一次函数之动点问题培优
【教师卷】遵义市八年级数学下册第十九章《一次函数》知识点总结(培优提高)(1)

一、选择题1.如图,点O为平面直角坐标系的原点,点A在x轴正半轴上,四边形OABC是菱形.已知点B坐标为(3,3),则直线AC的函数解析式为()A.y=33x+3B.y=3x+23C.y=﹣33x+3D.y=﹣3x+23D解析:D【分析】过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,设菱形的边长为t,则OA=AB=t,在Rt△ABH中利用勾股定理得到(3﹣t)2+(3)2=t2,解方程求出t,得到A(2,0),再利用P为OB的中点得到P(32,32),然后利用待定系数法求直线AC的解析式即可.【详解】解:过B点作BH⊥x轴于H点,菱形的对角线的交点为P,如图,∵四边形ABCO为菱形,∴OP=BP,OA=AB,设菱形的边长为t,则OA=AB=t,∵点B坐标为(33∴BH3AH=3﹣t,在Rt△ABH中,(3﹣t)2+32=t2,解得t=2,∴A(2,0),∵P为OB的中点,∴P (32,32), 设直线AC 的解析式为y =kx+b ,把A (2,0),P (32,32),代入得:203322k b k b +=⎧⎪⎨+=⎪⎩,解得:323k b ⎧=-⎪⎨=⎪⎩, ∴直线AC 的解析式为y =﹣3x+23.故选:D .【点睛】本题主要考查菱形的性质,勾股定理以及一次函数的待定系数法,熟练掌握菱形的性质和待定系数法,是解题的关键.2.如图,一次函数y kx b =+(,k b 为常数,且0k ≠)的图像经过点(3,2)-,则关于x 的不等式2kx b +<的解集为( )A .3x >-B .3x <-C .2x >D .2x <A解析:A【分析】 根据图像的意义当x=-3时,kx+b=2,根据一次函数的性质求解即可.【详解】∵当x=-3时,kx+b=2,且y 随x 的增大而减小,∴不等式2kx b +<的解集3x >-,故选A.【点睛】本题考查了一次函数与不等式的关系,一次函数图像的性质,灵活运用数形结合思想确定不等式的解集是解题的关键.3.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m < B .12m > C .m 1≥ D .1m <A解析:A【分析】由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围.【详解】解:∵点P (-1,y 1)、点Q (3,y 2)在一次函数y=(2m-1)x+2的图象上,∴当-1<3时,由题意可知y 1>y 2,∴y 随x 的增大而减小,∴2m-1<0,解得m <12, 故选:A . 【点睛】 本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键. 4.已知56a =-,56b =+,则一次函数y =(a +b )x +ab 的图象大致为( ) A . B . C . D .C 解析:C【分析】计算a +b 和ab 的值 ,根据一次函数的性质,可以得到该函数图象经过哪几个象限,本题得以解决.【详解】解:∵a +b=56-+56+=250>,ab=()()5656-+=10-<, ∴该函数的图象经过第一、三、四象限,故选:C .【点睛】本题考查一次函数的图象,二次根式的混合运算,解答本题的关键是明确题意,利用一次函数的性质解答.5.火车匀速通过隧道时,火车在隧道内的长度y (米)与火车行驶时间x (秒)之间的关系用图像描述如图所示,有下列结论:①火车的速度为30米/秒;②火车的长度为120米;③火车整体都在隧道内的时间为35秒;④隧道长度为1200米.其中正确的结论是( )A .①②③B .①②④C .③④D .①③④D解析:D【分析】 根据函数的图象即可确定在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒,进而即可确定其它答案.【详解】在BC 段,所用的时间是5秒,路程是150米,则速度是30米/秒.故①正确; 火车的长度是150米,故②错误;整个火车都在隧道内的时间是:45−5−5=35秒,故③正确;隧道长是:45×30−150=1200(米),故④正确.故选D .【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,是解题的关键.6.已知:将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、三象限B .与x 轴交于()1,0-C .与y 轴交于()0,1D .y 随x 的增大而减小A解析:A【分析】 根据图象的平移规则:左加右减、上加下减得出直线解析式,再根据一次函数的性质即可解答.【详解】解:∵将直线21y x =-向左平移2个单位长度后得到直线y kx b =+,∴直线y kx b =+的解析式为2(2)123y x x =+-=+,∵k=2>0,b=3>0,∴直线y kx b =+经过第一、二、三象限,故A 正确;当y=0时,由0=2x+3得:x=32-, ∴直线y kx b =+与x 轴交于(32-,0),故B 错误; 当x=0时,y=3,即直线y kx b =+与y 轴交于(0,3),故C 错误;∵k=2>0,∴y 随x 的增大而增大,故D 错误,故选:A .【点睛】本题考查图象的平移变换、一次函数的图象与性质,熟知图象平移变换规律,掌握一次函数的图象与性质是解答的关键.7.对于实数a 、b ,我们定义max {a ,b }表示a 、b 两数中较大的数,如max {2,5}=5,max {3,3}=3.则以x 为自变量的函数y =max {-x +3,2x -1}的最小值为( ). A .-1B .3C .43D .53D 解析:D【分析】 分x≤43和x>43两种情况进行讨论计算. 【详解】解:当-x+3≥2x -1, ∴x≤43, 即-x≥-43时,y=-x+3, ∴当-x=-43时,y 的最小值=53, 当-x+3<2x-1, ∴x>43, 即:x>43时,y=2x-1, ∵x>43, ∴2x >83, ∴2x-1>53, ∴y >53, ∴y 的最小值=53, 故选:D .【点睛】此题是分段函数题,以及一次函数的性质,主要考查了新定义,解本题的关键是分段. 8.直线y mx b =+与y kx =在同一平面直角坐标系中的图象如图所示,则关于x 的不等式mx b kx +<的解集为( )A .3x >-B .3x <-C .1x >-D .1x <-C解析:C【分析】 根据图象可得,直线y =mx +b 与y =kx 的交点坐标为(−1,3),所以当x >−1时,直线y =mx +b ,落在直线y =kx 的下方,可得关于x 的不等式mx +b <kx .即可得结论.【详解】根据图象可知:直线y mx b =+与y kx =的交点坐标为:(1,3)-,则关于x 的不等式mx b kx +<的解集为1x >-.故选:C .【点睛】本题考查了一次函数与一元一次不等式、一次函数的图象,解决本题的关键是掌握一次函数与一元一次不等式的关系.9.如图,在平面直角坐标系中,已知A(1,1),B(3,5),要在x 轴上找一点P ,使得△PAB 的周长最小,则点P 的坐标为( )A .(0,1)B .(0,2)C .(43,0)D .(43,0)或(0,2)C【分析】要使得△PAB 的周长最小,实则在x 轴上找到P 点,使得PA PB +最小即可,从而将A 沿x 轴对称至A 1,求解A 1B 的解析式,其与x 轴的交点坐标即为所求.【详解】∵要使得△PAB 的周长最小,A ,B 为固定点,∴在x 轴上找到P 点,使得PA PB +最小即可,∴将A 沿x 轴对称至A 1,则()11,1A -,设直线A 1B 的解析式为:y kx b =+,将()11,1A -,B(3,5),代入求解得:34k b =⎧⎨=-⎩,则解析式为:34y x =-, 令0y =,解得:43x =, 即4,03P ⎛⎫ ⎪⎝⎭时,△PAB 的周长最小, 故选:C .【点睛】本题考查轴对称最短路径问题,及一次函数与坐标轴得交点问题,能够对题意进行准确分析,建立合适的最短路径模型是解题关键.10.若一次函数()231y m x =-+-的图象经过点()11,A x y ,()22,B x y ,当12x x <时,12y y >时,则m 的取值范围是( ) A .32m > B .32m >- C .32m < D .32m <-B【分析】由当x 1<x 2时y 1>y 2,利用一次函数的性质可得出-(2m+3)<0,解之即可得出m 的取值范围.【详解】解:∵当x 1<x 2时,y 1>y 2,∴-(2m+3)<0,解得:m >-32. 故选:B .【点睛】本题考查了一次函数的性质,牢记“k >0,y 随x 的增大而增大;k <0,y 随x 的增大而减小”是解题的关键. 二、填空题11.已知一次函数41y x =-和23y x =+的图像交于点(2,7)P ,则二元一次方程组4123y x y x =-⎧⎨=+⎩的解是_.【分析】根据一次函数数和的图象交点可知点P 的坐标就是的解【详解】解:根据题意可知二元一次方程组的解就是一次函数和的图象的交点P 的坐标∴二元一次方程组的解是故答案为:【点睛】此题考查了一次函数与二元一解析:27x y =⎧⎨=⎩【分析】根据一次函数数41y x =-和23y x =+的图象交点,可知点P 的坐标就是4123y x y x =-⎧⎨=+⎩的解.【详解】解:根据题意可知,二元一次方程组4123y x y x =-⎧⎨=+⎩的解就是一次函数41y x =-和23y x =+的图象的交点P 的坐标,∴二元一次方程组4123y x y x =-⎧⎨=+⎩的解是27x y =⎧⎨=⎩. 故答案为:27x y =⎧⎨=⎩. 【点睛】此题考查了一次函数与二元一次方程(组),解答此题的关键是熟知方程组的解与一次函数的图象交点P 之间的联系,考查了学生对题意的理解能力.12.在同一平面直角坐标系中的图像如图所示,则关于x 的不等式21k x k x b <+的解为____________.x <-1【分析】根据不等式得到直线在直线的下方即可确定不等式的解集【详解】解:由不等式得直线在直线的下方∴自变量的取值范围为x <-1故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系理解函数解析:x <-1【分析】根据不等式得到直线2y k x = 在直线1y k x b =+的下方,即可确定不等式的解集.【详解】解:由不等式21k x k x b <+得直线2y k x = 在直线1y k x b =+的下方,∴自变量的取值范围为x <-1.故答案为:x <-1【点睛】本题考查了一次函数与不等式的关系,理解函数与不等式的关系是解题关键.13.函数1y x =-中自变量x 的取值范围是________.且【分析】根据二次根式的性质和分式的意义被开方数大于或等于0分母不等于0可以求出x 的范围【详解】根据题意得:x≥0解得:且故答案为:且【点睛】本题考查了函数自变量的取值范围问题函数自变量的范围一般从解析:0x ≥且1x ≠【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x 的范围.【详解】1y x =-, 根据题意得:x≥0 10x ≠,解得:0x ≥且1x ≠.故答案为:0x ≥且1x ≠.【点睛】本题考查了函数自变量的取值范围问题,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.已知 12y y y =+,1y 与x 成正比例,2y 与x 成反比例,且当x=1时,y=-1,当x=3时,y=5,求y 与x 之间的函数关系式_______________.【详解】由题意设则将时和时代入得:解得:故与之间的函数关系为故答案为:【点睛】本题考查正比例函数和反比例函数定义的应用熟记函数定义是解题关键 解析:32y x x =-【详解】 由题意设12,b y ax y x ==则b y ax x=+ 将1x =时,1y =-和3x =时,5y =代入得:1353a b b a +=-⎧⎪⎨+=⎪⎩解得:23a b =⎧⎨=-⎩ 故y 与x 之间的函数关系为32y x x =-. 故答案为:32y x x=-. 【点睛】 本题考查正比例函数和反比例函数定义的应用,熟记函数定义是解题关键.15.已知直线2y ax a =-+(a 为常数)不经过第四象限,则a 的取值范围是________.0≤a≤2【分析】当a≠0时根据一次函数的图象不经过第四象限可得图象经过一三象限或一二三象限列出关于a 的不等式组求出a 的取值范围当a=0时y=2不经过第四象限综上即可得答案【详解】当a≠0时不经过第解析:0≤a≤2【分析】当a≠0时,根据一次函数的图象不经过第四象限可得图象经过一、三象限或一、二、三象限,列出关于a 的不等式组,求出a 的取值范围,当a=0时,y=2不经过第四象限,综上即可得答案.【详解】当a≠0时,2y ax a =-+不经过第四象限,∴经过一、三象限或一、二、三象限,∴020a a >⎧⎨-+⎩, 解得:02a <,当a=0时,直线方程为y=2,不经过第四象限,符合题意,∴a 的取值范围为0≤a≤2.故答案为:0≤a≤2【点睛】本题考查一次函数图象与系数的关系,熟练掌握一次函数图象与系数的关系并运用分类讨论的思想是解题关键.16.如果直线y=2x+3与直线y=3x ﹣2b 的交点在y 轴上,那么b 的值为___.【分析】先求出y=2x+3与y 轴交点坐标为(03)代入y=3x ﹣2b 即可求得答案【详解】令y=2x+3中x=0解得y=3∴直线y=2x+3与y 轴交点为(03)将(03)代入y=3x ﹣2b 中得-2b= 解析:32- 【分析】先求出y=2x+3与y 轴交点坐标为(0,3),代入y=3x ﹣2b ,即可求得答案.【详解】令y=2x+3中x=0,解得y=3,∴直线y=2x+3与y 轴交点为(0,3),将(0,3)代入y=3x ﹣2b 中,得-2b=3,解得b=32-, 故答案为:32-. 【点睛】此题考查一次函数与坐标轴的交点坐标,掌握交点坐标的计算方法是解题的关键. 17.如图,一个直角三角形与一个正方形在同一水平线上,此三角形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x ,三角形与正方形重叠部分的面积为y ,在下面的平面直角坐标系中,线段AB 表示的是三角形在正方形内部移动的面积图象,C 点表示的是停止运动后图象的结束点,下面有三种补全图象方案,正确的方案是______.①②③乙【分析】由题意可知三角形没全进入正方形之前重叠部分为直角三角形当三角形即将出正方形之后重叠部分为直角梯形利用面积公式求出两个图形的面积即可判断其图象【详解】设直角三角形的底为a 高为b 运行速度为v 由解析:乙【分析】由题意可知三角形没全进入正方形之前,重叠部分为直角三角形.当三角形即将出正方形之后,重叠部分为直角梯形.利用面积公式求出两个图形的面积即可判断其图象.【详解】设直角三角形的底为a ,高为b ,运行速度为v .由题意可知当三角形没全进入正方形之前,重叠部分为与原三角形相似的直角三角形. ∵重叠部分的直角三角形的底为vx ,∴根据三角形相似,可知:vx a b =重叠直角三角形的高 , 即重叠直角三角形的高=bvx a, ∴22122bvx bv y vx x a a==, ∵a , b , v 都为常数且大于0,∴222bv y x a=是一个开口向上的曲线. 当三角形即将出正方形之后,重叠部分为去掉与原三角形相似的直角三角形的直角梯形. 设正方形边长为l ,则该梯形的高为()l vx a --,下底为b , 根据三角形相似可知:vx l b a -=梯形上底, 即梯形上底()b vx l a -=, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦. ∵a , b , v ,l 都为常数且大于0,∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦中2x 项的系数为202bv a-<, ∴[]1()()2b vx l y b l vx a a -⎡⎤=⨯+⨯--⎢⎥⎣⎦是一个开口向下的曲线. ∴只有乙符合.故答案为:乙.【点睛】本题考查动点问题的函数图象.理解三角形运动过程中的分界点,利用三角形和梯形的面积公式列出关于x 的方程来判断其图象是解题关键.18.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式的解集【详解】解:两条直线的交点坐标为(-11)当x <-1时直线y=ax+4在直线y=kx 的下方当x >-1 解析:1x >-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式4kx ax <+的解集.【详解】解:两条直线的交点坐标为(-1,1),当x<-1时,直线y=ax+4在直线y=kx的下方,当x>-1时,直线y=ax+4在直线y=kx的上方,故不等式kx<ax+4的解集为x>-1.故答案为:x>-1.【点睛】本题考查了一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.19.某一列动车从A地匀速开往B地,一列普通列车从B地匀速开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系.根据图像进行探究,图中t的值是__.4【分析】根据题意和函数图象中的数据:AB两地相距900千米两车出发后3小时相遇普通列车全程用12小时即可求得普通列车的速度和两车的速度和进而求得动车的速度解答即可【详解】由图象可得:AB两地相距9解析:4【分析】根据题意和函数图象中的数据:AB两地相距900千米,两车出发后3小时相遇,普通列车全程用12小时,即可求得普通列车的速度和两车的速度和,进而求得动车的速度,解答即可.【详解】由图象可得:AB两地相距900千米,两车出发后3小时相遇,普通列车的速度是:90012=75千米/小时,动车从A地到达B地的时间是:900÷(9003-75)=4(小时),故填:4.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.20.请写出一个符合下列要求的一次函数的表达式:_______.①函数值y 随自变量x 增大而增大;②函数的图像经过第二象限.(答案不唯一保证即可)【分析】根据题意和一次函数的性质可以写出符合要求的一个一次函数本题得以解决【详解】解:∵一次函数的函数值y 随自变量x 增大而增大∴k >0∵函数的图象经过第二象限∴b >0∴符合下列解析:23y x =+(答案不唯一,保证0k >,0b >即可)【分析】根据题意和一次函数的性质,可以写出符合要求的一个一次函数,本题得以解决.【详解】解:∵一次函数的函数值y 随自变量x 增大而增大,∴k >0,∵函数的图象经过第二象限,∴b >0,∴符合下列要求的一次函数的表达式可以是23y x =+,故答案为:23y x =+(答案不唯一).【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.三、解答题21.如图,在平面直角坐标系中,四边形OABC 是直角梯形,//BC OA ,(8,0)A ,(0,4)C ,5AB =,现有一动点P 从点A 出发,以每秒2个单位长度的速度沿AO 方向,经O 点再往OC 方向移动,最后到达C 点.设点P 移动时间为t 秒.(1)求点B 的坐标;(2)当t 为多少时,ABP ∠的面积等于13;(3)在(2)的条件下,取BP 中点M ,在x 轴上找一点N ,使BN MN +和最小,求此时N 点的坐标.解析:(1)(5,4) (2)13 s 4t =或19 s 4t = (3)23,06⎛⎫ ⎪⎝⎭或95,027⎛⎫ ⎪⎝⎭【分析】(1)过点B 作BD OA ⊥于点D ,得出ADB △为直角三角形,利用勾股定理求出AD ,BD 的值,从而可求出点B 的坐标,(2)当点P 运动时间为t 秒时,则2AP t =,由三角形的面积公式建立等量关系即可求出(3)结合(2)问,求出点P 的坐标,进而求出BP 中点M 的坐标,再作出点B 关于x 的对称点,求出该对称点与点M 所在直线的的解析式,该直线与x 的交点即为点N .【详解】(1)过点B 作BD OA ⊥于点D ,∴90BDO ∠=︒,∵四边形OABC 是直角梯形,BC OA , ∴90BCO COD ∠=∠=︒,∴四边形ODBC 为矩形,∵(0,4)C ,(8,0)A ,∴4OC BD ==,8OA =,∵5AB =,在Rt ABD △中,由勾股定理得:222AB BD AD =+, ∴2222543AD AB BD =--=,∴5OD OA AD =-=,∴(5,4)B .(2)当P 点在O 点时,4s t =,当P 点在C 点时,6s 2OA OC t +==, ①当04s t <≤时,由题可知:2AP t =, ∴112441322ABP S AP BD t t =⋅=⨯⨯==△, ∴13s 4t =. ②当46t <≤时,则28OP t =-,4122CP OP t =-=-,∴ABP AOP BCP OABC S S S S =--△△△梯形()111222OA BC OC OA OP BC CP =+⋅-⋅-⋅ 111(48)48(28)4(122)222t t =⨯+⨯-⨯⨯--⨯⨯- 24832244t t =-+-+324t =-∴419t =,19s 4t =. 故当13s 4t =或19s 4t =时,ABP △的面积是13. (3)由(2)得:①当13s 4t =时,132AP =, ∴32OP =, ∴3,02P ⎛⎫ ⎪⎝⎭, 又∵(5,4)B ,M 为BP 的中点,∴13,24M ⎛⎫ ⎪⎝⎭, 作B 点关于x 轴对称点B ',则(5,4)B '-,连接MB '交x 轴于点N ,则BN MN B N MN B M ''+=+=. 设直线B M '的解析式为(0)y kx b k =+≠,代入B ',M 两点,得451324k b k b -=+⎧⎪⎨=+⎪⎩,解得247927k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线B M '为249277y x =-+, 令0y =,则249277x =,236x =, ∴23,06N ⎛⎫ ⎪⎝⎭. ②当19s 4t =时,3282OP t =-=, ∴30,2P ⎛⎫ ⎪⎝⎭,又∵(5,4)B ,M 为BP 中点, ∴511,24M ⎛⎫ ⎪⎝⎭, 作B 点关于x 轴的对称点B '',∴(5,4)B ''-,设直线B M ''交x 轴于点N ,则MN BN MN B N MB '''+=+=.设直线B M ''的解析式为()1110y k x b k =+≠,代入M ,B ''得4511542k b k b -=+⎧⎪⎨=+⎪⎩,解得2710192k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线B M ''为2719102y x =-+, 令0y =,得19109522727x =⨯=, ∴95,027N ⎛⎫ ⎪⎝⎭. 综上N 的坐标为23,06⎛⎫⎪⎝⎭或95,027⎛⎫ ⎪⎝⎭. 【点睛】 本题考查了勾股定理,矩形的判定及性质,点的坐标的确定,以及利用轴对称求最值,待定系数法求一次函数解析式,熟练运用三角形面积,以及利用轴对称方法求最值是解题关键.22.如图,顶点M 在y 轴上的抛物线2=y ax c +与直线1y x =+相交于,A B 两点,且点A 在x 轴上,点B 的横坐标为2,连接,AM BM ,(1)求抛物线对应的函数表达式;(2)判断ABM ⊿的形状,并说明理由;(3)若将(1)中的抛物线沿y 轴上下平移,则如何平移才能使平移后的抛物线过点(2,3)--?解析:(1)21y x =-;(2)△ABM 为直角三角形,见解析;(3)向下平移6个单位过点(-2,-3)【分析】(1)将y=0,x=2,分别代入直线解析式求出x 、y 的值,即求得点A 、B 的坐标,再利用待定系数法即可求解抛物线解析式;(2)令x=0,代入抛物线解析式求得M 坐标,利用两点间的距离公式求得AB 、AM 、BM ,再利用勾股定理的逆定理即可判定△ABM 为直角三角形;(3)设抛物线2=1y x -平移后的解析式为y=x 2-1+m ,将点(-2,-3)代入上式,得到关于m 的方程,解方程即可得出结论.【详解】(1)当y=0时,有x+1=0,则x=-1.∴A (-1,0),当x=2时,y=2+1=3,∴B (2,3),将A ,B 两点代入2=y ax c +中, 得0=34a c a c +⎧⎨=+⎩,解得=11a c ⎧⎨=-⎩, ∴抛物线的解析式为2=1y x -.(2)三角形ABM 为直角三角形,理由如下:在抛物线中,当x=0时,y=-1,∴M (0,-1),又∵A (-1,0),B (2,3), ∴=32AB =2AM =25BM又∵22220AM AB BM +==,∴三角形ABM 为直角三角形.(3)设抛物线2=1y x -沿y 轴平移后的解析式为2=1y x m -+,将点(-2,-3)代入上式,得m=-6,则向下平移6个单位过点(-2,-3).【点睛】本题考查待定系数法求解析式,一次函数图象上的坐标特征、两点间的距离公式及勾股定理的逆定理,解题的关键是(1)求出A 、B 的坐标,(2)求出求得AB 、AM 、BM 的长,(3)正确写出平移后的抛物线解析式,难度适中.23.如图,在平面直角坐标系中,已知(,0)A a ,(,0)B b ,其中a ,b 满足|1|30a b ++-=.(1)填空:a =______,b =______.(2)如果在第三象限内有一点(2,)M m -,请用含m 的式子表示ABM 的面积.(3)在(2)条件下,当52m =-时,在y 轴上有一点P ,使得BMP 的面积与ABM 的面积相等,请求出点P 的坐标. 解析:(1)1-;3;(2)△ABM 的面积为2m -;(3)点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫- ⎪⎝⎭. 【分析】(1)根据非负数性质可得a 、b 的值;(2)根据三角形面积公式列式整理即可;(3)先根据(2)计算S △ABM ,再分两种情况:当点P 在y 轴正半轴上时、当点P 在y 轴负半轴上时,利用割补法表示出S △BMP ,根据S △BMP =S △ABM 列方程求解可得. 【详解】解:(1)∵|1|30a b +-=,∴10a +=,30b -=,∴1a =-,3b =;(2)如图1所示,过M 作ME x ⊥轴于E ,∵(1,0)A -,(3,0)B ,∴1OA =,3OB =,∴4AB =,∵在第三象限内有一点(2,)M m -,∴||ME m m ==-, ∴114()222ABM S AB ME m m =⨯=⨯⨯-=-. (3)设(0,)P n ,BM 交y 轴于点C ,连接MP ,BP 如下图:设直线BM 的解析式为y kx b =+, 把(3,0)B ,52,2M ⎛⎫-- ⎪⎝⎭代入得 30522k b k b +=⎧⎪⎨-+=-⎪⎩, 解之得:1232k b ⎧=⎪⎪⎨⎪=-⎪⎩,即1322y x =-, ∴30,2C ⎛⎫-⎪⎝⎭, 当52m =-时,11545222ABM m S AB y =⋅=⨯⨯=. ∵BMP ABM SS =, ∴()1||52x x B M PC -=, 即13(32)522n ⨯++=, 解之得:12n =或72n =-, 综上,点P 的坐标为10,2⎛⎫ ⎪⎝⎭或70,2⎛⎫-⎪⎝⎭. 【点睛】 本题主要考查了非负数的性质,坐标与图形的性质,利用待定系数法求一次函数解析式,利用割补法表示出△BMP 的面积等知识,根据题意建立方程是解题的关键.24.已知y 与1x -成正比例,当3x =时,4y =,求y 与x 之间的函数关系式. 解析:22y x =-【分析】首先根据题意设出关系式:y=k (x-1),再利用待定系数法把x=3,y=4代入,可得到k 的值,再把k 的值代入所设的关系式中,可得到答案;【详解】解:因为y 与1x -成正比例,所以设()1y k x =-(0k ≠)∵当3x =时,4y =,∴()431k =-解得2k =所以, y 与x 之间的函数关系式为:22y x =-【点睛】此题主要考查了对正比例的理解,关键是设出关系式,代入x ,y 的值求k .25.已知1y +与3x -成正比例,且5x =时,8y =,(1)求y 与x 之间的函数解析式;(2)当6y =-时,求x 的值.解析:(1)92922y x =-;(2)179【分析】(1)设1(3)(0)y k x k +=-≠,利用待定系数法求k ,从而确定函数关系式;(2)将y=-6代入解析式求x 的值.【详解】解设1(3)(0)y k x k +=-≠(1)将58x y =⎧⎨=⎩代入,得 81(53)k +=- 即92=k ∴92922y x =- (2)当6y =-时929622x -=- 179x = 【点睛】本题考查待定系数法求函数解析式,掌握待定系数法计算步骤,正确计算是解题关键. 26.某超市预购进A 、B 两种品牌的T 恤共200件,已知两种T 恤的进价如表所示,设购进A 种T 恤x 件,且所购进的两种T 恤全部卖出,获得的总利润为W 元.(2)如果购进两种T 恤的总费用为9500元,那么超市获得的总利润是多少?(提示:利润=售价-进价)解析:(1)55000W x =+;(2)5750元.【分析】(1)先根据总件数可得购进B 种T 恤的件数,再根据利润公式求出A 、B 两种T 恤的利润的和即可得;(2)先根据进价和总费用可建立一个关于x 的一元一次方程,解方程可求出x 的值,再根据(1)的结论即可得.【详解】(1)由题意得:购进B 种T 恤()200x -件,则总利润为()()()80506540200W x x =-+--,即55000W x =+;(2)由题意得:()50402009500x x +-=,解得150x =,将150x =代入(1)的结论得:515050005750W =⨯+=,答:超市获得的总利润是5750元.【点睛】本题考查了一次函数的实际应用、一元一次方程的实际应用,依据题意,正确建立函数关系式和方程是解题关键.27.如图,直线1l :1y x =+与直线2l :2y x n =-+相交于点()1,P b .(1)求点P 的坐标;(2)若120y y >>,求x 的取值范围;(3)点(),0D m 为x 轴上的一个动点,过点D 作x 轴的垂线分别交1l 和2l 于点E ,F ,当3EF =时,求m 的值.解析:(1)()1,2P ;(2)12x <<;(3)2m =或0m =.【分析】(1)把()1,P b 代入1l 的解析式可求解;(2)由(1)可先求解2l 的解析式,然后根据图像可进行求解;(3)把x m =分别代入12l l 、解析式可得点E 、F 的坐标,然后根据两点距离公式可分当1m 时和当1m <时,最后求解即可.【详解】解:(1)把()1,P b 代入1l 解析式得:112b =+=,∴()1,2P .(2)把()1,2代入2l 解析式得:22n =-+,∴4n =,∴2l :24y x =-+,当0y =时,2x =,∴当120y y >>时x 的取值范围为12x <<.(3)把x m =分别代入12l l 、解析式得:1y m =+和24y m =-+,∴点()(),1,,24E m m F m m +-+,∴当1m 时,()1243m m +--+=,∴2m =,当1m <时,2413m m -+--=,∴0m =.【点睛】本题主要考查一次函数的综合,熟练掌握一次函数的性质是解题的关键.28.矩形的周长是8cm ,设一边长为cm x ,另一边长为cm y .(1)求y 关于x 的函数关系式,并写出自变量x 的取值范围;(2)在如图所示的平面直角坐标系中,作出所求函数的图象.解析:(1)()404y x x =-+<<;(2)详见解析【分析】(1)根据矩形的周长公式用x ,y 的式子表示出来,然后进行变形即可,根据矩形的边长要大于0可以求出自变量x 的取值范围;(2)由(1)的结论运用描点法先描点,再连线即可得到函数的图象.【详解】解:(1)矩形的周长是8cm ,设一边长为cm x ,另一边长为cm y ,则228x y +=,4y x =-+,∵40x -+>,∴4x <,∴y 关于x 的函数关系式为()404y x x =-+<<.(2)函数图象如图所示.【点睛】本题考查了一次函数的图象及一次函数的应用.在解答中自变量的取值范围不能忽视.。
培优专题六 一次函数与动点问题

1.[201德4·惠一模 ]如图1,点A,B的坐标分别为 (1,0)、(0,1),
点P是第一象限内直线 y=-x+3上的一个动点,当点 P的横坐
标逐渐增大时,四边形 OAPB 的面积 ( D )
A.逐渐增大
B.逐渐减小
C.先减小后增大
D.不变
数学
图1
课件目录
首页
末页
首页
末页
4.已知,如图 4所示,直线 PA 与x轴交于点 A ,与y轴交于点 C(0, 2),且S△AOC=4,直线BD 与x轴交于点 B,与y轴交于点 D,直 线PA 与直线BD 交于点P(2,m),点P在第一象限,连接 OP. (1)求点 A 的坐标; (2)求直线PA 的解析式; (3)求m 的值; (4)若S △BOP =S△DOP,请你直接写出直线 BD 的解析式.
值是 C′D.
连接 CD,在 Rt △DCC′中,
C′D= C′C2+CD2=2 2, 即 PC+PD 的最小值为 2 2, ∵OA,AB 的中点分别为 C,D,
第5题答图
数学
课件目录
首页
末页
∴CD 是△ OBA 的中位线, ∴ OP ∥ CD, CD=12OB = 2, ∵C′O=OC,∴OP 是△C′CD 的中位线, ∴OP=12CD=1,∴点 P 的坐标为 (0,1).
(3)探究:当 P 运动到什么位置时,三角形 OPA 的面积为 287? 并说明理由.
数学
课件目录
首页
末页
图3
解:(1)∵点 E(-8,0)在直线 y=kx+6 上, ∴0=- 8k+6,∴k=34; (2)∵k=34, ∴直线的解析式为: y=34x+6,
动点问题产生的最值综合训练(培优)

动点问题产生的最值综合训练(培优)一.试题(共30小题)1.如图,把正方形ABCD沿着对角线AC的方向移动到正方形A′B′C′D′的位置,它们的重叠部分的面积是正方形ABCD面积的一半,若AC=,则正方形移动的距离AA′为()A.B.1C.﹣1D.1﹣2.如图,⊙O的半径是2,直线l与⊙O相交于A、B两点,M、N是⊙O上的两个动点,且在直线l的异侧,若∠AMB=45°,则四边形MANB面积的最大值是()A.8B.6C.4D.23.一次函数y=kx﹣2k的大致图象是()A.B.C.D.4.如图,在矩形ABCD中,AB=8cm,BC=16cm,动点P从点A出发,以1cm/秒的速度向终点B移动,动点Q从点B出发以2cm/秒的速度向终点C移动,则移动第到秒时,可使△PBQ的面积最大.5.如图,已知A、B两点的坐标分别为(8,0)、(0,﹣6),⊙C的圆心坐标为(0,7),半径为5.若P是⊙C上的一个动点,线段PB与x轴交于点D,则△ABD面积的最大值是.6.如图,已知A(2,0)、B(0,5),⊙C的圆心坐标为C(﹣1,0),半径为1,若D是⊙C上一个动点,线段DA与y轴交于点E,则△ABE面积的最小值是.7.函数y=的图象如图所示,在同一平面直角坐标系内,如果将直线y=﹣x+1沿y轴向上平移2个单位后,那么所得直线与函数y=的图象的交点共有个.8.如图,在锐角三角形ABC中,BC=12,△ABC的面积为48,D,E分别是边AB,AC 上的两个动点(D不与A,B重合),且保持DE∥BC,以DE为边,在点A的异侧作正方形DEFG.(1)当正方形DEFG的边GF在BC上时,求正方形DEFG的边长;(2)设DE=x,△ABC与正方形DEFG重叠部分的面积为y,试求y关于x的函数关系式,写出x的取值范围,并求出y的最大值.9.如图1,在▱ABCD中,AH⊥DC,垂足为H,AB=4,AD=7,AH=.现有两个动点E,F同时从点A出发,分别以每秒1个单位长度、每秒3个单位长度的速度沿射线AC方向匀速运动,在点E,F的运动过程中,以EF为边作等边△EFG,使△EFG 与△ABC在射线AC的同侧,当点E运动到点C时,E,F两点同时停止运动,设运动时间为t秒.(1)求线段AC的长;(2)在整个运动过程中,设等边△EFG与△ABC重叠部分的面积为S,请直接写出S与t之间的函数关系式,并写出相应的自变量t的取值范围;(3)当等边△EFG的顶点E到达点C时,如图2,将△EFG绕着点C旋转一个角度α(0°<α<360°),在旋转过程中,点E与点C重合,F的对应点为F′,G的对应点为G′,设直线F′G′与射线DC、射线AC分别相交于M,N两点.试问:是否存在点M,N,使得△CMN是以∠MCN为底角的等腰三角形?若存在,请求出CM的长度;若不存在,请说明理由.10.如图所示,在矩形OCBD中,OD=1,OC=3,∠DOC的角平分线交DB于A,动点P 从O点出发,沿射线OC方向以每秒1个单位长度的速度移动,过点P作PQ⊥射线OA,垂足为Q,设点P移动的时间为t秒(0<t<4),△OPQ与直角梯形OABC重叠部分的面积为S.(1)求S与t的函数关系式;(2)画出S与t的函数图象.11.如图,过A(1,0)、B(3,0)作x轴的垂线,分别交直线y=4﹣x于C、D两点.抛物线y=ax2+bx+c经过O、C、D三点.(1)求抛物线的表达式;(2)点M为直线OD上的一个动点,过M作x轴的垂线交抛物线于点N,问是否存在这样的点M,使得以A、C、M、N为顶点的四边形为平行四边形?若存在,求此时点M 的横坐标;若不存在,请说明理由.12.如图,二次函数y=ax2+bx+c(a≠0)的图象经过点A(1,4),对称轴是直线x=﹣,线段AD平行于x轴,交抛物线于点D.在y轴上取一点C(0,2),直线AC交抛物线于点B,连接OA、OB、OD、BD.(1)求该二次函数的解析式;(2)求点B的坐标和坐标平面内使△EOD∽△AOB的点E的坐标;(3)设点F是BD的中点,点P是线段DO上的动点,问PD为何值时,将△BPF沿边PF翻折,使△BPF与△DPF重叠部分的面积是△BDP的面积的?13.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于A(6,0),C(﹣4,0)两点,与y轴交于点B(0,3).(1)求抛物线的解析式;(2)点D、点E同时从点O出发以每秒1个单位长度的速度分别沿x轴正半轴,y轴正半轴向点A、点B方向移动,当点D运动到点A时,点D、E同时停止移动.过点D作x轴的垂线交抛物线于点F,交AB于点G,作点E关于直线DF的对称点E′,连接FE′,射线DE′交AB于点H.设运动时间为t秒.①t为何值时点E′恰好在抛物线上,并求此时△DE′F与△ADG重叠部分的面积;②点P是平面内任意一点,若点D在运动过程中的某一时刻,形成以点A、E′、D、P为顶点的四边形是菱形,那么请直接写出点P的坐标.14.在△AOB中,OA=OB=8,∠AOB=90°,矩形CDEF的顶点C、D、F分别在边AO、OB、AB上.(1)如图1,若C、D恰好是边AO、OB的中点,则此时矩形CDEF的面积为;(2)如图2,若=,求矩形CDEF面积的最大值.15.如图,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.(1)求出y关于x的函数关系式,并写出自变量x的取值范围;(2)当x为何值时,△BDE的面积S有最大值,最大值为多少?16.两个反比例函数和(k1>k2>0)在第一象限内的图象如图所示,动点P 在的图象上,PC⊥x轴于点C,交的图象于点A,PD⊥y轴于点D,交的图象于点B.(1)求证:四边形P AOB的面积是定值;(2)当时,求的值;(3)若点P的坐标为(5,2),△OAB、△ABP的面积分别记为S△OAB′S△ABP.设S=S﹣S△ABP′△OAB①求k1的值;②当k2为何值时,S有最大值,最大值为多少?17.在矩形AOBC中,OB=6,OA=4.分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系.F是边BC上的一个动点(不与B,C重合),过F点的反比例函数的图象与AC边交于点E.(1)设点E,F的坐标分别为:E(x1,y1),F(x2,y2),△AOE与△FOB的面积分别为S1,S2,求证:S1=S2;(2)若y2=1,求△OEF的面积;(3)当点F在BC上移动时,△OEF与△ECF的面积差记为S,求当k为何值时,S有最大值,最大值是多少?18.如图,矩形OABC的长OA=,宽OC=1,将△AOC沿AC翻折得△APC.(1)填空:∠PCB=度,P点坐标为;(2)若P、A两点在抛物线上,求b,c的值;(3)若直线y=kx+m平行于CP,且于(2)中的抛物线有且只有一个交点,求k,m的值;(4)在(2)中抛物线CP段(不包括C,P点)上,是否存在一点M,使得四边形MCAP 的面积最大?若存在求此时M的坐标;若不存在,请说明理由.19.如图所示,抛物线y=ax2+bx+c(a≠0)的顶点为M(﹣2,﹣4),与x轴交于A、B两点,且A(﹣6,0),与y轴交于点C.(1)求抛物线的函数解析式;(2)求直线AC的解析式;(3)能否在抛物线第三象限的图象上找到一点P,使△APC的面积最大?若能,请求出点P的坐标;若不能,请说明理由.20.如图,已知抛物线y=ax2+bx(a≠0)经过A(3,0),B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值.21.已知反比例函数的图象经过点(4,),若一次函数y=x+1的图象平移后经过该反比例函数图象上的点B(2,m).(1)求平移后的一次函数图象与x轴的交点坐标;(2)求平移后的一次函数图象与反比例函数的图象的交点坐标.22.已知抛物线F:y=ax2+bx+c的顶点为P.(Ⅰ)当a=1,b=﹣2,c=﹣3,求该抛物线与x轴公共点的坐标;(Ⅱ)设抛物线F:y=ax2+bx+c与y轴交于点A,过点P作PD⊥x轴于点D.平移该抛物线使其经过点A、D,得到抛物线F:y=a′x2+b′x+c′(如图所示).若a、b、c满足了b2=2ac,求b:b′的值;(Ⅲ)若a=3,b=2,且当﹣1<x<1时,抛物线F与x轴有且只有一个公共点,求c 的取值范围.23.已知关于x的一元二次方程x2+(4﹣m)x+1﹣m=0.(1)求证:无论m取何值,此方程总有两个不相等的实数根;(2)此方程有一个根是﹣3,在平面直角坐标系xOy中,将抛物线y=x2+(4﹣m)x+1﹣m向右平移3个单位,得到一个新的抛物线,当直线y=x+b与这个新抛物线有且只有一个公共点时,求b的值.24.已知关于x的一元二次方程2x2+4x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个非零的整数根时,将关于x的二次函数y=2x2+4x+k﹣1的图象向下平移8个单位,求平移后的图象的解析式;(3)在(2)的条件下,将平移后的二次函数得到图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象讨论直线y=x+b (b<k)与此图象交点个数,并求出相应的b的取值范围.25.如图,已知二次函数y=x2+bx+c的图象经过两点C(﹣2,5)与D(0,﹣3),且与x 轴相交于A、B两点,其顶点为M.(1)求b和c的值;(2)在二次函数图象上是否存在点P,使S△P AB=S△MAB?若存在,求出p点的坐标;若不存在,请说明理由;(3)过点D作直线l∥x轴,将二次函数图象在y轴左侧的部分沿直线l翻折,二次函数图象的其余部分保持不变,得到一个新的图象,请你结合这个新的图象直接写出当m为何值时直线y=x+m与此图象只有两个公共点.26.如图,在平面直角坐标系xOy中,抛物线y=mx2﹣2mx+n与x轴交于A、B两点,点A 的坐标为(﹣2,0).(1)求B点坐标;(2)若对于每一个给定的x的值,它所对应的函数值都不小于﹣5,求m的取值范围.(3)直线y=x+4m+n经过点B.①求直线和抛物线的解析式;②设抛物线与y轴的交点为C,过点C作直线l∥x轴,将抛物线在y轴左侧的部分沿直线l翻折,抛物线的其余部分保持不变,得到一个新图象,请你结合新图象回答:当直线y=x+b与新图象只有一个公共点P(x0,y0)且y0≤8时,求b的取值范围.27.已知点A(2,﹣3)在抛物线y=x2﹣2x+m上,求经过点A且与抛物线只有一个公共点的直线解析式.28.已知关于x的一元二次方程x2﹣3x+k﹣1=0有实数根,k为正整数.(1)求k的值;(2)当此方程有两个不为0的整数根时,将关于x的二次函数y=x2﹣3x+k﹣1的图象向下平移2个单位,求平移后的函数图象的解析式;(3)在(2)的条件下,将平移后的二次函数图象位于y轴左侧的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象G.当直线y=5x+b与图象G有3个公共点时,请你直接写出b的取值范围.29.已知,抛物线y=ax2﹣2ax﹣3与x轴交于A(﹣1,0)和B两点,与y轴交于点C,其顶点为M.(1)求a的值和M的坐标;(2)将抛物线平移,使其顶点在射线CB上,且A点的对应点为A′,若S△A'AC=9,求平移后的抛物线的解析式;(3)如图2,将原抛物线x轴下方的部分沿x轴翻折到x轴上方得到新图象,当直线y =kx﹣2k+5与新图象有三个公共点时,求k的值.30.如图1,在平面直角坐标系中,抛物线C1:y=ax2﹣a2(a>0)经过点B(1,0),顶点为A(1)求抛物线C1的解析式;(2)如图2,先将抛物线C1向上平移使其顶点在原点O,再将其顶点沿直线y=x平移得到抛物线C2,设抛物线C2与直线y=x交于C、D两点,求线段CD的长;(3)在图1中将抛物线C1绕点B旋转180°后得到抛物线C3,直线y=kx﹣2k+4总经过一定点M,若过定点M的直线l与抛物线C3只有一个公共点,求直线l的解析式.。
经典一次函数培优题(含答案及讲解)

一次函数培优讲解已知一次函数y=ax+b的图像经过一,二,三象限,且与x轴交易点(-2,0),则不等式ax大于b的解集为()A.x>2. B.x<2. Cx>-2. D.x<-2此题正确选项为A解析:∵一次函数的图像过一、二、三象限∴有a>0将(-2,0)代入一次函数解析式则b=2a∴ax>b可化为ax>2a又a>0∴原不等式的解集为x>2在直角坐标系中,纵、横坐标都是整数的点,称为整点.设k为整数,当直线y=x+2与直线y=kx-4的交点为整点时,k的值可以取()个.因为直线y=x+2与直线y=kx-4的交点为整点,让这两条直线的解析式组成方程组,求得整数解即可.由题意得:{y=x+2y=kx-4,解得:{x=6k-1y=6k-1+2,∴k可取的整数解有0,2,-2,-1,3,7,4,-5共8个.若不等式2|x-1|+3|x-3|≤a有解,则实数a最小值是()绝对值的一元一次不等式.算题;分类讨论.类讨论:当x<1或1≤x≤3或x>3,分别去绝对值解x的不等式,然后根据x对应的取值范围得到a的不等式或不等式组,确定a的范围,最后确定a的最小值.≥<1,解得a>6当1≤x≤3,原不等式变为:2x-2+9-3x≤a,解得x≥7-a,∴1≤7-a≤3,解得4≤a≤6;当x>3,原不等式变为:2x-2+3x-9≤a,解得x<>3,解得a>4;综上所述,实数a最小值是4.已知实数a,b,c满足a+b+c不等于0,并且a/b+c=b/c+a=c/a+b=k,则直线y=kx-3一定通过哪三个象限?这个题目不需要证明,只需要判断即可。
首先,令x=0,则y=-3显然只要k>0 则,过1,3,4象限。
只要k<0 则,过2,3,4象限。
由a/b+c=b/c+a=c/a+b=k,显然a=b=c=1的时候,满足所有条件,而此时k》0所以过1,3,4象限。
再如a=b=c=-1的时候,也满足,此时k=0 , 那么y = -3 ,只过3、4象限。
初一数学培优专题动点问题答题技巧与方法

初⼀数学培优专题动点问题答题技巧与⽅法初⼀数学培优专题动点问题答题技巧与⽅法关键:化动为静,分类讨论。
抓住动点,化动为静,以不变应万变,寻找破题点(边长、动点速度、⾓度以及所给图形的能建⽴等量关系等等)建⽴所求的等量代数式,求出未知数等等。
动点问题定点化是主要思想。
⽐如以某个速度运动,设出时间后即可表⽰该点位置;再如函数动点,尽量设⼀个变量,y尽量⽤x来表⽰,可以把该点当成动点,来计算。
步骤:①画图形;②表线段;③列⽅程;④求正解。
①数轴上动点问题1.数轴上两点间的距离,即为这两点所对应的坐标差的绝对值,也即⽤右边的数减去左边的数的差。
即数轴上两点间的距离=右边点表⽰的数⼀左边点表⽰的数。
2.点在数轴上运动时,由于数轴向右的⽅向为正⽅向,因此向右运动的速度看作正速度,⽽向作运动的速度看作负速度。
这样在起点的基础上加上点的运动路程就可以直接得到运动后点的坐标。
即⼀个点表⽰的数为a,向左运动b个单位后表⽰的数为a—b;向右运动b 个单位后所表⽰的数为a+b。
3.分析数轴上点的运动要是数形结合进⾏分析,点在数轴上运动形成的路径可看作数轴上线段的和差关系。
例题精讲:例1.已知数轴上有A、B、C三点,分别代表-24, -10,10,两只电⼦蚂蚁甲、⼄分别从A、C两点同时相向⽽⾏,甲的速度为4个单位/秒。
⑴问多少秒后,甲到A、B、C的距离和为40个单位?⑵⼄的速度为6个单位/秒,两只电⼦蚂蚁甲、⼄分别从A、C两点同时相向⽽⾏,问甲、⼄在数轴上的哪个点相遇?⑶在⑴⑵的条件下,当甲到A、B、C的距离和为40个单位时,甲调头返回。
问甲、⼄还能在数轴上相遇吗?若能,求出相遇点;若不能,请说明理由。
例2.如图,已知A、B分别为数轴上两点,A点对应的数为-20,B点对应的数为100。
⑴求AB中点M对应的数;⑵现有⼀只电⼦蚂蚁P从B点出发,以6个单位/秒的速度向左运动,同时另⼀只电⼦蚂蚁Q恰好从A点出发,以4个单位/秒的速度向右运动,设两只电⼦蚂蚁在数轴上的C点相遇,求C点对应的数;⑶若当电⼦蚂蚁P从B点出发时,以6个单位/秒的速度向左运动,同时另⼀只电⼦蚂蚁Q恰好从A点出发,以4个单位/秒的速度也向左运动,设两只电⼦蚂蚁在数轴上的D点相遇,求D点对应的数。
中考复习函数专题06 一次函数中的动点问题(老师版)

专题06 一次函数中的动点问题知识对接考点一、怎样解一次函数图象的平移问题 1、直线的平移规律(1)直线)0(≠+=k b kx y 可由直线)0(≠=k kx y 向上或向下平移得到,当b>0时,将直线kx y =沿y 轴向上平移b 个单位长度得到直线b kx y +=;当b<0时,将直线kx y =沿y 轴向下平移b 个单位长度得到直线b kx y +=.简而言之,“上加下减”(2)直线)(m x k y +=可由直线kx y =向左或向右平移得到,当m<0时,将直线kx y =沿x 轴向右平移m 个单位长度,可得到直线)(m x k y +=;当>0时,将直线kx y =沿x 轴向左平移m 个单位长度,可得到直线)(m x k y +=,简而言之,“左加右减”(3)一次函数的图象平移,不会改变图象的形状与大小,平移后的图象与原来的图象平行,直线平移后的解析式中,k 的值不变,只有b 的值发生变化.专项训练一、单选题1.一次函数y =kx +b 的图象是由函数y =2x 的图象向左平移3个单位长度后得到的,则该一次函数的解析式为( ) A .y =2x +6 B .y =﹣2x +6C .y =2x ﹣6D .y =﹣2x ﹣6【答案】A 【分析】利用一次函数平移规律,左加右减得出答案. 【详解】解:由题意可得:y =2(x +3)=2x +6. 故选:A . 【点睛】本题考查待定系数法求一次函数解析式,注意平移不影响k 的值是关键.2.若一次函数的y =kx +b (k <0)图象上有两点A (﹣2,y 1)、B (1,y 2),则下列y 大小关系正确的是( ) A .y 1<y 2 B .y 1>y 2C .y 1≤y 2D .y 1≥y 2【答案】B首先观察一次函数的x 项的系数,当x 项的系数大于0,则一次函数随着x 的增大而增大,当x 小于0,则一次函数随着x 的减小而增大.因此只需要比较A 、B 点的横坐标即可. 【详解】解:根据一次函数的解析式y =kx +b (k <0) 可得此一次函数随着x 的增大而减小 因为A (﹣2,y 1)、B (1,y 2), 根据-2<1,可得12y y > 故选B . 【点睛】本题主要考查一次函数的一次项系数的含义,这是必考点,必须熟练掌握.一次函数的x 项的系数,当x 项的系数大于0,则一次函数随着x 的增大而增大,当x 小于0,则一次函数随着x 的增大而减小.3.已知一次函数的图象过点(2,0)和点(1,1)-,则这个函数的解析式为( ) A .2y x =- B .2y x =+ C .2y x =-- D .2y x =--【答案】A 【分析】利用待定系数法即可求得函数的解析式. 【详解】设所求一次函数的解析式为:y =kx +b ,其中k ≠0 ∵直线y =kx +b 的图象过点(2,0)和点(1,1)-∵201k b k b +=⎧⎨+=-⎩ 解得:12k b =⎧⎨=-⎩ ∵y =x -2 故选:A . 【点睛】本题考查了用待定系数法求一次函数的解析式,其一般步骤是:设函数解析式y =kx +b ;根据条件得出关于k ,b 的方程组;解方程组;写出函数解析式,可简记为:设,代,解,答. 4.将一次函数1y x =-+的图象向上平移3个单位,则新的一次函数的解析式为( ) A .21y x =+ B .4y x =--C .4y x =-+D .41y x =-+【答案】C直接根据“上加下减”的原则进行解答即可. 【详解】解:由“上加下减”的原则可知,将一次函数1y x =-+的图象向上平移3个单位, 所得的直线解析式为:13y x =-++, 即:4y x =-+, 故选:C . 【点睛】本题主要考查的是一次函数的图像与几何变换,熟知函数图像的平移法则是解答此题的关键. 5.定义:对于给定的一次函数y ax b =+(a 、b 为常数,且0a ≠,把形如()()00ax b x y ax b x ⎧+≥⎪=⎨--<⎪⎩的函数称为一次函数y ax b =+的“相依函数”,已知一次函数1y x =+,若点()2,P m -在这个一次函数的“相依函数”图象上,则m 的值是( ) A .1 B .2 C .3 D .4【答案】A 【分析】找出一次函数1y x =+的“相依函数”,再利用一次函数图象上点的坐标特征,即可求出m 的值. 【详解】解:一次函数1y x =+的“相依函数”为()()1010x x y x x ⎧+≥⎪=⎨--<⎪⎩,∵点P (−2,m )在一次函数的“相依函数”图象上, ∵m =−1×(−2)−1=1. 故选:A . 【点睛】本题考查了一次函数图象上点的坐标特征,根据“相依函数”的定义,找出一次函数1y x =+的“相依函数”是解题的关键.6.若把一次函数y =kx +b 的图象先绕着原点旋转180°,再向右平移2个单位长度后,恰好经过点A (4,0)和点B (0,﹣2),则原一次函数的表达式为( ) A .y =﹣12x ﹣1 B .y =﹣12x +1C .y =12x +1D .y =12x ﹣1【答案】C 【分析】设直线AB 的解析式为y =kx +b ,根据题意,得402k b b +=⎧⎨=-⎩,得到直线解析式为y =12x -2,将其向左平移2个单位,得到y =12x -1,绕着原点旋转180°,得解. 【详解】设直线AB 的解析式为y =kx +b ,根据题意,得402k b b +=⎧⎨=-⎩,解得122k b ⎧=⎪⎨⎪=-⎩, ∵直线解析式为y =12x -2,将其向左平移2个单位,得y =12(x +2)-2, 即y =12x -1,∵与y 轴的交点为(0,-1),与x 轴的交点为(2,0), ∵绕着原点旋转180°,∵新直线与与y 轴的交点为(0,1),与x 轴的交点为(-2,0), ∵设直线的解析式为y =mx +1, ∵-2m +1=0, 解得m =12, ∵y =12x +1, 故选C . 【点睛】本题考查了一次函数的图像平移,旋转问题,熟练掌握平移规律是解题的关键.7.数学课上,老师提出问题:“一次函数的图象经过点(3,2)A ,(1,6)B --,由此可求得哪些结论?”小明思考后求得下列4个结论:∵该函数表达式为24y x =-;∵该一次函数的函数值随自变量的增大而增大;∵点(2,44)P a a -该函数图象上;∵直线AB 与坐标轴围成的三角形的面积为8.其中正确的结论有( ) A .1个 B .2个C .3个D .4个【答案】C 【分析】已知一次函数过两个点A (3,2),B (-1,-6),可以用待定系数法求出关系式;根据关系式可以判定一个点(已知坐标)是否在函数的图象上;根据一次函数的增减性,可以判定函数值随自变量的变化情况,当k >0,y 随x 的增大而增大;根据关系式可以求出函数图象与x 轴、y 轴的交点坐标,进而可以求出直线AB 与坐标轴围成的三角形的面积,最后综合做出结论. 【详解】解:设一次函数表达式为y =kx +b ,将A (3,2),B (-1,-6)代入得:326k b k b +=⎧⎨-+=-⎩, 解得:k =2,b =-4,∵关系式为y =2x -4,故∵正确;由于k =2>0,y 随x 的增大而增大,故∵正确; 点P (2a ,4a -4),代入,得:2×2a -4=4a -4,∵其坐标满足y =2x -4,因此该点在此函数图象上;故∵正确; 令x =0,则y =-4,令y =0,则x =2,∵直线AB 与x 轴,y 轴的交点分别(2,0),(0,-4),因此与坐标轴围成的三角形的面积为:124482⨯⨯=≠,故∵错误;因此,∵∵∵均正确,∵不正确. 故选:C . 【点睛】本题考查待定系数法求函数关系式,一次函数的性质,一次函数图象的点的坐标特征,以及依据关系式求出函数图象与坐标轴的交点坐标,进而求出三角形的面积等知识点,在解题中渗透选择题的排除法,验证法.8.下列函数关系式:(1)y x =-;(2)1y x =-;(3)1y x=;(4)2y x ,其中一次函数的个数是( ) A .1 B .2 C .3 D .4【答案】B 【分析】根据一次函数的定义进行判断即可. 【详解】解:根据一次函数的定义可知:(1)y x =-;(2)1y x =-;是一次函数,(3)1y x=,是反比例函数;(4)2yx ,是二次函数;故一次函数的个数有2个. 故选B .。
八年级数学综合提优4:一次函数动点问题

A B CDEPO 12-1 1 2 -1 -2八年级数学综合提优:一次函数动点问题一次函数是学生在初中阶段学习的第一个函数,是最基础的函数,也是重要的知识点。
动点问题又是一次函数中的难点。
在解决时,必须要有“动中有静”的思想,确实问题中的不变量,同样要有数形结合的思想。
结合画图,从单动点,多动点,单边,多边上的运动去发现解决问题。
1.如图所示,在平面直角坐标中,四边形OABC 是等腰梯形,BC∥OA,OA=7,AB=4,∠ COA=60°,点P 为x 轴上的—个动点,但是点P 不与点0、点A 重合.连结CP , D 点是线段AB 上一点,连PD. (1)求点B 的坐标;(2)当点P 运动到什么位置时,△OCP 为等腰三角形,求这时点P 的坐标; (3)当∠C PD=∠OAB,且AB BD =85,求这时点P 的坐标. 第1题图2.如图,梯形ABCD 中,BC//AD,︒=∠90BAD ,AD=18,BC=24,AB=m.在线段BC 上任取一点P,连结DP,作射线DP PE ⊥,PE 与直线AB 交于点E.(1) 当CP=6时, 试确定点E 的位置; (2) 若设CP=x,BE=y,写出y 关于x 的函数关系式;(3) 在线段BC 上能否存在不同的两点21P P 、使得按上述 作法得到的点E 都分别与点A 重合,若能,试求出此时 m 的取值范围,若不能,请说明理由.3.已知直线y kx b =+经过点(0,-2)和点(-2,0). ⑴求直线的解析式;⑵在图11中画出直线,并观察y >1时,x 的取值范围(直接写答案)4.如图,已知ABC △的面积为3,且AB AC =,现将ABC △沿CA 方向平移CA 长度得到EFA △.(1)求ABC △所扫过的图形的面积;(2)试判断AF 与BE 的位置关系,并说明理由;(3)若15BEC ∠=,求AC 的长.5.题型:有关平移、旋转图形的探究题例、(泰州)图1是边长分别为4 3 和3的两个等边三角形纸片ABC 和C ′D ′E ′叠放在一起(C 与C ′重合).(1)操作:固定△ABC ,将△C ′D ′E ′绕点C 顺时针旋转30°得到△CDE ,连结AD 、BE ,CE 的延长线交AB 于F (图2);探究:在图2中,线段BE 与AD 之间有怎样的大小关系?试证明你的结论.(2)操作:将图2中的△CDE ,在线段CF 上沿着CF 方向以每秒1个单位的速度平移,平移后的△CDE 设为△PQR (图3);探究:设△PQR 移动的时间为x 秒,△PQR 与△ABC 重叠部分的面积为y ,求y 与x 之间的函数解析式,并写出函数自变量x 的取值范围.(3)操作:图1中△C ′D ′E ′固定,将△ABC 移动,使顶点C 落在C ′E ′的中点,边BC 交D ′E ′于点M ,边AC 交D ′C ′于点N ,设∠AC C ′=α(30°<α<90°=(图4);探究:在图4中,线段C ′N ·E ′M 的值是否随α的变化而变化?如果没有变化,请你求出C ′N ·E ′M 的值,如果有变化,请你说明理由。
八年级数学培优专题一、一次函数培优训练经典题型精选全文完整版

可编辑修改精选全文完整版一次函数培优经典题型(最新)一、正比例函数的定义1、若y=(m+1)x+m2﹣1是关于x的正比例函数,则m的值为.2、已知函数y=(m+2)x﹣m2+4(m是常数)是正比例函数,则m=.二、一次函数的图象1、在同一平面直角坐标系中,函数y=kx﹣b与y=bx+k的图象不可能是()A.B.C.D.2、如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.3、一次函数y=kx+k的图象可能是()A.B.C.D.4、如图,三个正比例函数的图象分别对应的解析式是:①y=ax,②y=bx,③y=cx,请用“>”表示a,b,c的不等关系.三、一次函数的性质1、已知直线y=kx+b过点A(﹣3,y1),B(4,y2),若k<0,则y1与y2大小关系为()A.y1>y2B.y1<y2C.y1=y2D.不能确定2、当1≤x≤10时,一次函数y=﹣3x+b的最大值为17,则b=.3、已知一次函数y=mx﹣2m(m为常数),当﹣1≤x≤3时,y有最大值6,则m的值为()A.﹣B.﹣2C.2或6D.﹣2或64、已知一次函数y=kx+b,当0≤x≤2时,对应的函数值y的取值范围是﹣2≤y≤4,则k的值为()A.3B.﹣3C.3或﹣3D.k的值不确定5、在平面直角坐标系中,已知一次函数y=kx+b(k,b为常数且k≠0).(1)当b=3k+6时,该函数恒经过一点,则该点的坐标为;(2)当﹣2≤x≤2时,﹣8≤y≤4,则该函数的解析式为.6、一次函数y=ax﹣a+1(a为常数,且a<0).(1)若点(2,﹣3)在一次函数y=ax﹣a+1的图象上,求a的值;(2)当﹣1≤x≤2时,函数有最大值2,求a的值.四、一次函数图象与系数的关系1、若一次函数y=(m﹣2)x+m+1的图象经过一、二、四象限,则m的取值范围是()A.m<﹣1B.m<2C.﹣1<m<2D.m>﹣12、一次函数y=(2k﹣1)x+k的图象不经过第三象限,则k的取值范围是()A.k>0B.C.k≥0D.3、关于x的一次函数y=(k﹣2)x+k2﹣4k+4,若﹣1≤x≤1时,y>0总成立,则k的取值范围是()A.k<1或k>3B.k>1C.k<3D.1<k<34、一次函数y=(3﹣a)x+b﹣2在直角坐标系中的图象如图所示,化简:﹣|2﹣b|=.5、关于x的一次函数y=(2a+1)x+a﹣2,若y随x的增大而增大,且图象与y轴的交点在原点下方,则实数a的取值范围是.6、函数y=3x+k﹣2的图象不经过第二象限,则k的取值范围是.7、设,则一次函数y=kx﹣k的图象一定过第_________象限.五、一次函数图象与几何变换1、直线y=﹣5x向上平移2个单位长度,得到的直线的解析式为()A.y=5x+2B.y=﹣5x+2C.y=5x﹣2D.y=﹣5x﹣2 2、在平面直角坐标系中,将正比例函数y=﹣2x的图象向右平移3个单位长度得到一次函数y=kx+b(k≠0)的图象,则该一次函数的解析式为()A.y=﹣2x+3B.y=﹣2x+6C.y=﹣2x﹣3D.y=﹣2x﹣63、若直线l1:y=kx+b(k≠0)是由直线l2:y=4x+2向左平移m(m>0)个单位得到,则下列各点中,可能在直线l1上的是()A.(0,1)B.(2,﹣1)C.(﹣1,2)D.(3,0)4、在平面直角坐标系中,将函数y=x的图象绕坐标原点逆时针旋转90°,再向上平移1个单位长度,所得直线的函数表达式为()A.y=﹣x+1B.y=x+1C.y=﹣x﹣1D.y=x﹣15、若一次函数y=kx+b与y=﹣2x+1的图象关于y轴对称,则k、b的值分别等于.六、待定系数法求一次函数解析式1、P(8,m),A(2,4),B(﹣2,﹣2)三点在同一直线上,则m的值为.2、已知y﹣2与x成正比例,且当x=﹣1时y=5,则y与x的函数关系式是.3、已知y﹣1与x成正比例,当x=﹣2时,y=4.(1)求出y与x的函数关系式;(2)设点(a,﹣2)在这个函数的图象上,求a的值.4、已知y=y1+y2,y1与x2成正比例,y2与x﹣2成正比例,当x=1时,y=5;当x=﹣1时,y=11,求y与x之间的函数表达式,并求当x=2时y的值.5、已知y﹣3与2x+4成正比例,且当x=﹣1时,y=7.(1)求y与x的函数关系式;(2)求此函数图象与坐标轴围成的面积.七、一次函数与一元一次方程1、如图,直线y=x+5和直线y=ax+b相交于点P,观察其图象可知方程x+5=ax+b的解()A.x=15B.x=25B.C.x=10D.x=202、如图,一次函数y=kx+b与y=x+2的图象相交于点P(m,4),则关于x的方程kx+b=4的解是()A.x=1B.x=2C.x=3D.x=43、如图,一次函数y=ax+b与正比例函数y=kx的图象交于点P(﹣2,﹣1),则关于x的方程ax+b=kx的解是.4、根据一次函数y=kx+b的图象,直接写出下列问题的答案:(1)关于x的方程kx+b=0的解;(2)代数式k+b的值;(3)关于x的方程kx+b=﹣3的解.八、一次函数中的面积问题1、若一次函数y=2x+b与坐标轴围成的三角形面积为9,则这个一次函数的解析式为.2、直线y=kx+b经过点(0,3),且与两坐标轴构成的直角三角形的面积是6,则k为.3、如图,一次函数y=x﹣4的图象与x轴,y轴分别交于点A,点B,过点A作直线l将△ABO分成周长相等的两部分,则直线l的函数解析式为.4、如图,在平面直角坐标系xOy中,A(2,0),B(2,4),C(0,4).若直线y=kx﹣2k+1(k是常数)将四边形OABC分成面积相等的两部分,则k的值为.5、如图所示,在直角坐标系中,矩形OABC的顶点B的坐标为(12,5),直线恰好将矩形OABC分成面积相等的两部分.那么b=.6、如图,在平面直角坐标系中,四边形ABCO是正方形,点B的坐标为(4,4),直线y=mx﹣2恰好把正方形ABCO的面积分成相等的两部分,则m=.九、一次函数的应用1、甲乙两人骑自行车分别从A,B两地同时出发相向而行,甲匀速骑行到B地,乙匀速骑行到A地,甲的速度大于乙的速度,两人分别到达目的地后停止骑行.两人之间的距离y(米)和骑行的时间x(秒)之间的函数关系图象如图所示,现给出下列结论:①a=450;②b=150;③甲的速度为10米/秒;④当甲、乙相距50米时,甲出发了55秒或65秒.其中正确的结论有()A.①②B.①③C.②④D.③④2、甲、乙两车从A地出发,沿同一路线驶向B地.甲车先出发匀速驶向B地,40min后乙出发,匀速行驶一段时间后,在途中的货站装货耗时半小时.由于满载货物,为了行驶安全,速度减少了50km/h,结果与甲车同时到达B地,甲乙两车距A地的路程y(km)与乙车行驶时间x(h)之间的函数图象如图所示.(1)a的值是,甲的速度是km/h.(2)求线段EF所表示的y与x的函数关系式;(3)若甲乙两车距离不超过10km时,车载通话机可以进行通话,则两车在行驶过程中可以通话的总时长为多少小时?十、一次函数综合题1、如图,直线与x轴,y轴分别交于点A,B,点C,D分别是AB,AO的中点,点P是y轴上一动点,则PC+PD的最小值是.2、若直线AB:y=x+4与x轴、y轴分别交于点B和点A,直线CD:y=﹣x+2与x轴、y轴分别交于点D和点C,线段AB与CD的中点分别是M,N,点P为x轴上一动点.(1)点M的坐标为;(2)当PM+PN的值最小时,点P的坐标为.3、如图,在平面直角坐标系中,一次函数的图象分别与x、y轴交于点A、B,点C在y轴上,AC平分∠OAB,则线段BC=.4、如图,点C的坐标是(2,2),A为坐标原点,CB⊥x轴于B,CD⊥y轴于D,点E是线段BC的中点,过点A的直线y=kx交线段DC于点F,连接EF,若AF平分∠DFE,则k的值为.5、如图,一次函数y=kx+b的图象经过点A(0,3)和点B(2,0),以线段AB为边在第一象限内作等腰直角△ABC使∠BAC=90°(1)求一次函数的解析式;(2)求出点C的坐标;(3)点P是y轴上一动点,当PC最小时,求点P的坐标.6、如图,直线l:y=kx+b(k≠0)与坐标轴分别交于点A,B,以OA为边在y=8.轴的右侧作正方形AOBC,且S△AOB(1)求直线l的解析式;(2)如图1,点D是x轴上一动点,点E在AD的右侧,∠ADE=90°,AD =DE.①当AE+CE最小时,求E点的坐标;②如图2,点D是线段OB的中点,另一动点H在直线BE上,且∠HAC=∠BAD,请求出点H的坐标.。
【教师卷】初中数学八年级数学下册第十九章《一次函数》习题(培优)(1)

一、选择题1.点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,则1y 、2y 的大小关系是( ) A .12y y > B .12y y = C .12y y <D .不确定A解析:A 【分析】根据题意,分别表示出1y ,2y ,再判断12y y -的正负性,即可得到答案. 【详解】∵点()1,A a y 、()22,B a y 都在一次函数0)(2y ax a a =-+≠的图象上,∴212y a a =-+,224y a a =-+,∴22212(2)(4)2y y a a a a a -=-+--+=>0,∴12y y >, 故选A . 【点睛】本题主要考查一次函数图像上点的坐标特征,掌握作差法比较大小,是解题的关键. 2.若正比例函数y =(m ﹣2)x 的图象经过点A(x 1,y 1)和点B(x 2,y 2),当x 1<x 2时,y 1>y 2,则m 的取值范围是( ) A .m >0 B .m <0C .m >2D .m <2D解析:D 【分析】根据正比例函数的大小变化规律判断k 的符号. 【详解】解:根据题意,知:y 随x 的增大而减小, 则k <0,即m ﹣2<0,m <2. 故选:D . 【点睛】本题考查了一次函数的性质:当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.3.如图,在矩形ABCD 中,3AB =,4BC =,动点P 沿折线BCD 从点B 开始运动到点D ,设点P 运动的路程为x ,ADP △的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .D解析:D 【分析】分别求出04x ≤≤、47x <<时函数表达式,即可求解. 【详解】解:由题意当04x ≤≤时,如题图,1134622y AD AB =⨯⨯=⨯⨯=, 当47x <<时,如下图,11(7)414222y PD AD x x =⨯⨯=⨯-⨯=-.故选:D . 【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考常考题型.4.若实数k 、b 满足0k b +=,且k b >,则一次函数y kx b =+的图象可能是( )A .B .C .D .A解析:A 【分析】根据0k b +=,且k b >确定k ,b 的符号,从而求解. 【详解】解:因为实数k 、b 满足k+b=0,且k >b , 所以k >0,b <0,所以它的图象经过一、三、四象限, 故选:A . 【点睛】本题主要考查一次函数图象在坐标平面内的位置与k 、b 的关系.解答本题注意理解:直线y=kx+b 所在的位置与k 、b 的符号有直接的关系.k >0时,直线必经过一、三象限.k <0时,直线必经过二、四象限.b >0时,直线与y 轴正半轴相交.b=0时,直线过原点;b <0时,直线与y 轴负半轴相交.5.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A .20210x y y x +-=⎧⎨-+=⎩B .20210x y y x -+=⎧⎨+-=⎩C .20210x y y x -+=⎧⎨--=⎩D .2010x y y x ++=⎧⎨+-=⎩B解析:B 【分析】由图易知两条直线分别经过(-1,1)、(1,0)两点和(0,2)、(-1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题. 【详解】由图知,设经过(-1,1)、(1,0)的直线解析式为y=ax+b (a≠0). 将(-1,1)、(1,0)两点坐标代入解析式中,解得1-212a b ⎧=⎪⎪⎨⎪=⎪⎩故过(-1,1)、(1,0)的直线解析式y=1122x -+,对应的二元一次方程为2 y +x -1=0. 设经过(0,2)、(-1,1)的直线解析式为y=kx+h (k≠0). 将(0,2)、(-1,1)两点代入解析式中,解得12k h =⎧⎨=⎩故过(0,2)、(-1,1)的直线解析式为y=x+2,对应的二元一次方程为x-y+2=0.因此两个函数所对应的二元一次方程组是+20210x y y x -=⎧⎨+-=⎩故选择:B 【点睛】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.6.已知点()11,P y -、点()23,Q y 在一次函数(21)2y m x =-+的图像上,且12y y >,则m 的取值范围是( )A .12m < B .12m >C .m 1≥D .1m <A解析:A 【分析】由题目条件可判断出一次函数的增减性,则可得到关于m 的不等式,可求得m 的取值范围. 【详解】 解:∵点P (-1,y 1)、点Q (3,y 2)在一次函数y=(2m-1)x+2的图象上, ∴当-1<3时,由题意可知y 1>y 2, ∴y 随x 的增大而减小, ∴2m-1<0,解得m <12, 故选:A . 【点睛】本题主要考查了一次函数的性质,得出一次函数的增减性是解题的关键.7.函数211+2y x=的图象如图所示,若点()111,P x y ,()222,P x y 是该函数图象上的任意两点,下列结论中错误的是( )A .10x ≠ ,20x ≠B .112y >,212y > C .若12y y =,则12||||x x = D .若12y y <,则12x x <D 解析:D 【分析】根据函数的解析式,结合图象的对称性、图象与坐标轴的关系、点的位置与图象的关系等逐项分析判断即可. 【详解】解:A 、根据图象与y 轴没交点,所以10x ≠ ,20x ≠,此选项正确;B 、∵x 2>0,∴21x>0,∴211+2y x =>12,此选项正确; C 、∵图象关于y 轴对称,∴若12y y =,则12||||x x =,此选项正确; D 、∵图象关于y 轴对称,∴若12y y <,则12||||x x >,此选项错误, 故选:D . 【点睛】本题考查了函数的图象与性质,能从图象上获取有效信息是解答的关键.8.一艘轮船在航行中遇到暗礁,船身有一处出现进水现象,等到发现时,船内已有一定积水,船员立即开始自救,一边排水一边修船,假设轮船触礁后的时间为x 分钟,船舱内积水量为y 吨,修船过程中进水和排水速度不变,修船完工后排水速度加快,图中的折线表示y 与x 的函数关系,下列说法中:①修船共用了38分钟时间;②修船过程中进水速度是排水速度的3倍;③修船完工后的排水速度是抢修过程中排水速度的4倍;④最初的仅进水速度和最后的仅排水速度相同,其中正确的信息判断是( )A.①②B.②③C.②④D.③④D解析:D【分析】当0≤x≤10时,可求出修船时的进水速度,当10≤x≤26时,可求出修船时的出水速度从而判断①②,当x≥26时,可求出修船后的出水速度,即可判断③,进而可判断④.【详解】有图像可知:第10分钟时,进水速度减小,即第10分钟开始修船,第26分钟时不再进水,即第26分钟停止修船,所以修船共用了16分钟时间,故①错误;当0≤x≤10时,进水速度=40÷10=4(吨/分),当10≤x≤26时,应进水:4×16=64(吨),实际进水:88-40=48(吨),则排水速度=(64-48)÷16=1(吨/分),所以修船过程中进水速度是排水速度的4倍,故②错误;当x≥26时,排水速度=88÷(48-26)=4(吨/分),所以修船完工后的排水速度是抢修过程中排水速度的4倍,故③正确;由当0≤x≤10时,进水速度=40÷10=4(吨/分),x≥26时,排水速度=88÷(48-26)=4(吨/分),可知:最初的仅进水速度和最后的仅排水速度相同,故④正确.故选D【点睛】本题主要考查函数图像,掌握函数图像上点的坐标的实际意义,是解题的关键.9.关于x的一次二项式ax+b的值随x的变化而变化,分析下表列举的数据,若ax+b=11,则x的值是()x﹣101 1.5ax+b﹣3﹣112A.3 B.﹣5 C.6 D.不存在C解析:C【分析】设y=ax+b ,把x=0,y=-1和x=1,y=1代入求出a 与b 的值,即可求出所求. 【详解】 解:设y =ax+b ,把x=0,y=-1和x=1,y=1代入得:11a b b +=⎧⎨=-⎩,解得:21a b =⎧⎨=-⎩,∴2x ﹣1=11, 解得:x =6. 故选:C . 【点睛】此题考查了解二元一次方程组以及代数式求值,一次函数的解析式,熟练掌握解二元一次方程组是解本题的关键.10.对函数22y x =-+的描述错误是( ) A .y 随x 的增大而减小B .图象经过第一、三、四象限C .图象与x 轴的交点坐标为(1,0)D .图象与坐标轴交点的连线段长度等于解析:B 【分析】根据一次函数的图象与性质即可判断A 、B 两项,求出直线与x 轴的交点即可判断C 项,求出直线与y 轴的交点,再根据勾股定理即可求出图象与坐标轴交点的连线段长度,进而可判断D 项,于是可得答案. 【详解】解:A 、因为﹣2<0,所以y 随x 的增大而减小,故本选项说法正确,不符合题意; B 、函数22y x =-+的图象经过第一、二、四象限,故本选项说法错误,符合题意; C 、当y=0时,220x -+=,所以x=1,所以图象与x 轴的交点坐标为(1,0),故本选项说法正确,不符合题意;D 、图象与x 轴的交点坐标为(1,0),与y 轴的交点坐标为(0,2),所以图象与坐标轴交= 故选:B . 【点睛】本题考查了一次函数的图象与性质、一次函数与坐标轴的交点以及勾股定理等知识,属于基础题目,熟练掌握一次函数的基本知识是解题的关键.二、填空题11.已知一次函数y kx b =+与y mx n =+的图象如图所示.(1)写出关于x ,y 的方程组y kx by mx n=+⎧⎨=+⎩的解为________.(2)若0kx b mx n <+<+,写出x 的取值范围________.【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数的图象在一次函数的图象上方时且两者的函数图象都在x 轴上方时x 的取值范围【详解】解:(1)方程组的解就是一次函数解析:34x y =⎧⎨=⎩35x << 【分析】(1)方程组的解就是函数图象的交点坐标的横纵坐标;(2)不等式的解就是当一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围. 【详解】解:(1)方程组y kx by mx n=+⎧⎨=+⎩的解就是一次函数y kx b =+与y mx n =+的交点坐标的横纵坐标,由图知,34x y =⎧⎨=⎩; (2)不等式0kx b mx n <+<+的解就是找到图中一次函数y mx n =+的图象在一次函数y kx b =+的图象上方时,且两者的函数图象都在x 轴上方时,x 的取值范围,由图知,35x <<. 【点睛】本题考查一次函数与二元一次方程组和不等式的关系,解题的关键是能够理解方程组的解就是函数图象的交点坐标的横纵坐标,以及利用函数图象解不等式的方法. 12.下列函数:①3x y =,②2y x =,③1y x =,④23y x =-,⑤()2221y x x x =--+其中是一次函数的有_____.(填序号)①②④⑤【分析】根据一次函数的定义进行一一判断【详解】①是一次函数;②是一次函数③不是一次函数④是一次函数⑤是一次函数故答案为:①②④⑤【点睛】考查了一次函数的定义解题关键是熟记:一般地形如y=kx解析:①②④⑤ 【分析】根据一次函数的定义进行一一判断. 【详解】 ①3x y =是一次函数;②2y x =是一次函数,③1y x =不是一次函数,④23y x=-是一次函数,⑤()222121y x x x x =--+=+是一次函数. 故答案为:①②④⑤. 【点睛】考查了一次函数的定义,解题关键是熟记:一般地,形如y=kx+b (k≠0,k 、b 是常数)的函数,叫做一次函数.13.为减少代沟,增强父子感情,父子二人决定在100米跑道上,以“相向而跑”的形式来进行交流.儿子从100米跑道的A 端出发,父亲从另一端B 出发,两人同时起跑,结果儿子赢得比赛.设父子间的距离S (米)与父亲奔跑的时间(秒)之间的函数关系如图所示,则儿子奔跑的速度是______米/秒.(或625)【分析】根据图像可知爸爸跑完全程用时20秒可计算爸爸的速度其次儿子比爸爸早到20米的时间计算爸爸跑完20米用时从而得到儿子跑完全程的时间计算速度即可【详解】根据图像可知爸爸跑完全程用时2解析:254(或6.25). 【分析】根据图像可知,爸爸跑完全程用时20秒,可计算爸爸的速度,其次,儿子比爸爸早到20米的时间,计算爸爸跑完20米用时,从而得到儿子跑完全程的时间,计算速度即可. 【详解】根据图像可知,爸爸跑完全程用时20秒,∴爸爸的速度为10020=5米/秒, ∵儿子比爸爸早到20米,∴父子共用时间20-20÷5=16秒, ∴儿子的速度为10016=254米/秒, 故答案为:254.【点睛】本题考查了函数的图像,根据题意,读懂图像,学会把生活问题数学化是解题的关键. 14.已知:一次函数()21y a x =-+的图象不经过第三象限,化简224496a a a a -++-+=_________.【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限可得a-2<0进而得到a <2再根据二次根式的性质进行计算即可【详解】解:∵一次函数的图象不经过第三象限∴解得:故答案为:【点睛】本题考 解析:52a -【分析】首先根据一次函数y=(a-2)x+1的图象不经过第三象限,可得a-2<0,进而得到a <2,再根据二次根式的性质进行计算即可. 【详解】解:∵一次函数()21y a x =-+的图象不经过第三象限, ∴20a -<, 解得:2a <,224496a a a a -++-+ ()()2223a a =-+-23a a =-+- 23a a =-+- 52a =-,故答案为:52a -. 【点睛】本题考查了一次函数图象与系数的关系,以及二次根式的化简,关键是掌握:①k >0,b >0⇔y=kx+b 的图象在一、二、三象限;②k >0,b <0⇔y=kx+b 的图象在一、三、四象限;③k <0,b >0⇔y=kx+b 的图象在一、二、四象限;④k <0,b <0⇔y=kx+b 的图象在二、三、四象限.15.王阿姨从家出发,去超市交水电费.返回途中,遇到邻居交谈了一会儿再回到家,如图所示的图像是王阿姨离开家的时间t (分)和离家距离S (米)的函数图像.则王阿姨在整个过程中走得最快的速度是______米/分.100【分析】根据题意分别求出每一段路程的速度然后进行判断即可得到答案【详解】解:根据题意0~15分的速度:;25分~35分的速度:;45分~50分的速度:;∵∴王阿姨在整个过程中走得最快的速度是1解析:100【分析】根据题意,分别求出每一段路程的速度,然后进行判断,即可得到答案.【详解】解:根据题意,0~15分的速度:160800153÷=; 25分~35分的速度:(800500)1030-÷=; 45分~50分的速度:5005100÷=;∵160301003<<, ∴王阿姨在整个过程中走得最快的速度是100米/分;故答案为:100.【点睛】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象解决相应的问题.16.如图,直线(0)y kx b k =+≠经过(1,2)A --和(3,0)B -两点,则关于x 的不等式组10x kx b +<+<的解是____________.【分析】用待定系数法求出kb 的值然后将它们代入不等式组中进行求解即可【详解】解:将A(−1-2)和B(−30)代入y=kx+b 中得:解得:∴y=-x-3则x+1<-x-3<0解得:−3<x<−2故答解析:32x -<<-【分析】用待定系数法求出k 、b 的值,然后将它们代入不等式组中进行求解即可.【详解】解:将 A(− 1,-2) 和 B(− 3,0) 代入 y=kx+b 中得:230k b k b -+=-⎧⎨-+=⎩解得:13k b =-⎧⎨=-⎩, ∴y=-x-3,则 x+1<-x-3<0 ,解得: −3<x<−2,故答案为:−3<x<−2【点睛】本题考查了待定系数法求一次函数解析式以及不等式的解法,难度不大.17.如图,函数(0)y kx k =≠和4(0)y ax a =+≠的图象相交于点(1,1)A -,则不等式4kx ax <+的解集为__________.【分析】由图象可以知道当x=-1时两个函数的函数值是相等的再根据函数的增减性可以判断出不等式的解集【详解】解:两条直线的交点坐标为(-11)当x <-1时直线y=ax+4在直线y=kx 的下方当x >-1 解析:1x >-【分析】由图象可以知道,当x=-1时,两个函数的函数值是相等的,再根据函数的增减性可以判断出不等式4kx ax <+的解集.【详解】解:两条直线的交点坐标为(-1,1),当x <-1时,直线y=ax+4在直线y=kx 的下方,当x >-1时,直线y=ax+4在直线y=kx 的上方,故不等式kx <ax+4的解集为x>-1.故答案为:x>-1.【点睛】本题考查了一次函数和一元一次不等式的知识点,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.18.请写出一个符合下列要求的一次函数的表达式:_______.①函数值y 随自变量x 增大而增大;②函数的图像经过第二象限.(答案不唯一保证即可)【分析】根据题意和一次函数的性质可以写出符合要求的一个一次函数本题得以解决【详解】解:∵一次函数的函数值y 随自变量x 增大而增大∴k >0∵函数的图象经过第二象限∴b >0∴符合下列解析:23y x =+(答案不唯一,保证0k >,0b >即可)【分析】根据题意和一次函数的性质,可以写出符合要求的一个一次函数,本题得以解决.【详解】解:∵一次函数的函数值y 随自变量x 增大而增大,∴k >0,∵函数的图象经过第二象限,∴b >0,∴符合下列要求的一次函数的表达式可以是23y x =+,故答案为:23y x =+(答案不唯一).【点睛】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答. 19.如图,函数20y x =和40y ax =-的图象相交于点P ,点P 的纵坐标为40,则关于x ,y 的方程组20040x y ax y -=⎧⎨-=⎩的解是______. 【分析】由点P 的纵坐标为40代入求得点P 的坐标再利用两图象的交点坐标满足方程组方程组的解就是交点坐标据此求解即可【详解】∵点P 的纵坐标为40∴解得:∴点P 的坐标为()∴方程组即的解为故答案为:【点睛解析:240x y =⎧⎨=⎩ 【分析】由点P 的纵坐标为40,代入20y x =求得点P 的坐标,再利用两图象的交点坐标满足方程组,方程组的解就是交点坐标,据此求解即可.∵点P 的纵坐标为40,∴4020x =,解得:2x =,∴点P 的坐标为(2,40),∴方程组2040y x y ax =⎧⎨=-⎩即20040x y ax y -=⎧⎨-=⎩的解为, 故答案为:240x y =⎧⎨=⎩. 【点睛】本题主要考查了一次函数与二元一次方程(组)的关系,函数图象交点坐标为两函数解析式组成的方程组的解,利用了数形结合思想.20.若()11,A x y ,()22,B x y 是一次函数(1)2y a x =-+图像上的不同的两个点,当12x x >时,12y y <,则a 的取值范围是_________.【分析】根据一次函数的图象当时y 随着x 的增大而减小分析即可【详解】解:因为A (x1y1)B (x2y2)是一次函数图象上的不同的两个点当x1>x2时y1<y2可得:解得:a <1故答案为:【点睛】本题考解析:1a <【分析】根据一次函数的图象(1)2y a x =-+,当10a -<时,y 随着x 的增大而减小分析即可.【详解】解:因为A (x 1,y 1)、B (x 2,y 2)是一次函数(1)2y a x =-+图象上的不同的两个点, 当x 1>x 2时,y 1<y 2,可得:10a -<,解得:a <1.故答案为:1a <.【点睛】本题考查了一次函数图象上点的坐标特征.函数经过的某点一定在函数图象上.解答该题时,利用了一次函数的图象y=kx+b 的性质:当k <0时,y 随着x 的增大而减小;k >0时,y 随着x 的增大而增大;k=0时,y 的值=b ,与x 没关系.三、解答题21.小明用的练习本在甲、乙两个商店都能买到,两个商店的标价都是每本1元,甲商店的优惠条件是:购买10本及以上,从第11本开始按标价的七折销售;乙商店的优惠条件是从第1本开始就按标价的八五折销售.(1)求在甲、乙两个商店购买这种练习本分别应付的金额y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式;(2)小明现有24元,最多可以买多少本练习本?解析:(1)y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)30本(1)根据题意,可以分别写出y 甲元、y 乙元与购买本数x (x >10)本之间的函数关系式; (2)将y=24分别代入甲和乙的函数解析式,求出相应的x 的值,然后比较大小,即可得到最多可以买多少本练习本.【详解】解:(1)由题意可得,y 甲=10×1+(x ﹣10)×1×0.7=0.7x+3,y 乙=x×1×0.85=0.85x ,即y 甲=0.7x+3(x >10),y 乙=0.85x (x >10);(2)当y 甲=24时,24=0.7x+3,解得x =30,当y 乙=24时,24=0.85x ,解得x≈28,∵30>28,∴小明现有24元,最多可以买30本练习本.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质解答. 22.已知一次函数3y kx =+与x 轴交于点()2,0A ,与y 轴交于点B .(1)求一次函数的表达式及点B 的坐标;(2)画出函数3y kx =+的图象;(3)过点B 作直线BP 与x 轴交于点P ,且2OP OA =,求ABP △的面积.解析:(1)332y x =-+,点B 的坐标是()0,3;(2)一次函数的图象如图所示;见解析;(3)ABP ∆的面积为3或9.【分析】(1)利用待定系数法求出解析式,令y=0求出x 的值得到点B 的坐标;(2)利用描点法画出函数图象;(3)根据2OP OA =,得到A 1P 1=2或A 1P 2=6,再利用三角形的面积公式计算得出答案.【详解】(1)把点()2,0A 的坐标代入3y kx =+中,得230k +=, 解得32k =-, 所以,一次函数表达式为332y x =-+,当0x =,y=3,所以,点B 的坐标是()0,3;(2)一次函数的图象如图所示;(3)因为点A 的坐标是()2,0A ,所以2OA =,因为点P 在x 轴上,且2OP OA =,所以OP=2OA=4,∴AP 1=2或AP 2=6, ∴111123322ABP S AP OB ∆=⨯⨯=⨯⨯=; 221163922ABP S AP OB ∆=⨯⨯=⨯⨯=, 所以,ABP ∆的面积为3或9.【点睛】此题考查待定系数法求函数的解析式,一次函数与坐标轴的交点坐标,描点法画一次函数的图象,分类思想求一次函数图象构成的三角形的面积.23.如图,矩形OABC 中,8AB =,4OA =.以O 点为坐标原点,OC 、OA 所在的直线分别为x 轴、y 轴,建立直角坐标系,把矩形OABC 折叠,使点B 与点O 重合,点C 移到点F 位置,折痕为DE .(1)求OD 的长.(2)求F 点坐标.(3)求直线DE 的函数表达式,并判断点B 关于x 轴对称的点B '是否在直线DE 上? 解析:(1)5;(2)1612,55F ⎛⎫-⎪⎝⎭;(3)210y x =-+;点B '不在直线DE 上. 【分析】(1)设OD=x ,则DB=x ,AD=8-x ,在RT △AOD 中利用勾股定理可得222OA AD OD +=,即()22248x x +-=,解出即可得出答案;(2)运用面积法求出FG ,再运用勾股定理求出OG 的长即可确定点F 的坐标;(3)根据题意求出点E 坐标,利用待定系数法确定DE 的解析式,继而确定B'的坐标,代入解析式可判断出是否在直线DE 上.【详解】解:(1)矩形OABC 折叠,点B 与点O 重合,点C 点F 重合,OD DB ∴=,设OD x =则DB x =,8AD x =-,在AOD △中,90OAD ∠=︒,由勾股定理得:222OA AD OD +=,()22248x x ∴+-=,解得:5x =,5OD ∴=.(2)四边形OABC 是矩形, 4OA BC ∴==,//AB OC ,把矩形OABC 折叠,4BC OF ∴==,BDE ODE ∠=∠,90BCO F ∠=∠=︒,//AB OC ,BDE DEO ∴∠=∠,ODE DEO ∴∠=∠,OD OE ∴=,由(1)知5OD =,5OE ∴=,在Rt OEF △中,由勾股定理得:223EF OE OF =-=,过F 作FG x ⊥轴交于点G ,OEF OEF S S =△△,1122OE FG EF OF ∴⨯⨯=⨯⨯, 即1153422FG ⨯⨯=⨯⨯,125FG =, 在Rt OFG △中,由勾股定理得:22165OG OF FG =-=, 又F 在第四象限内,1612,55F ⎛⎫∴- ⎪⎝⎭. (3)由(1)得:853AD =-=,()3,4D ∴,由(2)得:5OE =,()5,0E ∴,设直线DE 的关系式为y kx b =+,则3450k b k b +=⎧⎨+=⎩,解得:210k b =-⎧⎨=⎩, ∴直线DE 的关系式为:210y x =-+,点B 关于x 轴对称的点B '的坐标为()8,4-,把8x =代入210y x =-+得:64y =-≠-,∴点B '不在直线DE 上.【点睛】此题考查了翻折变换的性质、待定系数法求函数解析式、勾股定理及矩形的性质,属于综合型题目,解答本题的关键是所涉及知识点的融会贯通,难度较大.24.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为1y 千米,出租车离甲地的距离为2y 千米,两车行驶的时间为x 小时,12,y y 关于x 的图象如图所示:(1)客车的速度是 千米/小时,出租车的速度是 千米小时:(2)根据图象,分别直接写出12,y y 关于x 的关系式;(3)求两车相遇的时间;(4)x 为何值时,两车相距100千米.解析:(1)60,100;(2)y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)两车相遇的时间为154小时;(4)258小时或358小时. 【分析】(1)根据速度=路程÷时间,列式进行计算即可得解;(2)根据两函数图象经过的点的坐标,利用待定系数法求一次函数解析式解答即可; (3)由12y y =列出方程,求出即可;(4)由两车相距100千米,可得|y 1-y 2|=100,即可求解.【详解】解:(1)由图可知,甲乙两地间的距离为600km ,所以,客车速度=600÷10=60(km/h ),出租车速度=600÷6=100(km/h ),故答案为:60,100;(2)设客车的函数关系式为y 1=k 1x ,则10k 1=600,解得k 1=60,所以,y 1=60x (0≤x≤10),设出租车的函数关系式为y 2=k 2x+b ,则206600k b b +⎧⎨=⎩=, 解得2100600k b =-⎧⎨=⎩, 所以,y 2=-100x+600(0≤x≤6),故答案为:y 1=60x (0≤x≤10),y 2=-100x+600(0≤x≤6);(3)当出租车与客车相遇时,60x=-100x+600,解得x=154. 所以两车相遇的时间为154小时; (4)由题意可得:|-100x+600-60x|=100,∴x=258或358, 答:x 为258小时或358小时,两车相距100千米. 【点睛】 本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.某校服生产厂家计划在年底推出两款新校服A 和B 共80套,预计前期投入资金不少于20900元,但不超过20960元,且所投入资金全部用于两种校服的研制,其成本和售价如表:(2)该厂家要想获得最大的利润,最大利润为多少?(3)经市场调查,年底前每套B 款校服售价不会改变,而每套A 款校服的售价将会提高m 元()0m >,且所生产的两种校服都可以售完,该厂家又该如何安排生产校服才能获得最大利润呢?解析:(1)3种;(2)4320元;(3)当010m <<时,安排生产A 校服48套时,可获最大利润;当10m =时,生产利润定值是4800元;当10m >时,安排生产A 校服50套,可获最大利润【分析】(1)设生产A 校服x 套,根据题意列方程组并求解,结合x 为整数,即可得到答案; (2)设总利润为y ,结合(1)的结论,根据题意列一次函数,再结合一次函数的性质分析,可得到最大利润;(3)结合(2)的结论,根据一次函数的性质,对m 的取值分三种情况分析,即可完成求解.【详解】(1)设生产A 校服x 套,则生产B 校服()80x -套根据题意得:250280(80)20900250280(80)20960x x x x +-≥⎧⎨+-≤⎩解得:4850x ≤≤又∵x 为整数∴x 只能取48,49,50∴厂家共有3种方案可供选择;(2)设总利润为y结合题意,A 校服利润为30025050-=,B 校服利润为34028060-=()50608010+4800y x x x =+-=-100-<∴y 随x 的增大而减小∴当48x =时,y 最大,最大值为480010484320-⨯=(元)∴当生产A 校服48套时,有最大利润4320元;(3)根据题意得:()()506080y m x x =++-()104800m x =-+当010m <<时,100m -<,y 随x 增大而减小∴安排生产A 校服48套时,可获最大利润,此时生产B 校服32套;当10m =时,4800y =,即生产利润定值为4800元,3种方案一样的利润; 当10m >时,100m ->,y 随x 增大而增大∴安排生产A 校服50套时,可获最大利润,此时生产B 校服30套.【点睛】本题考查了一元一次不等式组、一次函数的知识;解题的关键是熟练掌握一元一次不等式组、一次函数的性质,并运用到实际问题中,从而完成求解.26.某校801班师生共45人前往某景区游览,该景区窗口票价标明:成人票每张30元,学生票享受六折优惠.(1)若老师有x 名,801班师生景区游览的门票总费用为y 元,请用x 的代数式表示y . (2)若师生门票总费用y 不超过858元,问至少有几名学生.解析:(1)y=12x+810;(2)至少有41名学生【分析】(1)根据总费用=老师费用+学生费用列出关系式即可;(2)根据总费用不超过858元列出不等式,求解即可解答.【详解】(1)根据题意得:y=30x+30×0.6×(45﹣x )=12x+810,故总费用y=12x+810;(2)由题意得:12x+810≤858,解得:x≤4,则45﹣x≥41,故至少有41名学生.【点睛】本题考查了一次函数的应用、一元一次不等式的应用,理解题意,正确列出函数关系式是解答的关键.27.如图,一次函数y kx b =+的图象与x 轴、y 轴分别相交于E ,F 两点,点E 的坐标为()6,0-,3OF =,其中P 是直线EF 上的一个动点.(1)求k 与b 的值;(2)若POE △的面积为6,求点P 的坐标.解析:(1)12k =,3b =;(2)点P 的坐标为()2,2-,()10,2--. 【分析】 (1)求出F 的坐标,将E ,F 代入解析式求解即可;(2)确定直线关系式,根据POE △的面积为6,得到点P 的纵坐标,代入关系式即可求解;【详解】(1)∵3OF =,∴点()0,3F ,将点()6,0E -,点()0,3F 分别代入到3y kx =+中,得:3b =,60k b -+=,解得:12k =,3b =,(2)∵12k =, ∴直线EF 的解析式为:132y x =+. ∵点E 的坐标为()6,0-, ∴6OE =, ∴116622OPE p p S OE y y =⋅=⨯⨯=△, ∴2p y =. 令132y x =+中2y =,则1232x =+, 解得:2x =-.∴点P 的坐标为()2,2-, 令132y x =+中2y =-,则1232x -=+, 解得:10x =-.∴点P 的坐标为()2,2-,()10,2--.【点睛】本题主要考查了一次函数图像上点的坐标特征,准确分析计算是解题的关键. 28.已知一次函数y kx b =+,在0x =时的值为4,在1x =-时的值为2,(1)求一次函数的表达式.(2)求图象与x 轴的交点A 的坐标,与y 轴交点B 的坐标;(3)在(2)的条件下,求出△AOB 的面积;解析:(1)24y x =+;(2)A (-2,0)B (0)4,;(3)4 【分析】(1)把两组x 和y 值代入解析式,求出k 和b 值,即可得到结论;(2)利用函数解析式分别代入x=0和y=0的情况就可求出A 、B 两点坐标;(3)通过A 、B 两点坐标即可算出直角三角形AOB 的面积.【详解】(1)把0x =,4y =和1x =-,2y =代入y kx b =+得42b k b =⎧⎨-+=⎩解得24k b =⎧⎨=⎩所以这个一次函数的表达式为24y x =+.(2)把0y =代入24y x =+,得:2x =-则A 点坐标为(20)-,把x=0代入24y x =+,得y=4,则B 点坐标为(0)4,; (3)根据题意作函数大致图像:由图可知:2OA =,4OB =, 所以11 24422OAB S OA O B =⋅=⨯⨯=△ 【点睛】本题考查一次函数解析式求法和一次函数图象上点的坐标特点,正确求出一次函数与x 轴和y 轴的交点是解题的关键.。
一次函数之动点问题(word文档良心出品)

一次函数之动点问题(讲义)一、知识点睛动点问题的特征是速度已知,主要考查运动的过程. 1. 一次函数背景下研究动点问题的思考方向:①把函数信息(坐标或表达式)转化为基本图形的信息; ②分析运动过程,注意状态转折,确定对应的时间范围; ③画出符合题意的图形,研究几何特征,设计解决方案. 2. 解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s =vt 直接表达已走路程或未走路程;②根据研究几何特征需求进行表达,既要利用动点的运动情况,又要结合基本图形信息.二、精讲精练1. 如图,在平面直角坐标系中,O 为坐标原点,直线334y x =-+与x 轴、y 轴分别交于A ,B 两点.点P 从点A 出发,以每秒1个单位的速度沿射线AO 匀速运动,设点P 的运动时间为 t 秒.(1)求OA ,OB 的长.(2)过点P 与直线AB 垂直的直线与y 轴交于点E ,在点P 的运动过程中,是否存在这样的点P ,使△EOP ≌△AOB ?若存在,请求出t 的值;若不存在,请说明理由.y xOBA2. 如图,直线=3+43y x 与x 轴、y 轴分别交于A ,B 两点,直线BC 与x 轴交于点C ,∠ABC =60°.(1)求直线BC 的解析式.(2)若动点P 从点A 出发沿AC 方向向点C 运动(点P 不与点A ,C 重合),同时动点Q 从点C 出发沿折线CB —BA 向点A 运动(点Q 不与点A ,C 重合),动点P 的运动速度是每秒1个单位长度,动点Q 的运动速度是每秒2个单位长度.设△APQ 的面积为S ,运动时间为t 秒,求S 与t 之间的函数关系式,并写出自变量t 的取值范围. (3)当t =4时,y 轴上是否存在一点M ,使得以A ,Q ,M 为顶点的三角形为等腰三角形?若存在,请直接写出点M 的坐标;若不存在,请说明理由.C ABOxy CABOxy3. 如图,在直角梯形COAB 中,OC ∥AB ,以O 为原点建立平面直角坐标系,A ,B ,C三点的坐标分别为A (8,0),B (8,11),C (0,5),点D 为线段BC 的中点.动点P 从点O 出发,以每秒1个单位的速度,沿折线OA —AB —BD 的路线运动,至点D 停止,设运动时间为t 秒.(1)求直线BC 的解析式.(2)若动点P 在线段OA 上运动,当t 为何值时,四边形OPDC 的面积是梯形COAB 面积的14?(3)在动点P 的运动过程中,设△OPD 的面积为S ,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.P DCxA OByyBO A xCD4. 如图,直线334y x =-+与x 轴交于点A ,与直线33y x =交于点P . (1)求点P 的坐标. (2)求△OP A 的面积.(3)动点E 从原点O 出发,以每秒1个单位的速度沿OA 方向向终点A 运动,过点E 作EF ⊥x 轴交线段OP 或线段P A 于点F ,FB ⊥y 轴于点B .设运动时间为t 秒,矩形OEFB 与△OP A 重叠部分的面积为S ,求S 与t 之间的函数关系式.PFE xA OB y5. 如图,直线l 的解析式为y =-x +4,它与x 轴、y 轴分别交于A ,B 两点,平行于直线l的直线m 从原点O 出发,沿x 轴的正方向以每秒1个单位长度的速度运动,它与x 轴、y 轴分别交于M ,N 两点,设运动时间为t 秒(0< t <4). (1)求A ,B 两点的坐标;(2)用含t 的代数式表示△MON 的面积S 1;(3)以MN 为对角线作矩形OMPN ,记△MPN 和△OAB 重 叠部分的面积为S 2,试探究S 2与t 之间的函数关系式.xy OABm l PM N【参考答案】1.(1)OA =4,OB =3; (2)t =1或t =7 2.(1)343y x =-+(2)223(04)2343(48)2t t S t t t ⎧<⎪⎪=⎨⎪-+<<⎪⎩≤(3)123(0438)(0438)(043)M M M -+-,或,或,443(0)3M 或,3.(1)354y x =+(2)32t =(3)4(08)248(819)248(1924)t t S t t t t <⎧⎪=-+<⎨⎪-+<<⎩≤≤4.(1)(33)P , (2)23(3)223(03)653163243(34)2tt S t t t ⎧<⎪⎪=⎨⎪-+-<<⎪⎩≤5.(1)(40)(04)A B ,,,(2)2112S t =(3)2221(02)2388(24)2t t S t t t ⎧<⎪⎪=⎨⎪-+-<<⎪⎩≤。
《一次函数》培优题含答案解析

《一次函数》培优题含答案解析1.如图1,已知直线y=2某+2与y轴、某轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交某轴于M,P(,k)是线段BC上一点,在线段BM上是否存在一点N,使直线PN平分△BCM的面积?若存在,请求出点N的坐标;若不存在,请说明理由.考点:一次函数综合题。
分析:(1)如图1,作CQ⊥某轴,垂足为Q,利用等腰直角三角形的性质证明△ABO≌△BCQ,根据全等三角形的性质求OQ,CQ的长,确定C点坐标;(2)同(1)的方法证明△BCH≌△BDF,再根据线段的相等关系证明△BOE≌△DGE,得出结论;(3)依题意确定P点坐标,可知△BPN中BN变上的高,再由S△PBN=S△BCM,求BN,进而得出ON.解答:解:(1)如图1,作CQ⊥某轴,垂足为Q,∵∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∴BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=某+2;(2)如图2,作CH⊥某轴于H,DF⊥某轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∴BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∴DG=OB,∴△BOE≌△DGE,∴BE=DE;(3)如图3,直线BC:y=﹣某﹣,P(∴P(﹣,),由y=某+2知M(﹣6,0),∴BM=5,则S△BCM=.假设存在点N使直线PN平分△BCM的面积,则BN∴BN==某,,ON=,,k)是线段BC上一点,∵BN<BM,∴点N在线段BM上,∴N(﹣,0).点评:本题考查了一次函数的综合运用.关键是根据等腰直角三角形的特殊性证明全等三角形,利用全等三角形的性质求解.3.如图直线:y=k某+6与某轴、y轴分别交于点B、C,点B的坐标是(﹣8,0),点A的坐标为(﹣6,0)(1)求k的值.(2)若P(某,y)是直线在第二象限内一个动点,试写出△OPA的面积S与某的函数关系式,并写出自变量某的取值范围.(3)当点P运动到什么位置时,△OPA的面积为9,并说明理由.考点:一次函数综合题;待定系数法求一次函数解析式;三角形的面积。
一次函数动点问题 精心总结版

11、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标. (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯, 解得803x =秒.∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇2解(1)A (8,0)B (0,6)(2)86OA OB == ,10AB ∴=点Q 由O 到A 的时间是881=(秒)∴点P 的速度是61028+=(单位/秒) 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==, 2S t =当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, 21324255S OQ PD t t ∴=⨯=-+ (3)82455P ⎛⎫ ⎪⎝⎭,12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫--⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, 2 如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H . (1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.xAO QP B y23.(2010年金华) 如图,把含有30°角的三角板ABO 置入平面直角坐标系中,A ,B 两点坐标分别为(3,0)和(0,33).动点P 从A 点开始沿折线AO-OB-BA 运动,点P 在AO ,OB ,BA 上运动的速度分别为1,3,2 (长度单位/秒)﹒一直尺的上边缘l 从x 轴的位置开始以33(长度单位/秒)的速度向上平行移动(即移动过程中保持l ∥x 轴),且分别与OB ,AB 交于E ,F 两点﹒设动点P 与动直线l 同时出发,运动时间为t 秒,当点P 沿折线AO -OB -BA 运动一周时,直线l 和动点P 同时停止运动. 请解答下列问题:(1)过A ,B 两点的直线解析式是 ▲ ;(2)当t ﹦4时,点P 的坐标为 ▲ ;当t ﹦ ▲ ,点P 与点E 重合; (3)① 作点P 关于直线EF 的对称点P′. 在运动过程中,若形成的四边形PEP′F 为 菱形,则t 的值是多少?② 当t ﹦2时,是否存在着点Q ,使得△FEQ ∽△BEP ?若存在, 求出点Q 的坐标;若不存在,请说明理由.解:(1)333+-=x y ;(2)(0,3),29=t(3)①当点P 在线段AO 上时,过F 作FG ⊥x 轴,G 为垂足(如图1)∵FG OE =,FP EP =,∠=EOP ∠=FGP 90° ∴△EOP ≌△FGP ,∴PG OP =﹒又∵t FG OE 33==,∠=A 60°,∴t FG AG 3160tan 0== BFAP E O xy l(第24题(图1) BFP Ey M P′ H3而t AP =,∴t OP -=3,t AG AP PG 32=-= 由t t 323=-得 59=t ; 当点P 在线段OB 上时,形成的是三角形,不存在菱形; 当点P 在线段BA 上时,过P 作PH ⊥EF ,PM ⊥OB ,H 、M 分别为垂足(如图2)∵t OE 33=,∴t BE 3333-=,∴3360tan 0t BE EF -==∴6921tEF EH MP -===, 又∵)6(2-=t BP 在Rt △BMP 中,MP BP =⋅060cos 即6921)6(2t t -=⋅-,解得745=t ②存在﹒理由如下:∵2=t ,∴332=OE ,2=AP ,1=OP 将△BEP 绕点E 顺时针方向旋转90°,得到 △EC B '(如图3)∵OB ⊥EF ,∴点B '在直线EF 上, C 点坐标为(332,332-1) 过F 作FQ ∥C B ',交EC 于点Q , 则△FEQ ∽△EC B '由3=='=QE CE FE E B FE BE ,可得Q 的坐标为(-32,33) 根据对称性可得,Q 关于直线EF 的对称点Q '(-32,3)也符合条件 9.(2010,浙江义乌)如图1,已知∠ABC =90°,△ABE 是等边三角形,点P 为射线BC 上任意一点(点P 与点B 不重合),连结AP ,将线段AP 绕点A 逆时针旋转60°得到线段AQ ,连结QE并延长交射线BC 于点F .(1)如图2,当BP =BA 时,∠EBF = ▲ °,猜想∠QFC = ▲ °;(2)如图1,当点P 为射线BC 上任意一点时,猜想∠QFC 的度数,并加以证明; (3)已知线段AB =32,设BP =x ,点Q 到射线BC 的距离为y ,求y 关于x 的函数关系式.第9题【答案】(1)=∠EBF 30°.QFC ∠= 60° (2)QFC ∠=60°不妨设BP >3AB , 如图1所示∵∠BAP =∠BAE+∠EAP =60°+∠EAP ∠EAQ =∠QAP+∠EAP =60°+∠EAP ∴∠BAP =∠EAQ在△ABP 和△AEQ 中 AB =AE ,∠BAP =∠EAQ , AP =AQ ∴△ABP ≌△AEQ (SAS ) ∴∠AEQ =∠ABP =90°∴∠BEF 180180906030AEQ AEB =︒-∠-∠=︒-︒-︒=︒ ∴QFC ∠=∠EBF +∠BEF =30°+30°=60° (事实上当BP ≤3AB 时,如图2情形,不失一般性结论仍然成立,不分类讨论不扣分)(3) 在图1中,过点F 作FG ⊥BE 于点G∵△ABE 是等边三角形 ∴BE =AB =32,由(1)得=∠EBF 30°A BE QPFC图1ACBEQF P yBF AP E OxQ′B′ Q CC 1D 1 (图3)4在Rt △BGF 中,32BE BG == ∴BF =2cos30BG=︒∴EF =2 ∵△ABP ≌△AEQ ∴QE =BP =x ∴QF =QE +EF 2x =+过点Q 作QH ⊥BC ,垂足为H 在Rt △QHF 中,3sin 60(2)2y QH QF x ==︒=+ (x >0)即y 关于x 的函数关系式是:332y x =+11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,.则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =.∴点C 的坐标为302⎛⎫ ⎪⎝⎭, (Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ',则B CD BCD '△≌△.由题设OB x OC y '==,,则4B C B C O B O C y'==-=-, 在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ 由点B '在边OA 上,有02x ≤≤, ∴ 解析式2128y x =-+()02x ≤≤为所求. 当02x ≤≤时,y 随x 的增大而减小y ∴的取值范围为322y ≤≤.(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.x yBO A xyBy B5(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠ ,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△.有OB OCOA OB''=,得2OC OB ''=. 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =.由(Ⅱ)的结论,得2001228x x =-+, 解得0008450845x x x =-±>∴=-+ .,.∴点C 的坐标为()08516-,.。
一次函数培优及答案

Oy (微克/毫升) x (时)314 8 4 一次函数培优题一、填空题2、函数34+-=x y 的图象上存在点P ,点P 到x 轴的距离等于4,则点P 的坐标是________。
5、已知直线()42-+--=a x x a y 不经过第四象限,则a 的取值范围是 。
7、如图,折线ABCDE 描述了一辆汽车在某一直线上行驶过程中,汽车离出发地的距离s(km)和行驶时间t(h)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了120km ;②汽车在行驶途中停留了0.5h ;③汽车在整个行驶过程中的平均速度为803km ;④汽车自出发后3h-4.5h 之间行驶的速度在逐渐减少。
其中正确的说法有_______________.8、放假了,小明和小丽去蔬菜加工厂社会实践,•两人同时工作了一段时间后,休息时小明对小丽说:“我已加工了28千克,你呢?”小丽思考了一会儿说:“我来考考,左图、右图分别表示你和我的工作量与工作时间关系,你能算出我加工了多少千克吗?”小明思考后回答:“你难不倒我,你现在加工了___D_____千克.” 二、选择题2、药品研究所开发一种抗菌素新药,经过多年的动物实验之后,首次用于临床人体试验,测得成人服药后血液中药物浓度y (微克/毫升)与服药后时间x (时)之间的函数关系如图所示,则当1≤x ≤6时,y 的取值范围是( )A . 8 3≤y ≤ 64 11B . 64 11≤y ≤8C . 83≤y ≤8 D .8≤y ≤163、水池有2个进水口,1个出水口,每个进水口进水量与时间的关系如图甲所示,出水口出水量与时间的关系如图乙所示.某天0点到 6点,该水池的蓄水量与时间的关系如图丙所示.下列论断:①0点到1点,打开两个进水口,关闭出水口;②1点到3点,同时关闭两个进水口和—个出水口;③3点到4点,关闭两个进水口,打开出水口;④5点到6点.同时打开两个进水口和一个出水口.其中,可能正确的论断是( )A .①③ B.①④ C.②③ D.②④6、直线l 1:y =k 1x +b 与直线l 2:y =k 2x +c 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b <k 2x +c 的解集为( ).A .x >1B .x <1C .x >-2D .x <-2 第6题 第7题7、如图,把直线2y x =-向上平移后得到直线AB ,直线AB 经过点()a b ,,且26a b +=,则直线AB 的解析式是( )A.23y x =--B.26y x =--C.23y x =-+D.26y x =-+ 8、已知一次函数b kx y +=,当x 增加3时,y 减少2,则k 的值是( )A.32B.23C.32-D.23- O 1xy-2 y =k 2x +cy =k 1x +bxyO B A 2y x =-9、如图,平面直角坐标系中,在边长为1的正方形ABCD 的边上有一动点P 沿A B C D A →→→→运动一周,则P 的纵坐标y 与点P 走过的路程s 之间的函数关系用图象表示大致是( )10、一件工作,甲、乙两人合做5小时后,甲被调走,剩余的部分由乙继续完成,设这件工作的全部工作量为1,工作量与工作时间之间的函数关系如图所示,那么甲、乙两人单独完成这件工作,下列说法正确的是 ( )A.甲的效率高B.乙的效率高C.两人的效率相等D.两人的效率不能确定11、直线y=x -1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )A.5个B.6个C.7个D.8个12、已知一次函数()1-=x k y ,若y 随x 的增大而减小,则该函数的图像经过( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限 三、解答题1、李明从蚌埠乘汽车沿高速公路前往A 地,已知该汽车的平均速度是100千米/小时,它行驶t 小时后距蚌埠的路程......为s 1千米. ⑴请用含t 的代数式表示s 1;⑵设另有王红同时从A 地乘汽车沿同一条高速公路回蚌埠,已知这辆汽车距.蚌埠的路程...s 2(千米)与行驶时间t (时)之间的函数关系式为s 2=kt +b (k 、t 为常数,k ≠0),若李红从A 地回到蚌埠用了9小时,且当t=2时,s 2=560. ①求k 与b 的值;②试问在两辆汽车相遇之前,当行驶时间t 的取值在什么范围内,两车的距离小于288千米?A .B .C .D .2、在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t (h ),两组离乙地的距离分别为S 1(km )和S 2(km),图中的折线分别表示S 1、S 2与t 之间的函数关系.(1)甲、乙两地之间的距离为 km ,乙、丙两地之间的距离为 km ;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB 所表示的S 2与t 间的函数关系式,并写出自变量t 的取值范围.3、某洗衣机在洗涤衣服时,经历了进水、清洗、排水、脱水四个连续过程,其中进水、清洗、排水时洗衣机中的水量y(升)与时间x(分钟)之间的关系如折线图所示: 根据图象解答下列问题:(1) 洗衣机的进水时间是多少分钟?清洗时洗衣机中的水量是多少升? (2) 已知洗衣机的排水速度为每分钟19升, ① 求排水时y 与x 之间的关系式。
一次函数动点问题专题(补课培优补课教程)

xyA B C D 0 1 2 2 1 (第2题图)一次函数动点问题培优例1.如图1,点A 的坐标为(1,0),点B 在直线y x =-上运动,当线段AB 最短时,点B 的坐标为多少?变式1:如图,一次函数y kx b =+的图象与x 、y 轴分别交于点A (2,0)、B (0,4).O 为坐标原点,设OA 、AB 的中点分别为C 、D ,P 为OB上一动点,则当P 点坐标为 时,PC+PD 的最小值为 .例 2.如图,有一种动画程序,屏幕上正方形ABCD 是黑色区域(含正方形边界),其中(11)(21)(22)(12)A B C D ,,,,,,,,用信号枪沿直线2y x b =-+发射信号,当信号经过黑色区域时,b 的取值范围为 .变式1:如图,直线y=kx+b 经过A (3,1)和B (6,0)两点,则不等式组 0<kx+b <13x 的解集为 .图1MO x y BD A C P变式:2:函数y=ax-3的图象与y=bx+4的图象交于x轴上同一点,那么a∶b=例3:如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D 运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示,请回答下列问题:(1)点P在AB上运动时间为s,在CD上运动的速度为cm/s,△APD的面积S的最大值为cm2;(2)求出点P在CD上运动时S与t的函数解析式;(3)当t为s时,△APD的面积为10cm2.变式1:在矩形ABCD中,动点P从点B出发,沿BC、CD、D匀速运动至点A停止,设点P 运动的路程为x,△ABP的面积为y,如果y关于x的函数图象如图2所示,则△ABC的面积是()A、10B、16C、18D、20yPD例题:4:已知:在平面直角坐标系中,点Q 的坐标为(4,0),点P 是直线y=-21x+3上在第一象限内的一动点,设△OPQ 的面积为s 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十讲一次函数之动点问题
一、知识点睛
动点问题的特征是速度已知,主要考查运动的过程.
1.一次函数背景下研究动点问题的思考方向:
①把函数信息(坐标或表达式)转化为背景图形的信息;
②分析运动过程,注意状态折叠,确定对应的时间范围;
③画出符合题意的图形,研究几何特征,设计解决方案.
2.解决具体问题时会涉及线段长的表达,需要注意两点:①路程即线段长,可根据s=vt
直接表达已走路程或未走路程;
②根据研究几何特征的需求进行表达,既要利用懂点的运动情况,又要结合图形的
基本信息.
二、精讲精练
(2)求△OPA 的面积.
(3)动点E 从原点O 出发,以每秒1个单位长度的速度沿OA 方向向终点A 运动,过点E 作EF ⊥x 轴交线段OP
或线段PA 于点F ,FB ⊥y 轴于点B .设运动时间为t (秒),矩形OEFB 与△OPA 重叠部分的面积为S ,求S 与t
之间的函数关系式.
点C .动点E 从原点O 出发,以每秒1个单位长度的速度沿OA 方向向终点A 运动,动点F 同时从点A 出发,以每秒1个单位长度的速度折线AC -CO 方向向终点O 运动,设点F 运动的时间为
t (秒).
(1)设△OEF 的面积为S ,求S 与t 之间的函数关系式,并写出自变量t 的取值范围.
(2)当1
2t ≤≤时,是否存在某一时刻,使得△OEF 是等腰三角形?若存在,求出t 的值;若不存在,说明理由.
AB⊥y轴于点B.动点P从点O出发,以每秒1个单位长度的速度,沿O→B→A →O的路线向点O运动;同时动点Q以相同的速度沿C→A→O→C的路线向点C 运动,设点P运动的时间为t(秒).
(1)设△OPQ的面积为S,求S与t之间的函数关系式,并写出自变量t的取值范围.(这里规定:线段是面积为零的三角形)
(2)当点Q在OC上运动时,是否存在某一时刻,使得△
OPQ是等腰三角形?若
存在,求出t的值;若不存在,说明理由.。