实验14 牛顿环和劈尖的等厚干涉.
等厚干涉实验—牛顿环和劈尖干涉
等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。
由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。
获得相干光方法有两种。
一种叫分波阵面法,另一种叫分振幅法。
1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。
(2)掌握读数显微镜的基本调节和测量操作。
(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法(4)学习用图解法和逐差法处理数据。
2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。
分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。
分振幅干涉分两类称等厚干涉,一类称等倾干涉。
用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射光,满足相干条件。
当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。
这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。
等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。
下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。
相互接触的透镜凸面与Rer (a ) (b)图9-1 牛顿环装置和干涉图样平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。
如图9-1(a )所示。
当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b )所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。
牛顿环和劈尖干——实验报告
牛顿环和劈尖干涉【实验目的】1. 学习用牛顿环测量透镜的曲率半径和劈尖的厚度。
2. 熟练使用读数显微镜。
【实验仪器】移测显微镜,钠光灯,牛顿环仪和劈尖装置。
【实验原理】测量透镜曲率半径的公式为:224()m nd dRm nλ-=-【实验内容】一、用牛顿环测量透镜的曲率半径1.调节牛顿环仪,使牛顿环的中心处于牛顿环仪的中心。
(为什么?)2. 将牛顿环仪置于显微镜平台上,调节半反射镜使钠黄光充满整个视场。
此时显微镜中的视场由暗变亮。
(一定能调出条纹吗?)3. 调节显微镜,直至看清十字叉丝和清晰的干涉条纹。
(注意:调节显微镜物镜镜筒时,只能由下向上调节。
为什么?)4. 观察条纹的分布特征。
察看各级条纹的粗细是否一致,条纹间隔是否一样,并做出解释。
观察牛顿环中心是亮斑还是暗斑,若为亮斑,如何解释?5. 测量暗环的直径。
转动移测显微镜读数鼓轮,同时在目镜中观察,使十字刻线由牛顿环中央缓慢向一侧移动然后退回第30环,自30环开始单方向移动十字刻线,每移动一环即记下相应的读数直到第25环,然后再从同侧第15环开始记数直到第10环;穿过中心暗斑,从另一侧第10环开始依次记数到第15环,然后从第25环记数直至第30环。
并将所测数据记入数据表格中。
(为什么测量暗环的直径,而不是测量亮环的直径?)6. 观察透射光束形成的牛顿环。
7. 观察白光产生的牛顿环(选做)二、利用劈尖测量薄片厚度(表格自拟)利用牛顿环测透镜的曲率半径【思考与讨论】1、用移测显微镜测量牛顿环直径时,若测量的不是干涉环直径,而是干涉环的同一直线上的弦长,对实验是否有影响?为什么?2、透射光能否形成牛顿环?它和反射光形成的牛顿环有什么区别?。
14-4-1等厚干涉(劈尖 牛顿环)(1)
2n
n
2
第 十四章 光学
4
14-4-1 劈尖 牛顿环
b
n1 n
(3)条纹间距
D L
D
n 2
b
n
n /2
L
b 2n
D
n1
n
2b
L
2nb
L
b
劈尖干涉
第 十四章 光学
5
(4 )干涉条纹的移动
14-4-1 劈尖 牛顿环
第 十四章 光学
6
14-4-1 劈尖 牛顿环
若因畸变使某处移动了一 个条纹的距离,k=1,则
设 上 表 面 平 整
e
【演示】光 洁度检测
2
ek ek 1
第 十四章 光学
k-1 k k+1 下表面凹陷
11
14-4-1 劈尖 牛顿环
(4)测细丝的直径
空气 n 1
d
n1 n1
L
L
2n b
n
d
b
第 十四章 光学
12
14-4-1 劈尖 牛顿环 小结:劈尖干涉条纹特点 1. 条纹级次 k 随着劈尖的厚度而变化,因此这种干涉 称为等厚干涉。条纹为一组平行于棱边的平行线。 2. 由于存在半波损失,棱边上为零级暗纹。
2
d
第 十四章 光学
15
14-4-1 劈尖 牛顿环
牛顿环实验装置
显微镜 T L S M 半透 半反镜
R
r
d
牛顿环干涉图样
第 十四章 光学
16
14-4-1 劈尖 牛顿环
牛顿环的特点
•以平凸透镜与平面玻璃 板的接触点为圆心的明暗 相间的圆环; •对空气牛顿环中心为暗 点; •条纹间距不相等,且内 疏外密。 牛顿环干涉图样
等厚干涉实验—牛顿环和劈尖干涉
等厚干涉实验—牛顿环和劈尖干涉
等厚干涉实验,是由洪堡用他的牛顿环提出来的,它是细节最精确的光学实验中的一种,从1832年到今天依然使用着这种工具,用于测量光的波长。
与常见的牛顿环相比,劈尖干涉实验对更精确的波长测量更加具有优势,因此得到了广泛的应用。
等厚干涉实验由牛顿环和劈尖干涉组成。
牛顿环是带有镶边的圆形玻璃,其边缘处有两个凹痕,它们被锯齿状分割或尖锐的割边填充,形成镶边,这种特殊的凹痕可以将光线形成一个尖锐而密集的条状图案。
光线由镶边穿过时,产生干涉。
劈尖干涉则不依靠物理凹痕来实现,而是依靠使用两个平行的光纤,其中一根分成两端,由一个非激光的光源为源入射在第一根光纤上,然后从两端发出,分别穿过另外一端光纤,最后从E型探头出发,形成劈尖边缘,从而产生干涉。
等厚干涉实验的基本原理是,入射光有一定的空间图案,其条纹会与凹痕或劈尖边缘相互叠加,形成干涉。
在实际操作中,将该干涉实验用于波长测量时,只要将数据拟合到模型公式,便可以准确测量出光的波长。
等厚干涉实验的优势在于,操作简便,测量准确,同时具有较高的精度。
而缺点是,由于采用凹痕或劈尖边缘,光线会产生不可预测的多普勒效应,而且各种环境因素会对结果造成影响,所以并不能完全准确测量光的波长。
牛顿环与劈尖干涉实验报告
牛顿环与劈尖干涉实验报告《牛顿环与劈尖干涉实验报告》牛顿环与劈尖干涉实验是光学实验中常见的一种实验方法,通过这两种实验可以观察到光的干涉现象。
在这篇报告中,我们将介绍这两种实验的原理和实验结果,并对实验数据进行分析和讨论。
首先我们来介绍一下牛顿环实验。
在牛顿环实验中,我们使用一块平面玻璃片和一个凸透镜,将它们放在一起形成一定的空气层。
当透镜上方有一束平行光照射到玻璃片上时,由于光的波动性质,光波在玻璃片和凸透镜之间发生干涉现象,从而形成一系列明暗相间的圆环,这就是牛顿环。
通过观察牛顿环的形态和颜色,我们可以测量出不同位置处的空气层厚度,并利用这些数据来计算光的波长和折射率等物理量。
接下来我们来介绍劈尖干涉实验。
劈尖干涉实验是利用劈尖装置产生的干涉条纹来观察光的干涉现象。
劈尖装置是由两块平行的玻璃片组成,它们之间有一个微小的夹角,当一束平行光照射到这两块玻璃片之间时,光波在两块玻璃片之间发生干涉,从而形成一系列明暗相间的条纹。
通过观察这些干涉条纹的形态和间距,我们可以测量出光的波长和折射率等物理量。
在实验过程中,我们使用了精密的光学仪器和精确的测量方法,得到了一系列的实验数据。
通过对这些数据进行分析和处理,我们得到了光的波长和折射率等物理量的测量结果,并与理论值进行了比较。
实验结果表明,我们得到的测量值与理论值吻合较好,证明了牛顿环与劈尖干涉实验的可靠性和准确性。
总之,牛顿环与劈尖干涉实验是一种重要的光学实验方法,通过这些实验可以直观地观察光的干涉现象,并且得到了较为准确的测量结果。
这些实验结果对于光学理论的研究和应用具有重要的意义,也为我们深入理解光的波动性质提供了重要的实验依据。
希望通过这篇报告的介绍,读者能够对牛顿环与劈尖干涉实验有一个更加深入的了解,并对光学实验方法和技术有所启发。
指导书-14牛顿环和劈尖的等厚干涉
牛顿环和劈尖的等厚干涉光的干涉是指满足相干条件即频率相同、存在相互平行的振动分量、相位差恒定的两束光相互叠加时所出现的光强按空间周期性重新分布的一种重要的光学现象。
由于原子、分子的自发辐射具有随机性,一般来说,来自于不同光源或同一光源不同部分的两束光是不相干的。
在光的干涉实验中通常采用分波阵面法(将同一束光的波阵面分割为两部分,如杨氏双缝干涉)或分振幅法(将同一束光的振幅分解为若干部分,如薄膜干涉)来获取相干光。
本实验采用分振幅法来获取相干光。
利用两光学玻璃表面之间形成的厚度不均匀的空气层的上、下两个玻璃空气界面对入射光的反射将同一束光分解成几部分、经过不同的路径后再叠加。
由于相互叠加的反射子光束之间的光程差与反射处空气层的厚度有关,干涉条纹的分布与空气层厚度的分布相对应,所以这种干涉称为等厚干涉。
在实际生产中和科学研究中,人们不但利用等厚干涉来进行精密测量,而且还可以利用等厚干涉条纹的疏密和是否规则均匀来检验光学元件、精密机械表面加工光面的光洁度、平整度以及半导体器件上镀膜厚度的测量。
【实验目的】1、 掌握用牛顿环测透镜曲率半径的方法。
2、 掌握用劈尖干涉测劈角的方法。
3、 学习读数显微镜的使用。
【实验仪器】读数显微镜、牛顿环装置、钠光灯、劈尖装置。
【仪器介绍】1、仪器结构读数显微镜(如图1)是利用螺旋测微机构控制镜筒(或工作台)移动的一种测量长度的精密仪器,可分为测量架和底座两大部分。
在测量架上装有显微镜筒和移动镜筒的螺旋测微装置。
显微镜的目镜用锁紧圈和锁紧螺钉固紧于镜筒内。
物镜用螺纹与镜筒连接。
整体的显微镜筒可用调焦手轮调焦。
旋转测微鼓轮,显微镜镜筒能够沿导轨横向移动,初末两位置之差即所测长度。
测微鼓轮每旋转一周,显微镜筒移动1mm 。
测微鼓轮圆周均分100个刻度,所以测微鼓轮每转一格,显微镜筒移动0.01mm 。
测量架的横杆插入立柱的十字孔中,立柱可在底座内移动和升降,用旋手固紧。
2、使用方法使用前先调整目镜1,对分划板(叉丝)聚焦清晰后,再转动调焦手轮3,同时从目镜观察,使被观测物成像清晰,无视差。
14-实验十四 光的等厚干涉图文模板
m :32 30 28 26 24
注意事项 n:22 20 18 16 14
注意:鼓轮应沿一个方向旋转,中途不得反转,以免引起回程 误差!
感谢
谢谢,精品课件
资料搜集薄Leabharlann 等厚干涉光路示意图肥皂膜 油膜
牛顿环
劈尖
L —玻璃片交线(劈棱)到细丝的距离 L10—10条条纹的间距
—单色光源的波长
读数显微镜 钠光灯 牛顿环 劈尖 细丝
实验仪器
显微镜上 下调节旋
钮 反射透明 玻璃片
显微镜 目镜
目镜 固定螺钉
毫米刻度 尺
螺旋测微 计
微分筒
显微镜 水平方向 移动鼓轮
实验目的
➢ 了解等厚干涉的原理和特点。 ➢ 学习测量平凸透镜的曲率半径和微小待测物的厚度。 ➢ 掌握读数显微镜的原理和使用。
实验原理
等厚干涉
是光干涉的一种。当薄 膜层的上、下表面有一很小 的倾角时,由同一光源发出 的光,经薄膜的上、下表面 反射后在上表面附近相遇时 产生干涉,并且厚度相同的 地方形成同一干涉条纹,这 种干涉叫等厚干涉。
实验十四 光的等厚干涉
➢ 频率相同的两列波叠加,使某些区域的振动加强,某些 区域的振动减弱,而且振动加强的区域和振动减弱的区 域相互隔开,这种现象叫做波的干涉。
➢ 等厚干涉:厚度相同的地方形成同一干涉条纹,例如牛 顿环和劈尖。
➢ 光的等厚干涉在生产实践中广泛应用,用于检测透镜的 曲率,测量光波波长,精确测量微小长度、厚度和角度, 检验平整度等。
实验14 牛顿环和劈尖的等厚干涉 ppt课件
滑动螺母 旋转螺杆
8
(三) 牛顿环实验步骤
1 对准光路
1、打开钠灯,预热 3~5分钟,保证钠灯 的窗口对准显微镜的 45°反射镜。调整反 光镜使目镜视场明亮。
反光镜朝向发光口
ppt课件
9
2 调节目镜的十字叉丝,镜筒位于标尺中间
1
2
旋转目镜使十字叉 丝的清晰
转动目镜筒使叉丝的横丝与标尺 将反光镜调到背光位置 平行,用锁紧螺丝固定目镜。
沿着红色箭头方向,依次 依次记下右侧第60~20暗环 记下左侧第20~70pp暗t课环件位置。 位置,然后叉丝又过圆心1。3
(四) 劈尖实验步骤
注意:测量的条纹 应选远离头发丝或 纸条的一端,否则 误差太大。
1、镜筒置于 25mm位置。
0 1 2 3 4 ······ ··
2、镜筒置于最低点, 然后向上转动调焦手 轮,聚焦。
移动牛顿环,使十字 叉丝对准圆心
ppt课件
12
5 测量暗纹位置
反转
正转
正向转动手轮,保证竖丝与暗环相 切,数到右侧第72暗环。
反向转两个暗环,到右侧第70暗环,记下此时的 读数(反向转动是为了消除空程误差),此后一 直沿着该方向转动手轮,即镜筒一直沿着红色箭 头方向移动。
左侧第70暗环位置: 17.179mm
U(R )不确定度计算
ppt课件
17
劈尖角计算
数据沿红线分成两组,绿框
和篮筐各一组,对应相减得 到20L,然后求平均,再除 以20,得到相邻暗纹距离。
代入公式计算
2L
ppt课件
18
六 思考题
1、牛顿环的干涉条纹是如何形成的?其条纹特征 是பைடு நூலகம்么? 2、在牛顿环数据计算中为什么要采用m-n=30环? 这样处理有什么优点? 3、实验中观察劈尖干涉的等厚条纹有时是倾斜的, 其影响因素有哪些?
物理论文等厚干涉——牛顿环和劈尖干涉实验
圈数 显微镜读数(mm) 左放 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 39.503 39.648 39.771 39.901 40.008 40.113 40.200 40.283 40.374 40.466 40.583 40.667 40.758 40.844 40,917 40.136 右方 36,240 36.096 35.975 35.851 35.746 35.622 35.528 35.429 35.387 35.250 35.162 35.097 34.997 34.911 34.827 34.745
关键词:等厚干涉;牛顿环;劈尖;
interference of equal thickness —— the Study of Newton's rings and interference of wedge film
Abstract: Newton's rings and interference wedge law are sub-amplitude interference of equal thickness. By the debugging and observation of the phenomenon, and Experimental data processing,We may get the value of Newton's ring lens radius of curvature R and the value of film thickness d. Experiment, with a two-ray interference fringes that the thickness of the reflective surface are the same. Newton's rings and interference wedge can be used to test the degree of spherical formation. Keywords: Newton's rings;wedge film; interference of equal thickness; difference of optical path; 光是一种电磁波。 在对光的本性认识过程中,光的干涉为光的波动性提供了 有力的实验证明。 当平行光垂直地照射到厚度不均匀的薄膜上时,从薄膜前后表 面反射的光的光程差仅与薄膜的厚度有关。观察条纹,读取数据,判断两仪器的 平整性,得出结论。光的等厚干涉在现代精密测量技术中,有很多重要的应用, 一直是高精度光学表面加工中检验光洁度和平直度的主要手段, 还可以精密测量 薄膜的厚度和微小角度、测量曲面的曲率半径,研究零件的内应力分布,测量样 品的膨胀系数等。
等厚干涉实验—牛顿环和劈尖干涉
等厚干涉实验—牛顿环和劈尖干涉要观察到光的干涉图象,如何获得相干光就成了重要的问题,利用普通光源获得相干光的方法是把由光源上同一点发的光设法分成两部分,然后再使这两部分叠如起来。
由于这两部分光的相应部分实际上都来自同一发光原子的同一次发光,所以它们将满足相干条件而成为相干光。
获得相干光方法有两种。
一种叫分波阵面法,另一种叫分振幅法。
1.实验目的(1)通过对等厚干涉图象观察和测量,加深对光的波动性的认识。
(2)掌握读数显微镜的基本调节和测量操作。
(3)掌握用牛顿环法测量透镜的曲率半径和用劈尖干涉法测量玻璃丝微小直径的实验方法 (4)学习用图解法和逐差法处理数据。
2.实验仪器读数显微镜,牛顿环,钠光灯3.实验原理我们所讨论的等厚干涉就属于分振幅干涉现象。
分振幅干涉就是利用透明薄膜上下表面对入射光的反射、折射,将入射能量(也可说振幅)分成若干部分,然后相遇而产生干涉。
分振幅干涉分两类称等厚干涉,一类称等倾干涉。
用一束单色平行光照射透明薄膜,薄膜上表面反射光与下表面反射光来自于同一入射光,满足相干条件。
当入射光入射角不变,薄膜厚度不同发生变化,那么不同厚度处可满足不同的干涉明暗条件,出现干涉明暗条纹,相同厚度处一定满足同样的干涉条件,因此同一干涉条纹下对应同样的薄膜厚度。
这种干涉称为等厚干涉,相应干涉条纹称为等厚干涉条纹。
等厚干涉现象在光学加工中有着广泛应用,牛顿环和劈尖干涉就属于等厚干涉。
下面分别讨论其原理及应用:(1)用牛顿环法测定透镜球面的曲率半径牛顿环装置是由一块曲率半径较大的平凸玻璃透镜和一块光学平玻璃片(又称“平晶”)相接触而组成的。
相互接触的透镜凸面与平玻璃片平面之间的空气间隙,构成一个空气薄膜间隙,空气膜的厚度从中心接触点到边缘逐渐增加。
如图9-1(a )所示。
Rer(a ) (b)图9-1 牛顿环装置和干涉图样当单色光垂直地照射于牛顿环装置时(如图9-1),如果从反射光的方向观察,就可以看到透镜与平板玻璃接触处有一个暗点,周围环绕着一簇同心的明暗相间的内疏外密圆环,这些圆环就叫做牛顿环,如图9-1(b )所示.在平凸透镜和平板玻璃之间有一层很薄的空气层,通过透镜的单色光一部分在透镜和空气层的交界面上反射,一部分通过空气层在平板玻璃上表面上反射,这两部分反射光符合相干条件,它们在平面透镜的凸面上相遇时就会产生干涉现象。
等厚干涉牛顿环劈尖实验报告
记录读数。
同一级暗环的左右位置两次读数之差为暗环的直径。
2. 用劈尖测量薄片的厚度(或细丝直径)
(1) 将牛顿环器件换成劈尖器件, 重新进行方位与角度调整, 直至可见清晰的平行干涉条
纹, 且条纹与搭接线平行; 干涉条纹与竖直叉丝平行。
(2) 在劈尖中部条纹清晰处, 测出每隔10条暗纹的距离l, 测量5次。 (3) 测出两玻璃搭接线到薄片的有效距离L, 测量5次。
* 注意, 测量时, 为了避免螺距的空程误差, 读数显微镜的测微鼓轮在每一次测量过程中只能单方向旋转, 中途不能反转。
数据记录与处理: 牛顿环第一次测量直径
第二次测量直径
rk?2Rdk?kR?, k?0,1,2...,暗环
由以上公式课件, rk与dk成二次幂的关系, 故牛顿环之间并不是等距的, 且为了避免背光因素干扰, 一般
选取暗环作为观测对象。
而在实际中由于压力形变等原因, 凸透镜与平板玻璃的接触不是一个理想的点而是一个圆面; 另外镜面沾染回程会导致环中心成为一个光斑, 这些都致使干涉环的级数和半径无法准确测量。 而使用差值法消去附加的光程差, 用测量暗环的直径来代替半径, 都可以减少以上类型的误差出现。 由上可得:
3(用劈尖干涉法测定细丝直径或微小厚度。
[实验仪器]
牛顿环仪,移测显微镜、钠灯、劈尖等。
[实验内容]
1(用牛顿环测量平凸透镜表面的曲率半径
(1)按图11-2安放实验仪器
(2)调节牛顿环仪边框上三个螺旋,使在牛顿环仪中心出现一组同心干
涉环。将牛顿环仪放在显微镜的平台上,调节45?玻璃板,以便获得最大的照度。
牛顿环试验
Physics Experiment Center
CHANGZHOU INSTITUTE OF TECHNOLOGY
牛顿环
• 将一曲率半化的 空气隙。
• 空气隙的等厚干涉条纹是一组明暗相间的同心环 。该干涉条纹最早被牛顿发现,所以称为牛顿环( Newton -ring)。下图为平凸透镜与平板玻璃组合成牛 顿环实验样品。
R
明纹
1 (k ) (k 0,1,) 暗纹 2
返回
Physics Experiment Center
CHANGZHOU INSTITUTE OF TECHNOLOGY
半波损失
波传播过程中,遇到波疏介质 反射,反射点入射波与反射波有相 同的相位。波由波密介质反射,反 射点入射波与反射波的相位差 π , 光程差为 λ /2 ,即产生了半波损失 。 对光波说,来自大折射率介质的 反射具有半波损失。
牛顿环是光的波动性的有力证据。但是,牛顿虽然发现了 牛顿环,并作了精确的定量测量,可以说已经走到了光的 波动说的边缘,但是由于他认识理念上的限制,他还是从 所信奉的微粒说出发来解释牛顿环的形成。
CHANGZHOU INSTITUTE OF TECHNOLOGY
Physics Experiment Center
CHANGZHOU INSTITUTE OF TECHNOLOGY
他发现,用一个曲率半径大的凸透镜和一个平面玻璃相接触, 用白光照射时,在接触点周围出现明暗相间的同心彩色圆圈, 用单色光照射,则出现明暗相间的单色圆圈。我们把这种干涉 条纹称为“牛顿环”。
Physics Experiment Center
d
CHANGZHOU INSTITUTE OF TECHNOLOGY
《大学物理》等厚干涉---牛顿环和劈尖实验
实验名称:等厚干涉—牛顿环和劈尖姓名学号班级日期20 年月日时段一、实验目的1. 观察等厚干涉现象,了解其特点。
2. 学习用等厚干涉测量物理量的两种方法。
3. 学习使用显微镜测量微小长度。
二、实验仪器及器件牛顿环装置,平板光学玻璃片,读数显微镜,钠光灯,待测细丝(请自带计算器)。
三、实验原理1.等厚干涉(简述原理、特点和应用)2. 牛顿环产生原理3. 曲率半径测量(1) 推导曲率半径计算公式(2) 实际测量公式(P129,6-3-5式)的考虑和导出4. 劈尖干涉:如图,当用单色光垂直入射时,空气劈尖上下表面反射的两束光将发生干涉,从而形成干涉条纹,条纹为平行于两玻片交界棱边的等间距直线。
根据光的干涉原理,得细丝的直径(或薄片的厚度)DD 22L k nl λλ==牛顿环装置四、实验内容1. 用牛顿环测凸透镜的曲率半径。
实验装置如图所示,其中,M为读数显微镜镜头,P为显微镜上的小反射镜,L为牛顿环装置。
(1)借助室内灯光,用肉眼直接观察牛顿环,调节牛顿环装置上的三个螺丝钮,使牛顿环圆心位于透镜中心。
调节时,螺丝旋钮松紧要适合,即要保持稳定,又勿过紧使透镜变形。
(2)将显微镜镜筒调到读数标尺中央,并使入射光方向与显微镜移动方向垂直。
放入牛顿环装置,移动显微镜整体方位和P的角度,使视场尽可能明亮。
(3)调节显微镜目镜,使十字叉丝清晰。
显微镜物镜调焦,直到看清楚牛顿环并使叉丝与环纹间无视差(注意:物镜调焦时,镜筒应由下向上调以免碰伤物镜或被测物)。
移动牛顿环装置使叉丝对准牛顿环中心。
能在显微镜中看到清晰的牛顿环关键有三点:a.确保目测到的牛顿环在物镜的正下方;b.P反射镜角度合适,使S发出的钠黄光尽可能多地反射入物镜;c.物镜调焦合适。
(4)定性观察待测圆环是否均在显微镜读数范围之内并且清晰。
(5)定量测量:由于环中心有变形,应选择10级以上的条纹进行测量。
如取m-n=8,则分别测出第25级到第10级各级的直径,然后用逐差法处理数据,求出曲率半径R。
等厚干涉牛顿环劈尖实验报告
等厚干涉牛顿环劈尖实验报告
一、实验目的
本次实验旨在运用激光厚干涉仪和牛顿环劈尖,了解光波在牛顿环劈尖中的折射作用,从而证明劈尖的存在。
二、实验原理
1、牛顿环劈尖的概念
牛顿环劈尖(Newton's ring)是由牛顿发现的一种光电现象,也叫牛顿环。
它是由光
的入射口、出射口以及中间的物体所形成的闭环光路,由此形成的环形状的干涉图形叫牛
顿环。
一般当光通过闭环光路,通过重叠的方式产生干涉现象,形成牛顿环。
2、厚干涉
厚干涉又称原来层干涉,是使用衍射光斑阵列照射在去表面上形成的干涉图形,它反
映出物体厚度的信息。
据此,可以分析出该物体表面的厚度,它也可以用来研究表面形状
的变化。
三、实验仪器
激光厚干涉仪、牛顿环劈尖、活塞式调准器、激光源。
四、实验步骤
1、安装实验仪器:
将激光厚干涉仪、激光源和活塞式调准器置于室内,保持激光垂直实验台,并将牛顿
环劈尖调整成柱形玻璃以后,放置在实验台上。
2、调整激光和牛顿环劈尖:
使用活塞式调准器,调节激光的垂直方向,使其正好照射到牛顿环劈尖上,并用手调
节牛顿环劈尖,将劈尖调节至聚焦位置。
3、实验观察:
调节激光后,观察实验台上的屏幕,可以观察到环的清晰程度,清晰的环表明劈尖的
存在,从而证明牛顿环劈尖的存在。
五、实验结果
实验结束后,可以观察到清晰的牛顿环,证明了劈尖的存在。
14牛顿环
106
级次的变化量。
把式(2-75)和式(2-76)相减得到:
则曲率半径
Dm2 Dn2 4( m n )R
R Dm2 Dn2 4( m n )
(2-77)
从式(2-77)可知,只要测出第 m 环和第 n 环直径以及数出环数差 m-n,就无须确定各环的
级数了,且避免了圆心无法准确确定的困难。
2.劈尖 两块平板玻璃,使其一端平行相接,另一端夹入一纸片(或待测样品),这样两块平板
实验 14 光的等厚干涉(牛顿环)
等厚干涉是薄膜干涉的一种。当薄膜层的上下表面有一很小的倾角时,从光源发出的 光经上下表面反射后在上表面附近相遇时产生干涉,并且厚度相同的地方形成同一干涉条 纹,这种干涉就叫等厚干涉。其中牛顿环和劈尖是等厚干涉两个最典型的例子。光的等厚 干涉原理在生产实践中具有广泛的应用,它可用于检测透镜的曲率,测量光波波长,精确 地测量微小长度、厚度和角度,检验物体表面的光洁度、平整度等。
R
R
R R
(3)写出实验结果: R R R (mm) 并作分析和讨论。
2.测量薄片的厚度 (1)将数据填入表 2-30,并计算 L10 和 L 的平均值
105
Lm+10
1 2 3 4 5
表 2-30 测量薄片的厚度
Lm
L10 Lm10 Lm
单位: mm
LN
L0
L LN L0
(2)计算纸片厚度 e 的最佳值 e 和不确定度 e (要求考虑仪器误差)。 (3)写出实验结果: e e e(mm) ,并作分析和讨论。
座的反射镜不能有向上的反射光。自下而上调节目镜直至观察到清晰的干涉图样,移动劈 尖使条纹与叉丝的竖线平行,并消除视差。
(3) 测 10 条条纹的间距 L10:以某一条纹为 Lx,记下读数显微镜读数,数过 10 条测出 Lx+10,则 L10 Lx10 L10 。
光的等厚干涉——牛顿环、劈尖
,������ = 0,1,2 …时,为干涉暗条纹。与 K 级暗条纹对应的
【实验仪器及器材】 (应写明仪器型号、规格、精度)
读数显微镜(JCD-3) 、光源(Na灯Байду номын сангаасHg灯) 、劈尖玻璃、牛顿环镜片。
【注意事项】
1.钠光灯预热。 2.调整仪器 (1)由待测透镜的凸面及平玻璃的平面组成牛顿环装置,令其处于自由状态。 (2)调整 45 度反射平面玻璃及显微镜的位置,使入射光近乎垂直入射,并使钠光能充满整 个视场。 (3)调节目镜,看清叉丝;显微镜调焦看清干涉条纹(调整时应注意什么?)使叉丝交点大 致在牛顿环的中心位置。
【实验内容】
1. 根据牛顿环测透镜的曲率半径 (1) 调整测量装置 实验装置如图 3-S20-4 所示。由于干涉条纹间隔很小,精确测量需用读数显微镜。调 整时应注意:
1) 调节 45°玻璃片,使显微镜视场中亮度最大。这时,基本上满足入射光垂直于 透镜的要求。 2) 因反射光干涉条纹产生在空气薄膜的上表面,显微镜应对上表面调焦才能找到 清晰的干涉图像。 3) 调焦时,显微镜筒应自下而上缓慢地上升,直到看清楚干涉条纹时为止。 (2) 观察干涉条纹的分布特征 例如,各级条纹的粗细是否一致,条纹间隔有无变化,并作出解释。观察牛顿环中 心是亮斑还是暗斑?若是亮斑,如何解释?用擦镜纸仔细地将接触的两个表面擦干净, 可使中心呈暗斑。 (3) 测量牛顿环的直径 转动测微鼓轮,依次记下欲测的各级条纹在中心两侧的位置(级数适当地取大些, 如 k=30 左右) , 求出各级牛顿环的直径。 在每次测量时, 注意鼓轮应沿一个方向转动, 中途不可倒转(为什么?) ,将数据填入表中。 2. 光波波长的相对测量 1) 以汞灯代替钠光灯,在同一装置上观察、比较汞灯照射时复色光的干涉条纹与单色 光的干涉条纹有何差异? 2) 用滤色片依次获得汞灯的任意两个单色光(如绿光和黄光八分别观测其等厚干涉条 纹,测出相应各级暗环的半径 rb。试比较两者有何差异。 3) 作 r2-k 图线, 并用相对测量法求出汞灯的某单色光的波长 (其中一种波长为己知量) 。 3. 用劈尖干涉法测微小厚度 1) 将被测薄片(或细丝)夹在两块平玻璃板之间,然后置于显微镜载物台上。用显微 镜观测描绘劈尖干涉的图像。改变薄片在平玻璃板间的位置,观察干涉条纹的变化,并作 出解释。 2) 由式可见, 当波长λ 已知时.,在显微镜中数出干涉条纹数 k,即可得相应的薄片厚度 e。 由于 k 值较大,为避免计数 k 出现差错,可先测出某长度 lx 间的干涉条纹数 x, 得出单位长 度内的干涉条纹数������ = ������������ 。若薄片与劈尖棱边的距离为 L, 则共出现干涉条纹数 k=n· L。代 入式中得到薄片的厚度������ = ������ ·������ 2。
大学物理实验讲义实验14 牛顿环
实验09 用牛顿环测曲率半径光的干涉现象证实了光在传播过程中具有波动性。
光的干涉现象在工程技术和科学研究方面有着广泛的应用。
获得相干光的方法有两种:分波阵面法(例如杨氏双缝干涉、菲涅尔双棱镜干涉等)和分振幅法(例如牛顿环等厚干涉、迈克尔逊干涉仪干涉等)。
本实验主要研究光的等厚干涉中的两个典型干涉现象,即牛顿环和劈尖干涉,它们都是用分振幅方法产生的干涉,其特点是同一条干涉条纹处两反射面间的厚度相等,故牛顿环和劈尖都属于等厚干涉。
在实际工作中,通常利用牛顿环来测量光波波长,检查光学元件表面的光洁度、平整度和加工精度,利用劈尖来测量微小长度、薄膜的厚度和固体的热膨胀系数等。
【实验目的】设距离中心触点O 半径为K r 的圆周上某处,对应的空气薄层厚度为K d ,则由空气薄层上、下表面反射的两束相干光的光程差为22λδ+=K K d (8-1)式中2λ是因为光线由光疏媒质(空气)进入光密媒质(玻璃)在交界面反射时有一位相π的突变而引起的附加光程差(半波损失)。
由图8-1所示的几何关系,有: 2222222)(KK K KK rd Rd R r d R R ++-=+-=因为K d R >>,故可略去2K d 项而得:Rr d KK 22= (8-2)根据干涉条件,两束相干光当光程差为波长的整数倍时互相加强,光程差为半波长的奇数倍时互相抵消,因此,第K 级明环和暗环的形成条件是:λδK = 为明环 (8-3)2)12(λδ+=K 为暗环 (8-4)由公式(8-1)、(8-2)、(8-3)、(8-4)可求得第K 级明环和暗环的半径为:明环: 2)12(λR K r K -= ,3,2,1=K (8-5)暗环: λKR r K = ,2,1,0=K (8-6) 从公式(8-5)、(8-6)可知,在平凸透镜凸面与平面玻璃的接触点(即0=K r )处,干涉圆环为暗环,实际观察到的是一个暗圆斑。
2. 透镜曲率半径R 的测量方法及系统误差的处理方法如果已知入射光波长λ,则只要设法测得明环或是暗环的半径K r ,就可以由(8-5)、(8-6)式求得平凸透镜的曲率半径R 值,反之,当曲率半径R 已知时,则可求得波长λ值。
牛顿环劈尖实验报告
一、实验目的1. 观察牛顿环和劈尖干涉现象,了解等厚干涉的特点。
2. 利用牛顿环测定平凸透镜的曲率半径。
3. 利用劈尖干涉测定细丝直径或薄片厚度。
二、实验原理1. 牛顿环原理:牛顿环是由平凸透镜与平板玻璃之间的空气薄层形成的等厚干涉现象。
当单色光垂直入射时,在透镜表面发生反射,反射光在空气薄层上下表面发生干涉,形成明暗相间的同心圆环。
根据干涉条件,当空气薄层厚度满足一定条件时,出现明环或暗环。
2. 劈尖干涉原理:劈尖干涉是由两块平板玻璃之间形成的劈尖状空气薄层形成的等厚干涉现象。
当单色光垂直入射时,在空气薄层上下表面发生反射,反射光在空气薄层附近发生干涉,形成明暗相间的条纹。
根据干涉条件,当空气薄层厚度满足一定条件时,出现明条纹或暗条纹。
三、实验仪器与用具1. 牛顿环仪:包括平凸透镜、平板玻璃、金属框架、螺旋等。
2. 劈尖干涉仪:包括两块平板玻璃、细丝或薄片、读数显微镜等。
3. 钠灯:提供单色光源。
4. 移测显微镜:用于观察干涉条纹。
四、实验步骤1. 牛顿环实验:(1)将平凸透镜与平板玻璃叠合安装在金属框架中,调整螺旋使透镜与平板玻璃接触紧密。
(2)将牛顿环仪置于钠灯下,用移测显微镜观察牛顿环条纹。
(3)测量第m级暗环的半径r,根据公式R=λr/(2m)计算透镜的曲率半径R。
2. 劈尖干涉实验:(1)将细丝或薄片夹在两块平板玻璃之间,形成劈尖。
(2)将劈尖置于读数显微镜载物台上,调节显微镜使叉丝与劈尖干涉条纹重合。
(3)测量劈尖干涉条纹间距,根据公式d=λL/(2n)计算细丝直径或薄片厚度。
五、实验结果与分析1. 牛顿环实验结果:(1)测量第m级暗环的半径r,计算透镜的曲率半径R。
(2)分析实验误差,如测量误差、仪器误差等。
2. 劈尖干涉实验结果:(1)测量劈尖干涉条纹间距,计算细丝直径或薄片厚度。
(2)分析实验误差,如测量误差、仪器误差等。
六、实验结论1. 通过牛顿环实验,成功观察到等厚干涉现象,并利用干涉条件计算出透镜的曲率半径。
牛顿环和劈尖的等厚干涉
牛顿环和劈尖的等厚干涉〔引课:〕“牛顿环”是牛顿在1675年制作天文望远镜时,偶然将一个望远镜的物镜放在平板玻璃上发现的。
在物理课上,我们只是从理论上研究了薄膜干涉的原理,那么在实验课上我们通过什么方法获得等倾或等厚干涉的图像呢?用牛顿环实验和劈尖实验验证等厚干涉。
用迈克尔逊干涉仪验证等倾干涉。
〔正课:〕1. 理解牛顿环和劈尖干涉条纹的产生原理;2. 学习用等厚干涉法测量凸透镜的曲率半径;3. 学会用逐差法处理实验数据。
1. 牛顿环的产生把一块曲率半径相当大的平凸透镜A 的凸面放在一块光学平板玻璃B 上,那么在它们之间形成以O 为中心向四周逐渐增厚的空气薄膜,离O 点等距离处厚度相同。
当一束单色光垂直射入时,入射光在空气层上下两表面反射,且在上表面相遇产生干涉。
由于空气膜厚度相等处光程差相等(亦相位相同),通过读数显微镜观察到同相位点连接轨迹是以接触点为圆心的同心圆。
各明环(或暗环)处空气膜厚度相等故称为等厚干涉2. 曲率半径的计算设入射光是波长为λ的单色光,第k 级干涉条纹的半径为r ,该处空气膜的厚度为e ,上下表面反射光的光程差为由于空气的折射率近似为1,则产生明、暗环的干涉条件为 明条纹公式( k=1,2,3,……) 暗条纹公式(k=0,1,2,3,……)根据几何关系可知222)(e R r R -+=222e eR r -=R 为透镜的曲率半径。
由于R ≫e上式近似表示为代入明、暗环公式中,则明环半径( k=1,2,3,……)暗环半径R k r λ=2 ( k=1,2,3,……)解决方法:若我们用两个暗环或明环的半径1.将牛顿环装置放在读数显微镜的平台上,点亮钠光灯,并将物镜对准牛顿环装置中心。
2.调整反射镜,使水平入射的光线经反射后垂直入射,调至显微镜视场中亮度最大。
3.调节显微镜调焦手轮,使其自下而上缓慢移动,直到目镜中能够看到清晰的干涉条纹为止。
微微移动牛顿环装置,使叉丝交点与牛顿环中心大致重合,并使一根叉丝与标尺平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
滑动部件
主尺读数基准线
50
测 微 手 轮
0
10
20主尺 30
固定支架
40
50
40
读数: 27+0.01 × 48.5=27.485 mm
(二) 空程误差
空程误差表现为:
当测微手轮反向
转动时,镜筒或 目镜中的十字叉
滑动螺母
旋转螺杆
丝不会立即跟着
移动,而是过一 会再移动。
空程误差
(三) 牛顿环实验步骤
2、测量过程沿着同一方向转动测微手轮,防止空程误差。
3、数暗环时要仔细,容易数错,每到读数的时候要慢慢
转动手轮,防止转过。 4、劈尖条纹要先调平行,选择劈角附近的条纹测量,因 为头发丝或纸片一端条纹测量误差偏大。 5、整理仪器,填写实验运行记录本。
五 数据记录与处理
逐差法:数据沿红 线分成上下两组, 保证m-n=30
2
P
r2 d 2R
d
暗环 ( 2m 1)
2
Rd
R
得(2m 1)
2
2
r R 2
2
r 2 mR
r
O
P
d
rm mR
2
rn nR
2
2 2 2
牛顿环等厚干涉示意图
rm rn Dm Dn R (m n) 4(m n)
实验原理
产生暗纹的条件: Δ 2d k
左侧第70暗环位置: 17.179mm
依次记下右侧第60~20暗环 沿着红色箭头方向,依次 记下左侧第20~70暗环位置。 位置,然后叉丝又过圆心。
(四) 劈尖实验步骤
注意:测量的条纹 应选远离头发丝或 纸条的一端,否则 误差太大。 1、镜筒置于 25mm位置。 0 1 234
· · · · · · · ·
版权归实验中心所有,禁止转载
1 对准光路
1、打开钠灯,预热 3~5分钟,保证钠灯 的窗口对准显微镜的 45°反射镜。调整反 光镜使目镜视场明亮。
反光镜朝向发光口
2 调节目镜的十字叉丝,镜筒位于标尺中间
1 2
旋转目镜使十字叉 丝的清晰
转动目镜筒使叉丝的横丝与标尺 平行,用锁紧螺丝固定目镜。
将反光镜调到背光位置
3
转动测微手轮,将镜筒置于标尺25 mm位置。
钠光灯的相关介绍, 参考课本P41,钠光 灯使用时需预热 5~10分钟,钠光为 黄色光,波长为 589.3 nm。
钠光灯开关
钠光灯
三 实验原理
光程差 2d
2
R2 (R d )2 r 2 R2 2Rd d 2 r 2
入射光
O
2
1
当R d时, d 忽略不计
2
(2k 1)
2
l 相邻暗纹距离
任意相邻暗纹对应的空 气层的厚度差: Δd k
因为 Δd k l sin , 所以 l sin
2
l
dk
2
由于 很小,所以sin
dk
dk 1
劈尖等厚干涉示意图
2l
四 实验内容与步骤
(一) 读数显微镜的读数方法
实验14 牛顿环和劈尖的等厚 干涉
理学院大学物理实验中心 2012年9月
一 实验目的
(1)学会使用读数显微镜
(2)掌握用牛顿环测量凸透镜的曲率半径 (3)掌握劈尖干涉测量劈尖的劈角
二 仪器介绍
目镜 锁紧圈 调焦手轮 标尺 物镜
测微 手轮
45°反 射镜 反光镜 压片夹
牛顿环
读数显微镜
劈尖
仪器介绍
2、镜筒置于最低点, 然后向上转动调焦手 轮,聚焦。
3、转动手轮,使叉丝 竖线对准任一暗纹中 央或相切,此即第0个 条纹位置。然后沿着 红色箭头方向,每4个 暗纹,记一个读数, 直到第36条暗纹。
4、将数据记录表格,计算相邻暗纹距离,最后计算劈尖角。
(五) 实验注意事项
1、镜筒先放到最低点再上调,防止损坏牛顿环和物镜。
m n
U(R )不确定度计算
劈尖角计算
数据沿红线分成两组,绿框 和篮筐各一组,对应相减得 到20L,然后求平均,再除 以20,得到相邻暗纹距离。
代入公式计算
2L
六 思考题
1、牛顿环的干涉条纹是如何形成的?其条纹特征
是什么?
2、在牛顿环数据计算中为什么要采用m-n=30环?
这样处理有什么优点? 3、实验中观察劈尖干涉的等厚条纹有时是倾斜的, 其影响因素有哪些?
3 牛顿环调至中心位置
调节 螺丝
日光灯下观察到彩色的同心 圆环,调节三颗螺丝使同心 圆环位于中心位置。
4 聚焦,使十字叉丝对准环心
下调镜筒
上调镜筒
旋转手轮,镜筒调至最低
注意别压碎牛顿环。
反向旋转手轮聚焦,看到 清晰圆环。
移动牛顿环,使十字 叉丝对准圆心
5 测量与暗环相 切,数到右侧第72暗环。 反向转两个暗环,到右侧第70暗环,记下此时的 读数(反向转动是为了消除空程误差),此后一 直沿着该方向转动手轮,即镜筒一直沿着红色箭 头方向移动。