桩基础计算书毕业设计

桩基础计算书毕业设计
桩基础计算书毕业设计

一引言

桩基础是一种重要的基础型式,在房屋建筑、桥梁、海洋等工程中都有广泛的应用。但桩基础的设计和计算过程比较复杂,手工计算十分麻烦、且很难得到满意的结果。目前,有关桩基础设计与分析的软件非常少见。本研究根据现有桩基础设计与分析理论,以VisualB++6.0为开发平台,研制了能够设计与分析单桩或群桩基础的程序。程序设计主要包括界面设计与计算程序两个方面。界面除了起交换数据作用外,更重要是直观、方便,能够有效地减少设计中的错误。计算程序分别采用静力触探法、经验公式法、按土的抗剪强度指标法计算单桩竖向承载力,能够简单分析单桩和群桩的桩基础受力与变形。。

随着计算机的普遍应用,国内外工程师加快了桩基础设计分析软件的开发和设计,国内外桩基础设计软件成果如下:国外桩基础程序设计起步较早,现在发展成熟的常见的软件有FAD3DPG,AllPile,mPile等国内桩基础程序设计起步较晚,当经过几年的发展桩基础设计程序日趋完善,国内有代表性的软件有:①湖南大学桩基础辅助设计软件PFCA D;

②浙江大学某设计院以Visual C++6.0为平台开发设计横向承载桩基础分析软件;③华侨大学开发的PFOD系统;④同济大学启明星桩基础设计计算软件 Pile 2009等桩基础是目前在高层建筑,桥梁港口设计中应用极为广泛的一种基础形式,本设计的目的是为了使设计人员从枯燥的计算中解脱出来,并能够有效的减少人为设计错误

二桩基础设计计算

2.1 桩基础设计一般步骤:

桩基础的设计应力求选型适当、经济合理、安全适用,对桩和承台有足够的强度、刚度和耐久性;对地基(主要是桩端持力层)有足够的承载力和不产生过量变形,其设计内容如下图所示:

场地勘察

提出勘察报告

确定桩基持力层

确定桩型、外形尺寸和构造

确定单桩承载力

确定桩数和布桩

拟定承台尺寸和埋深

根据荷载条件验算

作用于桩上的力

验算承台的结构强度

验算桩基整体强度

计算桩基

沉降量

验算下卧

层强度

最后确定承台的

尺寸、配筋构造

单桩设计

绘制桩、承台施工图

结束

无必

要验

算整体强度变

Y

Y

Y Y

Y

Y Y

N

N

N

图2.1 桩基础设计框图

即:

(1) 进行调查研究,场地勘察,收集有关资料;

(2) 综合勘察报告、荷载情况、使用要求、上部结构条件等确定桩基持力层; (3) 选择桩材,确定桩的类型、外型尺寸和构造; (4) 确定单桩承载力特征值;

(5) 根据上部结构荷载情况,初步拟定桩的数量和平面布置; (6) 根据桩的平面布置;初步拟定承台的轮廓尺寸及承台底标高; (7) 验算作用于单桩上的竖向和横向荷载; (8) 验算承台尺寸及结构强度;

(9) 必要时验算桩基整体承载力及沉降量,当持力层下有软弱下卧层时,验算软弱下卧层的地基承载力;

(10) 单桩设计,绘制桩和承台的结构及施工详图。 ⑾根据计算过程编制程序

2.2 确定桩型、构造 2.2.1 桩的分类

⑴ 按承载性状分为:摩擦性状和端承型桩;

⑵ 按使用功能分类:竖向抗压桩、竖向抗拔桩、水平受荷桩和复合受荷桩;⑶ 按桩身材料分类:混凝土桩、钢桩和组合材料桩;

⑷ 按成桩方法分类:非挤土桩、部分挤土桩和挤土桩。 ⑸按桩径大小分类:小桩、中等直径桩和大直径桩。 小桩:指桩径d ≤250mm 的桩。 中等直径桩:指250mm

2.2.2 桩型与工艺选择

桩型与工艺选择应根据建筑结构类型、荷载性质、桩的使用功能、穿越土层、桩端持力层土类、地下水位、施工设备、施工环境、施工条件、制桩材料供应条件等,选择经济合理、安全适用的桩型和成桩工艺。

2.2.3 确定桩数

轴心荷载: G F k k n R

+

(2-1)

偏心荷载: (1.1~1.2)G F k k n R

+≥ (2-2)

F-----作用在承台上的轴向压力值。 G-----承台及其上方填土的自重设计值

2.2.3 桩的布置

根据土层情况,结合建筑物的荷载及上部结构等条件,选择桩端持力层,应尽可能使桩支撑在承载力相对较高的坚实土层上。根据当地施工条件、打桩设备及环境限制等因素,确定桩型,并相应决定桩的平面布置和尺寸,桩的中心距应符合下表规定。

表2.1 桩的最小中心距

土类与成桩工艺 排桩数不少于三排且桩数不少

于9根的摩擦型桩

其他情况 非挤土和小量挤土灌注桩 3.0d 2.5d 挤土灌注桩

穿越非饱和土 3.5d 3.0d 穿越饱和土

4.0d 3.5d 挤土预制桩

3.0d 3.0d 打入式敞口管桩和H 型钢桩

3.5d

3.0d

桩的截面主要根据上部荷载等情况确定,常见的桩截面与楼层数的经验数值关系如下表所示。

表2.2 楼层数与桩截面的经验数值关系

≤10 10~20 20~30 30~40

预制桩

300~400

450~550

450~550

500~550(预应力)

φ800(钢管桩) 灌注桩

φ500 φ600~800

φ650~1000

φ800~1200

2.3 单桩竖向承载力确定

单桩承载力是指单桩在外荷载作用下,不丧失稳定性,不产生过大变形的能力。

2.3.1 按材料强度法确定:

确定桩基竖向承载力一般采用材料强度法。根据强度计算单桩承载力是,可把桩视为插在土中的受压构件,计算桩身在轴向压力的受压强度时,一般不考虑弯曲的影响。

`0.9N c A p A g f f c y

φ?

?≤ψ+ ??

?

(2-3)

N-----荷载效应基本组合下的桩顶轴向压力设计值

c f -----混凝土轴心抗压强度设计值,KPa

`

f y -----纵向主筋抗压强度设计值,KPa

A p

----桩身横截面面积,m 2

A g -----纵向主筋横截面积,m 2

?-----桩的稳定系数

cc ψ-----基桩成桩工艺系数,混凝土预制桩、预应力混凝土空心桩取0.85;干作业非挤土

灌注桩取0.9;泥浆护壁和套管护壁非挤土灌注桩、部分挤土灌注桩及挤土灌注桩取0.7~0.8;软土区挤土灌注桩取0.6.

2.3.2 按抗剪强度指标确定:

u Q c l c NA p a i i u c u =+∑

(2-4)

u

c

-----桩底以上3d 至桩底以下1d 范围内土的不排水抗剪强度平均值,对裂隙粘土宜用含

裂隙的大试样测定,对钻孔桩可取三轴不排水抗剪强度的0.75倍;

c N -----地基承载力系数,当桩的长径比l/d>5时,c N =9; u-----桩身周长;

i

l -----第i 层土的厚度

ai c -----第i 层土桩之间的附着力,ai c =c u α

2.3.3 按静力触探法确定:

u Q q f l A p i i u k c a

i αβ=+∑ (2-5)

q c -----桩端平面上、下探头阻力,KPa 。 f si -----第i 层土的探头平均侧阻力,KPa 。

α-----装端阻力修正系数,对粘性土、粉土取2/3,饱和沙土取1/2.

i β-----第i 层土装侧阻力综合修正系数,按下式计算:

粘性土和粉土 ()

0.5510.04f i si

β-=砂类土()

0.45

5.05f i si β-= 2.3.4 按经验公式法确定:

根据土的物理指标与承载力之间的经验关系,《建筑桩基技术规范》针对不同的常用桩型,推荐了不同的单桩竖向极限承载力标准值的估算公式 ⑴ 一般预制桩及中小直径灌注桩

p i u k s i k p k u Q q q l A =+∑

(2-7)

sik q -----桩侧第i 层土的极限侧阻力标准值,KPa

pk q -----极限端阻力标准值,KPa 。

⑵ 大直径灌注桩

s i p p s i k p k uk i q q u Q A

l =+∑ψψ

(2-8)

si ψ-----大直径桩侧阻力尺寸效应系数。

p ψ-----大直径桩端阻力尺寸效应系数。 ⑶ 岩嵌桩

p p i r uk sik rk Q q f u l A ζ=+∑ (2-9)

r ζ-----岩嵌段侧阻和端阻综合系数。

rk

f

-----岩石饱和单轴抗压强度标准值。

2.4 单桩竖向承载力特征值的确定

初步设计时单桩竖向承载力特征值可按下式估算:

a p i pa sia u q q l R A =+∑ (2-10)

pa q -----桩端端阻力特征值。 sia q -----桩根侧阻力特征值。

当桩端嵌入完整及较完整的硬质岩中时单桩竖向承载力特征值可按下式估算:

a p pa q R A =

pa q -----桩端岩石承载力特征值。

2.5 承台设计及计算 2.5.1 承台尺寸要求

承台的最小宽度不应小于500mm ,承台边缘至桩中心的距离不宜小于桩的直径或边长,且边缘挑出部分不应小于150mm 。对于条形承台梁挑出部分不应小于75mm 。 条形承台或柱下独立桩基承台的厚度不应小于300mm

筏型、箱型承台板的厚度应满足整体刚度、施工条件及防水要求。对于桩布置于墙下或基础梁下的情况,承台板厚度不宜小于250mm ,且板厚与计算区段最小跨度之比不宜小于1/20。

承台埋深应不宜小于600mm ,且应满足冻胀土要求。在满足要求的前提下,承台应尽量浅埋,且应在地下水位以上

2.5.2 承台混凝土要求

承台混凝土强度等级不宜小于C15,采用Ⅱ级钢筋时,混凝土等级不宜小于C20.承台底面钢筋混凝土保护层厚度不宜小于70mm 。当设素混凝土垫层时,保护层厚度可适当减小,垫层厚度宜为100mm 强度等级为C5.5

2.5.3 承台构造配筋要求

承台梁的纵向主筋直径不宜小于φ12,架立钢筋直径不宜小于φ10,箍筋直径不宜小于φ6.

2.5.4 桩与承台的连接

桩与承台的连接宜符合下列要求:

⑴桩顶嵌入承台的长度对大直径桩,不宜小于100mm ,对于中等直径桩不宜小于50mm

⑵混凝土桩的桩顶主筋应伸入承台内,其锚固长度不宜小于30倍主筋直径,对于抗拔桩基不应小于40倍主筋直径。预应力混凝土桩可采用钢筋与桩头钢板焊接的连接方法。钢桩可采用在桩头加焊锅型板或钢筋的连接方法。

2.5.5 承台内力计算

柱下多桩矩形承台: x i i y N M =∑ (2-11)

y i i N x M =∑

x M 、y M -----垂直x 、y 轴方向计算截面弯矩设计值。

i x 、i y -----垂直y 轴和x 轴方向自桩轴线到相应计算截面的距离。

i N -----扣除承台和承台上土自重设计值后i 桩竖向净反力设计值;当不考虑承

台效应时,则为i 桩竖向总反力设计值。

柱下三桩三角承台: x x x N M =∑

(2-12)

x y y N M =∑

2.5.6 承台厚度及强度计算

受冲切计算

图2.2 柱下独立桩基对承台的冲切计算

验算时应满足: h f u F t

m

hp

1ββ

(2-13) ∑-=N F i F 1 (2-14) 2

.084

.00+=

λβ

(2-15)

F

1

-----作用于冲切破坏椎体上的冲切力设计值。

u

m

-----冲切破坏锥体有效高度中线周长。

h 0

-----承台冲切破坏锥体的有效高度。

βhp

-----受冲切承载力截面高度的影响系数,当h<800m 时βhp 取1.0;h>2000mm 时

β

hp

取0.9,其间按线性内插法取值。

β

-----冲切系数。

λ-----冲垮比,λ=a 0/h 0(a 0为冲跨,即柱边或承台变阶处到桩边处的水平距离),当λ<0.25时,取λ=0.25;当λ>1.0时,取λ=1.0。

F-----作用于柱(墙)底的竖向荷载设计值。

∑N

i

-----冲切破坏锥体范围内各基桩净反力(不计承台和承台上土自重)设计值之

和。

柱下矩形独立承台受冲切时可按下列公式计算: ()[]h f a h a b F

o

t

hp

x c y

y

c

x

i

β

β

β

)

(20000+++=

(2-16)

受剪切计算

图2.3 承台受剪切计算

柱下等厚度承台的斜截面受剪承载力计算: h

b f t

hs V 0

α

β≤ (2-17)

.175

.1+=

λα (2-18)

4

/10800?

???

??=h hs β

(2-19)

V------斜截面的最大剪力设计值。

b

-----承台计算截面处的计算宽度。

h 0

-----承台计算截面处的有效高度。

β

hs

-----受剪切承载力截面高度的影响系数。

α-----剪切系数。

λ-----计算截面的剪跨比。

2.6 群桩验算

2.6.1 基桩竖向承载力验算

荷载效应标准组合:

承受轴心荷载的桩基其基桩或复合基桩竖向承载力特征值R 应满足下式: R N

k

≤ (2-20)

承受偏心荷载的桩基还应满足 R N

k 2.1m a x

≤ (2-21)

地震作用效应和荷载效应标准组合:

轴心荷载作用效应下应满足:

R N Ek

25.1≤ (2-22)

偏心荷载作用下,应满足:

R N k

≤ (2-23)

R N

Ek 5.1max

≤ (2-24)

2.6.2 桩基软弱下卧层承载力验算

当桩端平面以下受力层范围内存在软弱下卧层时,应进行软弱下卧层验算。 应满足 f

az

m z z ≤

+γσ (2-25)

桩距d s a

6≤的群桩图(a ):σz

=()()()()

θθtan 2tan 22/30

00

t t b a l

q b a G F i

sik

k

k

+++-+∑

桩距d s a 6>且各桩端的压力扩散线不相交于硬持力层图(b )时:

σz =

(

)()

2

tan 24θπt u d l q

N z i sik

k +-∑。

图2.4 软弱下卧层验算

σ

z

-----作用于软弱下卧层顶面的附加应力, γ

m

-----软弱层顶面以上各土层容重加权平均值。

Z-----地面至软弱层顶面的深度。

f

az

-----软弱下卧层经深度修正的地基承载力特征值。

2.6.3 桩基竖向抗拔承载力验算

应满足: 2

gk k gp T

N G ≤+ (2-26)

2gk

k p

T N G ≤

+

(2-27)

G gp

-----群桩基础所包围体积的桩土总自重除以总桩数。

G

p

-----基桩自重。

2.6.4 桩基沉降验算

桩基一般只进行承载力计算,但当桩端持力层为软弱土,或建筑物重要性大,对桩基沉降的要求较高时,应对桩基按下列方法进行变形验算。 ⑴实体深基础

桩基沉降表达式: s =`e s ψψ (2-28) 式中 s-----桩基最终沉降量;

`s -----按分层总和法计算出的桩基沉降,但桩基沉降计算深度Z n 应按应力比法确定;

ψ-----桩基沉降计算经验系数; e ψ-----桩基等效沉降系数,e ψ=()012

11b b n C C n C -+

-+ /c c b n n B L = 0C 、1C 、2C -----与群桩中各基桩的不同距径比s a /d 、长径比l/d ,及承台长宽比c L /c B 有关的系数,可见《建筑桩基规范》

; c L 、c B 、n-----矩形承台的长、宽及总桩数。 ⑵.Mindlin 应力公式 S=(),2,,2,11

1,1j m

n

j i

k p k sl k s k p

j i k sj i k

n Q h I I I E l αβαβψ

===?

?

?++--??

∑∑

∑ (2-29) α------竖向荷载准永久组合作用下附加荷载的桩端阻力比 p ψ-----桩基沉降计算经验系数

三桩基础计算程序设计

3.1程序介绍

本程序根据现有桩基础设计与分析理论,以VisualB++6.0为开发平台,研制了能够设计与分析单桩或群桩基础的程序。程序设计主要包括界面设计与计算程序两个方面。界面除了起交换数据作用外,更重要是直观、方便,能够有效地减少设计中的错误。计算程序分别采用静力触探法、经验公式法、按土的抗剪强度指标法计算单桩竖向承载力,分别采用张法、m法、c法计算单桩或群桩的桩基础受力与变形。

3.2 程序界面

图3.1 桩基础设计程序主页面

3.3程序流程图

图 3.2 程序流程图

基本信息输入

主控窗体

结构计算窗体

计算书窗体

逻辑流程 数据流程

承载力验算及其他计算

操作系统

四设计实例

4.1 设计基本资料

某厂房上部结构荷载设计值为轴力F=7460KN,M=840KN·m,柱截面尺寸为600mm×800mm。建筑场地位于城郊,土层分布情况及土层的物理、力学指标如表4.1.1所示,地下水位离地表1.0m,从各测点的静力触探结果看,场地具有不均匀性,东部区域的p s平均值高于西部,局部地区有明滨,埋深将近2m。

表 4.11 各层土的物理、力学指标

土层序号土层名

层底

埋深

(m)

重度

()3/m

KN

γ

含水量

()%

w

孔隙

液性

指数

抗剪强度

比贯入

阻力

粘聚力

(KPa)

内摩擦角

()??

压缩模

(MPa

2 褐黄色

粉质粘

2.0 18 27.8 0.81 0.48

30

(21)

25.5

(18.5)

6.4

0.59

(0.54)

3 灰色淤

泥质粉

质粘土

6.0 1

7.8 3

8.8 1.09 1.18

14

(9.8)

19.3

(13.5)

4.5

0.57

(0.38)

4 灰色淤

泥质粘

14.9 17 53.1 1.51 1.29

12

(8.4)

10.5

(7.5)

2.1

0.62

(0.41)

5 灰~褐

色粉质

粘土

20.0 18 55.4 1.02 0.80

16

(11.2)

18.5

(13.2)

4.8

2.27

(1.77)

6 暗绿色

~草黄

色粉质

粘土

24 18.5 24.7 0.71 0.31

36

(25.2)

25.0

(18.0)

7.8

4.76

(3.86)

8 灰色粉

质粘土

>34.

18.0 35.5 1.02 0.87

22

(13.4)

22.1

(13.0)

4.9

4.2 桩基持力层、桩型、承台埋深的选择

由于柱荷载较大,从土层分布情况看,浅部第2层土较好,但厚度较薄,具有明显的暗滨切割,3、4、5土层较差,基础形式必须选用桩基础,第6层土是桩基础的理想持力层。桩尖进入持力层的深度为1m,工程桩入土深度为21m,考虑到明滨深度及承台厚度承台埋深确定为2m,故桩基的有效桩长为19m。由于建设场地在郊区,周围环境不要求限制振动、噪声,因此,应优先采用施工速度快、施工质量容易保证的打入桩,桩的截面尺寸选用450×450,并在每个柱子下设一独立承台桩基础。

4.3 确定单桩承载力

采用静力触探法估算

(1)东区计算结果:

计算单桩承载力标准值计算参数

方型桩

请选择桩型于工艺:预制桩、钢管桩

静力触探法

桩径(边长)(m) 0.45

桩穿越土层数 3

桩穿越第i层土的厚度li(m) 均值(KPa) 土层情况

5.1 2270 粘性土

8.9 620 粘性土

4 570 粉土

结果列表:

桩径0.45

单桩竖向极限承载力标准值(KN) 1924.52

(2)西区计算结果:

计算单桩承载力标准值计算参数

方型桩

请选择桩型与工艺:预制桩、钢管桩

静力触探法

桩径(边长)(m) 0.45

桩穿越土层数 3

桩穿越第i层土的厚度li(m) 均值(KPa) 土层情况

4.6 1770 粘性土

9.4 410 粘性土

4 380 粉土

结果列表:

桩径0.45

单桩竖向极限承载力标准值(KN) 1924.52 4.4确定桩数与承台尺寸

承台设计基本数据

单桩竖向极限承载力标准值1924.52 单桩竖向承载力特征值962.26 中心坐标x 中心坐标y

1.5 1.5

1.5 0

1.5 -1.5

0 1.5

0 0

0 -1.5

-1.5 1.5

-1.5 0

-1.5 -1.5

图4.1 布桩及桩基受力验算界面

计算结果

初步计算所得桩数8

修正后桩排数 3

修正后桩列数 3

修正后布桩总数9

桩间距计算值(m) 1.35

承台底长度计算值(m) 3.7

承台底宽度计算值(m) 3.7

桩基竖向力满足设计要求。

桩基水平力满足设计要求。

群桩设计满足设计要求。

4.5 软弱下卧层验算结果

方型桩

地面至软弱下卧层顶面的深度24

硬持力层厚度 4

桩端硬持力层扩散角15

软弱下卧层经深度修正的地基承载力特征值126

桩距 1.5

桩群外围桩边包络线矩形面积的长边长 3.45

桩群外围桩边包络线矩形面积的短边长 3.45

桩端等代直径0.45

桩径0.45

第i层土厚度Li(m) 第i层土极限测阻力第i层土厚度KN/m^3

4 0 8.5

4.6 47 8

9.4 21 7

4 2

5 7.8

1 0 8

1 0 18

图4.2 下卧层验算界面

输出结果

下卧层不满足设计要求

4.6 承台设计计算

承台设计基本参数

承台底长度(m) 4

承台底宽度(m) 4

桩伸入承台尺寸(m) 0.1

承台底主筋保护层厚度(mm) 35

承台有效高度h0(mm) 1365

承台上部分高度好h1(m) 2.0

钢筋强度(N/mm^2) 300

混凝土抗拉强度(KN/m^2) 9600

混凝土轴心抗压强度(KN/m^2) 1100

单桩受到的最大竖向力设计值1924.52 布桩排数 3

布桩列数 3

布桩总数9

桩距Sdx(m) 1.5

桩距Sdy(m) 1.5

柱(变阶处)长(m) 0.975

柱(变阶处)宽(m) 0.875

中心坐标x(m) 中心坐标y(m)

1.5 1.5

1.5 0

1.5 -1.5

0 1.5

0 0

0 -1.5

-1.5 1.5

-1.5 0

-1.5 -1.5

图4.3 矩形承台设计计算界面

结果列表:

承台受冲切承载力满足设计要求

受剪承载力满足设计要求

作用于角桩桩顶的竖向压力设计值(取最大值)(KN) 922.22 承台受角桩冲切的承载力(KN) 1776.8 角桩向上冲切验算满足设计要求

重力坝稳定及应力计算书

重力坝稳定及应力计算 书 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程,坝高H=。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m 。 B10 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~,下游边坡坡率m=0~。故上游边坡坡率初步拟定为,下游边坡坡率初步拟定为。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表。 表荷载组合表

桩基础设计计算书

课程设计(论文) 题目名称钢筋混凝土预制桩基础设计 课程名称基础工程 学生姓名李宇康 学号124100161 系、专业城市建设系土木工程 指导教师周卫 2015年5 月

桩基础设计计算书 一:设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V=1765, M=169KN·m,H = 50kN; 柱的截面尺寸为:800×600mm; 承台底面埋深:D = 2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设 计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表一: 土层的主要物理力学指标表1-1 土 层代号名称 厚 度 m 含水 量w (%) 天然 重度 (kN/m3 ) 孔 隙 比 e 侧模 阻力 桩端 阻力液性 指数 I L 直剪试验 (直快) 压缩 模量 E s (MPa) 承载力 特征值 f k(kPa) q sk kPa q pk kPa 内摩 擦角 ?? 粘聚 力c (kPa) 1 杂填土 2.0 20 18.8 2 2 6.0 90 2 淤泥质土9 38.2 18.9 1.02 22 1.0 21 12 4.8 80 3 灰黄色粉 质粘土 5 26.7 19. 6 0.75 60 2000 0.60 20 16 7.0 220 4 粉砂夹粉 质粘土 >10 21.6 20.1 0.54 70 2200 0.4 25 15 8.2 260 附表二:

工程桩基础设计计算书

基 础 工 程 课 程 设 计 计 算 书 系别:土木工程系 姓名:盛懋 目录 1 .设计资料 (3) 1.1 建筑物场地资料 (3) 2 .选择桩型、桩端持力层、承台埋深 (3)

2.1 选择桩型 (3) 2.2 选择桩的几何尺寸以及承台埋深 (3) 3 .确定单桩极限承载力标准值 (4) 3.1 确定单桩极限承载力标准值 (4) 4 .确定桩数和承台底面尺寸 (4) 5 .确定复合基桩竖向承载力设计值及群桩承载力和 (5) 5.1 四桩承台承载力计算 (5) 6 .桩顶作用验算 (6) 6.1 四桩承台验算 (6) 7 .桩基础沉降验算 (6) 7.1 桩基沉降验算 (6) 8 .桩身结构设计计算 (9) 8.1 桩身结构设计计算 (9) 9 .承台设计 (10) 9.1 承台弯矩计算及配筋计算 (10) 9.2 承台冲切计算 (11) 9.3承台抗剪验算 (12) 9.4 承台局部受压验算 (12) 1. 工程地质资料及设计资料 1) 地质资料 某建筑物的地质剖面及土性指标表1-1所示。场地地层条件:粉质粘土土层取q sk=60kpa,q ck=430kpa;饱和软粘土层q sk=26kpa;硬塑粘土层q sk=80kpa,q pk=2500kpa;设上部结构传至桩基顶面的最大荷载设计值为:V=2050kn,M=300kn?m,H=60kn。选择钢筋混凝土打入桩基础。柱的截面尺寸为400mm?600mm。已确定基础顶面高程为地表以下0.8m,承

台底面埋深1.8m 。桩长8.0m 。 土层的主要物理力学指标 表1-1 编号 名称 H m W % ? kn/m 3 ? ° S r e I p I L G s E s mpa f ak kpa a 1-2 mpa -1 1 杂填土 1.8 16.0 2 粉质粘土 2.0 26.5 19.0 20 0.9 0.8 12 0.6 2.7 8.5 190 3 饱和软粘土 4.4 42 18.3 16.5 1.0 1.1 18.5 0.98 2.71 110 0.96 4 硬塑粘土 >10 17.6 21.8 28 0.98 0.51 20.1 0.25 2.78 13 257 2)设计内容及要求 需提交的报告:计算说明书和桩基础施工图: (1)单桩竖向承载力计算 (2)确定桩数和桩的平面布置 (3)群桩中基桩受力验算 (4)群桩承载力和 (5)基础中心点沉降验算(桩基沉降计算经验系数为1.5) (6)承台结构设计及验算 2 .选择桩型、桩端持力层 、承台埋深 1)、根据地质勘察资料,确定第4层硬塑粘土为桩端持力层。采用钢筋混凝土预制桩,桩截面为方桩,为400mm ×400mm ,桩长为8米。桩顶嵌入承台50cm ,则桩端进持力层1.55米。承台底面埋深1.8m ,承台厚1m 。 2)、构造尺寸:桩长L =8m ,截面尺寸:400×400mm 3)、桩身:混凝土强度 C30、 c f =14.3MPa 4φ16 y f =210MPa 4)、承台材料:混凝土强度C20、 c f =9.6MPa 、 t f =1.1MPa 3.确定单桩竖向承载力标准值 (1)单桩竖向承载力标准值Quk

混凝土重力坝设计

XXXXXX 继续教育学院 毕业论文 题目 XXX水库 混凝土重力坝枢纽设计 专业水工 层次专升本 姓名 学号

前言 关键词:重力坝剖面稳定应力细部构造地基处理 本次设计内容为河南南潘家口水利枢纽,坝型选择为混凝土重力坝,坝轴线选择和枢纽布置见1号图SG-01潘家口水库平面图所示。 整座重力坝共分53个坝段,主要有非溢流挡水坝段、溢流表孔坝段、溢流底孔坝段和电站厂房坝段。其中非溢流挡水坝段每坝段宽15米,分布于大坝两端;厂房坝段每段宽16米,布置在靠近右岸的主河床上,装机3台机组;底孔坝段每段宽22米,布置在厂房坝段左侧的主河床上;溢流坝段每段宽18米,布置在滦河主河床上。详见1号图SG-02下游立视图。 挡水坝段最大断面的底面高程为128米,坝顶高程为228米,防浪墙高1.2米,最大坝高为101.2m,属高坝类型。坝顶宽12米,最优断面的上游坝坡坡率为1:0.2,上游折坡点高程为181米,下游坝坡坡率为1:0.7,下游折坡点高程688.98英尺,详细情况参见1号图SG-03挡水坝剖面图。 溢流坝段最大断面的底面高程为126米,堰顶高程210米,溢流堰采用WES曲线设计,直线段坡率为1:0.7,反弧段半径取25.0米,鼻坎高程取159米,上游坝坡坡率取1:0.2,折坡点高程为181米,上游坝面与WES曲面用1/4椭圆相连,详细情况见1号图SG-02溢流堰标准横断面图所示。 本枢纽溢流堰采用挑流方式消能,挑角取250。止水采用两道紫铜中间加沥青井的形式。坝基防渗处理(主要依据上堵下排的原则),上游帷幕灌浆(两道),下游侧设置排水管。 以非溢流挡水坝段为计算选择断面,进行了抗滑稳定分析和应力分析,分别采用抗剪断计算法和材料力学法计算法进行计算,最终验算满足抗滑稳定,上游坝踵没有出现拉应力,设计剖面合理可行。 本次设计只是部分结构物设计,考虑问题较单一,采用基础资料一般以书本为主,跟实际情况难免有出入,敬请读者批评指正。 编者 2008.9

桩基础设计实例计算书说课材料

桩基础设计实例 某城市中心区旧城改造工程中,拟建一幢18层框剪结构住宅楼。场地地层稳定,典型地质剖面图及桩基计算指标见表8-5。柱的矩形截面边长为400mm ×500mm ,相应于荷载效应标准组合时作用于柱底的荷载为:5840=k F kN ,180=xk M kN ·m , 550=yk M kN ·m ,120=xk H kN 。承台混凝土强度等级取C30,配置HRB400级钢筋, 试设计柱下独立承台桩基础。 表8-5 地质剖面与桩基计算指标 解:(1)桩型的选择与桩长的确定 人工挖孔桩:卵石以上无合适的持力层。以卵石为持力层时,开挖深度达26m 以上,当地缺少施工经验,且地下水丰富,故不予采用。 沉管灌注桩:卵石层埋深超过26m ,现有施工机械难以沉管。以粉质粘土作为持力层,单桩承载力仅240~340 kN ,对16层建筑物而言,必然布桩密度过大,无法采用。 对钻(冲)孔灌注桩,按当地经验,单位承载力的造价必然很高,且质量控制困难,场地污染严重,故不予采用。 经论证,决定采用PHC400-95-A (直径400mm 、壁厚95mm 、A 型预应力高强混凝土管桩),十字型桩尖。由于该工程位于城市中心区,故采用静力法压桩。 初选承台埋深d =2m 。桩顶嵌入承台0.05m ,桩底进入卵石层≥1.0m ,则总桩长

L=0.05+1.0+10.4+3.5+9.3+1.0≈25.3m 。 (2)确定单桩竖向承载力 ①按地质报告参数预估 ∑+=i sia P p pa a L q u A q R ()4596910.1803.9105.3304.1061254.044.055002+=?+?+?+?+???+??? ? ????=ππ =1150kN ②按当地相同条件静载试验成果 u Q 的范围值为2600 ~3000kN 之间,则 1500~13002/==u a Q R kN , 经分析比较,确定采用13502/==u a Q R kN 。 (2)估算桩数与平面布桩 ①初选桩的根数 3.41350 5840==a k R F n > 根,暂取5根。 ②初选承台尺寸 桩距2.14.00.30.3=?==d s m ,并考虑到xk yk >M M ,故布桩如图8-29所示: (a) 平面 (b) 立面 图8-29 承台尺寸及荷载图

边坡防护之抗滑桩类型、设计及计算

边坡防护之抗滑桩类型、设计及计算 一、概述 抗滑桩是将桩插入滑面以下的稳固地层内,利用稳定地层岩土的锚固作用以平衡滑坡推力,从而稳定滑坡的一种结构物。除边坡加固及滑坡治理工程外,抗滑桩还可用于桥台、隧道等加固工程。 抗滑桩具有以下优点: (1) 抗滑能力强,支挡效果好; (2) 对滑体稳定性扰动小,施工安全; (3) 设桩位置灵活; (4) 能及时增加滑体抗滑力,确保滑体的稳定; (5) 预防滑坡可先做桩后开挖,防止滑坡发生; (6)桩坑可作为勘探井,验证滑面位置和滑动方向,以便调整设计,使其更符合工程实际。 二、抗滑桩类型

实际工程应用中,应根据滑坡类型及规模、地质条件、滑床岩土性质、施工条件和工期要求等因素具体选择适宜的桩型。 三、抗滑桩破坏形式 总体而言,抗滑桩破坏形式主要包括: (1)抗滑桩间距过大、滑体含水量高并呈流塑状,滑动土体从桩间挤出; (2) 抗滑桩抗剪能力不足,桩身在滑面处被剪断; (3) 抗滑桩抗弯能力不足,桩身在最大弯矩处被拉断; (4) 抗滑桩锚固深度及锚固力不足,桩被推倒; (5)抗滑桩桩前滑面以下岩土体软弱,抗力不足,产生较大塑性

变形,使桩体位移过大而超过允许范围; (6)抗滑桩超出滑面的高度不足或桩位选择不合理,桩虽有足够强度,但滑坡从桩顶以上剪出。 对于流塑性地层,滑体介质与抗滑桩的摩阻力低,土体易从桩间挤出。此时,可在桩间设置连接板或联系梁,或采用小间距、小截面的抗滑桩,因流塑体的自稳性差,当地下水丰富时,开挖截面过大的抗滑桩易造成坍塌,对处于滑移状态的边坡,还可能会加速边坡的滑移速度,甚至造成边坡失稳。 四、抗滑桩设计 01 基本要求 抗滑桩是一种被动抗滑结构,只有当边坡产生一定的变形后,才能充分发挥作用。因此,抗滑桩宜用于潜在滑面明确、对变形控制要求不高的土质边坡、土石混合边坡和碎裂状、散体结构的岩质边坡。 抗滑桩宜布置在滑体下部且滑面较平缓的地段;当滑面长、滑坡推力大时,可与其它加固措施配合使用,或可沿滑动方向布置多排抗滑桩,多排抗滑桩宜按梅花型布置。此外,抗滑桩设计还应满足以下要求: ?通过桩的作用可将滑坡推力滑坡的剩余抗滑力传递到滑面以下 稳定地层中,使滑体边坡安全系数达到规定值。保证滑体不越过桩顶,不从桩间挤出。 ?桩身有足够的稳定性。桩的截面、间距及埋深适当,锚固段的横向应力在容许值内。 ?桩身有足够的强度。钢筋配置合理,能够满足截面内力要求。 ?保证安全,施工方便,经济合理。 02 设计流程

桩基础课程设计-计算书

4.5m 【题1】某试验大厅柱下桩基,柱截面尺寸为 400mm 600mm ,地质剖面示意图如图 1 所示,作用在基础顶面的荷载效应基本组合设计值为 F = 2035kN, M=330kN ?m , H = 55kN, 荷载效应标准组合设计值为 F k =1565kN, M=2548.0 21.7 0.5 15 32.5 12.5 20 0.25 0.9 8 13.0 200

1. 2. 2^00 - 确定桩的规格 根据地质勘察资料,确定第 4层粘土为桩端持力层。采用钢筋混凝土预制桩,桩截面为 方桩,为400mm< 400mm 桩长为9米。承台埋深1.7米,桩顶嵌入承台 0.1米,则桩 端进持力层2.4米。初步确定承台尺寸为 2.4m X 2.4m 。 确定单桩竖向承载力标准值 Q 根据公式 查表内插求值得 层序 深度(m) I L q sik (kPa ) q pk ( kPa) ② 粉质粘土 2 0.6 60 ③ 饱和软粘土 4.5 0.97 38 ② 粘土 2.4 0.25 82 2500 按静力触探法确定单桩竖向极限承载力标准值: Q uk Q sk Q pk u q sik l i q pk A p =4X 0.4(60 X 2.0+38 X 4.5+82 X 1.5)+2500 X 0.4 X 0.4=902.4KN 取 Q uk 902.4 kN 3.确定桩基竖向承载力设计值 R 并确定桩数n 及其布置 按照规范要求,S a 3d ,取 S a 4d , b e = 2m, l = 9m 故 0.22 查表得,sp 0.97。 查表得,sp 1.60先不考虑承台效应,估算基桩竖向承载力设计值 R 为 sp 1.60 桩基承台和承台以上土自重设计值为 G= 2.4 X 2.4 X 1.7 X 20= 195.84 kN 粗估桩数n 为 n = 1.1 X (F+G)/R= (1565+195.84)/ 547.08=3.22 根 取桩数n = 4根,桩的平面布置为右图所示, 承台面积为 2.4m X 2.4m ,承台高度为 0.9m ,由于n > 3,应该考虑 群桩效应和承台效应确定单桩承载力设计值 R ,S a B e 由一=4 ; = 0.25 d l 查表得 e = 0.155 , := 0.75 sp Q uk 0.97 902.4 =547.08 kN

混凝土重力坝毕业设计计算书

1 目录 目录 (1) 第1章非溢流坝设计 (4) 1.1坝基面高程的确定 (4) 1.2坝顶高程计算 (4) 1.2.1基本组合情况下: (4) 1.2.2特殊组合情况下: (5) 1.3坝宽计算 (6) 1.4 坝面坡度 (6) 1.5 坝基的防渗与排水设施拟定 (7) 第二章非溢流坝段荷载计算 (8) 2.1 计算情况的选择 (8) 2.2 荷载计算 (8) 2.2.1 自重 (8) 2.2.2 静水压力及其推力 (8) 2.2.3 扬压力的计算 (10) 2.2.4 淤沙压力及其推力 (12) 2.2.5 波浪压力 (13) 2.2.6 土压力 (14) 第3章坝体抗滑稳定性分析 (16) 3.2 抗滑稳定计算 (17) 3.3 抗剪断强度计算 (18) 第4章应力分析 (20) 4.1 总则 (20) 4.1.1大坝垂直应力分析 (20) 4.1.2大坝垂直应力满足要求 (21) 4.2计算截面为建基面的情况 (21) 4.2.1 荷载计算 (22) 4.2.2运用期(计入扬压力的情况) (23) 4.2.3运用期(不计入扬压力的情况) (23)

4.2.4 施工期 (23) 第5章溢流坝段设计 (25) 5.1 泄流方式选择 (25) 5.2 洪水标准的确定 (25) 5.3 流量的确定 (25) 5.4 单宽流量的选择 (25) 5.5 孔口净宽的拟定 (26) 5.6 溢流坝段总长度的确定 (26) 5.7 堰顶高程的确定 (27) 5.8 闸门高度的确定 (27) 5.9 定型水头的确定 (28) 5.10 泄流能力的校核 (28) 5.11.1 溢流坝段剖面图 (29) 5.11.2 溢流坝段稳定性分析 (29) (1)正常蓄水情况 (29) (2)设计洪水情况 (30) (3)校核洪水情况 (30) 第6章消能防冲设计 (31) 6.1洪水标准和相关参数的选定 (31) 6.2 反弧半径的确定 (31) 6.3 坎顶水深的确定 (32) 6.4 水舌抛距计算 (33) 6.5 最大冲坑水垫厚度及最大冲坑厚度 (34) 第7章泄水孔的设计 (36) 7.1有压泄水孔的设计 (36) 7.11孔径D的拟定 (36) 7.12 进水口体形设计 (36) 7.13 闸门与门槽 (37) 7.14 渐宽段 (37) 7.15 出水口 (37) 7.15 通气孔和平压管 (38) 参考文献 (39)

桩基础工程计算实例详解

桩基础工程 1.某工程用打桩机,打如图4-1所示钢筋混凝土预制方桩,共50根,求其工程量,确定定额项目。 钢筋混凝土预制方桩 【解】工程量=0.5×0.5×(24+0.6)×50=307.50m3 钢筋混凝土预制方桩套2-6 定额基价=114.59元/m3 2.打桩机打孔钢筋混凝土灌注桩,桩长14m,钢管外径0.5m,桩根数为50根,求现场灌注桩工程量,确定定额项目。 【解】工程量=3.14÷4×0.52×(14+0.5)×50=142.28m3 打孔钢筋混凝土灌注桩(15m以内)套2-41 定额基价=508.3元/m3 3.如图所示,已知共有20根预制桩,二级土质。求用打桩机打桩工程量。 【解】工程量=0.45×0.45×(15+0.8)×20m3=63.99m3 4.如图所示,求履带式柴油打桩机打桩工程量。已知土质为二级土,混凝土预制桩28根。 【解】工程量=[×(0.32-0.22)×21.2+×0.32×O.8]×28m3=99.57m3 5.如图所示,求送桩工程量,并求综合基价。 【解】工程量=0.4×0.4×(0.8+0.5)×4=0.832m3 查定额,套(2-5)子目, 综合基价=0.832×(96.18+21×0.63×0.25+1033.82×0.060×0.25)=115.625元

6.打预制钢筋混凝土离心管桩,桩全长为12.50m,外径30cm,其截面面积如图所示, 求单桩体积。 【解】离心管桩V1=×3.1416×12m3 =0.0125×3.1416×12m3 =0.471m3 预制桩尖V2=0.32××3.1416×0.5m3=0.0255×3.1416×0.5m3=0.035m3 总体积∑V=(0.471+0.035)m3=0.506m3 7.求图示钢筋混凝土预制桩的打桩工程量,共有120根桩。 【解】V=[(L一h)×(A×B)+×(A×B)×h]×n =[(7-0.23)×(0.25×0.25)+ ×(0.25×0.25×0.23)]×120m3=51.35m3 8.图为预制钢筋混凝土桩,现浇承台基础示意图,计算桩基的制作、运输、打桩、打送桩以及承台的工程量。(30个) 【解】(1)预制桩图示工程量: V图=(8.0+0.3)×0.3×0.3m3×4根×30个=89.64m3 (2)制桩工程量:V制= V图×1.02=89.64m3×1.02=91.43m3 (3)运输工程量:V运= V图×1.019=89.64m3×1.019=91.34m3 (4)打桩工程量:V打= V图=89.64m3 (5)送桩工程量:V送=(1.8-0.3-0.15+0.5)×0.3×0.3×4×30m3=19.98m3

抗滑桩设计计算书

目录 1 工程概况 2 计算依据 3 滑坡稳定性分析及推力计算 3.1 计算参数 3.2 计算工况 3.3 计算剖面 3.4 计算方法 3.5 计算结果 3.6 稳定性评价 4 抗滑结构计算 5 工程量计算

、工程概况 拟建段位于重庆市巫溪县安子平,设计路中线在现有公路右侧约100m,设计为大拐回头弯,设计路线起止里程为K96+030?K96+155,全长125m,设计路面净宽7.50m,设计为二级公路,设计纵坡3.50%,地面高程为720.846m?741.70m,设计起止路面高程为724.608m?729.148m, K96+080-K96+100 为填方,最大填方为4.65m,最小填方为1.133m。 二、计算依据 1. 《重庆市地质灾害防治工程设计规范》 (DB50/5029-2004); 2. 《建筑地基基础设计规范》 ( GB 50007-2002); 3. 《建筑边坡工程技术规范》 ( GB 50330-2002); 4. 《室外排水设计技术规范》 (GB 50108-2001); 5. 《砌体结构设计规范》(GB 50003-2001); 6. 《混凝土结构设计规范》 (GB 50010-2010); 7. 《锚杆喷射混凝土支护技术规范》 ( GB 50086-2001); 8. 《公路路基设计规范》 ( JTG D30—2004); 9. 相关教材、专著及手册。 三、滑坡稳定性分析及推力计算 3.1 计算参数 3.1.1 物理力学指标:天然工况:丫1=20.7kN/m3, ? 1=18.6 °,C=36kPa 饱和工况:Y=21.3kN/m3,?=15.5 ° C2=29kPa 3.1.2 岩、土物理力学性质 该段土层主要为第四系残破积碎石土,场地内均有分布,无法采取样品测试,采取弱风化泥做物理力学性质测试成果:弱风化泥岩天然抗压强度24.00Mpa,饱和抗压强度17.30 Mpa,天然密度2.564g/cm3,比重2.724,空隙度8.25%,属软化岩石,软质岩石。

2016基坑支护设计计算书模板(1)讲解

第一章工程概要 1.1 工程概况 工程概况,附上基坑周边环境平面图 1.2场区工程地质条件 附上典型的地质剖面图 1.3 水文地质条件 1.4 主要设计内容 分析评价了场地的岩土工程条件。 根据场地的工程地质条件、水文地质条件,充分考虑到周边地层条件,选择技术上可行,经济上合理,并且具有整体性好、水平位移小,同时便于基坑开挖及后续施工的可靠支护措施,通过分析论证选择合适的基坑支护方案。 对基坑支护结构进行了具体设计计算,其中包括土压力计算、钻孔灌注桩的设计计算及锚杆的设计计算、稳定性验算(根据具体选择的支护方式,按照规范的要求进行设计,计算,和验算)。当不能满足稳定性要求的时候,需要重新设计计算或者做必要的处理,直至达到稳定性的安全要求。 选择经济、实效、合理的基坑降水与止水方案。 基坑支护工程的施工组织设计与工程监测设计。 1.5 设计依据 (1)甲方提供资料,岩土工程勘察报告(列出详细的清单) (2)现行规范、标准、图集等(按照规定的格式列出详细的清单,必须是现行规范)

第二章基坑支护方案设计 2.1 设计原则(摘自规范) 2.1.1 基坑支护结构应采用以分项系数表示的极限状态设计表达式进行设计 2.1.2 基坑支护结构极限状态可分为下列两类: a. 承载能力极限状态:对应于支护结构达到最大承载能力或土体失稳、过大变形导致支护结构或基坑周边环境破坏; b.正常使用极限状态:对应于支护结构的变形已妨碍地下结构施工或影响基坑周边环境的正常使用功能。 2.1.3 基坑支护结构设计应根据表3选用相应的侧壁安全等级及重要性系数。 表2.1 基坑侧壁安全等级及重要性系数 安全等级破坏后果 1.10 一级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响很严重 1.00 二级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响一般 0.90 三级支护结构破坏,土体失稳或过大变形对基坑周边环境及地 下结构施工影响不严重 注:有特殊要求的建筑基坑侧壁安全等级可根据具体情况另行决定 2.1.4 支护结构设计应考虑其结构水平变形、地下水的变化对周边环境的水平与竖向变形的影响,对于安全等级为一级和对周边环境变形有限定要求的二级建筑基坑侧壁,应根据周边环境的重要性、对变形的适应能力及土的性质等因素确定支护结构的水平变形限值。 2.1.5 当场地内有地下水时,应根据场地及周边区域的工程地质条件、水文地质条件、周边环境情况和支护结构与基础型式等因素,确定地下水控制方法。当场地周围有地表水汇流、排泻或地下水管渗漏时,应对基坑采取保护措施。 2.1.6 根据承载能力极限状态和正常使用极限状态的设计要求,基坑支护应按下列规定进行计算和验算:

重力坝稳定及应力计算书..

5.1重力坝剖面设计及原则 5.1.1剖面尺寸的确定 重力坝坝顶高程1152.00m,坝高H=40.00m。为了适应运用和施工的需要,坝顶必须要有一定的宽度。一般地,坝顶宽度取坝高的8%~10%,且不小于2m。若有交通要求或有移动式启闭设施时,应根据实际需要确定。综合考虑以上因素,坝顶宽度m B10 。 考虑坝体利用部分水中增加其抗滑稳定,根据工程实践,上游边坡坡率n=0~0.2,下游边坡坡率m=0~0.8。故上游边坡坡率初步拟定为0.2,下游边坡坡率初步拟定为0.8。上游折坡点位置应结合应力控制标准和发电引水管、泄洪孔等建筑物的进口高程来定,一般折坡点在坝高的1/3~2/3附近,故初拟上游折坡点高程为1138.20m。下游折坡点的位置应根据坝的实用剖面形式、坝顶宽度,结合坝的基本剖面计算得到(最常用的是其基本剖面的顶点位于校核洪水位处),故初拟下游折坡点高程为1148.50m。 5.1.2剖面设计原则 重力坝在水压力及其他荷载的作用下,主要依靠坝体自重产生的抗滑力维持抗滑稳定;同时依靠坝体自重产生压应力来抵消由于水压力引起的拉应力以满足强度要求。 非溢流坝剖面设计的基本原则是:①满足稳定和强度要求,保证大坝安全;②工程量小,造价低;③结构合理,运用方便;④利于施工,方便维修。 遵循以上原则拟订出的剖面,需要经过稳定及强度验算,分析是否满足安全和经济的要求,坝体剖面可以参照以前的工程实例,结合本工程的实际情况,先行拟定,然后根据稳定和应力分析进行必要的修正。重复以上过程直至得到一个经济的剖面。 5.2重力坝挡水坝段荷载计算 5.2.1基本原理与荷载组合 重力坝的荷载主要有:自重、静水压力、扬压力、泥沙压力、浪压力、动水压力、冰压力、地震荷载等。本次设计取单位长度的坝段进行计算。相关荷载组合见表4.5。 表4.5 荷载组合表 组合情况相关 工况 自 重 静水 压力 扬压 力 泥沙 压力 浪压 力 冰压 力 地震 荷载 动水 压力 土压 力 基本正常√√√√√√

桩基础设计计算书

基础工程桩基础设计资料 ⑴上部结构资料某教学实验楼,上部结构为十层框架,其框架主梁、次梁、楼板均为现浇整体式,混凝土强度等级为C30,上部结构传至柱底的相应于荷载效应标准组合的荷载如下︰ 竖向力:4800 kN , 弯距:70 kN·m, 水平力:40 kN 拟采用预制桩基础,预制桩截面尺寸为 350mm * 350mm。 ⑵建筑物场地资料拟建建筑物场地位于市区内,地势平坦,建筑物场地位于非地震地区,不考虑地震影响.场地地下水类型为潜水,地下水位离地表 2.1 米,根据已有资料,该场地地下水对混凝土没有腐蚀性。建筑地基的土层分布情况及各土层物理,力学指标见下表: 表1 地基各土层物理、力学指标

基础工程桩基础设计计算 1. 选择桩端持力层 、承台埋深 ⑴.选择桩型 由资料给出,拟采用预制桩基础。 还根据资料知,建筑物拟建场地位于市区内,为避免对周围产生噪声污染和扰动地层,宜采用静压法沉桩,这样不仅可以不影响周围环境,还能较好地保证桩身质量和沉桩精度。 ⑵.确定桩的长度、埋深以及承台埋深 依据地基土的分布,第3层是粘土,压缩性较高,承载力中等,且比较厚,而第4层是粉土夹粉质粘土,不仅压缩性低,承载力也高,所以第4层是比较适合的桩端持力层。桩端全断面进入持力层1.0m (>2d ),工程桩入土深度为h ,h=1.5+8.3+12+1=22.8m 。 由于第1层厚1.5m ,地下水位离地表2.1m ,为使地下水对承台没有影响,所以选择承台底进入第2层土0.3m ,即承台埋深为1.8m 。 桩基的有效桩长即为22.8-1.8=21m 。 桩截面尺寸由资料已给出,取350mm ×350mm ,预制桩在工厂制作,桩分两节,每节长11m ,(不包括桩尖长度在内),实际桩长比有效桩长长1m ,是考虑持力层可能有一定起伏及桩需要嵌入承台一定长度而留有的余地。 桩基以及土层分布示意图如图1。 2.确定单桩竖向承载力标准值 按经验参数法确定单桩竖向极限承载力特征值公式为: uk sk pk sik i pk p Q Q Q u q l q A =+=+∑ 按照土层物理指标,查桩基规范JGJ94-2008表5.3.5-1和表5.3.5-2估算的极限桩侧,桩端阻力特征值列于下表:

抗滑桩设计计算书

抗滑桩设计计算书-CAL-FENGHAI.-(YICAI)-Company One1

目录 1 工程概况 2 计算依据 3 滑坡稳定性分析及推力计算计算参数 计算工况 计算剖面 计算方法 计算结果 稳定性评价 4 抗滑结构计算 5 工程量计算

一、工程概况 拟建段位于重庆市巫溪县安子平,设计路中线在现有公路右侧约100m,设计为大拐回头弯,设计路线起止里程为K96+030~K96+155,全长125m,设计路面净宽7.50m,设计为二级公路,设计纵坡%,地面高程为720.846m~741.70m,设计起止路面高程为724.608m~729.148m,K96+080-K96+100为填方,最大填方为4.65m,最小填方为1.133m。 二、计算依据 1.《重庆市地质灾害防治工程设计规范》(DB50/5029-2004); 2.《建筑地基基础设计规范》(GB 50007-2002); 3.《建筑边坡工程技术规范》(GB 50330-2002); 4.《室外排水设计技术规范》(GB 50108-2001); 5.《砌体结构设计规范》(GB 50003-2001); 6.《混凝土结构设计规范》(GB 50010-2010); 7.《锚杆喷射混凝土支护技术规范》(GB 50086-2001); 8.《公路路基设计规范》(JTG D30—2004); 9. 相关教材、专着及手册。 三、滑坡稳定性分析及推力计算 计算参数 3.1.1 物理力学指标:天然工况:γ1=m3,φ1=°,C1=36kPa 饱和工况:γ2=m3,φ2=°,C2=29kPa 3.1.2 岩、土物理力学性质 该段土层主要为第四系残破积碎石土,场地内均有分布,无法采取样品测试,采取弱风化泥做物理力学性质测试成果:弱风化泥岩天然抗压强度,饱和抗压强度 Mpa,天然密度2.564g/cm3,比重,空隙度%,属软化岩石,软质岩石。 表1 各岩土层设计参数建议值表

重力坝毕业设计

第一章设计基本资料及任务 第一节设计基本资料 一、枢纽任务 本工程同时兼有防洪、发电、灌溉、渔业等综合利用。水电站装机容量为21.75万kW,装3台机组。正常蓄水位为110.5m,死水位为86.5m,三台机满载时的流量为405m3/s。采用坝后式厂房。工程建成后,可增加保灌面积90万亩,减轻洪水对下游城市和平原的威胁。在遇P=0.02%和P=0.1%频率的洪水时,经水库调节后,洪峰流量可由原来的18200m3/s、14100 m3/s分别削减为6800 m3/s和6350 m3/s;水库蓄水后形成大面积水域,为发展养殖业创造有利条件。 二、基本资料 1、规划数据 本重力坝坝高86.9m,坝全长368m,溢流坝位于大坝中段长度73米,非溢流坝分别接溢流坝两侧各147.5m,坝顶宽度8m,坝底宽度80.5m,坝底高程28m,坝顶高程114.9m,正常蓄水位110.5m,死水位86.5m。 坝址处的河床宽约120m,水深约1.5~4m。河谷近似梯形,两岸基本对称,岸坡取约35o。 2、工程地质 坝基岩性为花岗岩,风化较深,两岸达10m左右。新鲜花岗岩的饱和抗压强度为100~200MPa,风化花岗岩为50~80Mpa。坝址处无大的地质构造。 3、其他资料 - 1 -

(1)风向吹力:实测最大风速为24m/s,多年平均最大风速为20m/s,风向基本垂直坝轴线,吹程为4km。 (2)本坝址地震烈度为7度。 (3)坝址附近卵砾石、碎石及砂料供应充足,质量符合规范要求。 三、表格 表1比选数据 - 2 -

表2岩石物理力学性质 四、参考文献 1.混凝土重力坝设计规范水利电力部编 2.水工建筑物任德林河海大学出版社 3.水工设计手册泄水与过坝建筑物水利电力出版社 4.混凝土拱坝及重力坝坝体接缝设计与构造水电部黄委会编 第二节设计任务 一、枢纽布置 (1)拟定坝址位置 - 3 -

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征与力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为 2、0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m g,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2、0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10、0m 3、桩身资料: 混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16、5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度设计值 为f m =1、5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值与设计值的计算; 2、确定桩数与桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋与必要的施工说明; 6、需要提交的报告:计算说明书与桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q —S 曲线见附表 (二):外部荷载及桩型确定 1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10、0m,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、 c f =15MPa 、 m f =16、5MPa 4φ16 y f =310MPa

抗滑桩设计计算书

抗滑桩设计计算书-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

目录 1 工程概况 2 计算依据 3 滑坡稳定性分析及推力计算计算参数 计算工况 计算剖面 计算方法 计算结果 稳定性评价 4 抗滑结构计算 5 工程量计算

一、工程概况 拟建段位于重庆市巫溪县安子平,设计路中线在现有公路右侧约100m,设计为大拐回头弯,设计路线起止里程为K96+030~K96+155,全长125m,设计路面净宽7.50m,设计为二级公路,设计纵坡%,地面高程为720.846m~741.70m,设计起止路面高程为724.608m~729.148m,K96+080-K96+100为填方,最大填方为4.65m,最小填方为1.133m。 二、计算依据 1.《重庆市地质灾害防治工程设计规范》(DB50/5029-2004); 2.《建筑地基基础设计规范》(GB 50007-2002); 3.《建筑边坡工程技术规范》(GB 50330-2002); 4.《室外排水设计技术规范》(GB 50108-2001); 5.《砌体结构设计规范》(GB 50003-2001); 6.《混凝土结构设计规范》(GB 50010-2010); 7.《锚杆喷射混凝土支护技术规范》(GB 50086-2001); 8.《公路路基设计规范》(JTG D30—2004); 9. 相关教材、专著及手册。 三、滑坡稳定性分析及推力计算 计算参数 3.1.1 物理力学指标:天然工况:γ1=m3,φ1=°,C1=36kPa 饱和工况:γ2=m3,φ2=°,C2=29kPa 3.1.2 岩、土物理力学性质 该段土层主要为第四系残破积碎石土,场地内均有分布,无法采取样品测试,采取弱风化泥做物理力学性质测试成果:弱风化泥岩天然抗压强度,饱和抗压强度 Mpa,天然密度2.564g/cm3,比重,空隙度%,属软化岩石,软质岩石。

水工建筑物重力坝设计计算书样本

一、非溢流坝设计 ( 一) 、初步拟定坝型的轮廓尺寸 (1)坝顶高程的确定 ①校核洪水位情况下: 波浪高度 2h l=0.0166V5/4D1/3=0.0166×185/4×41/3=0.98m 波浪长度 2L l=10.4×(2h l)0.8=10.4×0.980.8=10.23m 波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×0.982/10.23=0.30m 安全超高按Ⅲ级建筑物取值 h c=0.3m 坝顶高出水库静水位的高度△h校=2h l+ h0+ h c=0.98+0.30+0.3=1.58m ②设计洪水位情况下: 波浪高度2h l=0.0166(1.5V)5/4D1/3=0.0166×(1.5×18)5/4×41/3=1.62m 波浪长度 2L l=10.4×(2h l)0.8=10.4×1.620.8=15.3m 波浪中心线到静水面的高度h0=π(2h l)2/ 2L l=3.14×1.622/15.3=0.54m 安全超高按Ⅲ级建筑物取值 h c=0.4m 坝顶高出水库静水位的高度△h设=2h l+ h0+ h c=1.62+0.54+0.4=2.56m ③两种情况下的坝顶高程分别如下: 校核洪水位时: 225.3+1.58=226.9m 设计洪水位时: 224.0+2.56=226.56m 坝顶高程选两种情况最大值226.9 m, 可按227.00m设计, 则坝高227.00-174.5=52.5m。

(2)坝顶宽度的确定 本工程按人行行道要求并设置有发电进水口, 布置闸门设备, 应适当加宽以满足闸门设备的布置, 运行和工作交通要求, 故取8米。 (3)坝坡的确定 考虑到利用部分水重增加稳定, 根据工程经验, 上游坡采用1: 0.2, 下游坡按坝底宽度约为坝高的0.7~0.9倍, 挡水坝段和厂房坝段均采用1: 0.7。 (4)上下游折坡点高程的确定 理论分析和工程实验证明, 混凝土重力坝上游面可做成折坡, 折坡点一般位于1/3~2/3坝高处, 以便利用上游坝面水重增加坝体的稳定。 根据坝高确定为52.5m, 则1/3H=1/3×52.5=17.5m, 折坡点高程=174.5+17.5=192m; 2/3H=2/3×52.5=35m, 折坡点高程=174.5+35=209.5m, 因此折坡点高程适合位于192m~209.5m之间, 则取折坡点高程为203.00m。挡水坝段和厂房坝段的下游折坡点在统一高程216.5m处。 (5)坝底宽度的确定 由几何关系可得坝底宽度为T=( 203-174.5) ×0.2+8+(216.5-174.5) ×0.7=43.1m (6)廊道的确定 坝内设有基础灌浆排水廊道, 距上游坝面6.1m, 廊道底距基岩面4m, 尺寸 2.5× 3.0m( 宽×高) 。 (7)非溢流坝段纵剖面示意图

桩基础实例设计计算书

桩基础设计计算书 一:建筑设计资料 1、建筑场地土层按其成因土的特征和力学性质的不同自上而下划分为四层,物理力学指标见下表。勘查期间测得地下水混合水位深为2.0m,地下水水质分析结果表明,本场地下水无腐蚀性。 建筑安全等级为2级,已知上部框架结构由柱子传来的荷载: V = 3200kN, M=400kN m,H = 50kN; 柱的截面尺寸为:400×400mm; 承台底面埋深:D =2.0m。 2、根据地质资料,以黄土粉质粘土为桩尖持力层, 钢筋混凝土预制桩断面尺寸为300×300,桩长为10.0m 3、桩身资料:混凝土为C30,轴心抗压强度设计值f c =15MPa,弯曲强度设计值为 f m =16.5MPa,主筋采用:4Φ16,强度设计值:f y =310MPa 4、承台设计资料:混凝土为C30,轴心抗压强度设计值为f c =15MPa,弯曲抗压强度 设计值为f m =1.5MPa。 、附:1):土层主要物理力学指标; 2):桩静载荷试验曲线。 附表二:

桩静载荷试验曲线 二:设计要求: 1、单桩竖向承载力标准值和设计值的计算; 2、确定桩数和桩的平面布置图; 3、群桩中基桩的受力验算 4、承台结构设计及验算; 5、桩及承台的施工图设计:包括桩的平面布置图,桩身配筋图, 承台配筋和必要的施工说明; 6、需要提交的报告:计算说明书和桩基础施工图。 三:桩基础设计 (一):必要资料准备 1、建筑物的类型机规模:住宅楼 2、岩土工程勘察报告:见上页附表 3、环境及检测条件:地下水无腐蚀性,Q—S曲线见附表(二):外部荷载及桩型确定

1、柱传来荷载:V = 3200kN 、M = 400kN ?m 、H = 50kN 2、桩型确定:1)、由题意选桩为钢筋混凝土预制桩; 2)、构造尺寸:桩长L =10.0m ,截面尺寸:300×300mm 3)、桩身:混凝土强度 C30、c f =15MPa 、m f =16.5MPa 4φ16 y f =310MPa 4)、承台材料:混凝土强度C30、c f =15MPa 、m f =16.5MPa t f =1.5MPa (三):单桩承载力确定 1、 单桩竖向承载力的确定: 1)、根据桩身材料强度(?=1.0按0.25折减,配筋 φ16) 2 ( ) 1.0(150.25300310803.8)586.7p S c y R kN f f A A ?''=+ =???+?= 2)、根据地基基础规公式计算: 1°、桩尖土端承载力计算: 粉质粘土,L I =0.60,入土深度为12.0m 100800(800)8805 pa kPa q -=?= 2°、桩侧土摩擦力: 粉质粘土层1: 1.0L I = , 17~24sa kPa q = 取18kPa 粉质粘土层2: 0.60L I = , 24~31sa kPa q = 取28kPa 2 8800.340.3(189281)307.2p i p pa sia Ra kPa q q l A μ=+=?+???+?=∑ 3)、根据静载荷试验数据计算: 根据静载荷单桩承载力试验Q s -曲线,按明显拐点法得单桩极限承载力 550u kN Q = 单桩承载力标准值: 550 2752 2 u k kN Q R = = = 根据以上各种条件下的计算结果,取单桩竖向承载力标准值

相关文档
最新文档