利用勾股定理作图计算优秀课件
合集下载
2024八年级数学下册第十七章勾股定理17.1勾股定理第3课时应用勾股定理解数学问题课件新版新人教版
![2024八年级数学下册第十七章勾股定理17.1勾股定理第3课时应用勾股定理解数学问题课件新版新人教版](https://img.taocdn.com/s3/m/6f535ba618e8b8f67c1cfad6195f312b3069eb72.png)
网格(每个小正方形的边长均为1)画出相应的△ABC,并求
出它的面积;
【解】△ABC如图①,S△ABC= .
探索创新:
(3)若△ABC三边的长分别为 a,2 a, a(a>0),请利
用图③中的正方形网格(每个小正方形的边长均为a)画出相
应的△ABC,并求出它的面积;
【解】△ABC如图②,可得
∵∠ABC=120°,AB=BC,
∴∠BAC=∠BCA=30°, ∵∠AOB=90°,
∴OB= a,
∴OF=OB+BF= ,OA=OC= .
∴AC=CE= a.
易得∠PFO=∠OEM=90°.
∵点P的坐标为(-2 ,3),
∴ =3,即a=2.
∴OE=OC+CE=
=3
( − ) + 的最小值.
【解】如图,作BD=12,过点B作AB⊥BD,过点D作
ED⊥BD,使AB=2,ED=3,连接AE交BD于点C.则AE的长
即为代数式 + + ( − ) + 的最小值.
过点A作AF⊥DE交ED的延长线于点F,得到长方形ABDF,
则AB=DF=2,AF=BD=12,∴EF=ED+DF=3+2=5.
∴AE= + =13,即 +
+ ( − ) + 的最小值为13.
利用勾股定理探求格点三角形面积
11.[新考法 构图求面积法]问题背景:
在△ABC中,AB,BC,AC三边的长分别为 , ,
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个
∴∠CAD=45°=∠ACD.
∴AD=CD=2 cm.
出它的面积;
【解】△ABC如图①,S△ABC= .
探索创新:
(3)若△ABC三边的长分别为 a,2 a, a(a>0),请利
用图③中的正方形网格(每个小正方形的边长均为a)画出相
应的△ABC,并求出它的面积;
【解】△ABC如图②,可得
∵∠ABC=120°,AB=BC,
∴∠BAC=∠BCA=30°, ∵∠AOB=90°,
∴OB= a,
∴OF=OB+BF= ,OA=OC= .
∴AC=CE= a.
易得∠PFO=∠OEM=90°.
∵点P的坐标为(-2 ,3),
∴ =3,即a=2.
∴OE=OC+CE=
=3
( − ) + 的最小值.
【解】如图,作BD=12,过点B作AB⊥BD,过点D作
ED⊥BD,使AB=2,ED=3,连接AE交BD于点C.则AE的长
即为代数式 + + ( − ) + 的最小值.
过点A作AF⊥DE交ED的延长线于点F,得到长方形ABDF,
则AB=DF=2,AF=BD=12,∴EF=ED+DF=3+2=5.
∴AE= + =13,即 +
+ ( − ) + 的最小值为13.
利用勾股定理探求格点三角形面积
11.[新考法 构图求面积法]问题背景:
在△ABC中,AB,BC,AC三边的长分别为 , ,
,求这个三角形的面积.
小辉同学在解答这道题时,先建立一个正方形网格(每个
∴∠CAD=45°=∠ACD.
∴AD=CD=2 cm.
勾股定理数学优秀ppt课件
![勾股定理数学优秀ppt课件](https://img.taocdn.com/s3/m/9a953da55ff7ba0d4a7302768e9951e79b896900.png)
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
《勾股定理》PPT(第3课时利用勾股定理作图和计算)
![《勾股定理》PPT(第3课时利用勾股定理作图和计算)](https://img.taocdn.com/s3/m/555ba1446d85ec3a87c24028915f804d2b1687e2.png)
第十七章 勾股定理
17.1 勾股定理
第3课时
利用勾股定理作图和计算
- .
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
2
2
D
∵ = 12 + 22 = 5,
CD
3
5
3 5
.
5
课程讲授
2
勾股定理与网格
归纳:1.勾股定理与网格的综合求线段长时,通常是把线段放
在与网格构成的直角三角形中,利用勾股定理求其长度.
2.网格中求格点三角形的高的题,常用的方法是利用网格
求面积,再用面积法求高.
课程讲授
3
勾股定理与几何图形
两点恰好落在AD边的P点处,若∠FPH=90°,PF=8,
115.2
PH=6,则长方形ABCD的面积为________.
课堂小
结
在数轴上表示出无理数
的点
利用勾股定理
作图或计算
在网格中利用勾股定理
解决问题
勾股定理在几何图形中
的应用
如图所示.作法:
解:
(1)在数轴上找出表示4的点A,则OA=4;
(2)过A作直线l垂直于OA;
O
(3)在直线l上取点B,使AB=1;
(4)以原点O为圆心,以OB为半径作弧,弧与
数轴的交点C即为表示
B
17 的点.
0
1 2
•
3 4
17.1 勾股定理
第3课时
利用勾股定理作图和计算
- .
知识要点
1.勾股定理与数轴、坐标系
2.勾股定理与网格
3.勾股定理与几何图形
新知导入
想一想:
我们知道数轴上的点有的表示有理数,有的表示无理数,你
能在数轴上画出表示 13 的点吗?
如果能画出长为 13 的线段,就能在数轴上画出表示 13 的
2
2
2
D
∵ = 12 + 22 = 5,
CD
3
5
3 5
.
5
课程讲授
2
勾股定理与网格
归纳:1.勾股定理与网格的综合求线段长时,通常是把线段放
在与网格构成的直角三角形中,利用勾股定理求其长度.
2.网格中求格点三角形的高的题,常用的方法是利用网格
求面积,再用面积法求高.
课程讲授
3
勾股定理与几何图形
两点恰好落在AD边的P点处,若∠FPH=90°,PF=8,
115.2
PH=6,则长方形ABCD的面积为________.
课堂小
结
在数轴上表示出无理数
的点
利用勾股定理
作图或计算
在网格中利用勾股定理
解决问题
勾股定理在几何图形中
的应用
如图所示.作法:
解:
(1)在数轴上找出表示4的点A,则OA=4;
(2)过A作直线l垂直于OA;
O
(3)在直线l上取点B,使AB=1;
(4)以原点O为圆心,以OB为半径作弧,弧与
数轴的交点C即为表示
B
17 的点.
0
1 2
•
3 4
人教版八年级数学下册《勾股定理》PPT精品教学课件
![人教版八年级数学下册《勾股定理》PPT精品教学课件](https://img.taocdn.com/s3/m/300ac711abea998fcc22bcd126fff705cd175c58.png)
13 .由此,可以依照如下方法在
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
数轴上画出表示 13 的点.
如图,在数轴上找出表示3的点A, 则OA=3,过点A作直
线l垂直于OA,在l上取点B,使AB = 2,以原点O为圆心,以
OB为半径作弧,弧与数轴的交点C即为表示 13 的点.
0
1 2
•
3 4
新知导入
想一想:
2, 3, 5 …的线段(图1).
随堂练习
4.如图,在△ABC中,AB=AC,D点在CB 延长线上,
求证:AD2-AB2=BD·
CD.
A
证明:过A作AE⊥BC于E.
∵AB=AC,∴BE=CE.
在Rt △ADE中,AD2=AE2+DE2.
在Rt △ABE中,AB2=AE2+BE2.
AD2-AB2= DE2- BE2
= (DE+BE)·( DE- BE)
键是仔细观察所给图形,面积与边长、直径有平
方关系,就很容易联想到勾股定理.
课程讲授
2
勾股定理与图形面积
练一练:
如图,直线l上有三个正方形a,b,c,若a,c的面积分别为3和4,
则b的面积为( D )
A.16
B.12
C.9
D.7
随堂练习
64 cm²
1.图中阴影部分是一个正方形,则此正方形的面积为_________.
角形外作三个半圆,则这三个半圆形的面积之间的关系式
S1 S 2 S3
是_______________.(用图中字母表示)
课程讲授
2
勾股定理与图形面积
归纳:与直角三角形三边相连的正方形、半圆及
正多边形、圆都具有相同的结论:两直角边上图
形面积的和等于斜边上图形的面积.本例考查了
利用勾股定理作图计算ppt课件
![利用勾股定理作图计算ppt课件](https://img.taocdn.com/s3/m/bf8765ea4028915f804dc2e3.png)
③以O为圆心,以OB为半径画弧,交数轴于点C,
L
点C即为表示 13 的点.
B
2
0 1 2 A3 13C4
- 17 12
2007年在上海举行第12届夏季特殊奥林匹克运动会.
无障碍设施建设是社会文明进步的重要标志,是城市管理 人性化、现代化的必要举措,是上海成为现代化国际大都市不 可或缺的环境条件。
则它的高为______
6
2、如图有两颗树,一棵高8m,另一棵高 2m,两树相距8m,一只小鸟从一棵树的树梢飞 到另一棵树的树梢,至少飞了多少米?
A
8m
E
C
2m
B
8m
D
7
8
图1中的x等于多少? 图2中的x、y、z等于多少?
2x 1 1
图1
2z 3y
x2 1
1
图2
9
沿着图2继续画直角三角形,还能得到那些无理数?
4
问题2
1.已知:Rt△ABC中,AB=4,AC=3,则
BC的长为3 C
注:在应用勾股定理时,要结合图形具体处理,不能
机械的认为c所对的角是直角或c边必是斜边
5
例1:已知等边三角形的边长为6,求它
的高和面积.
A
⑴求它的高.
⑵求它的面积.
B
D
C
练习:1、 等边三角形的边长为12,
(2)求EC的长.
A
10
D
8 10
8-x E 8-x x
B 6 F4 C
15
18.1.2利用勾股定理 计算、作图
C
D
c
a
cb
Ab
Ea B
1
勾股定理 :
直角三角形中,两直角边的平方和等 于斜边的平方.
勾股定理的作图与计算-八年级数学下册课件(人教版)
![勾股定理的作图与计算-八年级数学下册课件(人教版)](https://img.taocdn.com/s3/m/12c976d005a1b0717fd5360cba1aa81144318f05.png)
斜边),以直角三角形的三边为直径,分别向外作半圆,已知 S 1 =
3,S2 =2,那么 S 3 =( B )
A.6
B.5
C.4
D.3
巩固练习
2.如图,图中所有的三角形都是直角三角形,所有的四边形都
是正方形,已知正方形 A,B,C,D 的面积分别为 12,16,9,12,那么图
49
中正方形 E 的面积为__________.
第17章
勾股定理
17.1.3勾股定理的作图与计算
教 学 目 标 / Te a c h i n g a i m s
会用勾股定理解决简单的实际问题,建立数形结
1
合的思想。
能利用勾股定理在数轴上作出表示无理数的
2
点。
情景导入
问题1:
数轴的三要素:
原点
正方向
、
问题2:
在数轴上表示: 2 2,
1
,
0.5
,300%(1) 4
单位长度
、
新知探究
利用勾股定理作长度是无理数的线段
数轴
-3 -2 -1
0
1
2
3
我们知道数轴上的点有的表示有理数,有
的表示无理数,你能在数轴上画出 13
吗?
新知探究
分析:在数轴上找表示的点:要在数轴上画出表示的点,只要画出长为的线段即可.利用勾股
定理,长为的线段是直角边为正整数2和3的直角三角形的斜边.
解:由折叠得 BC=BC'=5,EC=EC',
在 Rt△ABC'中,AC'= ' − =4,
∴C'D=AD-AC'=5-4=1.
在 Rt△DEC'中,设 EC=x=EC',则 DE=3-x.
3,S2 =2,那么 S 3 =( B )
A.6
B.5
C.4
D.3
巩固练习
2.如图,图中所有的三角形都是直角三角形,所有的四边形都
是正方形,已知正方形 A,B,C,D 的面积分别为 12,16,9,12,那么图
49
中正方形 E 的面积为__________.
第17章
勾股定理
17.1.3勾股定理的作图与计算
教 学 目 标 / Te a c h i n g a i m s
会用勾股定理解决简单的实际问题,建立数形结
1
合的思想。
能利用勾股定理在数轴上作出表示无理数的
2
点。
情景导入
问题1:
数轴的三要素:
原点
正方向
、
问题2:
在数轴上表示: 2 2,
1
,
0.5
,300%(1) 4
单位长度
、
新知探究
利用勾股定理作长度是无理数的线段
数轴
-3 -2 -1
0
1
2
3
我们知道数轴上的点有的表示有理数,有
的表示无理数,你能在数轴上画出 13
吗?
新知探究
分析:在数轴上找表示的点:要在数轴上画出表示的点,只要画出长为的线段即可.利用勾股
定理,长为的线段是直角边为正整数2和3的直角三角形的斜边.
解:由折叠得 BC=BC'=5,EC=EC',
在 Rt△ABC'中,AC'= ' − =4,
∴C'D=AD-AC'=5-4=1.
在 Rt△DEC'中,设 EC=x=EC',则 DE=3-x.
17.3 利用勾股定理作图课件 (18张ppt)人教版八年级数学下册
![17.3 利用勾股定理作图课件 (18张ppt)人教版八年级数学下册](https://img.taocdn.com/s3/m/5934047e6ad97f192279168884868762caaebbf2.png)
表示3,﹣2.5的点吗?
﹣2.5
3
﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4
问题2:求下列直角三角形的各边长.
12 ?1
2 ?5
2
1
?13 3
问题3:你能在数轴上表示出 2 的点吗? 2 呢?
21
1
6
﹣4 ﹣3 ﹣2 ﹣1 1 0 1 1 2 3 2 5 3 4
4
提示:可以构造直角三角形作出边长为无理数的边,就能在 数轴上画出表示该无理数的点.
3.在5×5的正方形网格中,每个小正方形的边长都为1,
请在给定网格中以A出发分别画出长度为 2 , 5 ,8 的线
段AB.
A
A
A
B
B
B
AB= 2
AB= 5
AB= 8
拓展延伸
若△ABC三边的长分别为 2 ,2 5 , 26 ,请利用图中的 正方形网格 ( 每个小正方形的边长均为1 ) 画出相应的
△ABC,并求出它的面积.
1.如图,在数轴上找到点A , 使OA=5 , 过点A作直线l垂直于
OA , 在l上取点B , 使AB=2 , 以原点O为圆心 , 以OB长为
半径作弧,弧与数轴正半轴的交点为C,那么点C表示的数
是( B ).
A. 21
B. 29
C.7
D.29
2.如图,数轴上点A所表示的数为a,求a的值.
解:∵图中的直角三角形的两直角边为1和2, ∴斜边长为 22 12 5 ,即﹣1到A的距离是 5 , ∴点A所表示的数为 5 1 .
证明:在Rt△ABC和Rt△A ′B′ C′中,∠C=∠C′=90°,根据
勾股定理,得 BC AB2 AC2 ,BC AB2 AC2 .
勾股定理的应用ppt
![勾股定理的应用ppt](https://img.taocdn.com/s3/m/0da87c8fab00b52acfc789eb172ded630b1c98e1.png)
勾股定理公式
勾股定理的公式是 a² + b² = c²,其中a和b是直角三角形的两个直角边长度,c 是斜边长度。
勾股定理的历史背景
毕达哥拉斯学派
欧几里得
勾股定理最早可以追溯到公元前6世 纪,古希腊数学家毕达哥拉斯学派通 过观察和实验发现了这一关系。
古希腊数学家欧几里得在《几何原本》 中详细证明了勾股定理,并给出了多 种证明方法。
勾股定理在社会科学领域的应用
城市规划
在城市规划领域,勾股定理可以用于城市布 局和道路交通规划,例如在城市道路网规划 中,通过勾股定理计算道路之间的距离和角 度,优化城市交通网络布局。
建筑学
在建筑学领域,勾股定理可以用于建筑设计、 结构和美学等方面,例如在建筑设计时,通 过勾股定理计算建筑物的比例和角度,实现 建筑的美学和功能性统一。
游戏开发
在游戏开发中,勾股定理可用于实现物理引擎,如计算物体的碰撞、重力加速度等参数。
05
勾股定理的扩展应用
勾股定理在金融领域的应用
金融投资
勾股定理可以用于金融投资领域,通过分析股票、债券等金融产品的价格波动和相关性,预测市场走势,制定投 资策略。
风险管理
在金融风险管理方面,勾股定理可以用于评估投资组合的风险,通过计算不同资产之间的相关性,合理配置资产, 降低投资风险。
勾股定理在信息科学领域的应用
数据处理
在信息科学领域,勾股定理可以用于数据处理和分析,例如在图像处理中,通过勾股定理计算像素之 间的距离和角度,实现图像的缩放、旋转和平移等操作。
通信技术
在通信技术领域,勾股定理可以用于信号传输和数据处理,例如在无线通信中,通过勾股定理计算信 号的传播距离和衰减程度,优化信号传输质量和覆盖范围。
勾股定理的公式是 a² + b² = c²,其中a和b是直角三角形的两个直角边长度,c 是斜边长度。
勾股定理的历史背景
毕达哥拉斯学派
欧几里得
勾股定理最早可以追溯到公元前6世 纪,古希腊数学家毕达哥拉斯学派通 过观察和实验发现了这一关系。
古希腊数学家欧几里得在《几何原本》 中详细证明了勾股定理,并给出了多 种证明方法。
勾股定理在社会科学领域的应用
城市规划
在城市规划领域,勾股定理可以用于城市布 局和道路交通规划,例如在城市道路网规划 中,通过勾股定理计算道路之间的距离和角 度,优化城市交通网络布局。
建筑学
在建筑学领域,勾股定理可以用于建筑设计、 结构和美学等方面,例如在建筑设计时,通 过勾股定理计算建筑物的比例和角度,实现 建筑的美学和功能性统一。
游戏开发
在游戏开发中,勾股定理可用于实现物理引擎,如计算物体的碰撞、重力加速度等参数。
05
勾股定理的扩展应用
勾股定理在金融领域的应用
金融投资
勾股定理可以用于金融投资领域,通过分析股票、债券等金融产品的价格波动和相关性,预测市场走势,制定投 资策略。
风险管理
在金融风险管理方面,勾股定理可以用于评估投资组合的风险,通过计算不同资产之间的相关性,合理配置资产, 降低投资风险。
勾股定理在信息科学领域的应用
数据处理
在信息科学领域,勾股定理可以用于数据处理和分析,例如在图像处理中,通过勾股定理计算像素之 间的距离和角度,实现图像的缩放、旋转和平移等操作。
通信技术
在通信技术领域,勾股定理可以用于信号传输和数据处理,例如在无线通信中,通过勾股定理计算信 号的传播距离和衰减程度,优化信号传输质量和覆盖范围。
北师大版八年级数学上册1.3勾股定理的应用课件(共33张PPT)
![北师大版八年级数学上册1.3勾股定理的应用课件(共33张PPT)](https://img.taocdn.com/s3/m/20f18d3408a1284ac950431c.png)
成任务的最短路程吗?
例 如图,四边形ABCD中,AB⊥AD,已知AD=3cm, 如图,在△ABC中,AB:BC:CA=3:4:5且周长为36cm,点P从点A开始沿AB边向B点以每秒2cm的速度移动,点Q从点C沿CB边向
点B以每秒1cm的速度移动,如果同时出发,则过3s时,求PQ的长.
AB=4cm,CD=12cm,BC=13cm,求四边形ABCD 的面积. 若已知圆柱体高为12 cm,底面周长为18 cm,则:
探究新知
素养考点 1 利用勾股定理的逆定理解答测量问题
例 如图,是一农民建房时挖地基的平面图,按标准应为长 方形,他在挖完后测量了一下,发现AB=DC=8m,AD=BC =6m,AC=9m,请你运用所学知识帮他检验一下挖的是否合 格?
解:因为AB=DC=8m,AD=BC=6m, 所以AB2+BC2=82+62=64+36=100. 又因为AC2=92=81, 所以AB2+BC2≠AC2,∠ABC≠90°, 所以该农民挖的不合格.
探究新知
知识点 1 利用勾股定理解答最短路径问题 以小组为单位,研究蚂蚁在圆柱体的A点沿侧面爬行 到B点的问题.
讨论 1.蚂蚁怎样沿圆柱体侧面从A点爬行到B点?
2 .有最短路径吗?若有,哪条最短?你是怎样找到的?
B
我要从A点沿侧面
爬行到B点,怎么
爬呢?大家快帮我
想想呀!
A
探究新知
蚂蚁A→B的路线
A'
d
B A'
B
O
B
B
A
A
A
A
想一想 蚂蚁走哪一条路线最近?
探究新知
若已知圆柱体高为12 cm,底面周长为18
cm,则: AB2=122+(18÷2)2 所以
勾股定理课件(共20张PPT)
![勾股定理课件(共20张PPT)](https://img.taocdn.com/s3/m/3107630659eef8c75fbfb37a.png)
1. S1 = 9 个单位面积. S2 = 9 个单位面积. S3 = 18 个单位面积.
S b2
A c C a S1
S3
B
结论:图1中三个正方
形的面积S1,S2,S3之间 的数量关系是:
图 1
S1+S2=S3
(图中每个小方格是1个单位面积)
S1+S2=S3 在图2中还成立吗?
1. S1 = 9 个单位面积.
5
“路”
3m
需要,需使梯子底端离建筑物距离AB为6米,问至少 需要多长的梯子? 解:∵AB⊥BC ∴∠ABC = 90° 根据勾股定理得: AC2 = AB2 +BC 2 = 62 + 82 = 36+64 = 100 即:AC = 10 答:梯子至少长10米。
C
例4、如图,要登上8米高的建筑物BC,为了安全
a c a ∴a2+b2=c2
;
c
b b
b
c
“赵爽弦图”表现了我国古人对数学的钻研 精神和聪明才智,是我国古代数学的骄傲。 因此,当 2002年第24届国际数学家大会在 北京召开时, “赵爽弦图”被选作大会会徽。
证明2:
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为 b a a c
ab 2 4 C 2
8m
A
6m
B
1、本节课我们学到了什么?
通过学习,我们知道了著名的勾股定 理,掌握了从特殊到一般的探索方法, 还学会到了拼图证明的方法。
2、学了本节课后我们有什么感想? 我们发现有些数学结论就存在于平常的生活中,需 要我们用数学的眼光去观察、思考、发现。
毕达哥拉斯(公元前572----前492年),古希腊著名的哲学家、数学 家、天文学家。相传有一次他在朋友家做客时,发现朋友 家用砖铺成的地面中反映了A、B、C三者面积之间的数量 关系,进而发现直角三角形三边的某种数量关系.
(精选幻灯片)勾股定理ppt课件
![(精选幻灯片)勾股定理ppt课件](https://img.taocdn.com/s3/m/dd085138a55177232f60ddccda38376baf1fe024.png)
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
勾股定理应用举例ppt课件
![勾股定理应用举例ppt课件](https://img.taocdn.com/s3/m/fa1aed70a4e9856a561252d380eb6294dd88222c.png)
24m,高为
6m,一只老鼠从距底面1m的A处爬行到对角B处
吃食物,它爬行的最短路线长为
.
选做题
如图,长方体盒子(无盖)的长、宽、高分别 为12cm ,8cm,30cm,在AB中点C处有一滴蜜 糖,一只小虫从D处爬到C处去吃,则最短路程 是多少?
A
D
.C
30
B
8 12
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
数学思想:
本节课充分利用了数学中的转化思想,即将 立体图形转化为平面图形。
七、当堂检测,达标反馈 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
分层检测 ☞
必做题
1、有一圆柱体如图,高8cm,底面半径5cm,A处 有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行的最 短距离(π取值为3)
五、知识总结
这节课你学习了什么内容?
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
谈谈这节课你的收获
这节课主要是应用勾股定理来解决路程最短问题。 数学方法:
把几何体适当展开成平面图形,再利用“两点之 间线段最短”的性质找出最短距离,构造直角三 角形,运用勾股定理解决问题。
最短距离问题小结
(1)将立体图形转化为平面图形,画出适当的示意图 。 (2)找准点的位置,根据“两点之间,线段最短” 确定行
走路线,找到最短路径。
(3)以最短路径为边构造直角三角形,利用勾股定理求解。
B
6m,一只老鼠从距底面1m的A处爬行到对角B处
吃食物,它爬行的最短路线长为
.
选做题
如图,长方体盒子(无盖)的长、宽、高分别 为12cm ,8cm,30cm,在AB中点C处有一滴蜜 糖,一只小虫从D处爬到C处去吃,则最短路程 是多少?
A
D
.C
30
B
8 12
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
数学思想:
本节课充分利用了数学中的转化思想,即将 立体图形转化为平面图形。
七、当堂检测,达标反馈 为了规范事业单位聘用关系,建立和完善适应社会主义市场经济体制的事业单位工作人员聘用制度,保障用人单位和职工的合法权益
分层检测 ☞
必做题
1、有一圆柱体如图,高8cm,底面半径5cm,A处 有一蚂蚁,若蚂蚁欲爬行到C处,求蚂蚁爬行的最 短距离(π取值为3)
五、知识总结
这节课你学习了什么内容?
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
谈谈这节课你的收获
这节课主要是应用勾股定理来解决路程最短问题。 数学方法:
把几何体适当展开成平面图形,再利用“两点之 间线段最短”的性质找出最短距离,构造直角三 角形,运用勾股定理解决问题。
最短距离问题小结
(1)将立体图形转化为平面图形,画出适当的示意图 。 (2)找准点的位置,根据“两点之间,线段最短” 确定行
走路线,找到最短路径。
(3)以最短路径为边构造直角三角形,利用勾股定理求解。
B
14.2.3 勾股定理的应用(网格作图与计算问题)(华东师大版)(共21张PPT)
![14.2.3 勾股定理的应用(网格作图与计算问题)(华东师大版)(共21张PPT)](https://img.taocdn.com/s3/m/bf687800e53a580216fcfef2.png)
的直线建一图书室,本社区有两所学校所在的位置在点C和点D
处,CA⊥AB于A,DB⊥AB于B,已知AB=25km,C该建在距点A多少km处,才能使它 到两所学校的距离相等?
以
AE
B
致
用
D
C
小结
这节课我学到了什么? 我的收获是…… 我还有……的疑惑
P 123
八年级(上)
华东师大版第14章 勾股定理
温故知新
你能灵活地
运用直角三
B
角形的性质
解决问题吗?
c
a
∠A+∠B=90°
A
b
C
a2 b2 c2
(Ⅰ)直角三角形的两锐角互余;
(Ⅱ)直角三角形两直角边的平方和等于斜边的平方。
探究发现
问题1:如图,在3×3的正方形网格中,每个小正方形的边长都为1,请
在给定网格中按下列要求画出图形:
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB是等腰三角形? (3)当点Q在边CA上运动时,求能使△BCQ是等腰三角形的运动时间。
C
C
Q
Q
B
PA
B
PA
备用图
一个人一天也不能没有理想,凭侥幸、 怕吃苦、没有真才实学,再好的理想也 不能实现不了。
学以致用
例 2 如图大正方形的面积为13,小正方形的面积为1,求 a b2 的值。
c
a
b
a2 b2 c2 13 4 1 ab 13 1 12
2
数学活动室
1.在一棵树的10米高的D处有两只猴子,其中一只猴子爬下树走 到离树20米的池塘A处,另一只爬到树顶后直接跃向池塘A处,如 果两只猴子所经过的距离相等,试问这棵树有多高?
《勾股定理》PPT优秀课件
![《勾股定理》PPT优秀课件](https://img.taocdn.com/s3/m/1cf4a65b876fb84ae45c3b3567ec102de2bddf9c.png)
探究活动
分成四人小组,每个小组课前准备好4个全等的直角三角形和以直角三角形各边为边长的3个正方形(如右图).
运用这些材料(不一定全用),你能另外拼出一些正方形吗?试试看,你能拼几种.
图1
图3
图2
方法一:
而
所以
即
,
,..ຫໍສະໝຸດ 因为,方法二:
,
化简得:
方法三:
,
化简得:
1.求下列图中表示边的未知数x、y、z的值.
议一议:
(1)你能用直角三角形的两直角边的长a、b和斜边长c来表示图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b,斜边为c,那么
即 直角三角形两直角边的平方和等于斜边的平方。
表示为:Rt△ABC中,∠C=90°
16 9
?
?
(3)你是怎样得到正方形C的面积的?与同伴交流.
“割”
“补”
“拼”
(4)分析填表数据,你发现了什么?
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2、我国数学家刘徽在他的《九章算术注》中给出的“青朱出入图” :
证法四:(伽菲尔德证法1876年)
如图,Rt△ABE≌Rt△ECD,可知∠AED=90°;
证法五:(欧几里得证法公元前3世纪)
“新娘的轿椅”或“修士的头巾”
如图,Rt△ ABC中,∠ACB=90°,四边形ACHK、BCGF、ABED都是正方形,CN⊥DE,连接BK、CD。
分成四人小组,每个小组课前准备好4个全等的直角三角形和以直角三角形各边为边长的3个正方形(如右图).
运用这些材料(不一定全用),你能另外拼出一些正方形吗?试试看,你能拼几种.
图1
图3
图2
方法一:
而
所以
即
,
,..ຫໍສະໝຸດ 因为,方法二:
,
化简得:
方法三:
,
化简得:
1.求下列图中表示边的未知数x、y、z的值.
议一议:
(1)你能用直角三角形的两直角边的长a、b和斜边长c来表示图中正方形的面积吗?
(2)你能发现直角三角形三边长度之间存在什么关系吗?
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b,斜边为c,那么
即 直角三角形两直角边的平方和等于斜边的平方。
表示为:Rt△ABC中,∠C=90°
16 9
?
?
(3)你是怎样得到正方形C的面积的?与同伴交流.
“割”
“补”
“拼”
(4)分析填表数据,你发现了什么?
A的面积
B的面积
C的面积
左图
4
9
13
右图
16
9
25
结论2 以直角三角形两直角边为边长的小正方形的面积的和,等于以斜边为边长的正方形的面积.
2、我国数学家刘徽在他的《九章算术注》中给出的“青朱出入图” :
证法四:(伽菲尔德证法1876年)
如图,Rt△ABE≌Rt△ECD,可知∠AED=90°;
证法五:(欧几里得证法公元前3世纪)
“新娘的轿椅”或“修士的头巾”
如图,Rt△ ABC中,∠ACB=90°,四边形ACHK、BCGF、ABED都是正方形,CN⊥DE,连接BK、CD。
勾股定理的计算与作图优秀课件
![勾股定理的计算与作图优秀课件](https://img.taocdn.com/s3/m/b80a41a6bb4cf7ec4afed099.png)
一、解决问题
注:此图片是动画 缩略图,以动画形 式对作图过程进行 演示.如需使用此 资源,请插入动画 “【情景演示】勾 股定理的应用-在 数轴上画出表示根 号13的点”.
二、拓展应用
(1)类似地,利用勾股定理,可以作出长为 2 , 3 , 4 ,5 …的点, 如下图:
二、拓展应用
注:此图片是动画 缩略图,以动画形 式对作图过程进行 演示.如需使用此 资源,请插入动画 “【数学活动】勾 股定理的应用-在 数轴上画出表示根 号n(n是正整数) 的点”.
【点拨】作一条长度等于无理数的线段的方法不唯一,如,除了上题中构பைடு நூலகம்直角
边为1,2的直角三角形,也可以借助直角边为 2 , 3 的直角三角形得到 5 ,我
们一般尽量利用直角边为整数的直角三角形作出.
三、巩固练习
练习2 在如图所示的正方形网格中,每个小正方形的边长皆 为1.请在网格上画出长度分别为 2 , 5 ,17 的线段.
解:如图所示,图中AB,CD,EF即为所求,AB= 12 12= 2,CD= 12 22 = 5 , EF= 12 42 = 17 .
四、综合运用
利用勾股定理解决较复杂的几何问题
问题3:如图,折叠长方形的一边AD,使点D落在BC边上的点F处, 已知AB=8 cm,BC=10 cm,求EC的长.
五、课堂小结
1.在数轴上表示无理数c的关键是: 利用勾股定理联想到 c a2 b2 ,即以a,b为直角边长构造
直角三角形,则斜边长为c.以原点为圆心,以斜边长为半径作弧即 可在数轴上表示无理数. 2.在解决有关直角三角形的问题是:
常常利用勾股定理由已知线段求未知线段,或利用勾股定理列 出方程解决问题.
AB AC 2 BC 2 (5 1)2 (5 2)2 =5
勾股定理优秀PPT课件
![勾股定理优秀PPT课件](https://img.taocdn.com/s3/m/3023908e312b3169a551a4c2.png)
b
c
a
a
这种证明方法从几何图形的面积变化入手,运用了数形结合的思 想方法.
18
-
<四>练习提升
1.议一议:观察下图,用数格子的方法判断图中三角形的三 边长是否满足a2+b2=c2.
2.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4, 求两直角边的长.
19
-
<五>勾股定理的文化价值
(1) 勾股定理是联系数学中数与形的第一定理.
(2) 勾股定理反映了自然界基本规律,有文明的宇宙“人”都应 该认识它,因而勾股定理图被建议作为与“外星人”联系的信号. (3) 勾股定理导致不可通约量的发现,引发第一次数学危机. (4) 勾股定理公式是第一个不定方程,为不定方程的解题程序 树立了一个范式.
20
-
<六>小结反思
学生反思:我最大的收获; 我表现较好的方面; 我学会了哪些知识; 我还有哪些疑惑……
AB2+AC2=BC2.
11
-
第三种类型:以刘徽的“青朱出入图”为代表,证明不 需用任何数学符号和文字,更不需进行运算,隐含在图中的 勾股定理便清晰地呈现,整个证明单靠移动几块图形而得出, 被称为“无字证明”.
约公元 263 年,三国时代魏国的数学家刘徽为古籍《九 章算术》作注释时,用“出入相补法”证明了勾股定理.
方法一:三国时期吴国数学家赵爽在为《周髀算经》作注解时, 创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对 勾股定理最早的证明.
2002年世界数学家大会在北京召开,这届大会会标的中央图案正是 经过艺术处理的“弦图”,标志着中国古代数学成就.
6
-
c
由面积计算,得 c2 41ab(ba)2. 2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在Rt△ABC中,∠ACB=90° ∴AB2=AC2+BC2(勾股定理)
A B A2 C B2 C 42 5 62 056 7 25 5
∴通道的长度为75cm.
无障碍设施建设是社会文明进步的重要标志,是城市管理 人性化、现代化的必要举措,是上海成为现代化国际大都市不 可或缺的环境条件。
如图,现要在此楼梯旁建造无障碍通道,经测量 每格楼梯的高为11.25cm,宽20cm,你能求出通道的 长度∵AC=11.25×4=45cm,BC=20×3=60cm
BC的长为 5 或 7
.B
B
4
4
C3 A
A3 C
注:在应用勾股定理时,要结合图形具体处理,不能
机械的认为c所对的角是直角或c边必是斜边
例1:已知等边三角形的边长为6,求它
的高和面积.
A
⑴求它的高.
⑵求它的面积.
B
D
C
练习:1、 等边三角形的边长为12,
则它的高为______
2、如图有两颗树,一棵高8m,另一棵高 2m,两树相距8m,一只小鸟从一棵树的树梢飞 到另一棵树的树梢,至少飞了多少米?
利用勾股定理作图计算优秀课 件
勾股定理 :
直角三角形中,两直角边的平方和等 于斜边的平方.
A
弦
c
股
b
B 勾 a┏C
在Rt△ABC中,若∠C=90°,则
a2+b2=c2
A
A
A
15 10 6
76
B
8 ┏C
B A
┏C B
┏C
A
2
B 45°┏C
4
B 60°┏C
想一想:
练习:小丁的妈妈买了一部34英
寸(86厘米)的电视机。小丁量 50
A
8m
E
B
8m
C
2m
D
图1中的x等于多少? 图2中的x、y、z等于多少?
2x
1
1
图1
2z 3y
x2 1 1
图2
沿着图2继续画直角三角形,还能得到那些无理数?
2z 3y
5
x2 1
6
1
图2
图2中的图形的面积是多少?
在数轴上如何表示 2 ?
在数轴上如何表示 3 ?
1 0 1 2 32 5 3 4 5
了电视机的屏幕后,发现屏幕只
有70厘米长和50厘米宽,他觉得
一定是售货员搞错了。你能解释
这是为什么吗?
70
我们通常所说的34英寸 或86厘米的电视机,是指 其荧屏对角线的长度
∵702+502=7400 862=7396 荧屏对角线大约为86厘米
∴售货员没搞错
问题2
1.已知:Rt△ABC中,AB=4,AC=3,则
数轴上的点有的表示有理数,有的
表示无理数,你能在数轴上画出 13
表示 的点吗?
作图方法:①在数轴上找到点A,使OA=3,
②过A点作直线L垂直于OA,在L上截取AB=2,
③以O为圆心,以OB为半径画弧,交数轴于点C,
L
点C即为表示 1 3 的点.
B
2
0 1 2 A•3 1•3C4
- 17
2007年在上海举行第12届夏季特殊奥林匹克运动会.
A B A2 C B2 C 42 5 62 056 7 25 5
∴通道的长度为75cm.
无障碍设施建设是社会文明进步的重要标志,是城市管理 人性化、现代化的必要举措,是上海成为现代化国际大都市不 可或缺的环境条件。
如图,现要在此楼梯旁建造无障碍通道,经测量 每格楼梯的高为11.25cm,宽20cm,你能求出通道的 长度∵AC=11.25×4=45cm,BC=20×3=60cm
BC的长为 5 或 7
.B
B
4
4
C3 A
A3 C
注:在应用勾股定理时,要结合图形具体处理,不能
机械的认为c所对的角是直角或c边必是斜边
例1:已知等边三角形的边长为6,求它
的高和面积.
A
⑴求它的高.
⑵求它的面积.
B
D
C
练习:1、 等边三角形的边长为12,
则它的高为______
2、如图有两颗树,一棵高8m,另一棵高 2m,两树相距8m,一只小鸟从一棵树的树梢飞 到另一棵树的树梢,至少飞了多少米?
利用勾股定理作图计算优秀课 件
勾股定理 :
直角三角形中,两直角边的平方和等 于斜边的平方.
A
弦
c
股
b
B 勾 a┏C
在Rt△ABC中,若∠C=90°,则
a2+b2=c2
A
A
A
15 10 6
76
B
8 ┏C
B A
┏C B
┏C
A
2
B 45°┏C
4
B 60°┏C
想一想:
练习:小丁的妈妈买了一部34英
寸(86厘米)的电视机。小丁量 50
A
8m
E
B
8m
C
2m
D
图1中的x等于多少? 图2中的x、y、z等于多少?
2x
1
1
图1
2z 3y
x2 1 1
图2
沿着图2继续画直角三角形,还能得到那些无理数?
2z 3y
5
x2 1
6
1
图2
图2中的图形的面积是多少?
在数轴上如何表示 2 ?
在数轴上如何表示 3 ?
1 0 1 2 32 5 3 4 5
了电视机的屏幕后,发现屏幕只
有70厘米长和50厘米宽,他觉得
一定是售货员搞错了。你能解释
这是为什么吗?
70
我们通常所说的34英寸 或86厘米的电视机,是指 其荧屏对角线的长度
∵702+502=7400 862=7396 荧屏对角线大约为86厘米
∴售货员没搞错
问题2
1.已知:Rt△ABC中,AB=4,AC=3,则
数轴上的点有的表示有理数,有的
表示无理数,你能在数轴上画出 13
表示 的点吗?
作图方法:①在数轴上找到点A,使OA=3,
②过A点作直线L垂直于OA,在L上截取AB=2,
③以O为圆心,以OB为半径画弧,交数轴于点C,
L
点C即为表示 1 3 的点.
B
2
0 1 2 A•3 1•3C4
- 17
2007年在上海举行第12届夏季特殊奥林匹克运动会.