sin 1023410F x x x x x x -=-+-+-+-+⋯+-,所以()1111sin sin2sin3sin4sin1023410F x x x x x x -=-----⋅⋅⋅-,所以()()F x F x -=-,所以()F x 是奇函数,①错误;对于②,由ππ88x -≤≤可得,ππ244x -≤≤,3π3π388x -≤≤,ππ422x -≤≤,所以111sin ,sin2,sin3,234x x x x 都在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以()111sin sin2sin3sin4234f x x x x x =+++在ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,所以函数()f x 在区间ππ,88⎡⎤-⎢⎥⎣⎦上单调递增,②正确;对于③.因为()11sin sin 2sin 323g x x x x =++,所以π223g ⎛⎫= ⎪⎝⎭,所以()max 23g x ≥,即()g x 的振幅比()1sin22h x x =的振幅大,所以声音甲的响度一定比纯音()1sin22h x x =的响度大,所以③错误;对于④,因为()()()()112πsin 2πsin 24πsin sin 222x x x x x x ϕϕ+=+++=+=,所以函数()x ϕ为周期函数,2π为其周期,若存在02πα<<,使()()x x ϕϕα=+恒成立,则必有()()0ϕϕα=,()()110sin 0sin 00sin sin 222ϕϕααα∴=+===+,()sin 1cos 0αα∴+=,因为02πα<<,πα∴=,又()()()11πsin πsin 2πsin sin 222x x x x x ϕ+=+++=-+与()1sin sin 22x x x ϕ=+不恒相等,所以函数()1sin sin22x x x ϕ=+的最小正周期是2π,所以频率1112πf T ==而()h x 的周期为π,频率21πf =,12f f <,所以声音乙一定比纯音()1sin22h x x =更低沉,所以④正确.故答案为:②④.三、解答题(本大题共5小题,共60分.解答应写出文字说明,证明过程或演算步骤)16.如图,在ABC 中,2BD DC = ,E 是AD 的中点,设AB a = ,AC b = .(1)试用a ,b 表示AD ,BE ;(2)若1a b == ,a 与b 的夹角为60︒,求AD BE ⋅ .【答案】(1)1233AD a b =+ ,5163BE a b =-+ (2)518-【解析】【分析】(1)利用向量加法减法的三角形法则及数乘运算即可求解;(2)根据(1)的结论,利用向量的数量积运算法则即可求解.【小问1详解】因为2BD DC = ,所以23BD BC = ,所以221)212(333333AB AC AB AB AC a b AD AB BD AB BC +-=+=+=+=+= .因为E 是AD 的中点,所以()11211()22323BE BA BD AB BC AB AC AB ⎛⎫=+=-+=-+- ⎪⎝⎭ 51516363AB AC a b =-+=-+ .【小问2详解】因为1a b == ,a 与b 的夹角为60︒,所以11cos ,1122a b a b a b ⋅==⨯⨯= ,由(1)知,1233AD a b =+ ,5163BE a b =-+ ,所以22125154233631899AD BE a b a b a a b b ⎛⎫⎛⎫⋅=+⋅-+=--⋅+ ⎪ ⎪⎝⎭⎝⎭541251892918=--⨯+=-.17.已知函数()π3sin 24f x x ⎛⎫=+⎪⎝⎭(1)求()f x 的最小正周期;(2)求函数()f x 的单调递增区间;(3)若函数()f x 在区间[]0,a 内只有一个零点,直接写出实数a 的取值范围.【答案】(1)()f x 的最小正周期为π,(2)函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;(3)a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.【解析】【分析】(1)根据正弦型函数的周期公式求解即可;(2)利用正弦函数的单调区间结论求解;(3)求出()0f x =的解后可得a 的范围.【小问1详解】因为()π3sin 24f x x ⎛⎫=+ ⎪⎝⎭,所以函数()f x 的最小正周期2ππ2T ==;【小问2详解】由πππ2π22π242k x k -≤+≤+,Z k ∈,可得3ππππ88k x k -≤≤+,Z k ∈,所以函数()f x 的单调递增区间是3πππ,π88k k ⎡⎤-+⎢⎥⎣⎦()k ∈Z ;【小问3详解】由π()3sin(204f x x =+=可得,π2π4x k +=,Z k ∈所以ππ28k x =-,Z k ∈,因为函数()f x 在区间[]0,a 上有且只有一个零点,所以3π7π88a ≤<,所以实数a 的取值范围为3π7π,88⎡⎫⎪⎢⎣⎭.18.已知()()()4,0,0,4,cos ,sin ,(0π)A B C ααα<<.(1)若OA OC += (O 为坐标原点),求OB 与OC 的夹角;(2)若⊥ AC BC ,求sin cos αα-的值.【答案】(1)OB 与OC 的夹角为π6,(2)sin cos 4αα-=【解析】【分析】(1)根据向量模长以及夹角的坐标公式计算即可;(2)由向量垂直得到数量积为0,进而得到1sin cos 4αα+=,通过平方得到2sin cos αα,进而可得()2sin cos αα-,再根据α的范围确定正负,开方得解.【小问1详解】因为()()()4,0,0,4,cos ,sin A B C αα,所以()()()4,0,0,4,cos ,sin OA OB OC αα=== ,所以()4cos ,sin OA OC αα+=+ ,由OA OC += ()224+cos sin 21αα+=,所以1cos 2α=,又0πα<<,,所以π3α=,13,22C ⎛⎫ ⎪ ⎪⎝⎭,设OB 与OC 的夹角为β()0πβ≤≤,则cos OB OC OB OC β⋅= 23342==,又0πβ≤≤,故OB 与OC 的夹角为π6,【小问2详解】由⊥ AC BC 得0AC BC ⋅= ,又()cos 4,sin AC αα=- ,()cos ,sin 4BC αα=- ,所以()()cos 4cos sin sin 40αααα-+-=,所以1sin cos 4αα+=,所以152sin cos 016αα-=<,又0πα<<,所以ππ2α<<,所以()21531sin cos 11616αα--=-=,所以sin cos 4αα-=.19.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭,且()f x 图像的相邻两条对称轴之间的距离为π2,再从条件①、条件②、条件③中选择两个作为一组已知条件.(1)确定()f x 的解析式;(2)设函数()π24g x x ⎛⎫=+ ⎪⎝⎭,则是否存在实数m ,使得对于任意1π0,2x ⎡⎤∈⎢⎥⎣⎦,存在2π0,2x ⎡⎤∈⎢⎥⎣⎦,()()12m g x f x =-成立?若存在,求实数m 的取值范围:若不存在,请说明理由.条件①:()f x 的最小值为2-;条件②:()f x 图像的一个对称中心为5π,012⎛⎫ ⎪⎝⎭;条件③:()f x 的图像经过点5π,16⎛⎫- ⎪⎝⎭.注:如果选择多组条件分别解答,按第一个解答计分.【答案】(1)选①②,②③,①③答案都为()2sin(2)6f x x π=+,(2)存在m 满足条件,m 的取值范围为2,0⎤⎦.【解析】【分析】(1)先根据已知求出()f x 的最小正周期,即可求解ω,选条件①②:可得()f x 的最小值为A -,可求A .根据对称中心可求ϕ,即可得解函数解析式;选条件①③:可得()f x 的最小值为A -,可求A .根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求ϕ,可得函数解析式;选条件②③:根据对称中心可求ϕ,再根据函数()f x 的图象过点5π,16⎛⎫⎪⎝⎭,可求A 的值,即可得解函数解析式.(2)求出函数()f x ,()g x 在π0,2⎡⎤⎢⎥⎣⎦上的值域,再结合恒成立、能成立列式求解作答.【小问1详解】由于函数()f x 图像上两相邻对称轴之间的距离为π2,所以()f x 的最小正周期π2π2T =⨯=,所以2π2T ω==,此时()()sin 2f x A x ϕ=+.选条件①②:因为()f x 的最小值为A -,所以2A =.因为()f x 图象的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以56k ϕπ=π-,()k ∈Z ,因为||2ϕπ<,所以π6ϕ=,此时1k =,所以()2sin(2)6f x x π=+.选条件①③:因为()f x 的最小值为A -,所以2A =.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,则5π()16f =-,所以5π2sin()13ϕ+=-,即5π1sin()32ϕ+=-.因为||2ϕπ<,所以7π5π13π636ϕ<+<,所以5π11π36ϕ+=,所以π6ϕ=,所以()2sin(2)6f x x π=+.选条件②③:因为函数()f x 的一个对称中心为5π,012⎛⎫⎪⎝⎭,所以5π2π(Z)12k k ϕ⨯+=∈,所以5ππ(Z)6k k ϕ=-∈.因为||2ϕπ<,所以π6ϕ=,此时1k =.所以π()sin(26f x A x =+.因为函数()f x 的图象过点5π,16⎛⎫-⎪⎝⎭,所以5π(16f =-,所以5ππsin 136A ⎛⎫+=-⎪⎝⎭,11πsin 16A =-,所以2A =,所以()2sin(2)6f x x π=+.综上,不论选哪两个条件,()2sin(2)6f x x π=+.【小问2详解】由(1)知,()2sin(2)6f x x π=+,由20,2x π⎡⎤∈⎢⎥⎣⎦得:2ππ7π2,666x ⎡⎤+∈⎢⎥⎣⎦,2π1sin 2,162x ⎛⎫⎡⎤+∈- ⎪⎢⎥⎝⎭⎣⎦,因此[]2()1,2f x ∈-,由10,2x π⎡⎤∈⎢⎥⎣⎦得:1ππ5π2,444x ⎡⎤+∈⎢⎥⎣⎦,1πsin 2,142x ⎡⎤⎛⎫+∈-⎢⎥ ⎪⎝⎭⎣⎦,因此1()g x ⎡∈-⎣,从而1()1,g x m m m ⎡-∈---+⎣,由()()12m g x f x =-得:()()21f x g x m =-,假定存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,即存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()21f x g x m =-成立,则[]1,1,2m m ⎡---+⊆-⎣,于是得112m m --≥-⎧⎪⎨-+≤⎪⎩,解得20m -≤≤,因此存在实数m ,使得对1π0,2x ⎡⎤∀∈⎢⎥⎣⎦,2π0,2x ⎡⎤∃∈⎢⎥⎣⎦,()()12m g x f x =-成立,所以实数m的取值范围是2,0⎤⎦.20.对于定义在R 上的函数()f x 和正实数T 若对任意x ∈R ,有()()f x T f x T +-=,则()f x 为T -阶梯函数.(1)分别判断下列函数是否为1-阶梯函数(直接写出结论):①()2f x x =;②()1f x x =+.(2)若()sin f x x x =+为T -阶梯函数,求T 的所有可能取值;(3)已知()f x 为T -阶梯函数,满足:()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,且对任意x ∈R ,有()()2f T x f x T x --=-.若函数()()F x f x ax b =--有无穷多个零点,记其中正的零点从小到大依次为123,,,x x x ⋅⋅⋅;若1a =时,证明:存在b ∈R ,使得()F x 在[]0,2023T 上有4046个零点,且213240464045x x x x x x -=-=⋅⋅⋅=-.【答案】(1)①否;②是(2)2πT k =,*k ∈N (3)证明见解析【解析】【分析】(1)利用T -阶梯函数的定义进行检验即可判断;(2)利用T -阶梯函数的定义,结合正弦函数的性质即可得解;(3)根据题意得到()()F x T F x +=,()()F T x F x -=,从而取3344TT b f ⎛⎫=- ⎪⎝⎭,结合零点存在定理可知()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +,从而得解.【小问1详解】()2f x x =,则22(1)()(1)211f x f x x x x +-=+-=+≠;()1f x x =+,则(1)()11f x f x x x +-=+-=,故①否;②是.【小问2详解】因为()f x 为T -阶梯函数,所以对任意x ∈R 有:()()()()()sin sin sin sin f x T f x x T x T x x x T x T T +-=+++-+=+-+=⎡⎤⎣⎦.所以对任意x ∈R ,()sin sin x T x +=,因为sin y x =是最小正周期为2π的周期函数,又因为0T >,所以2πT k =,*k ∈N .【小问3详解】因为1a =,所以函数()()F x f x x b =--,则()()()()()()()F x T f x T x T b f x T x T b f x x b F x +=+-+-=+-+-=--=,()()()()()()()2F T x f T x T x b f x T x T x b f x x b F x -=----=+----=--=.取3344TT b f ⎛⎫=- ⎪⎝⎭,则有3330444TT T F f b ⎛⎫⎛⎫=--= ⎪ ⎪⎝⎭⎝⎭,30444T T T F F T F ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由于()f x 在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,因此()()F x f x x b =--在,2T T ⎡⎤⎢⎥⎣⎦上单调递减,结合()()F T x F x -=,则有()F x 在0,2T ⎡⎤⎢⎥⎣⎦上有唯一零点4T ,在,2T T ⎡⎤⎢⎥⎣⎦上有唯一零点34T .又由于()()F x T F x +=,则对任意k ∈Ζ,有044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,33044T T F kT F ⎛⎫⎛⎫+== ⎪ ⎪⎝⎭⎝⎭,因此,对任意m ∈Z ,()F x 在(),1mT m T +⎡⎤⎣⎦上有且仅有两个零点:4T mT +,34T mT +.综上所述,存在3344TT b f ⎛⎫=- ⎪⎝⎭,使得()F x 在[]0,2023T 上有4046个零点,且14T x =,234T x =,354T x =,474T x =,L ,404580894T x =,404680914T x =,其中,2132404640452T x x x x x x -=-=⋅⋅⋅=-=.【点睛】关键点睛:本题解决的关键是充分理解新定义T -阶梯函数,从而在第3小问推得()()F x T F x +=,()()F T x F x -=,由此得解.。

北京市2023-2024学年高一下学期期中考试数学试卷含答案

北京市2023-2024学年高一下学期期中考试数学试卷含答案

北京市2023-2024学年高一(下)期中数学试卷一、选择题(每题5分,共50分)(答案在最后)1.若复数2i z =-+,则复数z 在复平面内对应的点位于()A .第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】运用复数的几何意义求解即可.【详解】复数2i z =-+,则复数z 在复平面内对应的点(2,1)-位于第二象限.故选:B .2.已知向量(2,1)a = ,(4,)b x = ,且a b∥,则x 的值为()A.-2B.2C.-8D.8【答案】B 【解析】【分析】运用平面向量共线的坐标公式计算即可.【详解】(2,1)a =rQ ,(4,)b x =,且a b∥,240x ∴-=,即2x =.故选:B .3.在三角形ABC 中,角,,A B C 对应的边分别为,,a b c ,若0120A ∠=,2a =,3b =,则B =()A.3πB.56π C.566ππ或 D.6π【答案】D 【解析】【详解】试题分析:由于0120A ∠=为钝角,所以只有一解.由正弦定理得:21sin sin1203sin 2B B =⇒=,选D.考点:解三角形.4.已知圆锥的轴截面是一个边长为2的等边三角形,则该圆锥的体积为()A.B.πC.D.2π【答案】A 【解析】【分析】根据圆锥轴截面的定义结合正三角形的性质,可得圆锥底面半径长和高的大小,由此结合圆锥的体积公式,即可求解.【详解】由题知,如图,PAB 为圆锥的轴截面,边长均为2,则圆锥的高322PO =⨯=底面半径1212r =⨯=,故圆锥体积2211ππ1π333V r PO =⋅=⨯=.故选:A5.已知P 为ABC 所在平面内一点,2BC CP =uu u r uur,则()A.1322AP AB AC =-+uu u r uu u r uuu r B.1233AP AB AC=+C.3122AP AB AC=-uu u r uu u r uuu r D.2133AP AB AC=+uu u r uu u r uuu r【答案】A 【解析】【分析】根据题意作出图形,利用向量线性运算即可得到答案.【详解】由题意作出图形,如图,则11()22AP AC CP AC BC AC AC AB =+=+=+- 1322AB AC =-+,故选:A.6.已知非零向量a ,b,则“a b b -= ”是“20a b -= ”成立的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】根据充分条件和必要条件的定义,结合向量的模的定义,数量积的性质和运算律判断.【详解】若20a b -= ,则a b b -=,a b b -= ,所以“a b b -= ”是“20a b -=”成立的必要条件,若a b b -= ,则220a a b -⋅=,()20a a b ⋅-= ,当()1,0a = ,11,22b ⎛⎫=- ⎪⎝⎭时,()20,1a b -= ,()20a a b ⋅-= 成立,但20a b -≠.所以,“a b b -= ”不是“20a b -=”成立的充分条件,所以“a b b -= ”是“20a b -= ”成立的必要不充分条件,故选:B.7.在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且2cos a B c =,则ABC 的形状一定是()A.等边三角形B.等腰三角形C.等腰直角三角形D.直角三角形【答案】B 【解析】【分析】由正弦定理可得2sin cos sin A B C =,再由()C A B π=-+,可得2sin cos sin()sin cos cos sin A B A B A B A B =+=+,从而可得in 0()s A B -=,进而可得结论【详解】解:因为2cos a B c =,所以由正弦定理可得2sin cos sin A B C =,因为A B C π++=,所以()C A B π=-+,所以()()sin sin sin C A B A B π⎡⎤=-+=+⎣⎦,所以2sin cos sin()sin cos cos sin A B A B A B A B =+=+,所以sin cos cos sin 0A B A B -=,所以in 0()s A B -=,因为A B ππ-<-<,所以0A B -=,所以A B =,所以ABC 为等腰三角形,故选:B8.对于非零向量,m n ,定义运算“⨯”:sin m n m n θ⨯=,其中θ为,m n 的夹角.设,,a b c 为非零向量,则下列说法错误..的是A.a b b a⨯=⨯ B.()a b c a c b c+⨯=⨯+⨯C.若0a b ⨯=,则//a bD.()a b a b⨯=-⨯【答案】B 【解析】【详解】由运算定义,sin ,sin a b a b b a b a θθ⨯=⨯=,所以a b b a⨯=⨯正确;()sin ,sin sin a b c a b c a c b c a c b c θαβ+⨯=+⨯+⨯=+ ,所以()a b c a c b c +⨯≠⨯+⨯,故B错误;C 、sin 0a b a b θ⨯== ,则0,θπ=,所以//a b 正确;D 、()()sin ,sin sin a b a b a b a b a b θπθθ⨯=-⨯=--= ,所以()a b a b ⨯=-⨯正确.故选B .点睛:本题考查向量的新定义运算,关键就是理解新定义.本题采取排除法,通过逐个验证,我们可以发现A 、C 、D 都是正确的,所以错误的就是B .9.如图,直三棱柱111ABC A B C -中,1,,AB BC AA AB P ⊥=为棱11A B 的中点,Q 为线段1AC 上的动点.以下结论中正确的是()A.存在点Q ,使BQ AC ∥B.不存在点Q ,使11BQ B C ⊥C.对任意点Q ,都有1BQ AB ⊥D.存在点Q ,使BQ 平面1PCC 【答案】C 【解析】【分析】A 选项,根据异面直线的定义可以判断;B 选项,容易发现1,A Q 重合时符合题意;C 选项,利用线面垂直得到线面垂直;D 选项,先找出平面1PCC 的一条垂线,问题转化为判断这条垂线是否和BQ 垂直的问题.【详解】A 选项,由于BQ ⋂平面ABCB =,B AC ∉,AC ⊂平面ABC ,则,BQ AC 一定异面,A 选项错误;B 选项,根据直三棱柱性质,1BB ⊥平面ABC ,BC ⊂平面ABC ,故1BB BC ⊥,又AB BC ⊥,1AB BB B Ç=,1,AB BB ⊂平面11ABB A ,故BC ⊥平面11ABB A ,又1BA ⊂平面11ABB A ,故1BC BA ⊥,显然11BC B C ∥,即111B C BA ⊥,故1,A Q 重合时,11BQ B C ⊥,B 选项错误;C 选项,直棱柱的侧面11ABB A 必是矩形,而1AA AB =,故矩形11ABB A 成为正方形,则11AB BA ⊥,B 选项已经分析过,BC ⊥平面11ABB A ,由1AB ⊂平面11ABB A ,故1AB BC ⊥,又1BC BA B ⋂=,1,BC BA ⊂平面1BCA ,故1AB ⊥平面1BCA ,又BQ ⊂平面1BCA ,则1BQ AB ⊥必然成立,C 选项正确;D 选项,取AB 中点M ,连接,CM PM ,根据棱柱性质可知,CM 和1C P 平行且相等,故平面1PCC 可扩展成平面1CMPC ,过B 作BN CM ⊥,垂足为N ,根据1BB ⊥平面ABC ,BN ⊂平面ABC ,故1BB BN ⊥,显然11BB CC ∥,故1BN CC ⊥,由BN CM ⊥,1CC CM C = ,1,CC CM ⊂平面1CMPC ,故BN ⊥平面1CMPC ,若BQ 平面1PCC ,则BQ BN ⊥,过Q 作QO //1BB ,交11A C 于O ,连接1B O ,于是1BQOB 共面,又1BQ BB B = ,1,BQ BB ⊂平面1BQOB ,故BN ⊥平面1BQOB ,由于1B O ⊂平面1BQOB ,故1BN B O ⊥,延长OQ 交AC 于J ,易得1B O //BJ ,则BJ BN ⊥,而J 在线段AC 上,这是不可能的,D 选项错误.故选:C10.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”).当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据北京的地理位置设计的圭表的示意图,已知北京冬至正午太阳高度角(即ABC ∠)为26.5 ,夏至正午太阳高度角(即ADC ∠)为73.5 ,圭面上冬至线与夏至线之间的距离(即DB 的长)为a ,则表高(即AC 的长)为()A.sin532sin 47a ︒︒B.2sin 47sin53a ︒︒C.tan 26.5tan 73.5tan 47a ︒︒︒D.sin 26.5sin 73.5sin 47a ︒︒︒【答案】D 【解析】【分析】先求BAD ∠,在BAD 中利用正弦定理求AD ,在Rt ACD 中即可求AC .【详解】73.526.547BAD ∠=-= ,在BAD 中由正弦定理得:sin sin BD AD BAD ABD=∠∠,即sin 47sin 26.5a AD= ,所以sin 26.5sin 47a AD =,又因为在Rt ACD 中,sin sin 73.5ACADC AD=∠= ,所以sin 26.5sin 73.5sin 73.5sin 47a AC AD =⨯=,故选:D【点睛】本题主要考查了解三角形应用举例,考查了正弦定理,属于中档题.二、填空题(每题5分,共30分)11.已知复数i(1i)z =+,则z =________;||z =________.【答案】①.1i--②.【解析】【分析】运用共轭复数、复数乘法及复数的模的公式计算即可.【详解】因为i(1i)1i z =+=-+,则1i z =--,||z ==.故答案为:1i --.12.已知向量(1,1)a =-r ,(2,1)b =- ,则2a b += ________;向量a 在b上的投影向量的坐标为________.【答案】①.(0,1)-②.63(,)55-【解析】【分析】运用平面向量加法、向量数量积、向量的模、投影向量公式计算即可.【详解】解:(1,1)a =-r,(2,1)b =-,则2(2,2)(2,1)(0,1)a b +=-+-=-;()()12113a b ⋅=⨯-+-⨯=-,||b == 故向量a 在b上的投影向量的坐标为:363,555a b b b b b⋅⎛⎫⨯=-=- ⎪⎝⎭ .故答案为:(0,1)-;63(,55-.13.在正四面体A -BCD 中,二面角A -BC -D 的余弦值是_______.【答案】13【解析】【分析】根据二面角平面角的定义,结合正四面体的性质,找出该角,由余弦定理,可得答案.【详解】如图,取BC 的中点F ,连接AF,DF,则AF BC ⊥,DF BC ⊥,即AFD ∠为二面角A BC D --的平面角,设正四面体D ABC -的棱长为6,在正ABC中,sin 60AF AB ==sin 60DF BD ==由余弦定理2221cos 23FD FA AD AFD FD FA +-∠===⋅⋅.故答案为:13.14.已知点(0,0)O ,(1,2)A ,(,0)(0)B m m >,则cos ,OA OB <>=___________;若B 是以OA 为边的矩形的顶点,则m =___________.【答案】①.②.5【解析】【分析】①根据向量的夹角公式,直接求解即可;②根据已知可得0OA AB ⋅=,求出相应的坐标代入即可求出m 的值.【详解】①因为(0,0)O ,(1,2)A ,(,0)(0)B m m >,所以(1,2)OA = ,(,0)OB m =,所以5cos ,5||||OA OB OA OB OA OB ⋅<>===;②(1,2)AB m =-- ,若B 是以OA 为边的矩形的顶点,则0OA AB ⋅=,即140OA AB m ⋅=--=,所以5m =.故答案为:5;515.若ABC 的面积为2223()4a cb +-,且∠C 为钝角,则∠B =_________;c a 的取值范围是_________.【答案】①.60②.(2,)+∞【解析】【分析】根据题干结合三角形面积公式及余弦定理可得tan B =,可求得3B π∠=;再利用()sin sin C A B =+,将问题转化为求函数()f A 的取值范围问题.【详解】()2221sin 42ABC S a c b ac B ∆=+-=,2222a c b ac +-∴=,即cos B =,sin cos 3B B B π∴=∠=,则21sin cos sin sin 11322sin sin sin 2tan 2A A Ac C a A A A A π⎛⎫⎛⎫-⋅--⋅ ⎪ ⎪⎝⎭⎝⎭====⋅+,C ∴∠为钝角,,036B A ππ∠=∴<∠<,)1tan 0,,3tan A A ⎛∴∈∈+∞ ⎝⎭,故()2,ca∈+∞.故答案为3π,()2,∞+.【点睛】此题考查解三角形的综合应用,能够根据题干给出的信息选用合适的余弦定理公式是解题的第一个关键;根据三角形内角A B C π++=的隐含条件,结合诱导公式及正弦定理,将问题转化为求解含A ∠的表达式的最值问题是解题的第二个关键.16.如图矩形ABCD 中,22AB BC ==,E 为边AB 的中点,将ADE V 沿直线DE 翻转成1A DE △.若M 为线段1AC 的中点,则在ADE V 翻转过程中,下列叙述正确的有________(写出所有序号).①BM 是定值;②一定存在某个位置,使1CE DA ⊥;③一定存在某个位置,使1DE A C ⊥;④一定存在某个位置,使1MB A DE 平面∥.【答案】①②④【解析】【分析】运用等角定理及余弦定理可判断①;运用勾股定理证得1A E CE ⊥、DE EC ⊥,结合线面垂直的判定定理及性质可判断②;运用反证法证及线面垂直判定定理证得DE ⊥平面1A EC ,结合线面垂直性质可得1DE A E ⊥得出矛盾可判断③;运用面面平行判定定理证得平面//MBF 平面1A DE ,结合面面平行性质可判断④.【详解】对于①,取CD 中点F ,连接MF ,BF ,如图所示,则1MF DA ∥,BF DE ,11122MF A D ==,FB DE ==由等角定理知,1π4A DE MFB ∠=∠=,所以由余弦定理可得22252cos 4MB MF FB MF FB MFB =+-⋅⋅∠=,所以52MB =是定值,故①正确;对于④,由①知,1MF DA ∥,BF DE ,又FB 、MF ⊄平面1A DE ,1DA 、DE ⊂平面1A DE ,所以//FB 平面1A DE ,//MF 平面1A DE ,又FB MF F = ,FB 、MF ⊂平面MBF ,所以平面//MBF 平面1A DE ,又因为MB ⊂平面MBF ,所以//MB 平面1A DE ,故④正确,对于②,连接EC ,如图所示,当1A C =时,因为11A E =,CE =22211A C A E CE =+,所以1A E CE ⊥,因为矩形ABCD 中,D E C E ==,2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A E DE E ⋂=,1A E 、DE ⊂平面1A DE ,所以CE ⊥平面1A DE ,又1A D ⊂平面1A DE ,所以1CE DA ⊥,故②正确;对于③,假设③正确,即在某个位置,使1DE A C ⊥,又因为矩形ABCD 中,D E C E ==2DC =,所以222DE CE DC +=,即DE EC ⊥,又因为1A C EC C ⋂=,1AC 、EC ⊂平面1A EC ,所以DE ⊥平面1A EC ,又1A E ⊂平面1A EC ,所以1DE A E ⊥,这与1π4DEA ∠=矛盾,所以不存在某个位置,使1DE A C ⊥,故③错误.故答案为:①②④.三、解答题(每题14分,共70分)17.如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,底面ABCD 为正方形,E ,F 分别是AB ,PB 的中点.(1)求证://EF 平面PAD ;(2)求证:EF CD ⊥.【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)由三角形中位线证得EF PA ∥,结合线面平行的判定定理证明即可.(2)由线面垂直性质可得PD CD ⊥,结合线面垂直判定定理可得CD ⊥平面PAD ,再结合线面垂直性质、线线垂直性质证明即可.【小问1详解】因为E ,F 分别是AB ,PB 的中点,所以EF PA ∥,又EF ⊄平面PAD ,PA ⊂平面PAD ,所以//EF 平面PAD ;【小问2详解】因为PD ⊥平面ABCD ,CD ⊂平面ABCD ,所以PD CD ⊥,又因为底面ABCD 为正方形,CD AD ⊥,=PD AD D ⋂,PD 、AD ⊂平面PAD ,所以CD ⊥平面PAD ,又PA ⊂平面PAD ,所以CD PA ⊥,由(1)知,EF PA ∥,所以EF CD ⊥.18.已知2()22cos f x x x =+.(1)求()f x 的最小正周期及单调递减区间;(2)求函数()f x 在区间π[0,]2上的最大值和最小值.【答案】(1)π,π2π[π,π]63k k ++,Z k ∈(2)max ()3f x =,min ()0f x =【解析】【分析】(1)结合二倍角公式及辅助角公式化简函数()f x ,结合sin y t =图象与性质求解即可.(2)先求出π26x +的范围,结合sin y t =图象与性质即可求得最值.【小问1详解】因为2π()22cos 2cos 212sin(216f x x x x x x =+=++=++,所以()f x 的最小正周期2ππ2T ==,令ππ3π2π22π262k x k +≤+≤,Z k ∈,解得π2πππ63k x k +≤≤+,Z k ∈,所以()f x 单调递减区间为π2π[π,π]63k k ++,Z k ∈.【小问2详解】因为π[0,]2x ∈,所以ππ7π2[,]666x +∈,所以由函数图象性质知,当ππ262x +=,即π6x =时,max ()3f x =;当π7π266x +=,即π2x =时,min ()0f x =.19.如图,四边形ABCD 是菱形,DE ⊥平面ABCD ,//AF DE ,3DE AF =.(1)求证:平面//BAF 平面CDE ;(2)求证:平面EAC ⊥平面EBD ;(3)设点M 是线段BD 上一个动点,试确定点M 的位置,使得//AM 平面BEF ,并证明你的结论.【答案】(1)证明见解析(2)证明见解析(3)13BM BD =,证明见解析【解析】【分析】(1)利用线面平行的判定定理得到//AF 平面CDE ,//AB 平面CDE ,再利用面面平行的判定定理,即可证明结果;(2)根据条件得到AC ⊥平面EBD ,再由面面垂直的判定定理,即可证明结果;(3)构造平行四边形,利用线面平行的判定定理,即可证明结果.【小问1详解】因为//AF DE ,AF ⊄面CDE ,DE ⊂面CDE ,所以//AF 平面CDE ,同理,//AB 平面CDE ,又AF AB A ⋂=,,AF AB ⊂面BAF ,所以平面//BAF 平面CDE .【小问2详解】因为四边形ABCD 是菱形,所以AC BD ⊥,DE ⊥ 平面ABCD ,AC ⊂平面ABCD ,AC DE ∴⊥,BD DE D = ,,BD DE ⊂平面EBD ,AC ∴⊥平面EBD ,AC ⊂ 平面EAC ,所以平面EAC ⊥平面EBD .【小问3详解】当13BM BD =时,//AM 平面BEF ,理由如下:作MN ED ∥,则MN 平行且等于13BD ,//AF DE ,3DE AF =,∴AF 平行且等于MN ,∴AMNF 是平行四边形,//AM FN ∴,AM ⊄ 平面BEF ,FN ⊂平面BEF ,//AM ∴平面BEF .20.在ABC ∆中,2sin sin sin A B C =.(Ⅰ)若π3A ∠=,求B ∠的大小;(Ⅱ)若1bc =,求ABC ∆的面积的最大值.【答案】(1)π3B ∠=,(2).【解析】【详解】【分析】试题分析:(Ⅰ)因为2sin sin sin ,A B C =由正弦定理可得2a bc =,再利用余弦定理得所以22222122a b c bc b c bc =+-⨯=+-即b c =,所以为等边三角形.所以π3B ∠=(注:当然也可用化角来处理);(Ⅱ)由已知可得21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=,又sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤11sin sin 224ABC S bc A A ∆==≤试题解析:(Ⅰ)方法一:因为2sin sin sin ,A B C =且,所以2a bc =.又因为π3A ∠=,所以22222122a b c bc b c bc =+-⨯=+-.所以2()0b c -=.所以b c =.因为π3A ∠=,所以为等边三角形.所以π3B ∠=.方法二:因为πA BC ++=,所以sin sin()C A B =+.因为2sin sin sin B C A =,π3A ∠=,所以2ππsin sin()sin 33B B +=.所以13sin cos sin )224B B B +=.所以11cos 23sin 24224B B -+⨯=.所以12cos 2122B B -=.所以πsin(2)16B -=.因为(0,π)B ∈,所以ππ112(,π)666B -∈-.所以ππ262B -=,即π3B ∠=.(Ⅱ)因为2sin sin sin ,A B C =1bc =,且,所以21a bc ==.所以222221cos 22b c a b c A bc +-+-==21122bc -≥=(当且仅当时,等号成立).因为(0,π)A ∈,所以π(0,]3A ∈.所以sin (0,]2A ∈.所以11sin sin 224ABC S bc A A ∆==≤.所以当是边长为1的等边三角形时,其面积取得最大值.考点:三角函数的性质与解三角形21.对于数集{}12,,1,n X x x x =- ,其中120n x x x <<<⋅⋅⋅<,2n ≥,定义向量集(){},,,Y a a s t s X t X ==∈∈ ,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,则称X 具有性质P .(1)判断{}1,1,2-是否具有性质P ;(2)若2x >,且{}1,1,2,X x =-具有性质P ,求x 的值;(3)若X 具有性质P ,求证:1X ∈且当1n x >时,11x =.【答案】(1)具有性质P(2)4(3)证明见解析【解析】【分析】(1)根据集合新定义判断即可;(2)在Y 中取()1,2a x = ,根据数量积的坐标表示,求出可能的2a ,再根据2x >求出符合条件的值即可;(3)取()111,a x x Y =∈ ,()2,a s t Y =∈ ,由120a a ⋅= ,化简可得0s t +=,所以,s t 异号,而1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,从而得到1X ∈,最后通过反证法得出1n x >时,11x =.【小问1详解】{}1,1,2-具有性质P .因为{}1,1,2X =-,所以()()()()()()()()(){}1,1,1,1,1,2,1,1,1,1,1,2,2,1,2,1,2,2Y =------,若对任意1a Y ∈ ,存在2a Y ∈ 使得120a a ⋅= ,所以X 具有性质P .【小问2详解】因为2x >,且{}1,1,2,X x =-具有性质P ,所以可取()1,2a x = ,又Y 中与()1,2a x = 垂直的元素必有形式()()()1,1,1,2,1,x ---中的一个,当()21,1a =- 时,由120a a ⋅= ,可得202x x -+=Þ=,不符合题意;当()21,2a =- 时,由120a a ⋅= ,可得404x x -+=Þ=,符合题意;当()21,a x =- 时,由120a a ⋅= ,可得200x x x -+=Þ=,不符合题意;所以4x =.【小问3详解】证明:取()111,a x x Y =∈ ,设()2,a s t Y =∈ ,满足120a a ⋅= ,所以()100s t x s t +=⇒+=,所以,s t 异号,因为1-是X 中的唯一的负数,所以,s t 中之一为1-,另一个为1,所以1X ∈,假设1k x =,其中1k n <<,则101n x x <<<,选取()11,n b x x = ,并设()2,b p q = ,满足120b b ⋅= ,所以10n px qx +=,则,p q 异号,从而,p q 之中恰有一个为1-,若1p =-,则1n x qx =,显然矛盾;若1q =-,则1n n x px p x =<<,矛盾,所以当1n x >时,11x =,综上,得证.【点睛】关键点点睛:本题的关键在于理解集合的新定义,并用向量的数量积为零时坐标表示出所求的参数值.。

北京市2023-2024学年高一下学期期中考试数学试题含答案

北京市2023-2024学年高一下学期期中考试数学试题含答案

2023—2024学年度第二学期北京市高一数学期中考试试卷(答案在最后)一、选择题(本大题共10小题,每小题4分,共40分)1.11πsin3的值为()A.2B.2-C.2D.2【答案】A 【解析】【分析】利用诱导公式及特殊角的三角函数值计算可得.【详解】11πππsin sin 4πsin 3332⎛⎫=-=-=-⎪⎝⎭.故选:A2.下列函数中,最小正周期为π且是偶函数的是()A.πsin 4y x ⎛⎫=+ ⎪⎝⎭B.tan y x =C.cos 2y x =D.sin 2y x=【答案】C 【解析】【分析】由三角函数的最小正周期公式和函数奇偶性对选项一一判断即可得出答案.【详解】对于A ,πsin 4y x ⎛⎫=+⎪⎝⎭的最小正周期为:2π2π1T ==,故A 不正确;对于B ,tan y x =的最小正周期为:ππ1T ==,tan y x =的定义域为ππ,Z 2x x k k ⎧⎫≠+∈⎨⎬⎩⎭,关于原点对称,令()tan f x x =,则()()()tan tan f x x x f x -=-=-=-,所以tan y x =为奇函数,故B 不正确;对于C ,cos 2y x =的最小正周期为:2ππ2T ==,令()cos 2g x x =的定义域为R 关于原点对称,则()()()cos 2cos 2g x x x g x -=-==,所以cos 2y x =为偶函数,故C 正确;对于D ,sin 2y x =的最小正周期为:2ππ2T ==,sin 2y x =的定义域为R ,关于原点对称,令()sin 2h x x =,则()()()sin 2sin 2h x x x h x -=-=-=-,所以sin 2y x =为奇函数,故D 不正确.故选:C .3.设向量()()3,4,1,2a b ==- ,则cos ,a b 〈〉=()A.5-B.5C.5-D.5【答案】D 【解析】【分析】根据给定条件,利用向量夹角的坐标表示求解即得.【详解】向量()()3,4,1,2a b ==-,则cos ,5||||a b a b a b ⋅〈〉==.故选:D4.在△ABC 中,已知1cos 3A =,a =,3b =,则c =()A.1B.C.2D.3【答案】D 【解析】【分析】直接利用余弦定理求解即可【详解】因为在△ABC 中,1cos 3A =,a =,3b =,所以由余弦定理得2222cos a b c bc A =+-,2112963c c =+-⨯,得2230c c --=,解得3c =,或1c =-(舍去),故选:D5.函数()()sin f x A x =+ωϕ(其中0A >,0ω>,0ϕπ<<)的图像的一部分如图所示,则此函数的解析式是()A.()3sin 42f x x ππ⎛⎫=+⎪⎝⎭ B.3()3sin 44f x x ππ⎛⎫=+⎪⎝⎭C.()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭ D.3()3sin 84f x x ππ⎛⎫=+⎪⎝⎭【答案】C 【解析】【分析】根据图象可以求出最大值,结合函数的零点,根据正弦型函数的最小正周期公式,结合特殊值法进行求解即可.【详解】由函数图象可知函数的最大值为3,所以3A =,由函数图象可知函数的最小正周期为4(62)16⨯-=,因为0ω>,所以24(62)168ππωω⨯-==⇒=,所以()3sin 8f x x πϕ⎛⎫=+ ⎪⎝⎭,由图象可知:(2)3f =,即3sin 32()2()4424k k Z k k Z ππππϕϕπϕπ⎛⎫+=⇒+=+∈⇒=+∈ ⎪⎝⎭,因为0ϕπ<<,所以令0k =,所以4πϕ=,因此()3sin 84f x x ππ⎛⎫=+ ⎪⎝⎭,故选:C6.函数ππ()sin(2),[0,]62f x x x =+∈的最大值和最小值分别为()A.11,2-B.31,2-C.1,12- D.1,1-【答案】A 【解析】【分析】根据给定条件,求出相位的范围,再利用正弦函数的性质求解即得.【详解】由π[0,2x ∈,得ππ7π2[,666x +∈,则当ππ262x +=,即π6x =时,max ()1f x =,当π7π266x +=,即π2x =时,min 1()2f x =-,所以所求最大值、最小值分别为11,2-.故选:A7.已知向量,,a b c在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ()A.2B.2- C.1 D.1-【答案】B 【解析】【分析】根据给定信息,利用向量数量的运算律,结合数量积的定义计算得解.【详解】依题意,π3π|||2,||2,,,,,44a b c a b b c a c ===〈〉=⊥〈〉= ,因此3π||||cos2(242a c a c ⋅==⨯-=-,0b c ⋅= ,所以()2a b c a c b c +⋅=⋅+⋅=-.故选:B8.在ABC 中,已知cos cos 2cos a B b A c A +=,则A =()A.π6B.π4C.π3 D.π2【答案】C 【解析】【分析】根据给定条件,利用正弦定理边化角,再逆用和角的正弦求出即得.【详解】在ABC 中,由cos cos 2cos a B b A c A +=及正弦定理,得sin cos sin cos 2sin cos A B B A C A +=,则sin()2sin cos A B C A +=,即sin 2sin cos C C A =,而sin 0C >,因此1cos 2A =,而0πA <<,所以π3A =.故选:C9.已知函数()()π2sin 03⎛⎫=+> ⎪⎝⎭f x x ωω,则“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B 【解析】【分析】以π3x ω+为整体结合正弦函数的性质可得12ω>,进而根据充分、必要条件分析判断.【详解】因为π0,3x ⎡⎤∈⎢⎥⎣⎦且0ω>,则ππππ,3333x ωω⎡⎤+∈+⎢⎥⎣⎦,若()f x 在π0,3⎡⎤⎢⎣⎦上既不是增函数也不是减函数,则2πππ33ω+>,解得12ω>,又因为()1,+∞1,2⎛⎫+∞ ⎪⎝⎭,所以“()f x 在π0,3⎡⎤⎢⎥⎣⎦上既不是增函数也不是减函数”是“1ω>”的必要不充分条件.故选:B.10.如图,正方形ABCD 的边长为2,P 为正方形ABCD 四条边上的一个动点,则PA PB ⋅的取值范围是()A.[]1,2-B.[]0,2 C.[]0,4 D.[]1,4-【答案】D 【解析】【分析】建立平面直角坐标系,分点P 在CD 上,点P 在BC 上,点P 在AB 上,点P 在AD 上,利用数量积的坐标运算求解.【详解】解:建立如图所示平面直角坐标系:则()()0,2,2,2A B ,当点P 在CD 上时,设()(),002Px x ≤≤,则()(),2,2,2PA x PB x =-=--,所以()()224133,4PA PB x x x ⎡⎤⋅=-+=-+∈⎣⎦ ;当点P 在BC 上时,设()()2,02P yy ≤≤,则()()2,2,0,2PA y PB y =-=-,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;当点P 在AB 上时,设()(),202Px x ≤≤,则()(),0,2,0PA x PB x ==-,所以()()22111,0PA PB x x x ⎡⎤⋅=-=--∈-⎣⎦ ;当点P 在AD 上时,设()()0,02P y y ≤≤,则()()0,2,2,2PA y PB y=-=--,所以()220,4PA PB y ⎡⎤⋅=-∈⎣⎦ ;综上:PA PB ⋅的取值范围是[]1,4-.故选:D二、填空题(本大题共5小题,每小题5分,共25分)11.已知圆的半径为2,则60 的圆心角的弧度数为__________;所对的弧长为__________.【答案】①.π3##1π3②.2π3##2π3【解析】【分析】利用度与弧度的互化关系,弧长计算公式求解即可.【详解】60 的圆心角的弧度数为ππ601803⨯=;所对的弧长为π2π233⨯=.故答案为:π3;2π312.已知向量()2,3a =- ,(),6b x =- .若//a b ,则a =r __________,x =__________.【答案】①.②.4【解析】【分析】利用坐标法求出向量的模,再根据向量共线的坐标表示求出x .【详解】因为向量()2,3a =- ,所以a == ,又(),6b x =- 且//a b ,所以()326x =-⨯-,解得4x =.;4.13.若函数()sin f x A x x =的一个零点为π3,则A =__________;将函数()f x 的图象向左至少平移__________个单位,得到函数2sin y x =的图象.【答案】①.1②.π3##1π3【解析】【分析】利用零点的意义求出A ;利用辅助角公式化简函数()f x ,再借助平移变换求解即得.【详解】函数()sin f x A x x =的一个零点为π3,得ππsin 033A =,解得1A =;则π()sin 2sin()3f x x x x =-=-,显然πππ(2sin[()]2sin 333f x x x +=+-=,所以()f x 的图象向左至少平移π3个单位,得到函数2sin y x =的图象.故答案为:1;π314.设平面向量,,a b c 为非零向量,且(1,0)a = .能够说明“若a b a c ⋅=⋅ ,则b c = ”是假命题的一组向量,b c的坐标依次为__________.【答案】(0,1),(0,1)-(答案不唯一)【解析】【分析】令向量,b c 与向量a 都垂直,且b c ≠即可得解.【详解】令(0,1),(0,1)b c ==- ,显然0a b a c ⋅==⋅,而b c ≠ ,因此(0,1),(0,1)b c ==- 能说明“若a b a c ⋅=⋅ ,则b c = ”是假命题,所以向量,b c的坐标依次为(0,1),(0,1)-.故答案为:(0,1),(0,1)-15.已知函数()2cosπ1xf x x =+,给出下列四个结论:①函数()f x 是奇函数;②函数()f x 有无数个零点;③函数()f x 的最大值为1;④函数()f x 没有最小值.其中,所有正确结论的序号为__________.【答案】②③【解析】【分析】根据偶函数的定义判断①,令()0f x =求出函数的零点,即可判断②,求出函数的最大值即可判断③,根据函数值的特征判断④.【详解】函数()2cosπ1xf x x =+的定义域为R ,又22cos(π)cos π()()()11x x f x f x x x --===-++,所以()2cosπ1xf x x =+为偶函数,故①错误;令2cos ππ1()0cos π0ππ(Z)(Z)122x f x x x k k x k k x ==⇒=⇒=+∈⇒=+∈+,所以函数()f x 有无数个零点,故②正确;因为cos π1x ≤,当ππ(Z)x k k =∈,即(Z)x k k =∈时取等号,又因为211x +≥,当且仅当0x =时取等号,所以有21011x <≤+,当且仅当0x =时取等号,所以有2cos π11x x ≤+,当且仅当0x =时取等号,因此有()2cos π11xf x x =≤+,即()()max 01f x f ==,故③正确;因为()2cosπ1xf x x =+为偶函数,函数图象关于y 轴对称,只需研究函数在()0,∞+上的情况即可,当x →+∞时2101x →+,又1cosπ1x -≤≤,所以当x →+∞时()0f x →,又()()max 01f x f ==,当102x <<时cos π0x >,210x +>,所以()0f x >,当1322x <<时1cos π0x -≤<,210x +>,所以()0f x <,当1x >时212x +>,0cos π1x ≤≤,所以()12f x <,又()112f =-,102f ⎛⎫= ⎪⎝⎭,302f ⎛⎫= ⎪⎝⎭,且()f x 为连续函数,所以()f x 存在最小值,事实上()f x 的图象如下所示:由图可知()f x 存在最小值,故④错误.故答案为:②③三、解答题(本大题共6小题,共85分)16.在平面直角坐标系xOy 中,角θ以Ox 为始边,终边经过点()1,2--.(1)求tan θ,tan2θ的值;(2)求πsin ,cos ,cos 4θθθ⎛⎫+⎪⎝⎭的值.【答案】(1)tan 2θ=,4tan 23θ=-(2)sin 5θ-=,cos 5θ=,π10cos 410θ⎛⎫+=⎪⎝⎭【解析】【分析】(1)由三角函数的定义求出tan θ,再由二倍角正切公式求出tan 2θ;(2)由三角函数的定义求出sin θ,cos θ,再由两角和的余弦公式计算可得.【小问1详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以2tan 21θ-==-,则222tan 224tan 21tan 123θθθ⨯===---.【小问2详解】因为角θ以Ox 为始边,终边经过点()1,2--,所以sin 5θ-==,cos 5θ==,所以πππcos cos cos sin sin 444θθθ⎛⎫+=- ⎪⎝⎭2520555210221⎛⎫- =⨯-⨯=⎪ ⎪⎝⎭.17.已知平面向量,,2,3,a b a b a == 与b的夹角为60 ,(1)求22,,a b a b ⋅;(2)求(2)(3)a b a b -⋅+的值:(3)当x 为何值时,xa b -与3a b +rr 垂直.【答案】(1)4,9,3;(2)4-;(3)3013x =.【解析】【分析】(1)利用数量积的定义计算即得.(2)利用数量积的运算律计算即得.(3)利用垂直关系的向量表示,数量积的运算律求解即得.【小问1详解】向量,,2,3,a b a b a == 与b 的夹角为60 ,所以2222|4,|9,3||||c |os 0|6a a b b a b a b ===⋅=== .【小问2详解】依题意,2222(2)(3)2352233534a b a b a b a b -⋅+=-+⋅=⨯-⨯+⨯=- .【小问3详解】由()(3)0xa b a b -⋅+= ,得223(31)4273(31)13300xa b x a b x x x -+-⋅=-+-=-= ,解得3013x =,所以当3013x =时,xa b - 与3a b +r r 垂直.18.已知函数()sin2cos2f x x x =+.(1)求(0)f ;(2)求函数()f x 的最小正周期及对称轴方程;(3)求函数()f x 的单调递增区间.【答案】(1)1;(2)π,ππ,Z 82k x k =+∈;(3)()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.【解析】【分析】(1)代入计算求出函数值.(2)(3)利用辅助角公式化简函数()f x ,再结合正弦函数的图象与性质求解即得.【小问1详解】函数()sin2cos2f x x x =+,所以(0)sin0cos01f =+=.【小问2详解】函数π())4f x x =+,所以函数()f x 的最小正周期2ππ2T ==;由ππ2π,Z 42x k k +=+∈,解得ππ,Z 82k x k =+∈,所以函数()f x 图象的对称轴方程为ππ,Z 82k x k =+∈.【小问3详解】由πππ2π22π,Z 242k x k k -+≤+≤+∈,得3ππππ,Z 88k x k k -+≤≤+∈,所以函数()f x 的单调递增区间是()3πππ,πZ 88k k k ⎡⎤-++∈⎢⎥⎣⎦.19.在△ABC 中,7a =,8b =,再从条件①、条件②这两个条件中选择一个作为已知.(1)求A ∠;(2)求ABC 的面积.条件①:3c =;条件②:1cos 7B =-.注:如果选择条件①和条件②分别解答,按第一个解答计分.【答案】(1)选①②答案相同,3A π∠=;(2)选①②答案相同,ABC 的面积为【解析】【分析】(1)选①,用余弦定理得到cos A ,从而得到答案;选②:先用余弦定理求出3c =,再用余弦定理求出cos A ,得到答案;(2)选①,先求出sin 2A =,使用面积公式即可;选②:先用sin sin()C A B =+求出sin C ,再使用面积公式即可.【小问1详解】选条件①:3c =.在△ABC 中,因为7a =,8b =,3c =,由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;选条件②:1cos 7B =-由余弦定理得:222249641cos 2147a cbc B ac c +-+-===-,解得:3c =或5-(舍去)由余弦定理,得222cos 2b c a A bc+-=64949283+-=⨯⨯12=.因为()0,πA ∈,所以π3A ∠=;【小问2详解】选条件①:3c =由(1)可得sin 2A =.所以ABC 的面积11sin 8322S bc A ==⨯⨯=选条件②:1cos 7B =-.由(1)可得1cos 2A =.因为sin sin[()]C A B =π-+sin()A B =+sin cos cos sin A B A B=+11()72=-+⨯3314=,所以ABC 的面积11sin 7822S ab C ==⨯⨯=..20.已知函数()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭.(1)求π6f ⎛⎫ ⎪⎝⎭的值;(2)求函数()f x 的在[]0,π上单调递减区间;(3)若函数()f x 在区间[]0,m 上有且只有两个零点,求m 的取值范围.【答案】(1)32(2)π7π,1212⎡⎤⎢⎥⎣⎦(3)3564π,π⎡⎫⎪⎢⎣⎭【解析】【分析】(1)利用二倍角公式及和差角公式化简函数解析式,再代入计算可得;(2)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到ππ3π2232x ≤+≤,解得即可;(3)由x 的取值范围求出π23x +的范围,再根据正弦函数的性质得到不等式组,解得即可.【小问1详解】因为()2π2cos cos 213f x x x ⎛⎫=+-- ⎪⎝⎭ππcos2cos2cossin 2sin 33x x x =++3cos2sin 222x x =+1cos2sin 222x x ⎫=+⎪⎪⎭π23x ⎛⎫=+ ⎪⎝⎭,所以πππ2π3266332f ⎛⎫⎛⎫=⨯+== ⎪ ⎪⎝⎭⎝⎭.【小问2详解】当[]0,πx ∈时ππ7π2,333x ⎡⎤+∈⎢⎥⎣⎦,令ππ3π2232x ≤+≤,解得π7π1212x ≤≤,所以函数()f x 的在[]0,π上的单调递减区间为π7π,1212⎡⎤⎢⎥⎣⎦.【小问3详解】当[]0,x m ∈时,πππ2,2333x m ⎡⎤+∈+⎢⎥⎣⎦,又函数()f x 在区间[]0,m 上有且只有两个零点,所以π2π23π3m ≤<+,解得5π4π63m ≤<,即m 的取值范围为3564π,π⎡⎫⎪⎢⎣⎭.21.某地进行老旧小区改造,有半径为60米,圆心角为π3的一块扇形空置地(如图),现欲从中规划出一块三角形绿地PQR ,其中P 在 BC 上,PQ AB ⊥,垂足为Q ,PR AC ⊥,垂足为R ,设π0,3PAB α⎛⎫∠=∈ ⎪⎝⎭;(1)求PQ ,PR (用α表示);(2)当P 在BC 上运动时,这块三角形绿地的最大面积,以及取到最大面积时α的值.【答案】(1)60sin PQ α=,π60sin 3PR α⎛⎫=- ⎪⎝⎭(2)三角形绿地的最大面积是平方米,此时π6α=【解析】【分析】(1)利用锐角三角函数表示出PQ 、PR ;(2)依题意可得2π3QPR ∠=,则1sin 2PQR S PQ PR QPR =⋅⋅⋅∠ ,利用三角恒等变换公式化简,再结合正弦函数的性质求出最大值.【小问1详解】在Rt PAQ 中,π0,3PAB ∠α⎛⎫=∈ ⎪⎝⎭,60AP =,∴sin 60sin PQ AP αα==(米),又π3BAC ∠=,所以π3PAR α∠=-,在Rt PAR 中,可得πsin 60sin 3PR PAR AP α⎛⎫==-⎪⎝⎭∠(米).【小问2详解】由题可知2π3QPR ∠=,∴PQR 的面积1sin 2PQR S PQ PR QPR =⋅⋅⋅∠1π2π60sin 60sin sin 233αα⎛⎫=⨯⨯-⨯ ⎪⎝⎭πsin3αα⎛⎫=- ⎪⎝⎭ππsin cos cos sin 33ααα⎛⎫=- ⎪⎝⎭112cos 222αα⎫=+-⎪⎪⎭π1sin 262α⎡⎤⎛⎫=+- ⎪⎢⎥⎝⎭⎣⎦,又π0,3α⎛⎫∈ ⎪⎝⎭,526πππ,66α⎛⎫+∈ ⎪⎝⎭,∴当ππ262α+=,即π6α=时,PQR 的面积有最大值即三角形绿地的最大面积是π6α=.。

2021年高一数学下学期期中试题(重点班)

2021年高一数学下学期期中试题(重点班)

2021年高一数学下学期期中试题(重点班)一.选择题 (本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一个是符合题目要求的.)1. 的值等于( ) A .B .C .D .2.扇形的半径是6 cm ,圆心角为15°,则扇形面积是( )A. B.C .D .3.函数的值域是( ) A. B.C.D.4.在△ABC 中,若,则△ABC 是( )A 锐角三角形;B 钝角三角形;C 直角三角形;D 等腰三角形 5.已知点和向量,若,则点的坐标为( ) A . B. C . D. 6. 如图,在中,若 点满足,则( ) A . B. C. D. 7. 给出下列命题:①两个具有公共终点的向量,一定是共线向量. ②两个向量不能比较大小,但它们的模能比较大小. ③ (λ为实数),则λ必为零.④λ,μ为实数,若λa =μb ,则a 与b 共线. 其中错误命题的个数为( )A .1B .2C .3D .48.定义在上的函数既是偶函数又是周期函数,若的最小正周期是,且当时, ,则的值为( ) A. B. C. D. 9.右图是函数图像的一部分.为了得到这 个函数的图像,只要将y =sin x (x ∈R)的图像上所有的点( ) A.向左平移π3个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.B.向左平移π3个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.C.向左平移π6个单位长度,再把所得各点的横坐标缩短到原来的12,纵坐标不变.D.向左平移π6个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变.10.已知向量,的夹角为,且,,则向量在向量方向上的投影是( ) A . B . C . D .11.已知函数,如果存在实数,使得对任意的实数,都有成立,则的最小正值为( )A. B. C. D.12.如图,已知圆,四边形 为圆的内接正方形,分别为边的中点,当正方形ABCD 绕圆心M 转动时,的取值范围是 ( ) A . B . C . D .二、填空题:(本大题共4小题,每小题5分,共20分。

高一下学期期中考试数学试题(解析版)

高一下学期期中考试数学试题(解析版)
【答案】
【解析】
【分析】由已知得 在 中利用正弦定理求得 在 中利用余弦定理即可得解.
【详解】在 中已知
在 中
由正弦定理得
在 中
利用余弦定理知 .
故答案为:
16.如图四棱锥 的底面四边形ABCD为正方形四条侧棱 点E和F分别为棱BC和PD的中点.若过A、E、F三点的平面与侧面PCD的交线线段长为 则该四棱锥的外接球的体积为___________.
【小问1详解】
如图:
在 上取一点N使得 连接CNEN则 则
又∵ ∴四边形 是平行四边形
∴ 且 .
同理四边形DNEA是平行四边形∴ 且
又 且 ∴ 且
∴四边形CNEB是平行四边形
∴ 且
∴ 且
∴四边形 平行四边形从而BE F四点共面;
【小问2详解】
由(1)知 平面 平面
∴ 平面 ①
取BG中点为I连接 则G是 H是 ∴ ∥HG
【详解】解:由 得
即 正确;
令 满足 但不满足 错误;


又 正确;
正确.
故选:ACD.
10.下列说法正确的是()
A.对于任意两个向量 若 且 与 同向则
B.已知 为单位向量若 则 在 上的投影向量为
C.设 为非零向量则“ ”是“存在负数 使得 ”的必要不充分条件
D. 则 与 的夹角是锐角
【答案】BC
的最小值为
所以 的长度范围是
故选:B
二、多选题:本题共4小题每小题5分共20分.在每小题给出的选项中有多项符合题目要求.全部选对的得5分部分选对的得2分有选错的得0分.
9.已知 且 .下列说法正确的是()
A.若 则 B.若 则
C. D.

高一数学下学期期中考试数学试卷含答案(共5套)

高一数学下学期期中考试数学试卷含答案(共5套)
又 ,说明甲战士射击情况波动大,因此乙战士比甲战士射击情况稳定.
所以选乙战士去更合适;
21.(6分)(1) , ,
,所以 .
(2)(6分)根据表格数据可知在2012至2018年该地区农村居民家庭人均纯收入在逐年增加,平均每年增加 千元;
令 ,得 (千元),
即预测该地区2020年农村居民家庭人均纯收入 千元.
A.至少摸出 个白球B.至少摸出 个红球
C.摸出 个白球D.摸出 个白球或摸出 个红球
二、填空题(每题5分,共4小题)
13.如图是某路段的一个检测点对200辆汽车的车速进行检测所得结果的频率直方图,利用组中值估计,则下列说法正确的是________(填序号).
①平均数为62.5;②中位数为62.5;③众数为65.
5887 3522 2468 3748 1685 9527 1413 8727 1495 5656
A.09B.02C.15D.18
6.小李同学从网上购买了一本数学辅导书,快递员计划周日上午 之间送货到家,小李上午有两节视频课,上课时间分别为 和 ,则辅导书恰好在小李同学非上课时间送到的概率为()
A. B. C. D.
(1)求 边所在直线的方程;(5分)
(2)若 ,求 边所在直线的方程.(5分)
18.圆 经过三点: , , .
(1)求圆 的方程.(6分)
(2)求圆 与圆 : 的公共弦的长.(6分)
19.已知点 点 在圆 上运动,点 为线段 的中点.(1)求点 的轨迹方程;(6分)
(2)求点 到直线 的距离的最大值和最小值.(6分)
A.(-1,0)B.(1,0)C. D.
4.如图所示的程序框图,输出的结果是()
A. B. C. D.

2021年高一数学下学期期中试题 文

2021年高一数学下学期期中试题 文

2021年高一数学下学期期中试题 文一.选择题:(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,请把答案涂在答题卡相应的位置.) 1.已知集合,,则( ) A. B. C. D.2.过点(1,0)且与直线x-2y-2=0平行的直线方程是( ) A.x-2y-1=0 B.x-2y+1=0 C.2x+y-2=0 D.x+2y-1=03.某单位有职工人,不到岁的有人,岁到岁的人,剩下的为岁以上的人,现在抽取人进行分层抽样,各年龄段抽取人数分别是( )A .B .C .D .4.若圆与圆外切,则( ) A.-11 B.19 C.9 D.215. 200辆汽车通过某一段公路时的时速的频率分布直方图如右图所示,则时速的众数,中位数的估计值为( ) A . B . C . D .6.当直线:被截得弦长为时,则= ( ) A . B. C. D.7.从中随机选取一个数为a,从中随机选取一个数b,则的概率是( ) A. B. C. D.8.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽取10名学生,将这50名学生随机编号号,并分组,若号码为46的学生在样本中,则在第7组中抽得号码为 ( ) A.37 B.35 C.36 D.319.函数f(x )=x 2-x -2,x ∈[-5,5],那么在区间[-5,5]内任取一点x 0,使f(x 0)≤0的概率为( )时速(km )频率 组距40 50 60 70 80A .0.1B.23 C .0.3 D.2510. 若以连续两次掷骰子分别得到的点数m ,n 作为点P 的坐标(m ,n),则点P 在圆外的概率是( ) A. 712 B.536 C.512 D.1311. 执行如图所示的程序框图,输出的结果是,则判断框内应填入的条件是 ( ) A . B . C . D .12.圆心在曲线y =14x 2(x <0)上,并且与直线y =-1及y 轴都相切的圆的方程是( )A .(x +2)2+(y -1)2=2 B .(x +2)2+(y -1)2=4 C .(x -2)2+(y -1)2=4 D .(x -2)2+(y +1)2=4二、填空题:(本大题共4小题,每小题5分,共20分。

高一下学期期中考试数学试题(有答案)

高一下学期期中考试数学试题(有答案)
14. 已知△ ABC外接圆半径是 2 cm,∠ A=60°,则 BC 边长为 __________.
15. 已知四边形 ABCD的三个顶点 A(0,2 ) ,B ( -1,-2 ),C ( 3,1 ) , 且 BC 2 AD , 则 D 的 坐标为 _________________________.
D. 8060


8.在△ ABC中,内角 A、B、C 的对边分别为 a ,b , c ,且 bsin A
第 - 1 -页 共 6 页
3a cosB . 则角 B 的大小
为 ()
A.
B
6

3
C
.5
6
D
.2
3
9.已知等差数列 { an} 中,满足 S3 S10 ,且 a1 0 , Sn 是其前 n 项和,若 Sn 取得最大值,
6

3. 已知 | a | 3,| b | 4 ,且 a
A.
3
B

6
(2a b) ,则 a, b 的夹角为
C
.2
D
3
.5
6
()
4.设等差数列 an 的前 n 项和为 Sn ,若 2a6 6 a7 ,则 S9 的值是
A. 18
B . 36
C
. 54
D
. 72
()
5. 在 △ ABC 中 , AB = 5 , BC = 6 , AC = 8 , 则 △ ABC 的 形 状 是
一、选择题(共 12 小题,每题 3 分,合计 36 分)
1. 在等比数列 { an} 中 , a1 16, a4 8, 则 a7
A. 4
B.
4
C
.2

高一数学下学期期中试题含解析试题

高一数学下学期期中试题含解析试题

2021-2021学年高一数学下学期期中试题〔含解析〕一、选择题〔此题一共12小题,每一小题5分,在每一小题给出的四个选项里面,只有一项是哪一项符合要求的〕,,a b c ∈R 且a b >,那么以下不等式成立的是( )A. 22a b >B.11a b< C. a c b c >D.2211a bc c >++ 【答案】D 【解析】 【分析】利用不等式的性质对四个选项逐一判断.【详解】选项A: 0,1a b ==-,符合a b >,但不等式22a b >不成立,故本选项是错误的; 选项B:当0,1a b ==-符合条件,但零没有倒数,故11a b<不成立 ,故本选项是错误的; 选项C:当0c时,a c b c >不成立,故本选项是错误的;选项D:因为210c +>,所以根据不等式的性质,由a b >能推出2211a bc c >++,故本选项是正确的,因此此题选D.【点睛】此题考察了不等式的性质,结合不等式的性质,举特例是解决这类问题的常见方法.,A B 是ABC ∆的内角,且sin sin A B >,那么A 与B 的关系正确的选项是( )A. A B <B. A B >C. 2A B π+>D. 无法确定【答案】B 【解析】 【分析】运用正弦定理实现边角转换,再利用大边对大角,就可以选出正确答案. 【详解】由正弦定理可知:2sin sin a b R A B==,sin sin A B >22a ba b A B R R ⇒>⇒>⇒>,因此此题选B.【点睛】此题考察了正弦定理,考察了三角形大边对大角的性质.1,,,,9a x b --依次成等比数列,那么实数x 的值是( )A. 3或者-3B. 3C. -3D. 不确定【答案】C 【解析】 【分析】根据等比中项的性质可以得到一个方程,解方程,结合等比数列的性质,可以求出实数x 的值. 【详解】因为实数1,,,,9a x b --依次成等比数列,所以有2(1)(9)3x x =-⨯-⇒=± 当3x =时,2(1)33a =-⨯=-,显然不存在这样的实数a ,故3x =-,因此此题选C.【点睛】此题考察了等比中项的性质,此题易出现选A 的错误结果,就是没有对等比数列各项的正负性的性质有个明晰的认识.ABC ∆中,角,A B 的对边分别为,a b ,根据以下条件解三角形,其中有两解的是〔 〕A. 50a =,30b =,60A =B. 30a =,65b =,30A =C. 30a =,60b =,30A =D. 30a =,50b =,30A =【答案】D 【解析】【分析】四个选项角度均为锐角,那么分别比拟sin b A 和a 之间、b 与a 之间的大小关系,从而得到三角形解的个数.【详解】A 选项:sin 30sin 6015b A a ==<,又a b > ∴三角形有一个解,那么A 错误;B 选项:65sin 65sin 302b A a ==> ∴三角形无解,那么B 错误; C 选项:sin 60sin3030b A a === ∴三角形有一个解,那么C 错误;D 选项:sin 50sin3025b A a ==<,又a b < ∴三角形有两个解,那么D 正确此题正确选项:D【点睛】此题考察三角形解的个数的求解,关键是可以纯熟掌握作圆法,通过sin b A 与a 、a 与b 之间大小关系的比拟得到结果.5.古代数学著作?九章算术?有如下问题:“今有女子善织,日自倍,五日织五尺,问日织几何?〞意思是:“一女子擅长织布,每天织的布都是前一天的2倍,她5天一共织布5尺,问这女子每天分别织布多少?〞根据上题的条件,假设使得该女子所织布的尺数不少于10尺,那么该女子所需的天数至少为〔 〕 A. 8 B. 7C. 6D. 5【答案】C 【解析】 【分析】根据题意可知女子每天织布数成等比数列{}n a 且公比2q ,利用55S =构造方程求得1a ;利用10n S ≥可求得结果.【详解】由题意可知,女子每天织布数成等比数列{}n a ,且公比2q,55S =()515113151a q S aq-∴===-,解得:1531a =假设()()1152110131nnn a q S q-==-≥-,解得:6n ≥ ∴该女子所织布尺数不少于10尺,至少需要6天此题正确选项:C【点睛】此题考察等比数列前n 项和的求解和应用,关键是可以纯熟应用等比数列求和公式,属于根底题.x 的不等式230ax bx ++>的解集为1(1,)2-,其中,a b 为常数,那么不等式230x bx a ++<的解集是〔 〕 A. (1,2)- B. (2,1)-C. 1(,1)2-D. 1(1,)2-【答案】A 【解析】 【分析】根据230ax bx ++>的解集可利用韦达定理构造关于,a b 的方程求得,a b ;代入所求不等式,解一元二次不等式即可得到结果.【详解】由230ax bx ++>解集为11,2⎛⎫- ⎪⎝⎭可得:()11122311122ba a⎧-=-+=-⎪⎪⎨⎪=-⨯=-⎪⎩解得:63a b =-⎧⎨=-⎩ ∴所求不等式为:23360x x --<,解得:()1,2x ∈-此题正确选项:A【点睛】此题考察根据一元二次不等式的解集求解参数、一元二次不等式的求解问题;关键是可以明确不等式解集的端点值与一元二次方程根之间的关系.40︒向,以18海里/时的速度直线航行,一座原来在轮船的南偏20︒向上,经过20分钟的航行,轮船与的间隔 为63海里,那么与轮船原来的间隔 为〔 〕 A. 6海里 B. 12海里C. 6海里或者12海里D. 63海里 【答案】A 【解析】 【分析】根据方位角可知120CAB ∠=,利用余弦定理构造方程可解得结果.【详解】记轮船最初位置为A ,位置为B ,20分钟后轮船位置为C ,如以下图所示:由题意得:11863AC =⨯=,1804020120CAB ∠=--=,63BC =那么222cos 2AC AB BC CAB AC AB +-∠=⋅,即:2361081122AB AB +-=-,解得:6AB =即与轮船原来的间隔 为6海里 此题正确选项:A【点睛】此题考察解三角形的实际应用问题,关键是可以利用余弦定理构造方程,解方程求得结果.{}n a 的前n 项和为n S ,0n a ≠,22n n n S a a =+,那么11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和为〔 〕A.12nn- B.1n n+ C.1n n- D.11n n -+ 【答案】B 【解析】 【分析】根据n a 与n S 关系可求得等差数列的11a d ==,利用等差数列通项公式可求得n a ,进而得到11n n a a +⋅;采用裂项相消法可求得结果.【详解】当1n =时,21112S a a =+,又11a S =,10a ≠ 11a ∴=当2n ≥时,21112n n n S a a ---=+ ()()2211122n n n n n n n a S S a a a a ---∴=-=+-+整理可得:()()111n n n n n n a a a a a a ---+-=+0n a ≠ 11n n a a -∴-= ()111n a n n ∴=+-⨯= 那么()1111111n n a a n n n n +==-⋅++∴11n n a a +⎧⎫⎨⎬⋅⎩⎭的前n 项和11111111223111n nS n n n n =-+-+⋅⋅⋅+-=-=+++ 此题正确选项:B【点睛】此题考察等差数列通项公式的求解、裂项相消法求解数列的前n 项和的问题;关键是可以根据n a 与n S 关系求得数列通项公式,根据通项公式的形式准确采用裂项相消的方法来进展求解.,x y 满足1x y +=,那么141x y++的最小值为〔 〕A. 5B.143C.92D. 2【答案】C 【解析】分析:根据题意将条件等价转化为12x y ++=,故而可得()141141121x y x y x y ⎛⎫+=+++ ⎪++⎝⎭,利用根本不等式即可得结果. 详解:∵正数,x y 满足1x y +=,∴12x y ++=,∴()14114114915121212y xx y x y x y x y ⎛⎫⎛⎫++=+++=++≥ ⎪ ⎪+++⎝⎭⎝⎭ 当且仅当141y x x y +=+即23x =,13y =时,等号成立,即141x y ++的最小值为92,应选C. 点睛:的问题(1)使用根本不等式求最值,其失误的真正原因是对其前提“一正、二定、三相等〞的无视.要利用根本不等式求最值,这三个条件缺一不可.(2)在运用根本不等式时,要特别注意“拆〞“拼〞“凑〞等技巧,使其满足根本不等式中“正〞“定〞“等〞的条件.{}n a 单调递增,那么使得不等式()211i a x -<对任意(1,2,3,,)i a i k =⋯都成立的x 的取值范围是〔 〕 A. 110,a ⎛⎫ ⎪⎝⎭B. 120,a ⎛⎫ ⎪⎝⎭C. 10,ka ⎛⎫ ⎪⎝⎭D. 20,ka ⎛⎫ ⎪⎝⎭【答案】D 【解析】 【分析】解不等式可得20ix a <<;根据{}n a 单调递增可知2n a ⎧⎫⎨⎬⎩⎭单调递减,那么要保证恒成立只需22k ia a ≤,从而解得结果. 【详解】由()211i a x -<可得:111i a x -<-<,即20i a x -<<0n a > 20ix a ∴<<{}n a 单调递增 2n a ⎧⎫∴⎨⎬⎩⎭单调递减 ∴对任意1,2,3,,i k =⋅⋅⋅,有22k ia a ≤ x 的取值范围为:20,k a ⎛⎫ ⎪⎝⎭此题正确选项:D【点睛】此题考察数列性质的应用,关键是可以通过解不等式得到恒成立的条件,再结合数列的单调性得到结果.ABC ∆中,设角,,A B C 的对边分别为,,a b c ,sin sin sin 4sin cos a A b B c C b B C +-=,CD 是角C 的内角平分线,且CD b =,那么cos C 〔 〕A.18B.34C.23D.16【答案】A 【解析】 【分析】利用正弦定理角化边可构造方程2cos cos bC C a =,由cos 0C ≠可得2a b =;利用ABCACD BCD S S S ∆∆∆=+可构造方程求得3cos 24C =,利用二倍角公式求得结果.【详解】由正弦定理得:22224cos a b c b C +-=那么22224cos 2cos cos 22a b c b C bC C ab ab a+-===ABC ∆为斜三角形 cos 0C ∴≠ 2a b ∴=ABC ACD BCD S S S ∆∆∆=+ 1112sin sin 2sin 22222C Cb b C b b b b ∴⋅=⋅+⋅即:2sin 4sin cos 3sin 222C C CC ==()0,C π∈ 0,22C π⎛⎫∴∈ ⎪⎝⎭ sin 02C ∴≠ 3cos 24C ∴= 291cos 2cos 1212168C C ∴=-=⨯-= 此题正确选项:A【点睛】此题考察解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理和三角形面积公式的应用、二倍角公式求三角函数值等知识;关键是可以通过面积桥的方式构造方程解出半角的三角函数值.{}n a 中,11a =,且11()()2nn n a a n N ++-=-∈,假设存在正整数n ,使得1()()0n n t a t a +--<成立,那么实数t 的取值范围为〔 〕 A.213t << B.112t << C.2536t << D.122t << 【答案】B 【解析】 【分析】根据()()()121321n n n a a a a a a a a -=+-+-+⋅⋅⋅+-,结合等比数列求和公式可求得21132nn a ⎡⎤⎛⎫=⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;分别在()*2n k k N =∈和()*21n k k N =-∈时解不等式得到221k k a t a +<<和221k k a t a -<<,根据数列的单调性可知22k a a ≥,213k a a +≤,211k a a -≤,从而得到所求范围.【详解】由题意得:()()()121321*********nn n n a a a a a a a a -⎛⎫=+-+-+⋅⋅⋅+-=-+-+⋅⋅⋅+- ⎪⎝⎭即:21132nn a ⎡⎤⎛⎫=⨯--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦①当()*2n k k N =∈时,221211024kk k k a a +⎛⎫-==> ⎪⎝⎭那么由()()10n n t a t a +--<得:221k k a t a +<<此时2222111322k k a a ⎡⎤⎛⎫=⨯-≥=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;212132131324k k a a ++⎡⎤⎛⎫=⨯--≤=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦13,24t ⎛⎫∴∈ ⎪⎝⎭②当()*21n k k N =-∈时,2122112024k k k k a a --⎛⎫-=-=-< ⎪⎝⎭那么由()()10n n t a t a +--<得:221k k a t a -<<此时2222111322k k a a ⎡⎤⎛⎫=⨯-≥=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦;21211211132k k a a --⎡⎤⎛⎫=⨯--≤=⎢⎥ ⎪⎝⎭⎢⎥⎣⎦1,12t ⎛⎫∴∈ ⎪⎝⎭综上所述:1,12t ⎛⎫∈⎪⎝⎭此题正确选项:B【点睛】此题考察数列性质与不等式能成立问题的综合应用,关键是可以通过递推关系式得到数列的通项公式,结合数列的单调性特点可得到不等式的解集,从而确定解集上下限的最值,进而得到结果.二.填空题〔本大题一一共4小题,每一小题5分,一共20分,把答案填在题目的横线上〕x ,y 满足不等式组203026x y x y x y -≤⎧⎪+-≥⎨⎪+≤⎩,那么2z x y =-的最小值为__________.【答案】-6 【解析】由题得不等式组对应的平面区域为如下图的△ABC,当直线122zy x =-经过点A(0,3)时,直线的纵截距2z-最大,z 最小.所以min 023 6.z =-⨯=-故填-6.{}n a 中,12019a =,()*132n n a a n N +=+∈,那么数列{}n a 的通项公式为__________.【答案】1202031n -⨯- 【解析】【分析】根据递推关系式可得()1131n n a a ++=+,从而得到数列{}1n a +为等比数列;利用等比数列通项公式可求得1n a +,进而得到结果.【详解】由132n n a a +=+得:()1131n n a a ++=+∴数列{}1n a +是以112020a +=为首项,3为公比的等比数列1120203n n a -∴+=⨯ 1202031n n a -∴=⨯-此题正确结果:1202031n -⨯-【点睛】此题考察根据递推关系式求解数列通项公式的问题,关键是可以将递推关系式配凑成符合等比数列的形式,根据等比数列通项公式求得结果.15.ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c 其面积为S ,且()22b c a +-=,那么角A =________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学下学期期中试题
参考公式:锥体的体积公式1
3
V Sh =,其中S 是锥体的底面积,h 是锥体的高.
如果事件A B ,互斥,那么()()()P A B P A P B +=+.
用最小二乘法求线性回归方程系数公式1
2
21
ˆˆˆn
i i
i n
i
i x y nx y
b
a
y bx x
nx
==-==--∑∑,. 一.选择题(共10小题,每小题5分,共50分,在每小题的选项中,只有一项符合题目要求) 1.已知函数x
x f -=
11)(的定义域为M ,)1ln()(x x g +=的定义域为N ,
则=N M ( )
A.{}
1x x >-
B.{}1x x <
C.{}
11x x -<<
D.φ
2.某赛季,甲、乙两名篮球运动员都参加了11场比赛, 他们每场比赛得分的情况用如图所示的茎叶图表示, 则甲、乙两名运动员的中位数分别是 ( ) A .19、13 B .13、19 C .20、18 D .18、20
3. 将[0,1)内的均匀随机数转化为[-2,6)的均匀随机数,需实施的变换为 ( ) A .8*=RAND a B. 28+*=RAND a
C. 28-*=RAND a
D. 35.0*-=
)(RAND a 4. 取一根长度为5 m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m 的 概率是( )
A .
23 B . 13 C . 3
5
D. 不能确定 5.已知点(3,)m
到直线40x -=的距离等于1,则m 等于 ( )
或6. 一个射手进行一次射击,有下面四个事件,则正确的是 ( )
事件A :命中环数大于8; 事件B :命中环数大于5; 事件C :命中环数大于4; 事件D :命中环数不大于6;
A. A 与D 是互斥事件
B. C 与D 是对立事件
C. B 与D 是互斥事件
D. 以上都错
甲 乙 7 9 8 0 7 8 5 5 7 9 1 1 1 3 3 4 6 2 2 0 2 3 1 0
1
4
7. 一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回...
地每次取 一个球,共取2次,则取得两个球的编号和不小于...15的概率为( )
A.
1
32
B.
164
C.
332
D.
364
8.在棱长为1的正方体1111ABCD A B C D -中,E F ,分别为棱11AA BB , 的中点,G 为棱11A B 上的一点,且1(01)AG λλ=≤≤.则点G 到 平面1D EF 的距离为 ( )
9. 用秦九韶算法计算多项式1876543)(23456++++++=x x x x x x x f 当4.0=x 时 的值时,需要做乘法和加法的次数分别是 ( )
.66A ,
.5,6B .5,5C .6,5D 10.下列与函数2
41
x y x =+的值域的交集为空集的集合是 ( )
1.(,][0,)4A -∞-+∞ 7.(,2)9B - 1.(,0]4C - 1
.(,0)4
D - 二.填空题(每小题4分,共20分) 11.下图给出的是计算
101
614121+
⋅⋅⋅+++的值的一个程序框图, 其中判断框内应填入的条件是 .
12.十进制数335转化为5进制数是____________.
13. 若数据123,,,
,n x x x x 的平均数x =5,方差22σ=,则
数据12331,31,31,
,31n x x x x ++++的平均数是
,方差为
14.当程序中输入的x 值为2时,输出的结果是
____________________.
13251.5INPUT x A x A x A A x A A x A A x A PRINT A END
=+=*+=*-=*-=*+1D
1C C
B
A
E
1A G
F 1B
D
第14题
第11题
第二卷
二.填空题答案: (每题5分,共20分)
11. 12.
13. 14.
三、解答题:本大题共6小题,共80分解答应写出文字说明,证明过程或演算步骤15.(本小题满分12分)
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,
记第一次出现的点数为x,第二次出现的点数为y.
(1) 出现的点数之和为5的概率(2)求事件“x y
”的概率;
16. (本小题满分13分)
如图是总体的一个样本频率分布直方图,且在[14,16)
内频数为10,在[12,14)内的小矩形面积为0.02,求:
(1) 求样本容量;
(2) 求在[12,20)内的频数;
(3) 分别估计样本的众数、中位数. (保留3位有效数字) 0.12 0.08
0.02 0.03 0.05
17.(本题13分) 已知图表为人体脂肪含量与年龄的一组抽样数据:
由资料知脂肪含量y 对年龄x 呈线性相关关系,参考数据:
153725
1
2=∑=i i
x
,3.83165
1
=∑=i i i y x
试求: (1)求y x ,; (2)线性回归方程a bx y +=;
(3)估计当一个人年龄为60岁时的脂肪含量. (保留2位小数)
18. (本小题满分14分)
如图,已知ABC ∆是正三角形,,EA CD 都垂直于
平面ABC ,且2EA AB a ==,DC a =,F 是BE 的中点, 求证:(1) //FD 平面ABC ;
(2) AF ⊥平面EDB ; (3) 求多面体C BDE V -的体积
人体脂肪含量与年龄
F
E
D
C
B
A
19.(本题14分)
已知圆C :()2
219x y -+=内有一点(0,2)P ,过点P 作直线l 交圆C 于,A B 两点. (1)当弦AB 被点P 平分时,写出直线l 的方程;
(2)是否存在直线l 把圆周分为1:3的两段弧, 若存在,求出直线l 的方程,若不存在, 请说明理由.
20. (本题14分)
设二次函数2(),(,,)f x ax bx c a b c R =++∈满足下列两个条件:
①当x R ∈时,()f x 的最小值为0,且(1)(1)f x f x -=--成立;
②当(0,5)x ∈时,()x f x ≤≤211x -+恒成立. (1)求(1)f 的值; (2)求()f x 的解析式;
(3)求最大的实数m (1m >),使得存在实数t ,当[]1,x m ∈时,就有()f x t x +≤恒成立.。

相关文档
最新文档