电路原理 第十章

合集下载

(完整版)电路原理课后习题答案

(完整版)电路原理课后习题答案

因此, 时,电路的初始条件为
t〉0后,电路的方程为
设 的解为
式中 为方程的特解,满足
根据特征方程的根
可知,电路处于衰减震荡过程,,因此,对应齐次方程的通解为
式中 。由初始条件可得
解得
故电容电压
电流
7-29RC电路中电容C原未充电,所加 的波形如题7—29图所示,其中 , 。求电容电压 ,并把 :(1)用分段形式写出;(2)用一个表达式写出。
或为
第六章“储能元件”练习题
6—8求题6-8图所示电路中a、b端的等效电容与等效电感.
(a) (b)
题6—8图
6—9题6—9图中 , ; 。现已知 ,求:(1)等效电容C及 表达式;(2)分别求 与 ,并核对KVL。
题6-9图
解(1)等效电容
uC(0)=uC1(0)+uC2(0)=-10V
(2)
6—10题6-10图中 , ; , , ,求:(1)等效电感L及 的表达式;(2)分别求 与 ,并核对KCL。
应用规则2,有 ,代入以上方程中,整理得

又因为
当 时,
即电流 与负载电阻 无关,而知与电压 有关.
5—7求题5-7图所示电路的 和输入电压 、 之间的关系。
题5-7图
解:采用结点电压法分析。独立结点 和 的选取如图所示,列出结点电压方程,并注意到规则1,得(为分析方便,用电导表示电阻元件参数)
应用规则2 ,有 ,代入上式,解得 为
(f)理想电流源与外部电路无关,故i=—10×10—3A=—10—2A
1-5试求题1—5图中各电路中电压源、电流源及电阻的功率(须说明是吸收还是发出)。
(a) (b) (c)
题1-5图
解(a)由欧姆定律和基尔霍夫电压定律可知各元件的电压、电流如解1—5图(a)故电阻功率 (吸收20W)

电路分析原理第十章-傅里叶分析全文编辑修改

电路分析原理第十章-傅里叶分析全文编辑修改

(2) 奇函数 定义 设有函数f(t),如果满足f(t)=-f(-t)(10-8) 则称f(t)为奇函数(odd function), 以f(o)(t)表示。 奇函数的波形是关于原点对称的。正弦函数sinωt是奇函数, 其波形如图10-3b所示。
图10-3 偶函数与奇函数的波形 a) 偶函数cosωt b) 奇函数sinωt
第三节 周期电流、电压的最大值、有效值与平均值
一、非正弦电流、电压的最大值 ∗二、三角函数组的正交性质 三、有效值 四、平均值
一、 非正弦电流、电压的最大值
图10-9 非正弦周期电流、电压的最大值 a) 电流最大值含义 b) 电压最大值含义
∗二、三角函数组的正交性质
∗二、三角函数组的正交性质
1.有内阻抗、 △接正弦对称三相电源的一种等效电路
(4) 两个电流源激励、△接电源置零 两个电流源激励、 △接 电源置零、将△接阻抗ZS变成Y接阻抗ZS′后的电路如图10-18d所 示[图中给线电流及电流源的端电压加上标(2)], 图中有 (5) 线电流及电流源端电压叠加
图10-4 关于横轴对称的波形
3. bk计算
1.波形特点 2.傅氏级数 3. ak、
四、 关于横轴对称的波形
1.波形特点
前半个周期的波形后移半个周期,与后半个周期的波形关于横 轴对称(在图10-4中,给出了一个横轴对称的波形),数学表达 式为
f(t)=-f t+T/2
(10-17)
2.傅氏级数
一、 瞬时功率 二、 平均功率 三、 功率测量
第四节 非正弦稳态电路的功率
图10-11 非正弦稳态单口网络
一、瞬时功率
二、平均功率
1) 非正弦稳态电路中的平均功率, 等于各次谐波电压、 电 流单独形成的平均功率之代数和。 2) 不同频率的电压与电流不形成平均功率。

电路分析原理第十章 傅里叶分析

电路分析原理第十章 傅里叶分析

2.奇、偶函数的基本性质
2.奇、偶函数的基本性质
二、 1.波形特点
关于纵轴对称的波形
2.傅氏级数
3. ak计算
1.波形特点 将右半平面波形关于纵轴旋转180°, 与左半平面波形重叠
(图10-3a波形是关于纵轴对称的), 数学表达式由式(10-7)给出。
纵轴对称波形的函数是偶函数。
2.傅氏级数
2.同时对称于原点与横轴的波形
表10-1 几种对称波形的傅氏级数及其系数计算公式
2.同时对称于原点与横轴的波形
图10-7 纵轴对称波形及其频谱图 a) 纵轴对称波形 b) 幅值频谱 c) 初相频谱
2.同时对称于原点与横轴的波形
图10-8 纵、横轴对称波形及其频谱图 a) 纵、横轴对称波形 b) 幅值频谱 c) 初相频谱
3. ak计算
三、 1.波形特点
关于原点对称的波形
2.傅氏级数
3. bk计算
1.波形特点 将右半平面波形关于纵轴旋转180°, 再关于横轴旋转180°,
与左半平面波形重叠(图10-3b波形是关于原点对称的), 数学
表达式由式(10-8)给出。原点对称波形的函数是奇函数。
2.傅氏级数
要满足式(10-8)给出的f(t)=-f(-t)这个条件, 比较式(10-1)与 式(10-14), 必须有a0=0 ak=0 由此得原点对称波形的傅氏级数为 f(t)=∑∞k=1bksinkω1t(10-16) 图10-4 关于横轴对称的波形3. bk计算 f(t)为奇函数, f(t)sinkω1t为偶函数, 这样由式(10-3)与 式(10-12)得 bk=4T∫T/20f(t)sinkω1tdt
二、 关于纵轴对称的波形
一、 1.函数的奇、偶性

电路原理第十章含耦合电感电路

电路原理第十章含耦合电感电路





U R1 I1 +j L1 I1 -j M I 2




U R 2 I 2 +j L2 I 2 -j M I1



I I1 I2
根据前面的电路图,列写方程:
U (R1 jL1)I1 jMI2 Z1I1 ZM I2
U (R2 jL2 )I2 jMI1 Z2I2 ZM I1
Ψ21 Ψ22
Ψ11 Ψ12
Ψ21 Ψ22
i1 a + u1
i2
-b
c+
u2
d
i1 *a + u1 -b
i2 c + u2 -d *
(a)
(b)
说明耦合线圈的伏安关系用图
Ψ1=Ψ11 +Ψ12 Ψ2=Ψ22 +Ψ21
Ψ1=Ψ11 -Ψ12 Ψ2=Ψ22 -Ψ21
11
21
N1 i1
N2
+ u11 – + u21 –
同名端与两个线圈的绕向和相对位置有关。
11
s
0
N1 i1 * •
+ u11 –
N2
N3
*

+ u21 – – u31 +
i
1*
*2
1•*
2
3
1'
2'
1'
2'*
3' •
两个以上线圈彼此耦合时,同名端应一对一对加以标记。 如果每个电感都有电流时,每个电感的磁通链等于自感磁 通链和所有互感磁通链的代数和。
通链Ψ22 。22 部分或全部与线圈1相链,产生线圈2对线圈

模拟集成电路原理第十章稳定性与频率补偿

模拟集成电路原理第十章稳定性与频率补偿

本讲内容
• 稳定性概述 • 多极点系统 • 相位裕度 • 频率补偿 • 两级运放的补偿 • 其它补偿技术
Stability Ch. 10 # 13
相位裕度
相位裕度 : PM 180o H ( GX )
Stability Ch. 10 # 14
相位裕度与稳定时间
极点:Sp jp p , 系统响应中包括exp ( jp p )t 项
1 sC L
(1 gm5ro5 )ro7
1 s (1 gm5ro5 )ro7CL ro7CN
Stability Ch. 10 # 30
本讲内容
• 稳定性概述 • 多极点系统 • 相位裕度 • 频率补偿 • 两级运放的补偿 • 其它补偿技术
Stability Ch. 10 # 31
两级运放的Miller补偿
Barkhausen判 据 :
如 果| H ( j) | 1 并 且H ( j) 180, 则 振 荡
Stability Ch. 10 # 3
不稳定系统VS稳定系统
图(a):相位=-180时,增益>1,不稳定 图(b):增益=1时,相位<-180,稳定
Stability Ch. 10 # 4
复平面中的极点位置与稳定性
右半平面:振幅增加的振荡 Y轴:等幅振荡
左半平面:最终趋于稳定
极点:Sp j p p , 系统响应中包括exp ( j p p )t 项
Stability Ch. 10 # 5
单极点系统的稳定性
开 环 :H (s) A0 1 s
0
A0
闭 环 :Y (s) 1 A0
X (s)
1
1
Vin Vout
(1 sRSCE sRSCC )

初中物理知识点——第十章

初中物理知识点——第十章

第十章电路、电流、电压、电阻、欧姆定律一、摩擦起电摩擦过的物体具有吸引轻小物体的现象叫摩擦起电;1、两种电荷用丝绸摩擦过的玻璃棒带的电荷叫正电荷;用毛皮摩擦过的橡胶棒带的电荷叫负电荷;2、电荷间的相互作用同中电荷相互排斥,异种电荷相互吸引;3、验电器1、用途:用来检验物体是否带电;2、原理:利用同种电荷相互排斥;4、电荷量(电荷)电荷的多少叫电荷量,简称电荷;单位是库仑,简称库,符号为C;5、元电荷1、原子是由位于中心的带正电的原子核和核外带负电的电子组成;2、最小的电荷叫元电荷(一个电子所带电荷)用e表示;e=×10-19;3、在通常情况下,原子核所带正电荷与核外电子总共所带负电荷在数量上相等,电性相反,整个原子呈中性;6、摩擦起电的实质电荷的转移。

(由于不同物体的原子核束缚电子的本领不同,所以摩擦起电并没有新的电荷产生,只是电子从一个物体转移到了另一个物体,失去电子的带正电,得到电子的带负电)7、导体和绝缘体善于导电的物体叫导体(如金属、人体、大地、酸碱盐溶液),不善于导电的物体叫绝缘体(如橡胶、玻璃、塑料等);导体和绝缘体在一定条件下可以相互转换;二、电路用导线将用电器、开关、用电器连接起来就组成了电路;电源:提供电能(把其它形式的能转化成电能)的装置;用电器:消耗电能(把电能转化成其它形式的能)的装置;1、电路的工作状态通路:处处连通的电路;开路:某处断开的电路;短路:用导线直接将电源的正负极连同;2、电路图及元件符号用符号表示电路连接的图叫电路图(记住常用的符号)画电路图时要注意:整个电路图导线要横平竖直;元件不能画在拐角处。

3、连接方法 1、线路简捷、不能出现交叉;2、连出的实物图中各元件的顺序一定要与电路图保持一致;3、一般从电源的正极起,顺着电流方向,依次连接,直至回到电源的负极;4、并联电路连接中,先串后并,先支路后干路,连接时找准节点。

5、在连接电路前应将开关断开;4、串联和并联1、把电路元件逐个顺次连接起来的电路叫串联电路;串联电路特点:电流只有一条路径;各用电器互相影响;2、把电路元件并列连接起来的电路叫并联电路;并联电路特点:电流有多条路径;各用电器互不影响;3、常根据电流的流向判断串、并联:从电源的正极开始,沿电流方向走一圈,回到负极,则为串联,若出现分支则为并联;电荷的定向移动形成电流;电流方向:正电荷定向移动的方向为电流的方向(负电荷定向移动方向和电流方向相反);在电源外部,电流的方向从电源的正极流向负极;1、电流的强弱1、电流:表示电流强弱的物理量,符号I,单位是安培,符号A,还有毫安(mA)、微安(µA)1A=103mA=106µA2、电流强度(I)等于1秒内通过导体横截面的电荷量;I=Q/t2、电流的测量:用电流表;符号○A1、电流表的结构:接线柱、量程、示数、分度值2、电流表的使用(1)先要三“看清”:看清量程、指针是否指在临刻度线上,正负接线柱;(2)电流表必须和用电器串联;(相当于一根导线);(3)选择合适的量程(如不知道量程,应该选较大的量程,并进行试触。

第10章-频率响应--多频正弦稳态电路

第10章-频率响应--多频正弦稳态电路

§10-5 平均功率的叠加
设us1和us2 为两个任意波形的电压源 当us1单独作用时,流过R的电流为i1(t)
us2单独作用时,流过R的电流为i2(t)
iR
++ uS1 uS2 ––
依据叠加原理 i(t) = i1(t) + i2(t) 电阻消耗的瞬时功率
p(t) =Ri2(t)=R(i1+i2)2= Ri12 + Ri22 +2R i1i2 = p1+ p2+ 2R i1i2
∫ =
1
2
0 Im sinwtdwt
0
=
Im
2 3 w t
非正弦周期信号的谐波分析法
设非正弦周期电压 u 可分解成傅里叶级数
u = U0 + U1mcos(wt +1) +U2mcos( 2wt +2) + ······
其作用就和一个直流电压源及一系列不同频率的
正弦电压源串联起来共同作用在电路中的情况一样。
5. 滤波电路 电感或电容元件对不同频率的信号具有不同的
阻抗,利用感抗或容抗随频率而改变的特性构成四 端网络,有选择地使某一段频率范围的信号顺利通 过或者得到有效抑制,这种网络称为滤波电路。
下面以RC电路组成的滤波电路为例说明求网络 函数和分析电路频率特性的方法。
低通滤波电路
低通滤波电路可使低频信号较少损失地传输到输 出端,高频信号得到有效抑制。
u
u
Um
Um
0 2 3 wt
0
2 4 wt
u
u
Um
Um
0
2 wt
0 2
wt
几种非正弦周期电压的波形

电路原理(齐鲁工业大学)知到章节答案智慧树2023年

电路原理(齐鲁工业大学)知到章节答案智慧树2023年

电路原理(齐鲁工业大学)知到章节测试答案智慧树2023年最新绪论单元测试1.《电路原理》课程是高等学校电子与电气信息类专业的重要基础课,是所有强电专业和弱电专业的必修课。

参考答案:对2.20世纪30年代开始,电路理论形成一门独立的学科,因此在此之后的电路理论称为近代电路理论。

参考答案:错3.近代电路理论中将图论引入电路理论中,为应用计算机进行电路分析和集成电路布线与板图设计等研究提供了有力工具。

参考答案:对4.在电路理论相关技术的发展史中,基尔霍夫定律的提出早于欧姆定律的提出。

参考答案:错第一章测试1.电压和电流的参考方向可以任意指定,指定不同的参考方向,对最终的结论不产生影响。

参考答案:对2.习惯上,无源元件两端电压和所通过的电流取关联参考方向,这样可以只标电流的参考方向或只标电压的参考方向。

参考答案:对3.线性电阻元件R端电压u和所通过的电流i之间服从欧姆定律,即u=Ri。

参考答案:错4.当独立电流源的端电压增加时,其输出电流将增加。

参考答案:错5.在分析含有受控源的电路时,可以将受控源当作独立源来处理。

参考答案:对6.如图所示电路中的受控源为电流控制电压源。

参考答案:错7.在如图所示的电路中,1A电流源发出的功率为()。

参考答案:5W8.在如图所示电路中,电压和电流之间的关系为()。

参考答案:u=Ri-us9.如图所示电路,电流源两端的电压为()。

参考答案:18V10.如图所示电路中,下列关于求解I1和I2的方程中,正确的是()。

参考答案:第二章测试1.如图所示电路中的电流I为()。

参考答案:-2A2.两个电阻串联时的功率之比为9:4;若并联时,则其功率之比为()。

参考答案:4:93.利用对外等效的概念化简电路,求出的i和u分别为()。

参考答案:1A,-5V4.如图所示电路的a和b之间的开路电压为()V。

参考答案:5.如图所示电路,端口的输入电阻为()。

参考答案:6Ω6.如图所示电路一端口的输入电阻为()。

电路原理(山东联盟)智慧树知到答案章节测试2023年青岛理工大学

电路原理(山东联盟)智慧树知到答案章节测试2023年青岛理工大学

第一章测试1.图所示电路中,I、U、E的参考方向已经给出,请写出电路中端口电压U与电流I的关系表达式。

A:U=-E+IRB:U=-E-IRC:U=E-IRD:U=E+IR答案:D2.图示电路中的电压Ux为()。

A:1VB:-3VC:2VD:3V答案:B3.图示电路中的U为()。

A:8VB:-2VC:10VD:12V答案:D4.如图所示电路中,电压Ucb的值为()A:15vB:-13vC:-9vD:10v答案:B5.A:1ΩB:2ΩC:1AD:2A答案:AC6.A:3AB:1AC:4AD:2A答案:C7.A:电源是2,4B:负载是1,3C:负载是2,3D:电源是1,2, 4E:电源是1,4F:负载是3答案:AB8.A:6VB:-6VC:-10VD:8V答案:C9.A:-5VB:10VC:5VD:-10V答案:A第二章测试1.A:R=2+μΩB:R=1-μΩC:D:R=2-μΩ答案:C2.A:B:C:D:答案:A3.A:B:C:D:答案:D4.当负载短路路时,负载两端的电压为0,流过负载的电流也为0,对吗?A:错B:对答案:A5.如图所示电路中,已知Is发出的功率为20W,则电流I为多少?A:1AB:-1AC:2AD:-2A答案:B6.电路中吸收正功率的元件相当于(),发出正功率的元件相当于()。

A:(电源)(电源)B:(负载)(电源)C:(电源)(负载)D:(负载)(负载)答案:B7.A:2欧B:5欧C:8欧D:3欧答案:B8.A:6VB:4VC:-6VD:-4VE:-8V答案:A第三章测试1.图示电路中,电流I的值为。

A:3/4AB:2/7AC:3/20AD:5/6A答案:C2.图示电路已知电流源的电压为6V,则其电流i为。

A:2AB:4AC:3AD:1A答案:B3.电路如图所示,电压u=()VA:-15B:10C:-5D:15答案:C4.如图所示电路中与理想电流源串联的电阻R,下列说法正确的是( )A:对端口电流和端口电压均有影响B:对Is两端的电压有影响C:对端口电流有影响D:对端口电压有影响答案:B5.如图电路中,当i=0时,电流源吸收的功率为( )WA:-120B:20C:-20D:-40答案:A6.A:I=2.5A, U=232.25VB:I=2.75A, U=250.5VC:I=4.62A, U=250VD:I=-5A, U=276.25V答案:D第四章测试1.如图所示电路中,可调电阻R获得的最大功率为()WA:40B:20C:-20D:60答案:A2.图示电路,NS为线性含源网络当开关S1、S2都断开时,电流表读数为1.2A;当S1闭合、S2断开时,电流表读数为3A;当S1断开、S2闭合时,电流表读数为A:3.2AB:1.8AC:1.7AD:1.5A答案:C3.应用戴维宁定理求有源一端口网络Ns的等效电路,网络Ns应为()A:其余选项都不对B:线性网络C:非线性网络D:任何网络答案:B4.A:B:C:D:答案:AC5.A:B:C:D:答案:B6.用叠加定理时,独立电源的处理方式是A:理想电压源开路,理想电流源短路B:电压源短路,电流源开路C:使电压源的电动势置零,使理想电流源的电流置零。

《电路原理导论》第十章习题解答

《电路原理导论》第十章习题解答

习题1010-1 已知非线性电阻的电压、电流关系为32i i u +=(式中,u 的单位为V ,i 的单位为A ),试求工作点i =1A 和i =2A 处的静态电阻和动态电阻。

答案:A i 1=:Ω=Ω=5,3d R R ;A i 2=:Ω=Ω=14,6d R R解:i =1A :V 323=+=i i u ,Ω=+==322i iuR Q Ω=+===53221i di duR i d Ω=+===6222i iu R i QΩ=+===143222i di duR i d 10-2一非线性电感的磁链ψ与电流i 的关系为3ψψb a i +=,其中Wb A 0.1=a ,3A/Wb 1.0=b 。

试求它的静态电感L s 和动态电感L d 。

答()H L s 21.011ψ+=,()H L d 23.011ψ+=解:Li =ψ did L ψ=1.静态 2231.011ψψψψψψ+=+=+==b a b a i L 2.223.0131ψψψ+=+==b a d diL d 10-3 一非线性电容的电荷与电压的关系可表示为3Bu Au q +=。

在此电容两端加有电压t u ωsin 3=。

求电容中的电流()t i ,并把它表为其中所含谐波之和的形式。

若给定V C A /106-=, 37/10V C B -=,Rad/S 10000=ω,算出电流()t i 。

答: mA3cos 25.20cos 25.50t t i ωω-=解:()()tt t t t t t dt d t t dtd t dt d u dt d B dt du A Bu Au dt d dt dq i ωωωωωωωωωω3cos 1025.20cos 1025.503cos 1031075.6cos 1025.20cos 1033sin 41sin 431027cos 10103sin 310sin 31033473274637633---------⨯-⨯=⨯⨯⨯-⨯+⨯=⎪⎭⎫⎝⎛-⨯+⨯⨯=+=+=+==t t t ωωω3sin 4sin 33sin -= 3Bu Au q +=t t t ωωω3sin 41sin 43sin 3-=t u 10000sin 3=10-4 一非线性电阻电路的伏安特性如表10-1所示:表10-1 一非线性电阻的端口特性(a )将它接至电动势为,内电阻为的电压源上。

第十章(频率响应 多频正弦稳态电路 )

第十章(频率响应  多频正弦稳态电路 )

§3-3 有效值
10-18
根据有效值的定义, 根据有效值的定义,周期性电流的有效值是一与直流 电流数值相等的常数,它与周期性电流在R上的平均功率 电流数值相等的常数,它与周期性电流在 上的平均功率 相等, 表示该电流 表示该电流, 相等,以I表示该电流,则
I R = I0 R + I R + I 2 R + ...+ I N R

T
0
1 T T cos ωtdt = ∫ (1+ cos 2ωt)dt = ≠ 0 2 0 2
2
∴多个同频率正弦激励下的稳态电路不能用叠加原理求P. 多个同频率正弦激励下的稳态电路不能用叠加原理求 . 若 i1 = cos ωt , i2 = cos2ωt , 则

T
0
1 T cosωt cos 2ωtdt = ∫ (cos 3ωt + cosωt)dt = 0 2 0
(3)转移函数— 响应,激励不在同一端口 转移函数— 响应, 例题 求图所示电路的转移函数

10-8
U2 U1
利用分压关系, 利用分压关系,由相量模型 可得
U2 1 Hu = = U1 1+ jωRC
与上节例题所得Z仅有常数 的差别.故幅频特性, 与上节例题所得 仅有常数R的差别.故幅频特性, 相频特性在数学,图形表示上是类似的, 相频特性在数学,图形表示上是类似的,同样具有低通 和滞后性质. 和滞后性质. (4)以上所述电路的 滤波特性与理想情况相差较大, 以上所述电路的LP滤波特性与理想情况相差较大 滤波特性与理想情况相差较大, 只是最简单的LP滤波电路 滤波电路. 只是最简单的 滤波电路.
10-13
不是常数,输出u的波形肯定与输入 由于 H( jω) 不是常数,输出 的波形肯定与输入 方波不同,但仍为周期波,其周期仍为1 . 方波不同,但仍为周期波,其周期仍为1ms. 特别注意: 特别注意: 运用叠加原理的结果只能把各谐波的瞬时值罗列在 一起, 一起,绝不可把各谐波的振幅相量或有效值相量进行复 数相加. 数相加.

电路原理课程教案

电路原理课程教案

电路原理课程教案第一章:电路基本概念1.1 电流、电压和电阻电流的定义和单位电压的定义和单位电阻的定义和单位欧姆定律:I = V/R1.2 电路元件电源电阻电容电感开关灯泡、电机等负载1.3 电路的基本连接方式串联电路并联电路混联电路第二章:电路分析方法2.1 基尔霍夫定律电流定律(KCL):进入节点的电流之和等于离开节点的电流之和电压定律(KVL):沿着闭合回路,电压的代数和为零2.2 节点电压分析法选择参考节点列出节点电压方程解方程求解节点电压2.3 网孔电流分析法列出网孔电流方程解方程求解网孔电流根据网孔电流求解节点电压第三章:直流电路3.1 简单的直流电路分析简单的串联、并联直流电路计算电路中的电流、电压和电阻3.2 复杂直流电路分析多个电源、负载的直流电路应用基尔霍夫定律和欧姆定律进行计算3.3 电路中的电源和负载特性电源的内阻和外特性负载的电阻和特性第四章:交流电路4.1 交流电的基本概念交流电的定义和表示方法交流电的频率、周期和相位4.2 交流电路的电阻、电容和电感电阻对交流电的影响电容对交流电的影响电感对交流电的影响4.3 交流电路的分析方法相量法阻抗分析法功率分析法第五章:电路实验与测量5.1 电路实验的基本方法实验目的和原理实验设备和仪器实验步骤和注意事项5.2 电路测量技术电压测量电流测量电阻测量实验数据的处理和分析实验结果的讨论和结论实验报告的格式和规范第六章:数字电路基础6.1 数字电路概述数字电路的概念数字电路的分类数字电路的特点6.2 逻辑门电路与门、或门、非门与非门、或非门、异或门逻辑门电路的应用6.3 逻辑函数及其简化逻辑函数的定义逻辑函数的表示方法逻辑函数的简化方法第七章:组合逻辑电路7.1 组合逻辑电路概述组合逻辑电路的概念组合逻辑电路的特点组合逻辑电路的分类7.2 常用组合逻辑电路编码器译码器多路选择器算术逻辑单元7.3 组合逻辑电路的设计与分析组合逻辑电路的设计方法组合逻辑电路的分析方法第八章:时序逻辑电路8.1 时序逻辑电路概述时序逻辑电路的概念时序逻辑电路的特点时序逻辑电路的分类8.2 触发器基本触发器:SR触发器、JK触发器、T触发器、C触发器触发器的真值表和时序图触发器的功能描述8.3 时序逻辑电路的设计与分析时序逻辑电路的设计方法时序逻辑电路的分析方法第九章:数字电路仿真与实验9.1 数字电路仿真概述数字电路仿真的概念数字电路仿真的作用数字电路仿真软件9.2 数字电路仿真实验逻辑门电路仿真实验组合逻辑电路仿真实验时序逻辑电路仿真实验9.3 数字电路实际操作实验实验目的和原理实验设备和仪器实验步骤和注意事项第十章:数字电路应用实例10.1 微处理器微处理器的概念微处理器的结构微处理器的应用10.2 数字信号处理器数字信号处理器的概念数字信号处理器的结构数字信号处理器的应用10.3 数字电路在现代通信系统中的应用通信系统的基本原理数字电路在通信系统中的应用实例未来数字电路在通信系统的发展趋势重点和难点解析重点一:电路基本概念电流、电压和电阻的定义和关系电路元件的功能和特性电路的基本连接方式难点解析:电流、电压和电阻是电路分析的基础,理解它们之间的关系对于后续电路分析至关重要。

10第十章 含有耦合电感的电路

10第十章 含有耦合电感的电路

上 页
下 页
例1-1
i1
M
i2 * + L2 u2 _
i1
M
i2
+ * u1 L1 _
+ * u1 L1 _
L2 *
+ u2 _
试写出图示电路电压、电流关系式
解:
di1 di2 u1 L1 M dt dt
di1 di2 u2 M L2 dt dt
di1 di2 u1 L1 M dt dt di1 di2 u2 M L2 dt dt
R R1 R2
L L1 L2 2M
注意 L L1 L2 2M 0
M 1 ( L1 L2 ) 2
返 回 上 页 下 页
互感的测量方法:
顺接一次,反接一次,就可以测出互感:
L顺 L反 M 4
全耦合时
M L1L2
当 L=
L1=L2 时 , M=L
L L1 L2 2 M L1 L2 2 L1 L2 ( L1 L2 )
注意 耦合系数 k 与线圈的结构、相互几何位置、空
间磁介质有关。
返 回 上 页 下 页
互感现象
利用——变压器:信号、功率传递 避免——干扰
克服:合理布置线圈相互位置或增加屏蔽减少互感 作 用。
返 回
上 页
下 页
4. 耦合电感上的电压、电流关系
i2 2 M 当i1 为时变电流时,磁通也将随时间变化,从
用耦合系数k 表示两个线 圈磁耦合的紧密程度。
M 1 k L1L2
def
k=1 称全耦合: 漏磁 F 1 =F 2=0 满足:
k
def
F11= F21 ,F22 =F12

电路原理教学大纲

电路原理教学大纲

教学基本要求一、性质、地位和任务电路原理是电类专业的重要基础课程,其内容包括:电路的基本概念和定律,电阻电路的等效变换法,电路的网络方程分析法,电路基本定理,正弦交流电路,串、并联谐振电路,具有互感的电路,三相交流电路,非正弦周期电流电路,动态电路,二端口网络,磁路等内容。

本课程的主要任务是:使学生掌握电路的基本理论知识、电路基本分析方法,为学习后续课程准备必要的电路理论知识。

二、教学基本要求第一章电路的基本概念和定律1.了解电路和电路模型。

2.熟悉电流、电压、电功率、电能的概念;理解电流、电压的参考方向,及关联参考方向。

3.熟悉电阻元件、电感元件、电容元件及其伏安特性,掌握电阻元件、电感元件、电容元件的功率和能量的计算。

4.熟悉电压源、电流源及其模型。

5.了解电路中的受控源及其四种基本形式。

6.熟练掌握基尔霍夫定律的应用。

第二章电阻电路的等效变换法1.掌握电阻的串并联等效变换。

2.掌握电阻的星形连接与三角形连接的等效变换。

3.掌握电源、受控源的等效变换。

第三章电路的网络方程分析法1.理解电路网络方程分析法的概念。

2.熟练掌握支路电流分析法、网孔电流分析法、节点电位分析法的步骤和规律,并会加以应用。

第四章电路基本定理1.理解叠加定理、替代定理、戴维南定理和诺顿定理。

2.熟练掌握各定理在电路分析中的应用。

第五章正弦交流电路1.了解正弦交流电的基本概念,熟悉正弦交流电的相关参量。

2.掌握正弦量的各种表示方法和它们之间的相互转换。

3.掌握电阻元件、电感元件、电容元件的正弦交流电路的伏安关系,功率消耗及能量转换。

4.理解相量形式的基尔霍夫定律。

5.掌握电阻、电感、电容串联电路和并联电路的电压与电流的关系,及其相量图。

6.掌握正弦交流电路功率的计算方法。

7.了解提高功率因数的原因,理解提高功率因数的方法。

8.熟练掌握相量法在一般正弦交流电路计算中的应用。

第六章串、并联谐振电路1.理解串联谐振的条件及其特点2.理解串联谐振的频率特性及其通用谐振曲线。

电路原理--第十章--邱关源全文编辑修改

电路原理--第十章--邱关源全文编辑修改

(R2 jL2 )I2 jL2I3 jM (I1 I3) kI1
(
jL1
jL2
j1
C
)I3
jL1I1
jL2 I2
jM (I3 I1) jM (I3 I2 ) 0
返回 上页 下页
例2 求图示电路的开路电压。
I1 R1
M12
• L1
L2 •
US +
_
解1
M31 L3 *
*+
M23 U oc
+ R1 I1
US _
+
L3+M12–M23 –M13
U o_c
I1
R1
U S
j(L1 L3
2M31)
Uoc
j(L3 M12 M 23 M 31)U S R1 j(L1 L3 2M )31
返回 上页 下页
例3 要使 i=0,问电源的角频率为多少?
M R
i

当 M 1 C
L1
L2

10V 0 t 1s
u2 (t)
M
di1 dt
10V 0
1t 2 t
2s
10t 0 t 1s
i1 20 10t 1 t 2s
0
2 t
u(t)
R1i1
L
di1 dt
10100t0t
50 V 150V
0
0 t 1s 1 t 2s 2 t
返回 上页 下页
10.2 含有耦合电感电路的计算
返回 上页 下页
4.互感线圈的同名端
对自感电压,当u, i 取关联参考方向,u、i 与 符合右螺旋定则,其表达式为:
u11
dΨ11 dt

电路原理第十章:分布参数电路总复习(总结)

电路原理第十章:分布参数电路总复习(总结)
2π 2π & & & U ( x) = U 2 cos x + jZ C I 2 sin x λ λ & U2 2π 2π & & I ( x) = I 2 cos x+ j sin x ZC λ λ
1'
匹配线) (1)终端接 Z 2 = Z C(匹配线) )
& (2)终端开路 ( I 2 = 0) )
u2 = 230sin(ω t )
λ
i3 = 0.15 2 sin(ω t + 900 )
u(t)
R
C
1
l
2
2′
i
1' ZC
i2
1 图示电路, 例:图示电路,无损线长为 λ , 4 一端开路, 另一端短路, 一端开路, 另一端短路,试证无论电压源
λ/4
1
x
2
接在何处(除二端部外),电压源输出 接在何处(除二端部外),电压源输出 ), 功率始终为零。 功率始终为零。
. Us
ZC ,α
2′
Z1短 = jZ C tgα l
Z1开 = − jZ C ctgα l
1 1 1 1 1 1 1 = − − = + j( + ) Z Z C Z开 Z短 150 50 3 150 3
Z = 60∠ − 67 Ω
0
1
l1
Z
a
l2
2
u2
2′
(2)u2 , i3 )
uS
1'
& = U [cos( 2π l ) + sin( 2π l )] & US a λ 1 λ 1 & & U a = −U S
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性电阻元件的伏安特性不满足欧姆定律,而 遵循某种特定的非线性函数关系。其阻值大小与u、 i 有关,伏安特性不是过原点的直线。
i
u
i
i +极管特性
u=f(i)

i=g(u)
目录 上页 下页 返回
非线性电阻元件分类 流控电阻 压控电阻
+ u i R
单调型电阻
目录 上页 下页 返回
目录 上页 下页 返回
u u0 u1 E
因为该支路中有非线性电阻R,u与 i1 不是线性关系, 因此必须利用各元件伏安特性曲线,在同一电流条件 下将电压相加,才能得到该支路的伏安特性曲线 。
i1 ( u)
目录 上页 下页 返回
i
R的伏安特性曲线i1 (u0 ),
i1 (u1 )
i1 ( u0 ),
目录 上页 下页 返回
10.1 非线性元件特性
一、线性电阻元件
电阻值大小与u、i 无关(R为常数),其伏安特性 为一过原点的直线。线性电阻的u、i 取关联参考 方向时,u、i 关系符合欧姆定律。
i i R u
i P

u
u
u R tg con st i
目录 上页 下页 返回
二、非线性电阻元件
2
1
a
o
3 3 1 (c) 2 目录 上页 下页 返回
i2 (u1 ) u1
将R3 的伏安特性曲线 i ( u3 )画在图(d)中,由于 R3是与R1 、R2的并联电路相串联,应在同一电流 下将电压相加,即 u u1 u3
i
3
i
3
2
1
i ( u1 )
2
1
o
1 (c) 2
3 3
u1
u3
O
1
(d)
u
非线性电阻元件的静态电阻和动态电阻都 不是常数,而是其电压或电流的函数,且 随工作点的不同而不同。
动态电阻是正值 RdQ 0 动态电阻是负值 RdP 0 动态电阻的正或负由 其伏安特性及静态工 作点的位置决定的。
i
Q
O
P
u
目录 上页 下页 返回
10.2 图解分析法
曲线相交法
曲线相加法
目录 上页 下页 返回
a + uR i
2A
目录 上页 下页 返回
解:在给定电路中 ,a、b两点的左侧为一个线性有源 的二端网络。根据戴维南定理,我们将原电路图(a) 电路化成图 (b)所示戴维南等效电路。
i2 i 1 1Ω + 2V 2Ω 1Ω i3
(a)
a + u b
(b)
a i R + Uoc R0 b + u i R
非线性电阻网络的分析计算比线性电阻网络的分析 计算复杂。但是,对于只含有一个非线性电阻元件, 并且这个非线性电阻元件的伏安特性可以用数学解 析式表达出来时,可用戴维南定理求解。
例图中,R是流控型非 线性电阻,其伏安特 性表达式为: u i 2 试求R所消耗的功率及 i1 的值。
i2 i 1 1Ω + 2V 2Ω 1Ω i3 b
i 2 ( u)
(d)
i1 ( u)
u
E
目录 上页 下页 返回
u u i i1 i2
i
i
i (u )
i2 i 1
o
i 1(u)
i 2( u )
(d)
u
E
u
目录 上页 下页 返回
例 在图(a)电路中,压控型非线性电阻 R2 的伏安特性 如图(b)所示, R1 R3 1。 (1)若 us=3V , R = 1Ω 试定量画出a,b右部伏安特性曲 u, i1 , i2和i 的值。 线并计算
2
3
目录 上页 下页 返回
(1)us 3V , R 1 :
a,b左部的方程为:
i
3
2
1
i(u)S
u uS Ri 3 i
左部电路伏安特性曲 线为红色曲线所示。
Q
O
3
i(u)r
u
1
2
(e)
交点Q就是给定电路的工作点。
i
3 4
5
i=1A,u 2V
再据图(c)得:
i1 (u1 )
流控型:(current-controlled resistor) 非线性电阻两端的电压是电流的单值函数
特性 方程
u f (i )
+ u i
u
-
0
目录 上页 下页 返回 伏安特性
i
充气二极管
u
对每一个电流i只有 u1 一个电压u 与之对应, 但对同一个电压,电 流却可能是多值的 。
0
i1
i2
i
目录 上页 下页 返回
压控型(voltage -controlled resistor) 非线性电阻中通过的电流是其电压的单值函数。
特性 方程
i g(u)
+ u 0
i
u
i
隧道二极管 目录 上页 下页 返回 伏安特性
对每一个电压u只有 一个电流i与之对应, 但对同一个电流,电 压却可能是多值的。
u0 0, u1 0
(c)
i1 i : R上的电压为
u0 ' ' ' 该支路电压为:u u 0 u 1 E
R1上的电压为
u1
'
目录 上页 下页 返回
因线性电阻R2 与含非线性电阻R 的支路是并联的,所 以在同一电压下,两支路中电流相加就是总电流,即:
i
i i1 i2
ab 右边为非线性电阻,其伏安特 性为 i = f (u),i(u)曲线如图。 两曲线交点坐标 ( u0 , i0 ) 即 为所求解答。 目录 上页 下页 返回
i0
Q(u0 , i0 )
u0
o
Us
u
i2 i 1 1Ω + 2V 2Ω 1Ω i3
(a)
a + u b + i R R0 Uoc
a + u i R
+
u2
i (u)
i i1 i2 u u1 u2
i
i' ' i2
i '1
i1 ( u) i 2 ( u)
同一电压下将电流 相加。
i1' o
u'
u
目录 上页 下页 返回
如有若干元件串联,要得到这条支路的伏安特 性曲线,应在同一电流条件下将各元件电压相 加,便可得到伏安特性曲线上的一点,依次作 图可得到伏安特性曲线。 若有某些元件(支路)并联,欲求其伏安特性 曲线,应在同一电压条件下将各支路电流相加, 得出伏安特性曲线上的一点,依次作图便得到 伏安特性曲线。
第十章
非线性电路
学习目标与要求: (1) 充分理解非线性元件的特性 (2) 掌握非线性电路的图解分析法
(3) 熟练掌握非线性电路的小信号分析法
第十章
非线性电路
• 10.1 • 10.2
非线性元件特性 图解分析法
• 10.3
• 10.4
数值分析法
小信号分析法
10.1 非线性元件特性
非线性元件特点
静态电阻与动态电阻


i i1 i2 u u1 u2
u
u'
u'2
u
' 1 ' u1
u(i )
u2 ( i )
u1 ( i )
i'
o
i
在每一个 i 下,图解法求 u ,将一系列 u、i 值连成 曲线即得串联等效电阻 (仍为非线性)。
目录 上页 下页 返回
非线性电阻的并联
i + u
i1
+ i2
u1
i1 ( E )
R1的伏安特性曲线 i1 (u1 ) E的伏安特性曲线 i1 ( E )
u
O (c)
E
目录 上页 下页 返回
i
i1 (u1 )
i1 ( E )
i1 ( u0 )
i1
O
︷ ︷
u
u E
'
u1
u0
u1 u0
u
E
i1 0 :
' 1
得到图 (c)曲线上的u=E的一点,
2
1
i ( u1 )
i 1 A u1 1V i1 1 A, i2 0
目录 上页 下页
o 返回
1 (c) 2
3 3
i2 (u1 ) u1
(2)若uS 5V , R 0,在图 (e)中,按 u 5V 做电压坐标轴的垂线与 i ( u)交与P点, r
得 i 3A ,再根据图(c)曲线令i 3 A , 通过 作图得 u1 2V 。
u
u1 u2
0
i1
2
i
i u 4u
3
u 2i
目录 上页 下页 返回
单调型:既是流控型又是压控型的, 伏安特性是单调增 长或单调下降的。
i
+ u -
i
o
u

iI e
0
qu kT 1

P-N 结二极管的伏安特性曲线
目录 上页 下页 返回
kT i u ln ( 1 ) q I0
u3
1 (d) 2
3 3
i
i1 (u1 )
2
1
i ( u1 )
o
3 3 1 (c) 2 目录 上页 下页 返回
i2 (u1 ) u1
相关文档
最新文档