多原子分子振动和振动光谱共52页文档
振动光谱

动,因此线性分子振动的自由度为3n-5。
基本振动类型---伸缩振动
伸缩振动:健合原子沿健轴方向的振动,健长改变,而健 角不改变。
(1)对称伸缩振动:两个原子相对于第三个原子作对称 的位移振动;
拉 曼
8102~ 1.3104~2.5 3.81014~ 1.6~101 可见光谱
4102 104
1015
光 谱
4102~ 2.5104~105 1015~1.5 101~102 紫外光谱
1102
1016
102~10-2 106~108
1016~1018 103~106 X 射线光谱
振动光谱基本原理---光的二重性
和0.05eV。
弹簧谐振子振动
●谐振子的振动势能有:
●体系的动能有: 根据虎克定律: ●谐振子的振动频度为:
式中,Ep是谐振子的振动势能, k为弹簧力常数,d为小球位移。
m为小球质量,v为小球运动速度。
双原子分子的谐振模型
如重心不变则有:
其中μ为折合质量
双原子分子的谐振模型
●设当两原子振动时的位移为R=r-re ,则分子振动势 能可表示为:
谐振子吸收或发射辐射地 必定依照△n=±1
的规律增减,这称为选律, 而这类吸收而产生的光 谱率称为基频。
倍频和差频
真实分子的振动不完全符合谐振子模型,在很 多情况下,可能出现△n>1;
●当△n=2,称为第一泛音带, ●当△n=3,称为第二泛音带, ●相反也可能出现ν1+ν2 和 ν1-ν2的红外吸收。
●用波长表示则: 光子量能量随波长的增加
第四章 振动光谱

第四章振动光谱一、教学目的理解掌握震动光谱分析的基本理论,掌握红外光谱图的分析处理,了解红外光谱实验技术。
二、重点、难点重点:震动光谱分析的基本理论,红外光谱图的分析处理。
难点:震动光谱分析的基本理论。
三、教学手段多媒体教学四、学时分配4学时引言:●1900~1910年间,科布伦茨(W.W.C。
blentz)首先用红外光测量了一些有机物液体的吸收光谱而建立起一种新的分析方法——红外光谱法。
他发现分子中的一定原子群可以吸收特定的频率,这些特定的频率犹如人类的指纹,可以用来辨认分子中特定原子群的存在。
●它主要可以用作分子结构的基础研究和物质化学组成(物相)的分析(包括定性和定量)。
红外光谱法作分子结构的研究可以测定分子的键长、键角大小,并推断分子的立体构型,或根据所得的力常数,间接得知化学键的强弱,也可以从正则振动频率来计算热力学函数等。
●不过红外光谱法更多的用途是根据谱的吸收频率的位置和形状来判定本知物,并按其吸收的强度来测定它们的含量。
因此红外光谱法在目前已成为十分方便而有效的分析方法之一。
●红外光谱法应用得较多的是在有机化学领域,对无机化合物和矿物的红外鉴定开始较晚。
红外光谱法对测定矿物的结构或组分虽不如X射线衍射分析那么成熟,却也有其独特长处。
所谓振动光谱是指物质因受光的作用,引起分子或原子基团的振动,从而产生对光的吸收。
如果将透过物质的光辐射用单色器加以色散,使波长授长短依次排列,同时测量在不同波长处的辐射强度,得到的是吸收光谱。
如果用的光源是红外光波,即0.78~1000μm,就是红外吸收光谱。
如果用的是强单色光,例如激光,产生的是激光拉曼光谱。
本章主要介绍红外光谱的原理及其在无机非金属材料中的应用,对拉曼光谱只作简单的介绍。
红外光谱法就逐渐形成了一个极其有效而广泛的分析方法。
它主要可以用作分子结构的基础研究和物质化学组成(物相)的分(包括定性和定量)。
红外光谱法作分子结构研究可以测定分子的键长、键角大小,并推断分子的立体构型,或根据所得的力常数,间接得知化学键的强弱,也可以从正则振动频率来计算热力学函数等。
多原子分子的结构及振动光谱

多原子分子的结构及振动光谱
多原子分子是由两个或更多原子结合而成的分子,其分子中心通常不是原子的位置所在。
由于原子之间存在化学键的相互作用,结构和振动状态可以给出分子的一些信息,如分子的几何结构、化学键的类型和长度等。
在分子的振动光谱中,我们可以观察到分子的振动模式,可分为拉伸振动和弯曲振动两类。
拉伸振动是指分子中一些化学键的伸缩运动,常用来描述键的类型和长度;弯曲振动是指分子中原子围绕某个共振轴的弯曲运动,常用来描述分子的几何构型。
此外,多原子分子的振动光谱还包含了谐振子和旋转能级。
谐振子是指分子中化学键的微小振动,其能量按照谐振子模型分布在一系列离散的能级上;旋转能级是指分子整体绕某个轴线的旋转运动,其对分子整体结构的影响可以在振动光谱中得到体现。
总的来说,多原子分子的结构和振动光谱提供了我们理解分子的基本属性和相互作用的重要工具。
振动光谱-1

在使频率降低,谱峰变宽,积分强度增加,它 是判断有无醇、酚和有机酸的重要依据。当无 氢键存在时,O—H或N—H成一尖锐的单峰出 现在频率较高的部分。
N—H伸缩振动在3500~3300cm-1区域,和 O—H谱带重叠。但峰形略比O—H尖锐。伯、 仲酰胺和伯、仲胺类在该区都有吸收谱带。
苯的衍生物在2000~1667cm-1区域出现面 外弯曲振动的倍频和组频谱带,它们的强 度较弱,但该区吸收峰的数目和形状与芳 核的取代类型有直接关系,在判别苯环取 代类型上非常有用。
4)部分单键振动及指纹区域 (1500~400cm-1 )
该区域的光谱比较复杂,一般较难找到它 们的归属。对鉴定有用的特征谱带主要有 C—H,O—H的变形振动以及C—O,C—N, C—X等的伸缩振动及芳环的C—H弯曲振动
环状结构也能使C=O伸缩振动的频率发生变化。羰基在七元环和六 元环上,其振动频率和直链分子的差不多。当羰基处在五元环或四元 环上时,其振动频率随环的原子个数减少而增加。这种现象可以在环 状酮,内酯以及内酰胺等化合物中看到。
3 氢键效应
氢键(分子内氢键;分子间氢键):对峰位,峰强产 生极明显影响,使伸缩振动频率向低波数方向移动,谱 带变宽;弯曲振动向高频移动,谱带变窄。
例1:
R-COR C=0 1715cm-1 ; R-COCl C=0 1800cm-1 ; F-COF C=0 1920cm-1 ;
?
R-COH C=0 1730cm -1 ; R-COF C=0 1920cm-1 ; R-CONH2 C=0 1928cm-1 ;
例2:
b.共轭效应
例1:
例2:
第五章 振动光谱

v' x 2 v 2 ( v (v 1) v 'v 2 ( 2v 1) v 'v ( v 1)(v 2) v 'v 2 ) 0
若考虑高阶项, 则选律为 v 1, 2, 3, 但电性质的非谐性通常很小, 故跃迁 v 2, 3, (b) 势能的非谐性 谐振子势能只在平衡点附近是好的 近似.谐振子势能是不能离解的. 当键长 r 很大时, 分子解离成 两个原子,势能为常数.
2
m1m2 m1 m2
1 Ev v 0 2 1 Ev v h 2 E 1 Gv v v hc 2
0
k
k
1 2
1 k 2c
一些双原子分子的力常数
力常数与同位素取代无关. 如H35Cl的振动频率:
13 ) 4
谐振动频率 e 不能直接测定.如要测定 e 和 e xe, 至少需要知道
G 1 G(1) G(0) e 2 e xe G 3 G(2) G(1) e 4 e xe
2 2
实线是 波函数 的平方
谐振子的波函数
非谐振子波函数
(5) 振动-转动光谱 a) 红外光谱 • 当分子处于液相或固相时, 分子不能自由转动, 可能观测到纯振动光谱. • 但当分子处于气相时,分子可以自由转动,因而振动能级跃迁必然会引起转 动能级的跃迁.所以气相分子的振动光谱不是一条线(line), 而是一条带 (band). S G(v ) Fv ( J ) e (v 1 ) e xe (v 1 )2 ... Bv J ( J 1) Dv J 2 ( J 1) 2 2 2 选择定则为:
仪器分析原理5分子振动-转动光谱

取代基相同,其三重键的对称伸缩振动没有偶极矩的 变化,不发生红外吸收。
§5.1.2 红外光谱和分子结构的关系
1. 官能团区和指纹区
△有机结构分析:分子中的不同基团在红外光谱中有不同 的吸收频率,而且基团所处的环境不同,红外吸收不同。
以拉曼位移(波数)为横坐标,强度为纵坐标,略去反斯托克 斯谱线,以激发光的波数为原点νo,便可得到类似红外光 谱的拉曼光谱图。
(4) 费米(Fermi)共振 当振动的倍频或合频与其另一基频频率相近,并且具
有相同的对称性时,由于相互作用也产生共振耦合使谱带 分裂,并使原来的倍频或合频的强度增加。
醛基在2200 cm-1和2270 cm-1出现两个强度相近的谱带是 费米共振的典型例子。
3. 主要基团的特征吸收谱带 红外光谱用于化合物的结构分析,需要对红外光谱图
0
拉曼散射:分子在受激虚态可能有两种方式回到低能级。 斯托克斯线:从受激虚态→激发态能级,放出能量为 h(ν0−∆ν)的光子,此时散射光的频率比入射光的频率相应 地减小Δν,这种散射谱线称为斯托克斯线(低频)。 反斯托克斯线:从受激虚态→基态并发射出能量为h(ν0+∆ν) 的光子,此时散射光的频率比入射光的频率相应地增加Δν, 这种散射谱线为反斯托克斯线(高频)。
在常温下,绝大多数分子处在基态,而不是处在激发态。 因此斯托克斯线比反斯托克斯线要强得多。
拉曼位移: 斯托克斯线或反斯托克斯线与入射光的频率之差Δν称
为拉曼位移。
Stokes Raman a分子的拉曼线的频率也会改 变。但是拉曼位移Δν始终保持不变,拉曼位移与入射光的 频率无关,它与物质分子的振动和转动能级有关。不同的 物质具有不同的分子结构,具有不同的振动和转动能级, 因而有不同的拉曼位移。
06-振动光谱

13
双原子分子振动可以近似地看作为简谐振动:
➢ 把两个质量为m1和m2的原子看作为两个刚性小球;
➢ 连接两原子的化学键设想为无质量的弹簧,原子间
的化学键长度看做是弹簧长度r ,键力常数看成为 弹簧力常数k 。
双原子分子的振动形式仅有一种:伸缩振动,即振动 时两原子之间距离(键长)发生改变。
14
1
振动光谱
振动光谱:vibrational spectrum 分子中同一电子能态中不同振动能级之间跃迁产 生的光谱。
振动光谱:包括
红外吸收光谱,IR
Infrared Absorption Spectrum
拉曼散射光谱
Raman Scattering Spectrum
1
红外吸收过程:当分子中某个基团的振动频率和红外 光的频率一致时,样品分子就吸收该频率的红外光能 量,从原来的基态跃迁到能量较高的激发态。
➢ 中红外光谱仪最为成熟、简单,而且目前已积累了该区大量 的数据资料,它是应用极为广泛的光谱区。
➢ 通常,中红外光谱法又简称为红外光谱法。
9
红外光与红外光谱
分子或原子基团吸收光能量具有量子化特征 分子运动状态由基态E0 跃迁到激发态E1、E2时, 它们的能量差:
能级跃迁示意图
△E1=hv1=E1-E0 △E2=hv2=E2-E0
8
名 称 λ/μm /cm-1
近红外区 0.75-2.5 13333-4000 中红外区 2.5-25 4000-400 远红外区 25-1000 400-10
主要能级跃迁类型
O-H、N-H、C-H键的倍频吸收 分子振动
分子转动、晶格振动
中红外区:最为有用,分子的振动能级跃迁
➢ 绝大多数有机化合物和无机离子的基频吸收带出现在该光区, 适于进行红外光谱的定性和定量分析。
振动光谱

振动光谱\基本原理\分子振动模型
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
4.1.1 光与分子的相互作用 光是一种波,可以使用波的基本公式:
振动光谱\基本原理\光与分子的相互作用
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
振动吸收的条件
1 振动频率与红外光光谱段的某频率相等; 2 必须有偶极距的变化。
我们把产生红外辐射吸收的振动称为红外活性振动, 把不发生吸收红外辐射的振动称为非红外活性振动。
链接:偶极矩μ=r×q。偶极距越大,键的极性越大。
振动光谱\红外光谱\红外光
/////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
振动光谱

第四章振动光谱当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射分子吸收了某些频率的辐射,,其振动或转动运动引起偶极矩发生变化转动运动引起偶极矩发生变化。
由于分子的振动能量比转动能量大由于分子的振动能量比转动能量大,,当发生振动能级跃迁时发生振动能级跃迁时,,不可避免地伴随有转动能级的跃迁动能级的跃迁,,只能得到分子的振动只能得到分子的振动--转动光谱,这种光谱称为红外吸收光谱这种光谱称为红外吸收光谱。
案例1500100015002000250030003500400001020304050607080T r a n s m i t i v i t y -1图4-1 灼烧前Nd:YAG前驱体的红外光谱图案例2500100025003000350040002030405060708090100T r a n s m i t t i v i t y 图4-2灼烧后Nd:YAG前驱体的红外光谱图第一节振动光谱的基本原理1.1.光的二重性光的二重性普朗克公式普朗克公式::E =h ν一、光与分子的相互作用波数即波长的倒数波数即波长的倒数,,表示单位(cm)长度光中所含光波的数目长度光中所含光波的数目。
波长或波数可以按下式互换波长或波数可以按下式互换::( cm -1)=1/λ(cm)=104/λ(μm)在2.5μm 处,对应的波数值为对应的波数值为::= 104/2.5 (cm -1)=4000cm -1ν_ν_(式4-1)图4-1能级跃迁示意图△E 1=E 2-E 1=h ν1△E 2=E 3-E 1=h ν22.2.原子或分子的能量组成原子或分子的能量组成分子的运动可分为移动分子的运动可分为移动、、转动转动、、振动和分子内的电子运动运动。
而每种运动状态又都属于一定的能级属于一定的能级。
分子总能量E =E 0+E t +E r +E v +E e 图4-2双原子分子能级示意图(式4-3)红外光谱法的特点紫外、可见吸收光谱常用于研究不饱和有机化合物,特别是具有共轭体系的有机化合物;红外光谱法主要研究在振动中伴随有偶极矩变化的化合物(没有偶极矩变化的振动在拉曼变化的化合物光谱中出现)。
分子光谱4多原子振动光谱

CO 由于具有三键性质,CO伸缩振动的峰位 在 2148cm-1
CO与金属原子或离子M络合配位 形成金属 羰化物 M-CO
结果在金属羰化物的红外光谱中,可以看到, CO伸缩振动的谱带相对CO发生红移
这是由于M的d电子进入CO的反键轨道,形成 反馈键,造成CO的键级下降所致
振动形式(多原子分子)
(一)伸缩振动 指键长沿键轴方向发生周期性变化的振动
1.对称伸缩振动:键长沿键轴方向的运动同时发生
AX 2型分子
s CH 2
~
2850cm1
AX 3型分子
s CH 3
~
2870cm1
2.反称伸缩振动:键长沿键轴方向的运动交替发生
AX 2型分子
as CH 2
~
2925cm1
AX 3型分子
as CH 3
多原子振动光谱
振动的经典动力学描述
对于n原子分子,各个原子在平衡位置 附近振动,振动动能为
T= 1 2
N
i
mi[(
dxi )2+ dt
dyi dt
)2+
dzi )2] dt
(
(
为简化方程,把直角坐标变为质量权重坐标
q1=(m1)1/2x1 q2=(m1)1/2y1 q3=(m1)1/2z1 q4=(m2)1/2x2 ……….
COOH
1740cm-1
振动 1 简并振动 2 非简并振动
uijqiqj
牛顿第二定律 F=ma
Fa,x=-
V xa
Fa,x=mi
d2xa dt2
由于 qi=ma1/2xa
V
=
V qi =ma1/2
V
xa
第一章 振动和转动光谱 PPT课件

E = n2h2/(8md2)
结论:能量量子化,不连续
1.12量子力学谐振子
经典谐振子
量子力学
E=1/2FX2max
Evib=(+1/2)h
能级连续 Xmax 任意值 能级分离 : 0,1,2
Evib=(+1/2)h
振动量子数,0,1,2,3, h普朗克常数,
振动频率
注意: 1 振动量子数不能取任意数值 2 振动能量是不连续的,能量是分立的数值 3 吸收光子后,可以从一个较低的能级跃迁到另一个较高的
同样时刻运动的轨迹
1.5 力学分子模型
The ratio of the stretching to bending force constants of the spring should be adjusted so that the ratio is about 8 or 10 to 1 which is approximately the ratio found in real molecules.
1.6 坐标与分子的振动 笛卡尔坐标 Cartesian displacement coordinates 内坐标 internal coordinates, 键长,键角 简正坐标 normal coordinate
CO2 反对称伸缩 X1氧原子1的笛卡尔位 移坐标,平衡点,X1=0, X2碳原子,平衡点0 X3氧原子2,平衡点 X3=0
红外和拉曼光谱导论
长春应用化学研究所
王海水
参考书: 1 Introduction To Infrared And Raman Spectroscopy
Norman B. Colthup, Lawrence H. Daly Stephen E. Wiberley Third Edition, Academic Press, 1990, San Diego 2 近代傅里叶变换红外光谱技术及应用 吴瑾光 主编 科学技术文献出版社, 北京,1994
第6章 分子振动

Oh
4
E 6
8C3
0
6C2
0
6C4
2
3C2
2
i
0
6S 4
8S 6
0
3 h
3 d
0
4
2
3,约化 4 A1g E g T1u 4,解释,由约化结果可知,ML6 型分子共有 6 个简正模式,它们的对称性分别为:
a1g A1g , eg E g , t1u T1u
例 6—4 1, 写出 XeF4 分子全部简正模式的对称性 划分点群— D4 h
E
5 3
2C4
2 C2 C4
2C2
2C2
i
1
3
2S 4
h
5 1
2 v
2 d
n不 f ( R)
1 3
1
3
1
1
3 1
1 1
1
1
1
1
5
15
1
1
3
1
3
1
5
3
1
3, 4,
约化: 5 A1g A2 g B1g B2 g E g 2 A2u B2u 3Eu 解释:约化结果表示了全部机械运动的对称性,从中扣除代表平动和转动的不可约表示,剩 下的就是代表振动的 IR,
投影算符有多种写法,因为我们强调用特征标表解决问题,所以把投影算符写成:
ˆ X ( R) R ˆ P i i
R
ˆ ——属于第 i 个不可约表示的投影算符, X ( R ) ——操作 R 在第 i 个不可约表示中的特征标, R ˆ— P i i ˆ 的算符,求和对 R 进行。 —操作 R
上述定义的物理意义是: 把投影算符作用在一个函数上, 等于把各个操作分别作用在这个函数上, 再把作用的结果分别乘上第 i 个不可约表示中各个操作所对应的特征标,然后按 R 求和,即可得到具 有第 i 个不可约表示对称性的 SAF
多原子分子的振动态

二、多原子分子的振动态正则振动一个由N个原子组成的分子的核运动有3N个自由度。
分子的核运动:分子整体的平动:需要3个自由度描述;非线形分子的转动:需要3个自由度描述;线形分子的转动:需要2个自由度描述;分子的振动自由度:非线形分子是s= 3N-6线形分子是s= 3N-5 双原子分子有3×2-5=1个振动自由度选择适当的坐标系,使得动能和势能中的交叉项消失(即i ≠j时,a ij= 0, b ij= 0, )。
即找到一个变换矩阵R,把原坐标(q1, q2, q3,⋯,qs)变换到新的坐标(Q1, Q2, …, Qs)1122s sq Qq QRq Q⎛⎫⎛⎫⎪ ⎪⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭111212122212sss s ssr r rr r rRr r r⎛⎫⎪⎪=⎪⎪⎝⎭其中,例如:CO 2是非中心对称的线形三原子分子,有4个振动自由度,所以有四种简振模式:(a) 对称伸缩振动=1285.8 cm -1~ν1(b) 反对称伸缩振动=2350.1 cm -12ν C O O C O O(c) (d) 弯曲振动= 677.5 cm -134νν= yxz x z (c)y x z x z y y (d)显然,(a)模式不改变分子的电偶极矩(等于零),所以在红外振动光谱上观测不到;(b)(c)(d)模式则会改变分子的正负电荷中心,引起电偶极矩的变化,所以可以在红外振动光谱上观测到。
又如:H 2O 属C 2v 点群,是非线形三原子分子,有3个振动自由度,所以有3中简正振动模式:(a) 对称伸缩振动=3600 cm -1~ν1(b) 对称弯曲振动= 1595.4 cm -12ν(c) 反对称伸缩振动= 3758.35 cm -13ν在谐振子模型下,在同一电子态上涉及两个不同的简正振动模式i 和j 的振动能级之间的(红外)光学跃迁,选择定择则为11,2,,i v i s ∆=±= 0j v j i∆=≠如考虑到振动的非谐性,则∆v i 可取任意整数,即一个简正振动模式可以在跃迁中改变好几个量子,也可以同时在几个简正振动模式中改变几个量子,这样的谱带称为泛频谱带,其强度比基频谱带( )弱。
分子的振动-转动光谱

量的高聚物以及在分子量上只有微小差异的化合物外, 凡是具有结构不同的两个化合物,一定不会有相同的红 外光谱。通常红外吸收带的波长位置与吸收谱带的强度, 反映了分子结构上的特点,可以用来鉴定未知物的结构
组成或确定其化学基团;而吸收谱带的吸收强度与分子 组成或化学基团的含量有关,可用以进行定量分析和纯 度鉴定。由于红外光谱分析特征性强,气体、液体、固
谱便 图中,横坐标:吸收波长()或波数()。吸收峰位置。
纵坐标:透过率(T%)或吸光度(A)。吸收峰强度。
•
❖红外光谱图的特征:
❖(1)谱带的数目:即振动数目。它与物质的种类、基 团存在与否有关,与对称有关,与成分复杂程度有关。
❖(2)谱带的位置:与元素种类及元素价态有关:元素 轻则高波数,元素重则低波数;高价则高波数,低价则 低波数。(回忆v~ 与M 、K的关系)
绝大多数有机化合物和无机离子的基频吸收带出现 在该光区。由于基频振动是红外光谱中吸收最强的振动, 所以该区最适于进行红外光谱的定性和定量分析。同时, 由于中红外光谱仪最为成熟、简单,而且目前已积累了 该区大量的数据资料,因此它是应用极为广泛的光谱区。
通常,中红外光谱法又简称为红外光谱法。
远红外光区 (25 ~ 1000µm )
紫外、可见吸收光谱常用于研究不饱和有机物,特 别是具有共轭体系的有机化合物,而红外光谱法主要研 究在振动中伴随有偶极矩变化的化合物(没有偶极矩变 化的振动在拉曼光谱中出现)。因此,除了单原子和同 核分子如Ne、He、O2、H2等之外,几乎所有的有机化合 物在红外光谱区均有吸收。除光学异构体,某些高分子
平动和转动。
• 即:
•
3n = 振动自由度 + 平动自由度 + 转动自由
双原子分子振动转动光谱

双原子分子振动转动光谱双原子分子振动转动光谱2010-05-10 16:35双原子分子通常同时具有振动和转动,振动能态改变时总伴随着转动能态的改变,产生的光谱称为振动-转动光谱,其波长范围一般位于红外区。
双原子分子的纯振动作为初步近似,可以先忽略双原子分子的转动,只考虑分子的振动。
实际分子的原子核振动不是严格的简谐振动。
采用非简谐振子模型,把质量为M1和M2的原子核相对振动视为具有折合质量的单一质点在平衡位置re附近作非简谐振动,这个质点处于分子的原子核的有效势能场(分子中电子能量与原子核库仑排斥势能之和)中。
势能函数包含偏离平衡位置的位移量的二次幂项和更高次幂项。
这时,分子的振动能级的能量值为相应的光谱项为式中h为普朗克常数,с为真空中光速,υ为振动量子数,为分子的经典振动频率,Ke为振动力常数。
式(2)中等号右边第一项是简谐振子的振动光谱项;其后各项是非简谐振动的修正项,wexe和weye为非简谐性常数。
通常可以忽略更小的高次项,但当光谱仪器分辨率很高时以及在激光光谱学研究中应予考虑。
分子的最低振动态(υ=0)的能量值E0不为零,称为零点能。
图1为双原子分子在电子基态下的振动能级示意图。
双原子分子的势能可以用经验公式表示,莫尔斯势能函数是广泛采用的一种形式。
如图1中实曲线所示。
式中De称为分子离解能,β是与电子态有关的参数。
取r=re处的势能U=0;当r→∞时,势能曲线趋于水平渐近线,这时分子被离解。
从势阱底部算起的离解能是De,从υ=0能级算起的离解能是D0(见分子的离解能)。
双原子分子的振动-转动同时考虑分子的振动和转动时,转动能量可以看成是振动能量的微扰。
按照转动振子模型,对给定非简谐振子势能曲线的确定电子态,振动-转动能级的能量值可用下式表示相应的光谱项为式中Bv、Dv是振动态υ的转动常数。
转动振子光谱项表示为非简谐振子振动光谱项G(υ)与转动光谱项Fv(J)之和,其中转动谱项不仅与转动量子数J有关,而且由于分子的振动-转动相互作用,还与振动量子数υ有关。
双原子分子振动光谱

m1m2 dx m1v1 m2v2 , v v2 v1 ; M m1 m2 , vc m1 m2 dt m1 m2
• 经典谐振子的能量:
1 2 1 2 E T V v kx 2 2
3. 量子力学处理
哈密顿算符: 薛定谔方程:
但室温下:
k ~ 207cm1
双原子分子的振动激发态能量比这大得多,例如
HCl :
~ ~ 2890 cm1
根据Boltzman分布律,大多数分子常温下处于振动基态:
n n0e
k
,Hale Waihona Puke 0 分子振动能级与吸收跃迁示意图
4 3 2 1 v=0
(高温下可能会出现)
ˆ1 v" v" 1 v',v"1 v',v"1 2 2
因此,选律为:
ˆ ˆ 1 0, v v'-v" 1 x 0
要求振动过程中偶极矩要发生变化;同核双原子分子因此 无纯振动光谱
5. 光谱频率(波数)
2 2 d 1 2 ˆ H kx 2 2 dx 2
ˆ x E x H
d 2 2 2 E kx 0 2 2 dx
引入参数与变量:
得到:
k
2 E , 2 ,q x
d 2 q 2 q q 0 2 dq
结果:
1 v v hc 2
v
1
k
2 c
,
1 2
k
v x ve