控制工程实验报告

合集下载

南京理工大学控制工程基础实验报告

南京理工大学控制工程基础实验报告

《控制工程基础》实验报告姓名欧宇涵 914000720206周竹青 914000720215 学院教育实验学院指导老师蔡晨晓南京理工大学自动化学院2017年1月实验1:典型环节的模拟研究一、实验目的与要求:1、学习构建典型环节的模拟电路;2、研究阻、容参数对典型环节阶跃响应的影响;3、学习典型环节阶跃响应的测量方法,并计算其典型环节的传递函数。

二、实验内容:完成比例环节、积分环节、比例积分环节、惯性环节的电路模拟实验,并研究参数变化对其阶跃响应特性的影响。

三、实验步骤与方法(1)比例环节图1-1 比例环节模拟电路图比例环节的传递函数为:K s U s U i O =)()(,其中12R RK =,参数取R 2=200K ,R 1=100K 。

步骤: 1、连接好实验台,按上图接好线。

2、调节阶跃信号幅值(用万用表测),此处以1V 为例。

调节完成后恢复初始。

3、Ui 接阶跃信号、Uo 接IN 采集信号。

4、打开上端软件,设置采集速率为“1800uS”,取消“自动采集”选项。

5、点击上端软件“开始”按键,随后向上拨动阶跃信号开关,采集数据如下图。

图1-2 比例环节阶跃响应(2)积分环节图1-3 积分环节模拟电路图积分环节的传递函数为:ST V V I I O 1-=,其中T I =RC ,参数取R=100K ,C=0.1µf 。

步骤:同比例环节,采集数据如下图。

图1-4 积分环节阶跃响应(3)微分环节图1-5 微分环节模拟电路图200KRV IVoC2CR 1V IVo200K微分环节的传递函数为:K S T S T V V D D I O +-=1,其中 T D =R 1C 、K=12R R。

参数取:R 1=100K ,R 2=200K ,C=1µf 。

步骤:同比例环节,采集数据如下图。

图1-6 微分环节阶跃响应(4)惯性环节图1-7 惯性环节模拟电路图惯性环节的传递函数为:1+-=TS K V V I O ,其中2T R C =,21RK R =-。

控制工程实验报告

控制工程实验报告

控制工程实验报告1. 引言控制工程是一门研究如何通过设计和操作系统来达到预期目标的学科。

实验是控制工程学习过程中重要的一部分,通过实验可以加深对控制理论的理解,提高实际操作能力。

本实验报告旨在总结和分析在进行控制工程实验时所遇到的问题和解决方法。

2. 实验背景本次实验旨在研究单输入单输出(SISO)的控制系统。

通过建模、设计和实施控制器,我们将探讨如何使系统达到期望的性能指标。

在实验过程中,我们使用了控制工程中常用的方法和工具,如PID控制器、校正方法和稳定性分析等。

3. 实验目标本实验的主要目标是设计一个PID控制器来控制一个特定的系统,使其满足给定的性能要求。

具体目标如下: - 理解PID控制器的原理和工作方式; - 利用实验数据建立系统的数学模型; - 利用系统模型设计优化的PID控制器; - 分析和评估实验结果,判断控制系统的稳定性和性能。

4. 实验过程实验分为以下几个步骤: ### 4.1 建立系统模型首先,我们需要对所控制的系统进行建模。

使用传感器收集系统的输入和输出数据,并通过系统辨识方法分析这些数据,得到系统的数学模型。

常用的辨识方法包括最小二乘法和频域分析法。

4.2 设计PID控制器基于系统模型的分析,我们可以设计PID控制器。

通过调整PID控制器的参数,如比例增益、积分时间常数和微分时间常数,我们可以优化控制系统的性能。

4.3 实施控制器将设计好的PID控制器实施到实际系统中。

在实验中,我们需要将传感器和控制器与被控对象连接,并配置合适的控制策略。

4.4 性能评估通过收集系统的输入和输出数据,并利用系统模型进行仿真和分析,我们可以评估控制系统的性能。

常见的评估指标包括超调量、上升时间和稳态误差等。

5. 实验结果与分析根据实验数据和分析结果,我们得到了以下结论: - PID控制器可以有效地控制被控对象,使其稳定在期望值附近; - 通过适当调整PID控制器的参数,我们可以优化控制系统的性能; - 预测模型与实际系统存在一定差异,可能需要进一步改进和校正。

材料成型及控制工程专业综合实验报告

材料成型及控制工程专业综合实验报告

材料成型及控制工程专业综合实验报告实验报告:材料成型及控制工程专业综合实验一、实验目的:1.掌握材料成型及控制工程的基本原理;2.学习并了解材料成型及控制工程的实际应用;3.提高实验操作技巧和实验数据分析能力。

二、实验仪器和材料:1.数控铣床:用于完成加工实验;2.数控线切割机:用于完成线切割实验;3.材料样品:使用铝合金和塑料材料。

三、实验内容:1.数控铣床实验:a.将铝合金材料夹在数控铣床上,设定加工参数;b.进行铣削操作,实现铝合金材料的加工成型;c.调整加工参数,观察对加工结果的影响。

2.数控线切割机实验:a.将塑料材料放置在数控线切割机上,设定切割参数;b.进行线切割操作,实现塑料材料的切割成型;c.调整切割参数,观察对切割结果的影响。

四、实验过程:1.数控铣床实验:a.将铝合金材料夹在数控铣床上,设定加工参数,包括切削速度、进给速度、转速等;b.打开数控铣床电源,进行加工操作,观察铝合金材料的加工成型情况;c.根据加工结果,调整加工参数,观察对加工结果的影响。

2.数控线切割机实验:a.将塑料材料放置在数控线切割机上,设定切割参数,包括切割速度、电弧电压、电弧电流等;b.打开数控线切割机电源,进行切割操作,观察塑料材料的切割成型情况;c.根据切割结果,调整切割参数,观察对切割结果的影响。

五、实验结果及分析:1.数控铣床实验结果:a.观察到不同的加工参数对铝合金的加工效果有明显影响,例如切削速度过快会导致切削不够充分,切削速度过慢则会导致切削效果不理想;b.通过不断调整加工参数,得以实现较为满意的加工成型结果。

2.数控线切割机实验结果:a.观察到不同的切割参数对塑料材料的切割效果有明显影响,例如切割速度过快可能导致切割不完全,切割速度过慢则可能引起材料熔化;b.通过不断调整切割参数,得以实现较为满意的切割成型结果。

六、实验总结:材料成型及控制工程是一门综合性很强的工程学科,通过本次实验,我们了解到了材料成型和控制工程的基本原理和实际应用情况。

控制工程基础实验报告

控制工程基础实验报告

控制工程基础[英]实验实验一.典型环节的模拟研究:已知一个小车、倒单摆系统非线性系统方程为:( 2.92)0.008x x u =-+20.004sin 36cos n n x θωθωθθ=-+-其中假设 (0)0;(0)0.2x x ==,(0)0;(0); 6.781,n θθπω===(1)要求绘出系统[0,10]t ∈的状态响应曲线(2)并将上述系统在0θ≈的条件下线性化,并要求绘出线性化后系统[0,10]t ∈的状态响应曲线,并与非线性系统状态响应曲线相比较。

(1)下面利用Simulink 对该系统进行仿真如下图所示。

图1.倒单摆系统仿真图在图中已经对主要信号进行了标注下面给出每个未标注信号后加入放大器的增益:008.092.2=阶跃K 008.01-=一阶微分x K 98.45=二阶微分θK通过示波器Scope 和Scope1观察x(t)和θ(t)的波形图如下所示。

图2.x(t)波形图3.θ(t)波形(2)将上述系统在0θ≈的条件下线性化,则方程组改写成如下形式:( 2.92)0.008x x u=-+20.004sin36n n xθωθωθ=-+-在Simulink中对系统仿真如下所示。

图4.线性化后仿真系统通过示波器模块可以观察输出信号,图形如下图所示。

图5.x(t)输出波形图6.θ(t )输出波形实验二.典型系统时域响应动、静态性能和稳定性研究; 已知系统的开环传递函数为2()11G s s s =++(1)利用已知的知识判断该开环系统的稳定性(系统的特征方程根、系统零极点表示法)。

(2)判别系统在单位负反馈下的稳定性,并求出闭环系统在[0,10]t ∈内的脉冲响应和单位阶跃响应,分别绘制出相应响应曲线。

(1)该系统的特征方程的根、零极点表示的求解代码如下:输出结果如下图所示。

图7.特征方程求根结果图8.零极点分布图从图中可以看出两个极点在虚轴上,所以该系统处于临界稳定状态。

控制工程基础实验报告

控制工程基础实验报告

控制工程基础实验报告控制工程基础实验报告引言:控制工程是一门涉及自动化、电子、计算机等多个学科的交叉学科,其实验是培养学生动手能力和实践能力的重要环节。

本篇文章将以控制工程基础实验为主题,探讨实验的目的、过程和结果等方面。

实验目的:控制工程基础实验的目的是让学生通过实践了解控制系统的基本原理和方法,培养其分析和解决问题的能力。

通过实验,学生可以掌握闭环控制系统的设计与调试技巧,加深对控制理论的理解。

实验内容:本次实验的内容是设计一个简单的温度控制系统。

系统由温度传感器、控制器和加热器组成。

温度传感器采集环境温度,控制器根据设定的温度值来控制加热器的工作状态,以维持温度在设定值附近。

实验步骤:1. 搭建实验平台:将温度传感器、控制器和加热器按照实验要求连接起来,确保电路正常工作。

2. 设计控制算法:根据控制系统的要求,设计合适的控制算法。

可以采用比例控制、积分控制或者PID控制等方法。

3. 参数调试:根据实验平台和控制算法的特点,调试控制器的参数,使系统能够快速、稳定地响应设定值的变化。

4. 实验数据采集:通过实验平台上的数据采集器,记录系统的输入和输出数据,以便后续分析和评估。

实验结果:经过实验,我们得到了一组温度控制系统的数据。

通过对这些数据的分析,我们可以评估系统的控制性能和稳定性。

在实验中,我们使用PID控制算法,经过参数调试,得到了较好的控制效果。

系统能够在设定值附近稳定工作,并且对设定值的变化能够快速响应。

实验总结:通过这次实验,我们深入了解了控制工程的基本原理和方法。

实践中遇到的问题和挑战,锻炼了我们的动手能力和解决问题的能力。

实验结果表明,合适的控制算法和参数调试是实现良好控制效果的关键。

控制工程实验的重要性不言而喻,它不仅是理论学习的延伸,更是培养学生实践能力的重要途径。

结语:控制工程基础实验是掌握控制工程理论和方法的重要环节。

通过实践,学生能够更好地理解和应用所学知识,提高解决实际问题的能力。

燕山大学控制工程基础实验报告(带数据)

燕山大学控制工程基础实验报告(带数据)

自动控制理论实验报告实验一典型环节的时域响应院系:班级:学号:姓名:实验一 典型环节的时域响应一、 实验目的1.掌握典型环节模拟电路的构成方法,传递函数及输出时域函数的表达式。

2.熟悉各种典型环节的阶跃响应曲线。

3.了解各项参数变化对典型环节动态特性的影响。

二、 实验设备PC 机一台,TD-ACC+教学实验系统一套。

三、 实验步骤1、按图1-2比例环节的模拟电路图将线接好。

检查无误后开启设备电源。

注:图中运算放大器的正相输入端已经对地接了100k 电阻。

不需再接。

2、将信号源单元的“ST ”端插针与“S ”端插针用“短路块”接好。

将信号形式开关设为“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为1V ,周期为10s 左右。

3、将方波信号加至比例环节的输入端R(t), 用示波器的“CH1”和“CH2”表笔分别监测模拟电路的输入R(t)端和输出C(t)端。

记录实验波形及结果。

4、用同样的方法分别得出积分环节、比例积分环节、惯性环节对阶跃信号的实际响应曲线。

5、再将各环节实验数据改为如下:比例环节:;,k R k R 20020010== 积分环节:;,u C k R 22000==比例环节:;,,u C k R k R 220010010=== 惯性环节:。

,u C k R R 220010=== 用同样的步骤方法重复一遍。

四、 实验原理、内容、记录曲线及分析下面列出了各典型环节的结构框图、传递函数、阶跃响应、模拟电路、记录曲线及理论分析。

1.比例环节 (1) 结构框图:图1-1 比例环节的结构框图(2) 传递函数:K S R S C =)()( KR(S)C(S)(3) 阶跃响应:C(t = K ( t ≥0 ) 其中K = R 1 / R 0 (4) 模拟电路:图1-2 比例环节的模拟电路图(5)记录曲线:(6)k R k R 20020010==,时的记录曲线:_R0=200kR1=100k_ 10K10KC(t)反相器 比例环节 R(t)(7)曲线分析:比例放大倍数K 与1R 的阻值成正比。

控制工程基础实验报告

控制工程基础实验报告

控制工程基础实验报告实验一 典型环节及其阶跃响应实验目的1.学习构成典型环节的模拟电路。

2.熟悉各种典型环节的阶跃响应曲线,了解参数变化对典型环节动态特性的影响。

3.学会由阶跃响应曲线计算典型环节的传递函数。

4.熟悉仿真分析软件。

实验内容各典型环节的模拟电路如下:1. 比例环节 12)(R R s G -=2. 惯性环节 RC T Tss G =-=1)(3. 积分环节 1221)(R R K C R T Ts Ks G ==+-=4. 微分环节 RCs s G -=)(改进微分环节1)(12+-=Cs R Cs R s G 5. 比例微分环节)41()(212s C R R R s G +-=实验步骤1.用Workbench 连接好比例环节的电路图,将阶跃信号接入输入端,此时使用理想运放;2.用示波器观察输出端的阶跃响应曲线,测量有关参数;改变电路参数后,再重新测量,观察曲线的变化。

3. 将运放改为实际元件,如采用“LM741",重复步骤2。

5.仿真其它电路,重复步骤2,3,4。

实验总结通过这次实验,我对典型环节的模拟电路有了更加深刻的了解,也熟悉了各种典型环节的阶跃响应曲线,了解参数变化对典型环节动态特性的影响;熟悉仿真分析软件。

这对以后的控制的学习有很大的帮助。

实验二 二阶系统阶跃响应实验目的1. 研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率ωn 对系统动态性能的影响。

2. 学会根据阶跃响应曲线确定传递函数,熟悉二阶系统的阶跃响应曲线。

实验内容二阶系统模拟电路如图: 1)/(1)(12222++-=RCs R R s C R s G 思考:如何用电路参数表示ξ和ωn实验步骤1. 在workbench 下连接电路图;将阶跃信号接入输入端,用示波器观测记录响应信号;2.取ωn=10rad/s,即令R=100K,C=1uf :分别取ξ=0,0.25,0.5,0.7,1,2, 即取R1=100K,考虑R2应分别取何值,分别测量系统阶跃响应,并记录最大超调量δp%和调节时间ts 。

控制工程基础实验报告

控制工程基础实验报告

控制工程基础实验报告班级_____________姓名_____________河南科技大学机电工程学院实验中心2010-9-24实验一典型环节时间响应分析结合报告重点预习: 各环节电路结构、时间响应函数、及各环节在零点输出值。

一实验目的:二实验设备:三实验原理:四实验内容及数据整理:1、阶跃信号(方波)的产生方式2、画出各典型环节方块图(写出传递函数)、模拟电路图(注明元件参数)及实际输出响应函数。

1)比例(P)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线2)惯性(T)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线3)积分(I)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线4)比例积分(PI)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线5)比例微分(PD)环节方块图:模拟电路图:实验数据记录及其对阶跃信号响应曲线五思考题1、实验中每个典型环节使用了两个模拟运放单元,第二个模拟运放单元起什么作用?2、根据PD环节对阶跃信号的响应曲线,试分析电路工作过程。

3、惯性环节分别在什么情况下可近似为比例环节和积分环节?实验二控制系统的频率特性结合报告重点预习:开环传递函数、开环频率特性幅值相位、及如何通过BODE图确定系统参数K和T 的值。

一实验目的:二实验设备:三实验原理:四实验记录1、正弦信号的产生方式2、画出被测系统的方块图及模拟电路图(注明元件参数)。

3、实验数据处理及被测系统的开环对数幅频曲线和相频曲线4、开环频率特性Bode图:5、根据Bode图求出系统开环传递函数五思考题1、根据测得的Bode图的幅频特性,就能确定系统的相频特性,试问这在什么系统时才能实现?2、在Bode图中,为什么横坐标习惯采用对数进行分度?3、改变开环增益或时间常数时对系统动态性能有何影响?实验三系统的校正结合报告重点预习: 比例、积分、微分各环节对系统瞬态性能指标的影响。

控制工程基础实验报告

控制工程基础实验报告

控制工程基础实验姓名:专业:机电班级:02 学号:1003120225实验一:比较二阶系统在不同阻尼比下的时间响应一、实验目的1.熟悉MA TLAB软件环境,学会编写matlab文件(***.m)和使用SIMULINK建模,进行时间响应分析。

二、实验要求1.编写m文件,使用命令sys=tf(num,den),建立二阶系统的传递函数模型;2.编写m文件,使用命令impulse(sys),画出二阶系统在不同阻尼比下的脉冲响应曲线簇;3.编写m文件,使用命令step(sys),画出二阶系统在不同阻尼比下的阶跃响应曲线簇;4.根据阶跃响应曲线,记录不同阻尼比下的时域性能指标,列表写出实验报告,并分析阻尼比和无阻尼自然频率对于性能的影响;5.利用SIMULINK建立方框图仿真模型,进行阶跃响应实验,学会使用workspace的数组变量传递,使用命令plot(X,Y)画出阶跃响应图。

三、实验过程1.编写m文件,使用命令sys=tf(num,den),建立二阶系统的传递函数模型M文件如下:clear;clc;num=[1];den=[1 2 1];sys=tf(num,den)运行结果:Transfer function:1-------------s^2 + 2 s + 12.编写m文件,使用命令impulse(sys),画出二阶系统在不同阻尼比下的脉冲响应曲线簇M文件如下:clear;clc;k=1;xi=[0.1 0.4 0.8 1 5 8];wn=1;for i=1:length(xi);sys=tf([k*wn^2],[1 2*xi(i)*wn wn^2]);impulse(sys);hold on;endhold offgrid运行结果:3.编写m文件,使用命令step(sys),画出二阶系统在不同阻尼比下的阶跃响应曲线簇M文件如下:clear;clc;k=1;xi=[0.1 0.4 0.8 1 5 8];wn=1;for i=1:length(xi);sys=tf([k*wn^2],[1 2*xi(i)*wn wn^2]);step(sys);hold on;endhold offgrid运行结果:4.根据阶跃响应曲线,记录不同阻尼比下的时域性能指标,列表写出实验报告,并分析阻尼比和无阻尼自然频率对于性能的影响利用时域响应特性函数function [tr,tp,mp,ts,td]=texing(sys,xi,m,n)求得系统在不同阻尼比xi下阶跃响应的时域特性指标(texing函数见附录)。

控制工程基础实验报告讲解

控制工程基础实验报告讲解

控制工程基础实验报告北京工业大学机电学院指导教师:初红艳学号:姓名:一.实验目的本实验中,学生使用MATLAB 语言进行控制系统的分析,可以达到以下目的: (1)通过MATLAB 的分析,掌握控制系统的时域瞬态响应、频率特性,根据时域性能指标、频域性能指标评价控制系统的性能,根据系统频率特性进行稳定性分析,了解对系统进行校正的方法,从而进一步巩固、加深对课堂内容的掌握,加强对控制工程基础知识的掌握。

(2)熟悉MATLAB 的控制系统图形输入与仿真工具SIMULINK ,能够对一些框图进行仿真或线性分析,使一个复杂系统的输入变得相当容易且直观。

(3)通过本实验,使学生掌握进行控制系统计算机辅助分析的方法,学会利用MATLAB 语言进行复杂的实际系统的分析、校正与设计,具备解决工程实际问题的能力。

二.实验内容控制系统方块图如图1所式。

这是一个电压—转角位置随动系统,系统的功能是用电压量去控制一个设备的转角,给定值大,输出转角也就成比例地增大。

图1 系统方块图 图中,)(1s G 为前置放大及校正网络传递函数K 2为功率放大器放大倍数,102=K K 3为电动机传递系数,s V rad K ⋅=/83.23 T M 为电动机机电时间常数,s T M 1.0= T a 为电动机电磁时间常数,ms T a 4= K c 为测速传递系数,rad s V K c /15.1⋅=β 为测速反馈分压系数,1=βK a 为主反馈电位计传递系数,rad V K a /7.4= U i 为输入电压U b 为反馈电压 U i 2为速度环输入电压 U c 为测速机电压 U D 为电动机电压n 为电动机转速取1=β三、实验报告1.对于二阶系统:1)(23++=s s G Ts T T KMaM,a M MaM T T T T T 21n ==ζω其阶跃响应和单位脉冲响应分别如图1-1、1-2所示:MATLAB 语言为: >>num=[2.83]num =2.8300>> den=[0.0004,0.1,1]den =0.0004 0.1000 1.0000>> sys=tf(num,den) sys =2.83 ---------------------- 0.0004 s^2 + 0.1 s + 1Continuous -time transfer function.>> step(sys)>> impulse(sys)图1-1图1-2此时阻尼比为2.5,由其阶跃响应可知其稳态值为2.83,为过阻尼状态,瞬态响应指标如上图所示;在无阻尼自振角频率不变时,通过简单计算得出如下的结论:M a M n T T T 25===ζω,0004.0,50调整TM=0.01,Ta=0.04,使得系统处于欠阻尼状态,0.25=ξ,其阶跃响应与单位脉冲响应1-3、1-4;MATLAB 语言如下:>>num=[2.83]num =2.8300>> den=[0.0004,0.01,1]den =0.0004 0.0100 1.0000>> sys=tf(num,den) sys =2.83 -----------------------0.0004 s^2 + 0.01 s + 1Continuous -time transfer function.>> step(sys) >> impulse(sys)其瞬态响应指标在下图中标出;图1-3图1-4调整TM=0.04,Ta=0.01,使得系统处于临界阻尼状态,其阶跃响应与单位脉冲响应如图1-5、1-6所示;MATLAB语言如下:>>num=[2.83]num =2.8300>> den=[0.0004,0.04,1]den =0.0004 0.0400 1.0000>> sys=tf(num,den)sys =2.83-----------------------0.0004 s^2 + 0.04 s + 1Continuous-time transfer function.>> step(sys)>> impulse(sys图1-5图1-6由以上当TM=0.1,Ta=0.0004,系统处于过阻尼状态,其阶跃响应与单位脉冲响应见图1-1、1-2所示:分析:由以上响应曲线和响应指标可知,过阻尼与临界阻尼无超调、无振荡,而欠阻尼有超调和振荡,过阻尼达到平衡状态所需的时间比临界阻尼和过阻尼都要长。

控制工程实验报告

控制工程实验报告

Hefei University of Technology《控制工程基础》实验报告学院机械与汽车工程学院姓名学号专业班级机械设计制造及其自动化13-7班2015年12月15日自动控制原理实验• 1、线性系统的时域分析• 1.1典型环节的模拟研究一、实验要求1、掌握各典型环节模拟电路的构成方法、传递函数表达式及输出时域函数表达式。

2、观察和分析各典型环节的阶跃响应曲线,了解各项电路参数对典型环节动态特性的影响。

二、实验原理(典型环节的方块图及传递函数)三、实验内容及步骤在实验中欲观测实验结果时,可用普通示波器,也可选用本实验机配套的虚拟示波器。

如果选用虚拟示波器,只要运行LABACT 程序,选择自动控制菜单下的线性系统的时域分析下的典型环节的模拟研究实验项目,再选择开始实验,就会弹出虚拟示波器的界面,点击开始即可使用本实验机配套的虚拟示波器(B3)单元的CH1测孔测量波形。

具体用法参见用户手册中的示波器部分。

1) 观察比例环节的阶跃响应曲线典型比例环节模拟电路如图3-1-1所示。

该环节在A1单元中分别选取反馈电阻R1=100K 、200K 来改变比例参数。

图3-1-1 典型比例环节模拟电路实验步骤: 注:“SST ”不能用“短路套”短接!(1)将信号发生器(B1)中的阶跃输出0/+5V 作为系统的信号输入(Ui ) (2)安置短路套、联线,构造模拟电路:(a(b(3)虚拟示波器(B3)的联接:示波器输入端CH1接到A6单元信号输出端OUT (Uo )。

注:CH1选“X1”档。

时间量程选“x4”档。

(4)运行、观察、记录:按下信号发生器(B1)阶跃信号按钮时(0→+5V 阶跃),用示波器观测A6输出端(Uo )的实际响应曲线Uo (t ),且将结果记下。

改变比例参数(改变运算模拟单元A1的反馈电阻R1),重新观测结果,其实际阶跃响应曲线见表3-1-1。

2) 观察惯性环节的阶跃响应曲线典型惯性环节模拟电路如图3-1-2所示。

控制柜实验报告

控制柜实验报告

---控制工程基础实验报告摘要:本实验报告旨在通过实际操作,验证和控制工程基础理论,包括典型环节的模拟电路、阶跃响应曲线分析以及PLC控制技术的应用。

通过实验,加深对控制理论的理解,并掌握相关实验技能。

实验一:典型环节及其阶跃响应实验一、实验目的:1. 学习构成典型环节的模拟电路。

2. 熟悉各种典型环节的阶跃响应曲线。

3. 了解参数变化对系统性能的影响。

二、实验内容:1. 典型环节模拟电路搭建:- 比例环节- 积分环节- 微分环节- 一阶惯性环节- 二阶环节2. 阶跃响应曲线测量:- 使用示波器或计算机采集系统输出信号。

- 记录并分析阶跃响应曲线。

三、实验结果与分析:1. 比例环节:通过改变比例系数,观察系统输出响应的变化。

2. 积分环节:通过改变积分时间常数,观察系统输出响应的变化。

3. 微分环节:通过改变微分时间常数,观察系统输出响应的变化。

4. 一阶惯性环节:通过改变时间常数,观察系统输出响应的变化。

5. 二阶环节:通过改变时间常数和阻尼比,观察系统输出响应的变化。

四、结论:通过实验,我们验证了典型环节的阶跃响应特性,并分析了参数变化对系统性能的影响。

实验二:PLC控制实验一、实验目的:1. 学习PLC的基本原理和操作。

2. 掌握PLC编程和调试方法。

3. 理解PLC在工业控制系统中的应用。

二、实验内容:1. PLC硬件配置:- 连接PLC与外部输入输出设备。

- 确定各外部输入输出元件对应PLC输入输出端子号。

2. PLC编程:- 使用SFC(顺序功能图)编写控制程序。

- 将程序输入PLC并调试。

3. 实验结果观察:- 观察LED七段数码管显示的数字变化。

- 验证PLC控制系统的稳定性和可靠性。

三、实验结果与分析:1. 通过编程实现LED七段数码管的数字显示,验证了PLC控制系统的正确性。

2. 分析实验过程中可能出现的错误,并提出改进措施。

四、结论:通过PLC控制实验,我们掌握了PLC的基本操作和编程方法,并了解了其在工业控制系统中的应用。

控制工程基础实验报告

控制工程基础实验报告

控制系统的仿真数学模型系别:机电工程系班级:1301班专业:机械设计制造及其自动化姓名:学号:201309011指导教师:刘春艳一、实验目的由系统的结构方框图得到控制系统模型,其传递函数方框图,用SIMULINK 模型结构图化简控制系统模型,分析系统的阶跃响应,并绘制响应曲线。

二、上机内容1、 Matlab 基础2、 Matlab 中系统建模3、 Matlab 分析系统的动态特性三、实验平台Windows 98或2000或XP Matlab 6.1以上版本四、操作过程、源程序和计算结果:3.15二阶系统的闭环传递函数为()2222nn n s s s G ωξωω++=式中二阶系统固有频率n ω=10 rad/s,试求该系统在欠阻尼、临界阻尼、过阻尼、零阻尼及负阻尼状态下的单位阶跃响应。

(1)欠阻尼,当取二阶系统阻尼分别为ξ=0.2、0.4、0.6、0.8时,仿真模型如下图所示(2) 临界阻尼、过阻尼、零阻尼及负阻尼状态下的单位阶跃响应,当取二阶系统阻尼分别为 =1.0、1.5、0.0、-0.2时,仿真模型如下图所示例题3.16 某单位反馈控制系统框图如下图所示。

试分析开环放大系数K对该系统稳定性的影响。

3-18 对于典型二阶系统,()2222nn n s s s G ωξωω++= ,要求: 1.当固有振荡频率=n ω6rad/s ,阻尼比分别为0.1,0.2, ------0.9,1.0,2.0时系统的单位阶跃响应曲线和单位脉冲曲线;2.当阻尼比7.0=ξ时,固有频率分别为2,4,6,8,10,12rad/s 时的单位阶跃响应曲线和单位脉冲响应曲线。

(1)t=[0:0.1:10];num=[36];den1=[1 1.2 36];sys1=tf(num,den1);den2=[1 2.4 36];sys2=tf(num,den2);den3=[1 3.6 36]; sys3=tf(num,den3);den4=[1 4.8 36];sys4=tf(num,den4);den5=[1 6 36];sys5=tf(num,den5);den6=[1 7.2 36];sys6=tf(num,den6);den7=[1 8.4 36];sys7=tf(num,den7);den8=[1 9.6 36];sys8=tf(num,den8);den9=[1 10.8 36];sys9=tf(num,den9);den10=[1 12 36];sys10=tf(num,den10);den11=[1 24 36];sys11=tf(num,den11);step(sys1,sys2, sys3, sys4, sys5, sys6, sys7, sys8, sys9, sys10, sys11, t);grid on;t=[0:0.1:6];num=[36];den1=[1 1.2 36]; sys1=tf(num,den1); den2=[1 2.4 36]; sys2=tf(num,den2); den3=[1 3.6 36]; sys3=tf(num,den3); den4=[1 4.8 36]; sys4=tf(num,den4); den5=[1 6 36];sys5=tf(num,den5); den6=[1 7.2 36]; sys6=tf(num,den6); den7=[1 8.4 36];sys7=tf(num,den7);den8=[1 9.6 36];sys8=tf(num,den8);den9=[1 10.8 36];sys9=tf(num,den9);den10=[1 12 36];sys10=tf(num,den10);den11=[1 24 36];sys11=tf(num,den11);impulse(sys1,sys2, sys3, sys4, sys5, sys6, sys7, sys8, sys9, sys10, sys11, t);grid on;(2)t=[0:0.1:5];den1=[1 2.84];sys1=tf([4],den1);den2=[1 5.616];sys2=tf([16],den2);den3=[1 8.436];sys3=tf([36],den3);den4=[1 11.264];sys4=tf([64],den4);den5=[1 14100];sys5=tf([100],den5);den6=[1 16.8144];sys6=tf([144],den6);step(sys1,sys2, sys3, sys4, sys5, sys6, t); grid on;t=[0:0.1:6];den1=[1 2.84];sys1=tf([4],den1);den2=[1 5.616];sys2=tf([16],den2);den3=[1 8.436];sys3=tf([36],den3);den4=[1 11.264];sys4=tf([64],den4);den5=[1 14100];sys5=tf([100],den5);den6=[1 16.8144];sys6=tf([144],den6);impulse(sys1,sys2, sys3, sys4, sys5, sys6, t); grid on;。

控制工程实验

控制工程实验

实验一二阶系统阶跃响应一、实验目的1.研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响。

定量分析ζ和ωn与最大超调量Mp和调节时间t S之间的关系。

2.进一步学习实验系统的使用方法3.学会根据系统阶跃响应曲线确定传递函数。

二、实验仪器1.EL-AT-III型自动控制系统实验箱一台2.计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2. 域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2) 检查USB线是否连接好,在实验项目下拉框中选中实验,点击按钮,出现参数设置对话框设置好参数,按确定按钮,此时如无警告对话框出现表示通信正常,如出现警告表示通信不正常,找出原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。

电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入,将两个积分电容连在模拟开关上。

检查无误后接通电源。

4)在实验项目的下拉列表中选择实验二[二阶系统阶跃响应] 。

5)鼠标单击按钮,弹出实验课题参数设置对话框。

在参数设置对话框中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果6)利用软件上的游标测量响应曲线上的最大值和稳态值,代入下式算出超调量:Y MAX - Y∞Ó%=——————×100%Y∞T P与T P:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到T P与T P。

南理工 机械院 控制工程基础实验报告

南理工 机械院 控制工程基础实验报告

实验1 模拟控制系统在阶跃响应下的特性实验一、实验目的根据等效仿真原理,利用线性集成运算放大器及分立元件构成电子模拟器,以干电池作为输入信号,研究控制系统的阶跃时间响应。

二、实验内容研究一阶与二阶系统结构参数的改变,对系统阶跃时间响应的影响。

三、实验结果及理论分析1.一阶系统阶跃响应a.电容值1uF,阶跃响应波形:b.电容值2.2uF,阶跃响应波形:c. 电容值4.4uF ,阶跃响应波形:2. 一阶系统阶跃响应数据表电容值 (uF ) 稳态终值U c (∞)(V ) 时间常数T(s) 理论值 实际值 理论值 实际值 1.0 2.87 2.90 0.51 0.50 2.2 2.87 2.90 1.02 1.07 4.42.872.902.242.06元器件实测参数U r = -2.87VR o =505k ΩR 1=500k ΩR 2=496k Ω其中C R T 2=r c U R R U )/()(21-=∞误差原因分析:①电阻值及电容值测量有误差;②干电池电压测量有误差;③在示波器上读数时产生误差;④元器件引脚或者面包板老化,导致电阻变大;⑤电池内阻的影响输入电阻大小。

⑥在C=4.4uF的实验中,受硬件限制,读数误差较大。

3.二阶系统阶跃响应a.阻尼比为0.1,阶跃响应波形:b.阻尼比为0.5,阶跃响应波形:c.阻尼比为0.7,阶跃响应波形:d.阻尼比为1.0,阶跃响应波形:4.二阶系统阶跃响应数据表ξR w(Ω)峰值时间t p(s)U o(t p)(V)调整时间t s(s)稳态终值U s(V)超调(%)M p震荡次数N0.1 454k 0.3 4.8 2.8 2.95 62.7 60.5 52.9k 0.4 3.3 0.5 2.95 11.9 10.7 24.6k 0.4 3.0 0.3 2.92 2.7 11.02.97k 1.0 2.98 1.0 2.98 0 0四、回答问题1.为什么要在二阶模拟系统中设置开关K1和K2,而且必须同时动作?答:K1的作用是用来产生阶跃信号,撤除输入信后,K2则是构成了C2的放电回路。

控制工程基础实验报告1 -示例

控制工程基础实验报告1 -示例

《控制工程基础》实验报告一班级·学号1501034148 姓名李富国实验日期2017.11.27 任课教师杨世文实验名称实验一控制系统的建模验证型一、实验目的及要求:1.学习在MATLAB命令窗口建立系统模型的方法;2.学习如何在三种模型之间相互转换;3.学习如何用SIMULINK仿真工具建模。

二、上机内容:1、Matlab基础2、Matlab中系统建模3、Matlab分析系统的动态特性三、实验平台Windows 98或2000或XP Matlab 5.3以上版本1. 给定控制系统的传递函数为:在MA TLAB 中建立系统的传递函数模型、零极点增益模型和状态变量模型。

num=[3]; %G 的分子多项式系数den=[1, 3, 5, 7]; %G1的分母多项式系数G=tf(num, den) % 由分子多项式/分母多项式采用tf()函数创建传递函数[z1,p1,k1]=tf2zp(num,den) %求传递函数的零极点sys1zp=zpk(z1,p1,k1) %构建并显示该系统的零极点形式的传递函数运行结果:7533)(23+++=s s s s G2.在SIMULINK中建立如下图所示的结构图:源程序:五、评阅成绩评阅老师年月日《机械控制工程基础》实验报告二班级·学号1501034148 姓名李富国实验日期2017.11.27任课教师杨世文实验名称实验二控制系统的稳定性分析实验验证型一、实验目的及要求:本实验是用MATLAB得到控制系统的频域特性曲线,绘制给定控制系统Bode 图和Nyquist图,并表示出系统的幅值裕量和相位裕量,-π穿越频率和剪切频率等频域性能指标;用频率法对控制系统进行稳定性判断。

二、上机内容:1、Matlab中的频率响应函数2、Matlab求取稳定性裕量三、实验平台Windows 98或2000或XP Matlab 5.3以上版本四、操作过程、源程序和计算结果:1、题目:绘制系统G(s)=[100(s+4)]/[s(s+0.5)(s+50)²]的Bode图。

南京理工大学控制工程基础实验报告

南京理工大学控制工程基础实验报告

南京理⼯⼤学控制⼯程基础实验报告《控制⼯程基础》实验报告姓名欧宇涵 914000720206周⽵青 914000720215 学院教育实验学院指导⽼师蔡晨晓南京理⼯⼤学⾃动化学院2017年1⽉实验1:典型环节的模拟研究⼀、实验⽬的与要求:1、学习构建典型环节的模拟电路;2、研究阻、容参数对典型环节阶跃响应的影响;3、学习典型环节阶跃响应的测量⽅法,并计算其典型环节的传递函数。

⼆、实验内容:完成⽐例环节、积分环节、⽐例积分环节、惯性环节的电路模拟实验,并研究参数变化对其阶跃响应特性的影响。

三、实验步骤与⽅法(1)⽐例环节图1-1 ⽐例环节模拟电路图⽐例环节的传递函数为:K s U s U i O =)()(,其中12R RK =,参数取R 2=200K ,R 1=100K 。

步骤: 1、连接好实验台,按上图接好线。

2、调节阶跃信号幅值(⽤万⽤表测),此处以1V 为例。

调节完成后恢复初始。

3、Ui 接阶跃信号、Uo 接IN 采集信号。

4、打开上端软件,设置采集速率为“1800uS”,取消“⾃动采集”选项。

5、点击上端软件“开始”按键,随后向上拨动阶跃信号开关,采集数据如下图。

图1-2 ⽐例环节阶跃响应(2)积分环节图1-3 积分环节模拟电路图积分环节的传递函数为:ST V V I I O 1-=,其中T I =RC ,参数取R=100K ,C=0.1µf 。

步骤:同⽐例环节,采集数据如下图。

图1-4 积分环节阶跃响应(3)微分环节图1-5 微分环节模拟电路图200KRV IVoC2CR 1V IVo200K微分环节的传递函数为:K ST S T V V D D I O +-=1,其中 T D =R 1C 、K=12R R。

参数取:R 1=100K ,R 2=200K ,C=1µf 。

步骤:同⽐例环节,采集数据如下图。

图1-6 微分环节阶跃响应(4)惯性环节图1-7 惯性环节模拟电路图惯性环节的传递函数为:1+-=TS K V V I O ,其中2T R C =,21RK R =-。

控制工程实验报告

控制工程实验报告

控制工程实验报告精04 张为昭 2010010591实验一 Matlab仿真实验利用Matlab-Simulink工具进行如下仿真实验。

1.1直流电机的阶跃响应如图1-1,对直流电机输入一个单位阶跃信号,画出阶跃响应曲线,指出主导极点。

图1-1 直流电机的阶跃响应所作的响应曲线如下图1-11所示。

图 1-11 直流电动机响应曲线已知传递函数两个极点是-10和-10000,故主导极点为-10。

1.2直流电机速度闭环控制如图1-2,用测速发电机检测直流电机转速,用控制器Gc(s)控制加到电机电枢上的电压。

图 1-2 直流电机速度闭环控制(1)假设G c(s)=100,用matlab画出控制系统开环Bode图,计算增益剪切频率、相位裕量、相位剪切频率、增益裕量。

开环Bode图如图1-21所示。

图1-21开环Bode图求得的增益剪切频率、相位裕量、相位剪切频率、增益裕量分别为784.3rad/s、48.1deg、3179.7rad/s、11.1dB。

(2)通过分析Bode图,选择合适的常数K p作为G c(s),使闭环阶跃响应的最大超调量在0~5%之间。

由于系统为高阶系统且不是最优模型,所以采用试探法求合适的KP。

已知减小KP ,可使超调量降低,但快速性和精度变差差。

经过调试,取KP为41时较合适,此时闭环阶跃响应如图1-22所示。

计算得超调量:Mp =(50.920148.8096-1)´100%=4.32%满足要求,且此时的相角裕量和增益裕量分别为68.3738deg和27.1253,满足要求。

(3)计算此时的稳态位置误差系数,画出闭环系统阶跃响应曲线,稳态值是否与理论一致?系统为0型,此时的稳态位置误差系数即为开环静态放大倍数41,理论稳态值计算为:x(¥)=10.02(1-11+41)=48.8095仿真得到的响应如图1-22所示,稳态值为48.8096,理论和实际相符合。

图 1-22 闭环单位阶跃响应图(4)令G c(s)=K p+K I/s,通过分析(2)的Bode图,判断如何取合适的K p和K I的值,使得闭环系统既具有高的剪切频率和合适的相位裕量,又具有尽可能高的稳态速度误差系数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图2-4 =1时的阶跃响应曲线
(3)当K 0.625时, 1,系统工作在过阻尼状态,它的单位阶跃响应 曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者 的上升速度比前者缓慢。
四、实验内容与步骤
1、根据图2-2,调节相应的参数,使系统的开环传递函数为: 将调节后的电路图画出,并标出所选各元器件的参数值。
四、实验内容与步骤
1、分别画出比例、惯性、积分、比例微分环节的电子电路; 2、熟悉实验设备并在实验设备上分别联接各种典型环节; 3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性 测试,观察并记录其单位阶跃响应波形。
五、实验报告
1、画出四种典型环节的实验电路图,并标明相应的参数; 2、画出各典型环节的单位阶跃响应波形,并分析参数对响应曲线的影
4、各种长度联接导线。
三、实验原理
图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯
性环节、积分环节和比例环节组成,图中K=R2/R1, T2=R3C2。
T1=R2C1,
图2-1 二阶系统原理框图
图2-2 二阶系统的模拟电路
由图2-2求得二阶系统的闭环传递函
(2-1) 而二阶系统的标准传递函数为:
一、实验目的
1、 熟悉二阶模拟系统的组成;
2、 研究二阶系统分别工作在=1, 0< <1, 和 1三种状态下的单
位阶跃响应;
3、 分析增益K对二阶系统单位阶跃响应的超调量P、峰值时间tp
和调整时间ts。
二、实验仪器设备
1、控制理论电子模拟实验箱一台;
2、超低频慢扫描数字存储示波器一台;
3、数字万用表一只;
对比式(2-1)和式(2-2)得 。调节开环增益K值,不仅能改变系统无阻尼自然振荡频率ωn和的
值,可以得到过阻尼(>1)、临界阻尼(=1)和欠阻尼(<1)三种情况下
的阶跃响应曲线。 (1)当K>0.625, 0 1,系统处在欠阻尼状态,它的单位阶跃响应表 达式为:
图2-3 0 1时的阶跃响应曲线
(2)当K=0.625时,=1,系统处在临界阻尼状态,它的单位阶跃响应表 达式为: 如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
响; 3、写出实验心得体会。 六、思考题 1、用运放模拟典型环节时,其传递函数是在哪两个假设条件下近似导 出? 2、积分环节和惯性环节主要差别是什么?在什么条件下,惯性环节可 以近似为积分环节?在什么条件下,又可以视为比例环节? 3、如何根据阶跃响应的波形,确定积分环节和惯性环节的时间常数?
实验二 二阶系统的瞬态响应分析
三、实验原理
三阶系统及三阶以上的系统统称为高阶系统。一个高阶系统的瞬态 响应是由一阶和二阶系统的瞬态响应组成。控制系统能投入实际应用必 须首先满足稳定的要求。线性系统稳定的充要条件是其特征方程式的根 全部位于S平面的左方。应用劳斯判据就可以判别闭环特征方程式的根 在S平面上的具体分布,从而确定系统是否稳定。
2、令Ui(t)=1V,在示波器上观察不同K时的单位阶跃响应的波形, 并由实验求得相应的σp、tp和ts的值,将结果填入下表2.1。
K
R1
R2
tp
ts
10
0.625
0.312
1.25
3、观察并记录在不同K值时,系统跟踪斜坡信号时的稳态误差。
五、实验报告
1、画出使用的模拟电路图,标出各元器件的参数值; 2、按照步骤要求填写表2.1; 3、画出二阶系统在不同K值下的瞬态响应曲线,并注明时间坐标 轴。 4、计算K=10,K=0.625和K=0.312三种情况下和ωn值。据此,求得 相应的动态性能指标σp、tp和ts,并与实验所得出的结果作一比较。 5、写出本实验的心得与体会。
六、思考题
1、如果阶跃输入信号的幅值过大,会在实验中产生什么后果? 2、在电子模拟系统中,如何实现负反馈和单位负反馈? 3、为什么本实验的模拟系统中要用三只运算放大器?
实验三 控制系统的稳定性分析
一、实验目的
1、理解系统的不稳定现象; 2、研究系统开环增益对稳定性的影响。
二、实验仪器设备
1、控制理论电子模拟实验箱一台; 2、超低频慢扫描数字存储示波器一台; 3、数字万用表一只; 4、各种长度联接导线。
实验模拟电路见图1-4所示
图1-4 积分环节
传递函数: 阶跃输入信号:-2V 实验参数: (1) R=100K C=1µf (2) R=100K C=2µf 4、比例微分环节
实验模拟电路见图1-5所示
图1-5 比例微分环节
传递函数: 其中 T=RC K= 阶跃输入信号:-2V 实验参数: (1) R=100K R=100K C=1µf (2)R=100KR=200K C=1µf
1、比例环节
实验模拟电路见图1-2所示
图1-2 比例环节
传递函数:
阶跃输入信号:-2V
实验参数:
(1) R=100K R=100K
(2) R=100K R=200K
2、 惯性环节
实验模拟电路见图1-3所示
传递函数:
图1-3 惯性环节
阶跃输入:-2V 实验参数: (1) R=100K R=100K C=1µf (2) R=100K R=100K C=2µf 3、积分环节
实验一 控制系统典型环节的模拟
一、实验目的
1、掌握比例、积分、实际微分及惯性环节的模拟方法;
2、通过实验熟悉各种典型环节的传递函数和动态特性;
3、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器设备
1、控制理论电子模拟实验箱一台;
2、超低频慢扫描数字存储示波器一台;
3、数字万用表一只;
4、各种长度联接导线。
K R1 R2 R3 R4 R5 C1 C2 C3
20
12
5
2、 用慢扫描示波器观察并记录三阶系统在以下三种情况下单位阶 跃响应曲线。
五、实验报告要求
1、填写实验内容与步骤中的表4.1. 2、画出在实验内容与步骤中三种情况下的三阶系统线性定常系统 阶跃响应曲线。
六、思考题
1、为使系统稳定地工作,开环增益应适当取小还是取大? 2、为什么二阶系统和三阶系统的模拟电路中所用的运算放不同的R-C输入网络和反馈网络组成
的各种典型环节,如图1-1所示。图中Z1和Z2为复数阻抗,它们都是R、
C构成。
图1-1 运放反馈连接
基于图中A点为电位虚地,略去流入运放的电流,则由图1-1得:
由上式可以求得下列模拟电路组成的典型环节的传递函数及其单
位阶跃响应。
由开环传递函数得到系统的特征方程为
由劳斯判据得
0<K<12
系统稳定
K=12
系统临界稳定
K>12
系统不稳定
其三种状态的不同响应曲线如图4-3的a)、b)、c)所示。
a) 不稳定
b) 临界
图4-3三阶系统在不同放大系数的单位阶跃响应曲线
四、实验内容与步骤
c)稳定
1、 当=1s,s,s时,根据图4-2所示的三阶系统的模拟电路图,设 计并组建该系统的模拟电路,将所选各元件参数填入表4.1。
本实验是研究一个三阶系统的稳定性与其参数K对系统性能的关 系。三阶系统的方框图和模拟电路图如图4-1、图4-2所示。
图4-1 三阶系统的方框图
图4-2 三阶系统电路模拟图
图4-2 三阶系统的模拟电路图(电路参考单元为:U3、U8、U5、 U6、反相器单
元)图4-1的开环传递函数为:
假设式中=1s,s,s,由于,而,(其中待定电阻Rx的单位为KΩ),改 变Rx的阻值,可改变系统的放大系数K。
相关文档
最新文档